Kainoa Higgins: Mantas and Megalopae, June 28, 2014

NOAA Teacher at Sea
Kainoa Higgins
Aboard R/V Ocean Starr
June 18 – July 3, 2014

Mission: Juvenile Rockfish Survey
Geographical Area of Cruise: Northern California Current
Date: Saturday, June 28, 2014

Weather Data from the Bridge: Current Latitude: 45° 59.5’ N Current Longitude: 125° 02.1’ W Air Temperature:  12.7° Celsius Wind Speed: 15 knots Wind Direction: WSW Surface Water Temperature: 15.5 Celsius Weather conditions: Partly cloudy

Find our location in real time HERE!

Science and Technology Log:

Neuston Net and Manta Tow Today, the weather is pleasant but the sea seems more than restless. The show must go on! I step onto the open deck behind the wet lab just as Dr. Curtis Roegner, a fisheries biologist with NOAA, is placing a GoPro onto the end of an extensive net system.

Dungeness Crab – A Pacific Northwest Delight Photo Credit: http://www.smokeybay.com

While Curtis specializes in the biological aspects of oceanography, he is especially interested in the synthesis of the ocean system and how bio aspects relate to other physical and chemical parameters. He joins this cruise on the Ocean Starr as he continues a long-term study of distribution patterns of larval crabs. The species of focus: Cancer magister, the Dungeness crab; a table favorite throughout the Pacific Northwest.

While I have been known to eat my weight in “Dungies”, I realize that I know very little about their complex life cycle. We begin with “baby crabs”, or crab larvae. Once they hatch from their eggs, they quickly join the planktonic community and spend much of their 3-4 month developmental process adrift – at the mercy of the environmental forces that dictate the movement of the water and therefore, govern the journey of these young crustaceans. It has been generally assumed that all planktonic participants float wherever the waters take them. In that context, it makes sense that we have been finding large numbers of larvae miles offshore during our nighttime trawl sorting. Still, not all are swept out to sea. Every year millions make their way back into the shallows as they take their more familiar, benthic form which eventually grows large enough to find its way to a supermarket near you. The question is: How? How do these tiny critters avoid being carried beyond the point of no return? Is it luck? Or is there something in the evolutionary history of the Dungeness crab that has allowed it to adapt to such trying conditions?

Dungeness Crab Megalopae
“Dungie” babies

Curtis tells me about recent research that suggests that seeming “passive” plankton may actually have a lot more control of their fate than previously supposed.  By maneuvering vertically throughout the column they can quite dynamically affect their dispersal.  Behavioral adaptation may trigger vertical migration events that keep them within a particular region, playing the varied movement of the water to their advantage.  Curtis believes the answer to what determines Dungie abundance lies with with the Megalops, the final stage of the larva just prior to true “crab-hood”. By the end of this stage they will have made their way out of the planktonic community and into estuaries of the near shore zone.

Kainoa and Curtis
Dr. Curtis Roegner explains the importance of his study

This continued study is important in predictably marking the success or failure of a year’s class of crab recruitment. That is to say, the more Megalopae that return to a region, the better the promise of a strong catches for the crabbing industry – and a better chance for you and me to harvest a crab or two for our own table!

As Curtis and I discuss his research, he continues preparing his sampling equipment. The instrument looks similar to the plankton nets we use in marine science at SAMI only it’s about ten times longer and its “mouth” is entirely rectangular, unlike the circular nets I am used to using. I’ve heard the terms “manta”, “bongo” and “neuston” being tossed around lab and yet I am unable to discern one from the other. It’s time I got some answers!

Curtis explains that the Megalopae he wants to catch are members of the neuston, the collective term given to the community of organisms that inhabit the most surface layer of the water column. The Neuston net is named simply for its target. It occurs to me that a “plankton net” is a very general term and that they can come in all shapes and sizes. In addition, the mesh of the net can vary drastically in size; the mesh on our nets at school is roughly 80µm, while the mesh of this net is upwards of 300μm (1 µm or micrometre is equivalent to one millionth of a metre).

Manta tow & Neuston net
The manta body design for neuston sampling. A specialized plankton tow.

I’m still confused because I am fairly certain I have heard others refer to the tool by another name. Curtis explains that while any net intended to sample the surface layer of the water column may be referred to as a neuston net, this particular net had a modified body design which deserved a name of its own. The “manta” is a twin winged continuous flow surface tow used to sample the neuston while minimizing the wake disturbance associated with other models. The net does seem to eerily resemble the gaping mouth of a manta ray. These enormous rays glide effortlessly through the water filtering massive volumes of water and ingesting anything substantial found within. On calm days, our metallic imposter mimics such gracefulness. Today however, it rides awkwardly in the chop, jaggedly slicing and funneling the surface layer into its gut. It’s all starting to make sense. Not only is this a plankton net designed to sample plankton, it is also a plankton net designed to sample only the neuston layer of the planktonic community.   The modified body sitting on buoyed wings designed to cover a wider yet shallower layer at the top of the water column further specified the instrument; a neuston net towed via manta body design for optimized sampling. Got it.

Collected Plankton Sample
A filtered sample of various crustaceans collected from the neuston

After the tow is complete, Curtis dumps the cod end of the net into a sieve, showing me an array of critters including more than a dozen Megalopae! Two samples are frozen to ensure analysis back at the Hammond Lab in Astoria. There, Curtis will examine the developmental progress of the Megalopae in relation to the suite of data provided by the CTD at each testing site. This information, along with various other chemical and physical data will be cross-examined in hopes of finding correlation – and perhaps even causation – that make sense of the Dungeness crabs’ biological and developmental process.

Analysing CTD Data
Dr. Curtis Roegner looks for patterns relating crab Megalopae and CTD data

The CTD 

CTD
The CTD measures conductivity, temperature and depth among other auxiliary measurements

Fundamentally, a CTD is an oceanographic instrument intended to provide data on the conductivity, temperature and depth of a given body of water. The CTD is one of the most common and essential tools on board a research ship. Whether it’s Jason exploring benthic communities, Sam hunting jellies, or Curtis collecting crab larvae, all can benefit from the information the CTD kit and its ensemble of auxiliary components can provide about the quality of the water at a given test site. In general, the more information we collect with the CTD the better our ability to map various chemical and physical parameters throughout the ocean. Check out the TAScast below as I give a basic overview of and take a dive with the CTD and its accessories.  

 

 

Personal Log:

Just when I thought I was beginning to get the hang of it…. Hold on, I have to lie down. As I mentioned above, the seas have been a bit rougher and I’ve been going through a phase of not-feeling-so-hot for the first time this trip. It’s odd because we hit some rougher ocean right out of Eureka and it didn’t seem to faze me much. I stopped taking my motion sickness medicine a few days in, and though I’ve picked it back up just in case, I’m not entirely convinced it’s the only contributing factor. I think it has more to do with my transition onto the night shift and all the plankton sorting which requires lots of focus on tiny animals. The night before last was particularly challenging. In the lab, all of the papers, books and anything else not anchored down slid back and forth and my body felt as if it were on a giant swing set and seesaw all at once. In addition, each time I looked out the back door all I could see was water sloshing onto the deck through the very drainage holes through which it was intended to escape. I remember wondering why there were so many rolls of duct tape strapped to the table and why chairs were left on their side when not in use. Well, now I know. Earlier today we made a quick pit stop in Newport, Oregon – home of the Hatfield Marine Science Center as well as NOAA’s Marine Operations Center of the Pacific. In short, this is where NOAA’s Pacific fleet of vessels is housed and the home base to several members of my science team, including Chief Scientist, Ric Brodeur.

The NOAA Pacific Fleet
The NOAA Pacific fleet at rest in Newport, OR.

I remember the anticipation of seeing the R/V Ocean Starr, a former NOAA vessel, for the first time. Growing up in Hawai’i, I remember these enormous ships making cameo appearances offshore, complete with a satellite dome over the bridge, only imagining the importance of the work done aboard. Now here I was, walking amongst the giants I idolized as a kid – the difference being that my view was up close and personal from behind the guard gate, a member of their team. I’m totally psyched even though I attempt to pretend like I’ve been there before. As much as I could have spent all afternoon admiring, I needed to make the most of our two hour layover in the library uploading blog material. Unfortunately the satellite-based internet is incredibly finicky out at sea. It’s a first world problem and understandably a part of life at sea, I realize, but all the same, I apologize to all those anticipating regular updates. I continue to do the best I can. I can say, however, that the Hatfield Marine Science Center boasts a fantastic library. I look forward to exploring the rest of the facility upon my final return in a little over a week. ‘Till then, BACK TO SEA!

Kainoa Higgins: Jelly Fishing and C.U.F.E.S-ing! June 26, 2014

NOAA Teacher at Sea
Kainoa Higgins
Aboard R/V Ocean Starr
June 18 – July 3, 2014

Mission: Juvenile Rockfish Survey
Geographical Area of Cruise: Northern California Current
Date: Thursday, June 26, 2014, 2000 hours

Weather Data from the Bridge:
Current Latitude: 42 ° 34.7’ N
Current Longitude: 124 ° 37.6’ W
Air Temperature:  13° Celsius
Wind Speed: 25-30 knots
Wind Direction: North
Surface Water Temperature: 14.6 Celsius
Weather conditions: Partly cloudy

Find our location in real time HERE!

Science and Technology Log:

Jelly Fishing

Jelly fishing
Patiently waiting for an opportunity to sneak up on an unsuspecting jelly

I feel a bit silly standing on the stern deck of the RV Ocean Starr with a long-handled dip net designed to skim the surface of your average suburban swimming pool. It is now my fisher net and I’m hunting jellies (which are not, in fact, fish). In my head I chant, ‘Here jelly jelly jelly’ as my squinting eyes strain to peer through the fertile layers of seawater for any sign of gelatinous zooplankton.

Sea Nettle
The Pacific Sea Nettle

I am assisting Sam Zeman, a graduate student at the University of Oregon, as she attempts to “reel in” the big one. We are keeping our eyes peeled for Chrysaora fuscescens, the Pacific Sea nettle supposedly common to these waters. Supposedly. Sam abides by the motto, “plankton are patchy” and so jelly hunting can be verrrrry frustrating.

Aggregation of Sting
Aggregating Sea nettles

Jelly aggregations are frequently seen at and around convergent zones, where one body of water meets another, each unique in physical and/or chemical characteristic (salinity, temperature, turbidity, etc). There are many such zones throughout the California Current, a classic example occurring near the plume of the Columbia River as it enters the Pacific Ocean. While these aggregating patterns have been observed there is still much to understand concerning the behavioral mechanisms creating and sustaining these patches.

In the fishing community, jellies are generally perceived as nuisances, ripping apart gear thanks to sheer numbers and collective weight. There is evidence suggesting jellyfish compete with commercially important fish species and have the potential for making a dent in zooplankton stocks when they are abundant. That being said, more evidence needs to be gathered to support or refute these claims.

Sam is diving net first into this investigation. She wants to answer questions such as: What are the jellies eating? What time of day do they eat? If they feast continuously does the preferred prey change throughout the daily cycle? What significance do seasons have? Statistically, how much of a nuisance are they? These are all fundamental yet essential questions to better understand the niche that jellies occupy in their ecosystem and what impact that might have on humans.

Sam will take her collected samples of Chrysaora back to lab for further analysis. She hopes that by examining the gut content of these jellies, she will better understand the feeding dynamics of large scyphozoans along the Oregon coast. Surrounded by various instruments designed to assess jellyfish response to flow, Sam will continue to seek the answers to the most fundamental questions: Why do jellyfish aggregate around convergent zones and are they as big of a threat as we make them out to be?

Jelly
Sam Zeman hauls in her first Sea nettle!

 

Catching Eggs – The C.U.F.E.S

I stumble into the wet lab after a restless day of sleep expecting to find the usual hustle and bustle over box corers, CTDs and neuston nets. Instead I find Ric and Curtis consumed with a piece of scientific kit I had yet to see in action. After a brief morning greeting I am introduced to the Continuous Underway Fish Egg Sampler, C.U.F.E.S (pronounced Que-Fess) for short. Underway Fish Egg Sampler. In short, it is designed to collect eggs from the top two meters of the water column near the bow of the ship as we travel throughout the day. The water is piped back to the wet lab and collected in a wire mesh. The consolidated sample of eggs is then added to a vial which will be saved for further examination in the lab. The CUFES is essential to making predictions about future stock of commercially and ecologically important species of fish and it is not long before my sleeves are rolled up and I am honing in on the rhythmic and repetitious process.

Check out the video below to get a play by play of the C.U.F.E.S in action.

Personal Log:

I can feel myself evolving, adapting to life afloat the big blue. I’ve mentioned a variety of fundamental struggles associated with life at sea, struggles that I now feel I’m getting a handle on. I’m finding that small adjustments go a long way. For example, I’ve recently discovered a rope handle hanging above my bunk intended to assist both mount and dismount from bed. I’m not sure how I failed to notice it before but it sure beats having to power push-up in and out of bed each night. I still feel like I’m cliff hanging, one hand on the rope, toes outstretched as they struggle to find floor in the darkness. I’ve learned to shift my weight as the ship pitches and rolls. It’s funny to watch everyone’s body take a 45 degree angle in relation to the deck when we encounter a steep swell broadside. When seas get rough as I try to snooze, I wedge myself between my mattress and the wall to keep from rolling out. Believe it or not, I’ve even gotten a couple loads of laundry done. As a result of these changes and more, I’m beginning to feel more at home even though I’m not anywhere close to it.

Worlds Collide
Day and Night crews come together to greet the first trawl haul

My schedule has also altered slightly. What used to be a 12:00pm-12:00am run has now shifted toward the latter. While it was great to be a part of the day’s activities: box corer, CTD, neuston net and what-not, I was only catching one or two night trawls. I was so excited to see what mysterious creatures would come from the depths in the next haul I rarely called it quits before 3 am anyway. I am now a member of the grave shift, the “nights watch” we’ve come to call ourselves, on official duty between 6:00pm and 6:00am.   I sleep until roughly 2:00pm at the latest so that I can catch the last few day tests before heading to our first trawling station of the night. I spend transit time doing a bit of this and that and then the whole night sorting trawl hauls with a fun and invigorating team. Breakfast is ready as soon as the shift ends and I grab a bite before conking out for as long a sleep as weather permits.

I am also enjoying getting to know everyone on board, both science team members and the ship’s crew. I discovered that I share Hawaiian ties with a handful on board; small world. There are more than a few here who have spent much of their professional careers on the water and so are full of captivating stories.   Recently, I sat with Jerry, an Ocean Starr engineer, who told of his career as a professional treasure hunter in Florida. Though he kept from sharing the exact location of his findings he assured me there was still a plethora for the taking! As he reinvigorated my childhood fantasies of chests filled precious gems and pirate gold, he advised, “If you want to make a small fortune, put a large fortune into hunting treasure.” Hmmm, on second thought, maybe I’ll just start with a metal detector and a side-hobby.

Teaching in the field
SAMI students and I in the ideal classroom

There is a great dynamic amongst our team and I am learning a so much from these passionate scientists. Not only is everyone incredibly versed in their field of study but I’m finding their company to be enjoyable in general. I’ve been warmly accepted onto the team and they have asked just as many questions about SAMI and this program as I have about their research, and believe me, I’m asking a lot of questions.

As a science educator I sometimes forget that I’m a part of the “the team”. Occasionally I catch myself feeling like the kid on the outside of the fence looking in and wishing he could play ball with everyone else. This experience is helping me to realize that just because I’m not in the field doesn’t make me any less of a valuable asset to the scientific community. We are the recruiters, striving to engage, develop and inspire the scientists of tomorrow.  We are responsible for convincing the general populous and particularly the generation of next that they should care about what’s happening in our ocean, to learn something about it and then grow into leaders that will do something about it. I have never felt more value in what I do.

Notable Critters Spotted: Humpback Whales, Blue Whales (that I continue to miss), Mola Mola (Sunfish), Porpoises, SEABIRDS!!!

A Mola mola, or Ocean sunfish

Poll Answer:  W.R. & W.C. stands for Wash Room and Water Closet as seen below

W.R. & W.C.
It’s the Bathroom!