Jordan Findley: One and a Wake Up, June 20, 2022

NOAA Teacher at Sea

Jordan Findley

Aboard NOAA Ship Pisces

June 9-22, 2022

Mission: SEAMAP Reef Fish

Geographic Area of Cruise: Gulf of Mexico

Date: June 20, 2022

Science and Technology Log

Allow me to provide a summary of the survey and what was accomplished on this leg. June 9, we departed from Galveston and made our way out to sea. The survey started the next day. We traveled 1,866.6 nautical miles (or 2,148.04 miles) along the continental shelf. That’s like driving from Florida to California! On this leg of the survey we (they) deployed 169 cameras, 22 CTDs, 13 bandit reels, and 12 XBTs (still don’t know what that is). We collected 15 eDNA samples (go Caroline!) and mapped 732 nautical miles. This year’s survey started in April, and this was the last leg. We’re making our way back to Pascagoula (yes, I can pronounce it now), a near 28 hour transit. We will be docking and unloading at the Gulf Marine Support Facility. The next survey on the Pisces starts next week, deploying Remote Operated Vehicles (ROVs). The science never stops, folks.

The SEAMAP Reef Fish Survey began as a fish trap survey in 1980’s and transitioned to a video survey in 1991, and the technology continues to evolve year after year. This over thirty years of data provides abundance and distribution information on Gulf of Mexico reef fish. Reef fish abundance and size data are generated directly from the videos. So though the work feels slow, it is essential. An index of abundance for each species is determined as the maximum number of a fish in the field of view in a single video frame. Here are some snippets of the footage recording during our trip.

A school of amber jacks recorded on the camera array.

*NOTE: The tiger shark shot was not from our leg of the survey, but too cool not to include.

This survey combined with all research approaches (i.e. traps, bandit reels, eDNA) allows for a comprehensive stock assessment of the fish populations in the Gulf of Mexico. Stock assessments collect, analyze, and report demographic information to estimate abundance of fish, monitor responses to fishing, and predict future trends. This significant data is used in managing fish populations and preserving our oceans resources.

Mapping Operations

One of the scientific operations I have not yet mentioned is bathymetric mapping. Senior Survey Technician Todd Walsh works the night shift running the mapping show – multibeam echo-sounder hydrographic survey to be precise. An echo-sounder determines the depth of the seafloor by measuring the time taken for sound echoes to return. The technology is impressive. Todd is straight up 3D mapping the bottom of the ocean. He watches it come to life, line by line. That’s freaking cool. I see you, Todd.

Though mapping occurred overnight, Todd was sure to point out any interesting finds in the morning. The Pisces mapped an area south of the Flower Garden Banks National Marine Sanctuary and found an impressive geological feature hosting two mud volcanoes. A mud volcano is a landform created by the eruption of mud or slurries, water and gases. Man, the ocean floor is like a whole other world. It was so interesting to watch the mapping unfold right before your eyes. Maybe the seafloor will be my next destination.

Personal Log

The long days take their toll. This crew has worked so hard and is ready to decompress. Some have been out here for months and are counting down the days. You really can’t blame them. You ask anyone out here, “how many days?” and you will hear “three days and a wake up.” “Two days and a wake up.” “One day and a wake up.” They have all earned some serious rest and recovery, and long awaited time with their families and friends. I mean, I’d like to call them friends, but I get it, you can have lots of friends.

I cannot believe it is already my last day out here. Though each day felt like 100 hours, somehow it still flew by. The last CTD hauled out of the water last night marked the end of the SEAMAP survey. I cheer and shout in solitude and run round giving high fives. Good work, everyone! They are all exhausted, but certainly excited and proud of the work they have accomplished. Listen guys, if you aren’t proud, let me remind you that you most certainly should be.

The last day is the first sunrise I didn’t catch – sleeping in was just too tempting. Friends at home have to literally drag me out of bed to catch a sunrise, but out here, it just feels right. We ease into our day and clean and prepare the working spaces and equipment for arrival. I mop. That’s about all I am good for. TAS card. I spend the day roaming as usual, this time reflecting on my arrival and experience at sea. Time slows down even more (if you can believe that) when it’s your last day. I do my best to take in every last moment. I balance the day with some relaxation, a nice game of “bugs” with my pals, a good deal of snacking, revisiting the views, and saying my goodbyes.

Though thrilled to be heading back, most everyone finds their way outside for the last sunset. I soak up every colorful ripple. Mother Nature does not disappoint in those last hours. Dolphins put on a show jumping out of the water at a distance. The stars start to appear, not a cloud in the sky. I stargaze for what felt like hours. We’re greeted by multiple shooting stars. These are the moments I live for – when I feel most at rest. I am overcome with humility and gratitude.

I consider myself lucky to have met and worked with the Pisces crew. Every person on this trip has left an impression on me. From day one, the crew has been so welcoming and willing to let me participate, committed to providing me an exceptional experience. For that, I am grateful. I had so much fun learning from each department and goofing off with the best of them. The work that goes in to the research is remarkable, from navigation, the science, to vessel operations. I learned much more than expected. It’s hard to summarize my experience, but here are some valuable takeaways, in no particular order.

  • NOAA research is vital in protecting our most precious natural resource.
  • Ocean conservation is the responsibility of every one of us.
  • Remember why you do the job you do and the impact you have.
  • Never pass up an opportunity to learn or do something new.
  • Everyone should have the opportunity to connect to our natural world.
  • You can never see too many sunsets.
  • Expose your toes to the great outdoors.

I can’t express enough how grateful I am to have been selected for the NOAA Teacher at Sea Program and be a part of its mission. The experience was so much more than I could have even imagined. Participating in the research was so rewarding, and offered valuable insight into fisheries research and scientific operations. The questions never stopped coming. The novelty of the work kept me hooked. If there is one thing above all that I took away from this trip is – never stop learning. Continuous learning is what enhances our understanding of the world around us, in so many ways, and why I love what I do.

I look forward to sharing my experience with the many students I have the opportunity to work with, and hopefully inspiring them to continue to learn and grow, building a better understanding and appreciation for our planet. NOAA, your investment in me will not go unnoticed. The biggest THANK YOU to all involved in making this experience a reality.

We ride together, we die together. Pisces for life. – Junior

Lightning storm from afar.
Three dolphins surface for air.

Jordan Findley: Fishing, June 20, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 20, 2022

Science and Technology Log

Fishing Operations

Alright, it’s time for the good stuff, the moment you’ve been waiting for (whether you knew it or not). It’s fishing time. FPC Paul Felts monitors depth and habitat to determine suitable fishing sites. When the crew hears “I’d like to set up for bandit reels” over the radio, they come running. I mean they come out of the woodworks like the Brady Bunch on Christmas morn. Let me remind you, the days can be real slow out here. Lots of transiting and waiting. Fishing offers just enough excitement to keep us going.

Three bandit reels are deployed once or twice per day. I promptly insert myself into the fishing operation on day one. Thank you, Rafael and Junior. The reels are motorized and mounted to the side of the ship. The line starts with a weight and then ten baited hooks are clipped on. When deployed, it sinks to the bottom. We get five minutes. Five short minutes for the fish to bite. Boy does anticipation build in that five minutes. If you have a good one, you can feel it on the line. “One minute to haul back.” By this time, everyone is leaning over the side (the gunwale if you want to be fancy) staring at the water. “Reels two and three you can haul back.” “Reel one you can haul back.” We start reeling back in, from somewhere between 85-100 meters deep. Click, click, click on the reel as we impatiently wait.

We start to see a glimpse of the bait coming up around 40-60 meters and try to make out what we’ve hooked. RED SNAPPER! 11 red snapper caught between the three reels on the first fish. This is what I’m talkin’ about. I can handle two weeks of this. Everyone rotates between stations to see what we caught and we all celebrate like we just won some sort of tournament. Let’s remember folks, we are doing this for science. All fish captured on the bandit reels are identified, measured, weighed, and have the sex and maturity determined. Select species have otoliths and gonads collected for age and reproductive research. I excitedly follow the science crew into the lab to get the run down.

*Read no further if you are squeamish.*

The work up of the fish start with some measurements and weights. Of course it immediately became a competition. Game on. Now these fish aren’t your regular ol’ fish. These suckers are huge. Next we dissect the fish to extract and weigh the gonads. That’s right, I said gonads. You can learn the age and maturity of a fish by examining a sample of the gonads under a microscope. From that, you can estimate lifespan, spawning patterns, growth rate, and possibly even migration patterns. Knowing the age distribution of a fish population helps to better monitor, assess, and manage stocks for long-term benefits. Fish gonads, that’s a first for me.

Next step is the fun part, extracting the otolith. Otoliths (ear bones) are calcium carbonate structures found enclosed inside the heads of bony fish. This bone tells us how old the fish is. Otoliths are removed from the fish’s head either by entering through the top of the head or by pulling back the gills. At first, I observe. They really get in there. By the third or so time, I am ready to get my hands dirty. Remove the gills and start digging. Once you find the inner ear, you crack it open and inside is the otolith. Some species are much easier than others. It’s no walk in the park folks. One grouper took us two hours. It’s like a real life game of operation. Though intense, it’s a fun challenge.

On this leg of the survey we caught 20 red snappers, 2 silky snappers, 1 queen snapper, 2 scamp, 1 marbled grouper, 1 yellow edge grouper, and 1 red porgy. Sampling these organisms strengthens the data. Employing multiple research methods produces a comprehensive description and interpretation of the data. The workup of the fish was one of my favorite parts of this experience. Not only did I actually get to participate in the research, I learned valuable new skills, most of which I teach about, but have never had the chance to do it. This is the exact reason I applied for the Teacher at Sea Program.

Have I convinced you that science is cool yet?

Meet the Deck Crew

I’d like to give a shout out to my friends on the deck. NOAA Ship Pisces couldn’t do the research they do without the Deck Department – Chief Boatswain James, Lead Fisherman Junior, and ABs Dee and JB. The Deck keep up general maintenance of the boat and on deck, operate equipment and machinery, support scientific operations, and stand watch. These guys might be salty, but they have good spirits and make me smile. I have enjoyed every minute working with them.

Personal Log

Yesterday, we did another fire drill. This time, with the help of firefighter Jordan Findley. LT Duffy set me up to participate in the drill. He shows me the gear and how it works. It’s hot up in there. Two days later when the alarm sounds, I jump to attention. Not really. It took me a minute to remember I was involved. I pop up out of my usual lounging in the lab and swiftly head out to the deck. 0% do I remember where I am supposed to go. Thank god I pass JO ENS Gaughan. She points me in the right direction. By the time I make it to the locker, they’re all dressed out and on their way to “fight the fire.” They’re impressive.

Though late to the game, JB helps me get suited up and I head down to the scene. As you might expect, the “fire” is out by the time I arrive. I provided moral support. Following the drill, we (I trail behind and try not to trip) walk the hose outside to test the pressure. I get to shoot this sucker over the side. I can barely even hold the nozzle in place. LT Duffy comes in for reinforcement on the hose and I go for it. I sprinkle here, I sprinkle there, hose checks out. Good deal. This was a blast. See what I did there?  Later I come to find they had stamped the hose nozzle with my name as a memento. This is such a thoughtful way to remember my time on NOAA Ship Pisces. I shall carry it with me always. Not true, this thing is heavy, but I will certainly cherish it.  I have so much respect for our firefighters and first responders (on board and beyond), and even more so today.

At this point, I have been out at sea for 12 days. That’s a record for me. My previous PR is one night on a lake in Indiana. I really had no idea what to expect on this trip. I was pretty nervous I would be violently ill and concerned I may not sleep and they wouldn’t have enough coffee to sustain me. None of these were issues, actually far from it, and man am I grateful. No seasickness, I’ve slept like a baby, and there is coffee for days. They even have espresso. Winning. They’ve really spoiled me out here. We have had some really tasty meals, including the fish. No fish goes to waste! I am going to miss being out here at sea. I think I might stick around.

Did You Know?

Wearing gloves, Jordan uses tweezers to hold up an extracted otolith at eye level.

So you now know that otoliths are basically ear bones. What is cool about them is that they grow throughout the life of a fish, leaving traces on the ear bone. Seasonal changes in growth are recorded on the bone and appear as alternating opaque and translucent rings. Under a microscope, scientists count the number of paired opaque and translucent rings, or annuli, to estimate the age of a fish. Just like trees!

Jordan Findley: Doin’ Science, June 17, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 17, 2022

Weather Data

Location: 28°05.1 N, 091°53.3 W
Sky: Clear
Temperature: 85 °F
Wind: north, 5 kts.
Waves:

Track NOAA Ship Pisces

Science and Technology Log

We are continuing our path due east. We (they) have surveyed 14 different banks and dropped 102 cameras.

*NERD ALERT*

Along the way we have been collecting water samples that contain environmental DNA (eDNA), and mapping at night. Caroline Hornfeck, graduate student at the University of West Florida, is collecting water samples once daily and at additional fixed sites. She is working under Dr. Alexis Janosik, participating in a multiyear study of reef fish in the Gulf of Mexico with the Florida Fish and Wildlife Conservation Commission (FWC) and NOAA. The project’s goal is to characterize reef fish diversity in the northwest Gulf of Mexico using molecular tools and techniques.   

Environmental DNA is a molecular tool used in aquatic ecosystems. eDNA contains DNA from all organisms in the water column. This DNA can be in the form of gametes (reproductive cells), fish scales, waste, etc. This approach is noninvasive and cost-effective, and does not require contact with the organism. Caroline collects test tubes of water, adds some magical juice that causes a chemical reaction, and the DNA begins to solidify in the test tube. You with me? THIS is real science.

Later in the lab, the eDNA is extracted and the samples are run through polymerase chain reaction (PCR). PCR amplifies (multiplies) genes and the sample is sent to a lab for additional science. Fancy technology makes millions of copies of the DNA. You piece it all together and use the data to assess reef fish diversity. Essentially, eDNA is like taking attendance in the reef community. Roll call.

I will leave it at that, though it’s much more complex. I am starting to remember why I avoided molecular biology.  Caroline, I’m impressed.

Meet the Science Crew

Paul Felts
Field Party Chief, Fisheries Biologist

Field Party Chief Paul Felts holds up two fish sampled during the reef fish survey

What do you enjoy most about your job? “It’s the field work that I enjoy most. I love being out on the water (in moderation), participating in the various surveys. I have been a part of so many fun surveys – reef fish, snapper longlines, trawls, plankton, and mammals. I appreciate getting a break from the desk, reviewing footage, and annotating the research. I also enjoy working with the crew and building team camaraderie.”

What is the coolest animal you have seen or worked with? “It’s tough to decide. I have seen all sorts of cool stuff. One mammal survey we were out on the smaller boat and a sperm whale breached about 100-200 yards from the boat. Later those whales were lying on their sides at the surface with full bellies, seemingly just resting after a meal. The giant stingray and thresher shark are up there on my favorites as well.”

Paul is the Field Party Chief. He’s been with NOAA for 21 years. As a Fisheries Biologist at the Southeast Fisheries Science Center, Paul studies fish populations and their impacts. He knows every fish in the sea (or at least close). Out here, Paul coordinates scientific operations. He has to be on every minute of every day, and deal with the crews’ shenanigans, yet still shows up each morning with a smile on his face, ready to take on the day.

Amanda Ravas
Fisheries Biologist

Fisheries Biologist Amanda Ravas, wearing a hard hat and a life vest, grips the side of a camera array resting on deck

What do you enjoy most about your job? “My favorite part about my job is being out in the field… as long as I’m not seasick. Because I’m still so new, I love learning all the ins and outs of the projects, seeing the species I’ve been watching on our videos in person, and hearing stories from other scientists about all the cool projects they’ve been a part of.”

What is the coolest animal you have seen or worked with? “The coolest animal I’ve seen while out in the field is a manta ray which followed our boat for a few minutes as we were making our transit back ashore. And I always get super excited seeing any shark species while out at sea.”

Amanda is a Fisheries Biologist at the Panama City Laboratory. She’s been with NOAA for two years. She studies fish populations and their impacts. She may be tiny, but she’s mighty. Don’t underestimate her. She knows her stuff, and knows it well, and can keep up with the best of them.

Rafael Ortiz
Program Support Specialist

Program specialist Rafael Ortiz, wearing a hard hat, life vest and gloves, holds a hook over a plastic bucket

What do you enjoy most about your job? “I enjoy being part of the NOAA Fisheries Mission at the MSLABS level. Being an administrator I find myself lucky to participate on various surveys with the scientist. I get to build a great working relationship and many friendships with them. I learn so much from them. Everything from science related topics to personnel life topics. I also feel that they have a higher respect for me than just some admin person.”

What is the coolest animal you have seen or worked with?  “Oh so many to list. I’ve seen so much diversity on these surveys that it’s hard to list. I’m always amazed at what comes out of the ocean and the thought of things I’ve not seen or will never see. I’m fascinated by the smallest to the biggest ocean animals.”

Rafael is a Program Support Specialist. He has been with NOAA for seven years. He provides oversight, technical expertise, and support to personnel and field biologists. But don’t let him fool you; he’s a biologist at heart. These scientists are lucky to have him out here at sea. He works hard, and best of all, keeps everyone in good spirits.

Kenneth Wilkinson
Electronics Technician

Electronics technician Kenneth Wilkinson, wewaring a hard hat and life vest, stands by a bandit fishing reel

What do you enjoy most about your job? “All of it. I have done just about every survey – plankton, sharks, small pelagic, reef fish, Caribbean reef fish, and more. I have worked closely with NOAA enforcement, installing vessel monitoring systems and reporting illegal fishing. Surveillance in the Keys was a lot of fun. I enjoyed being down there. Most recently, I operate NOAA drones.”

What is the coolest animal you have seen or worked with?  “The first to come to mind is the 12 ft. tiger shark during a longline survey. I also enjoyed building satellite tags and tagging sea turtles.”

Kenny is an Electronics Technician at the Southeast Fisheries Science Center. He has been with NOAA for 32 YEARS. He handles all the equipment from scientific to shipboard navigation and communication. What would we do without Kenny? This survey, as well as most, relies entirely on the technology. Kenny keeps us in check. I mean he’s the only one that knows what a transmissometer is.

Caroline Hornfeck
Graduate Student, University of West Florida

Graduate student Caroline Hornfreck, wearing a hard hat, life vest, and gloves, sits at a desk in the wet lab aligning sample tubes in a styrofoam holder

What do you enjoy most about your job? “What I enjoy most about being a student in this field, is always adapting and learning new skills that can help me grow as a scientist. Whether that’s in the classroom, research lab at the University of West Florida, or aboard NOAA research vessels.”

What is the coolest animal you have seen or worked with? “One of the coolest animals I have seen is a spotted eagle ray. I hope further down in my research career I can work with elasmobranchs (sharks, skates, and rays) and implement better conservation management for keystone species.”

Caroline earned her B.S. in Marine Biology at the University of West Florida. She is pursuing her Master’s at UWF. She is doing real science out here. Are you even a scientist if you don’t collect DNA? This girl is going places for real.

Personal Log

When 2 or 3 o’clock rolls around, I have to shake things up a bit. I’ve started making rounds just to say hello and see what people are up to. I remind folks that what they do is really cool. I make my way to the bridge usually once or twice to bother them a bit. This is where the ship is commanded. It looks like some sort of spaceship up here. I roam around and try to make sense of the many gadgets and screens. Take a peek out the windows. The sun reflects intensely on the water. It’s hella bright out here.

Operations Officer, LT Christopher Duffy, asks “Do you want to drive?” I look over my left shoulder, I look over my right. Oh, he’s talking to me. “Uh, yeah I do.” I have absolutely no clue what I just signed up for. He seems to think I can handle it. I get the run down. The helm is the steering wheel – check. The main engine controls the propulsion – check. Then there are the bow thrusters. From what I understand, they are basically propellers on the side of the boat. I’m not really sure. I just know they improve maneuverability.

Navigation is an art and science. They transit to specific destinations and position and maneuver the ship and make it look easy. Navigators measure the distance on the globe in degrees. If you have forgotten, like I seemed to have, like a circle, the Earth has 360°. Compasses have four cardinal points (directions), right? – North (N), East (E), South (S), and West (W). Well, turns out when you’re real official, you use degrees instead of directions. As if directions weren’t confusing enough. LT Duffy, “When I say 10° right, you do just that and confirm when you’re there.” I can handle that. “Ten right.” I work with LT Duffy to retrieve our next buoy. Huddleston keeps a careful eye. This is fuuunnnnn. “You ready for a hard right?” “Like all the way?” Seems questionable. Oh he’s serious. “Hard right rudder.” SKKKIIIIRRRRRTTTTTTT. Man this thing can move. We Tokyo drift right into position. Nailed it. LT Duffy takes control to finish positioning (I made it easy for him). I’m grinning ear to ear.

“Are you comfortable giving commands?” “Yep.” The overconfidence kicks in. First things first, CONN candy. What’s that you ask? The officers up here have a secret drawer of tasty treats that they’ve been hiding from us this whole time. Gotta have some before taking command. Wait, what am I doing? LT Duffy explains, “You’ll be giving commands to LTJG, Ariane Huddleston, while she steers.” Uhhhhhhh. I see the fear in her eyes. “Just repeat after me.” Huddleston takes the wheel and I “give commands.” It clicks. This is my time to shine. I “very well’d” the heck out of those commands. So much fun, thank you crew!

Did You Know?

You know all those horrid COVID tests you had to take? You were doin’ science right there. The polymerase chain reaction (PCR) tests genetic material (fluid from the nasal swab). The test detects the virus that causes COVID-19. Scientists use the PCR technology to amplify small amounts of RNA from specimens into DNA, which is replicated until SARS-CoV-2 is detectable if present. It’s cool stuff guys.

Jordan Findley: Ready for the Drop, June 13, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 13, 2022

Weather Data

Location: 27°52.1 N, 93°16.5 W
Sky: Scattered clouds, hazy
Temperature: 85 °F
Wind: south, 13 kts.
Waves: 1-2 ft.

Track NOAA Ship Pisces

Safety Onboard

Obviously, safety is of the utmost importance out here at sea. Respect. When working on deck, crew must wear life vests, hard hats, sometimes safety belts, and closed-toe shoes. I don’t know how these people wear closed-toe shoes all day long. I hate it. My piggies are suffocating. 

The plan of the day for Friday (6/10) included safety drills at noon. Noon rolls around and I am not really sure what to do. No surprise there. Confirm with Paul what to do and where to be. Oh, okay. Amanda, Caroline, and I go grab our safety getup and start to head to our assigned life raft muster stations (where we gather). On the way down, Commanding Officer LCDR Jeffery Pereira, passes by. “Wow, you ladies are ready.” …… something tells me it’s not quite time. We promptly return to our stateroom. I casually go check our muster stations. Yep, there’s no one. Turns out drills commence with a signal. I’m on to you CO, you just getting a kick out of us roaming around like fools with our safety gear. It’s okay, I have accepted my role onboard.

We run through fire and abandon ship drills. At sea, everyone aboard ship, be they crew, scientist, or passenger, is a member of the fire department. When the alarm sounds, everyone jumps to respond. My response, go to the back deck and wait. Meanwhile, the crew is hard at work donning firefighting PPE and preparing fire stations. Great work, team!

Then we move on to the abandon ship drill. Abandoning ship in the open sea is an action of last resort. Only when there is no reasonable chance of saving the ship will the order ever be given to abandon it. When signaled, everyone reports to their assigned life raft muster station with their protective survival gear. We throw on our survival suits, or immersion suits, and in the actual event, would launch the life rafts. This immersion suit is intended to protect your body while out in the open ocean. Now, I know safety is serious business, but these suits are ridiculous looking. We somehow make them look good. I’ve said it before; I’ll say it again – safety is sexy.

Science and Technology Log

We spent our first day at a reef known as Claypile Bank, approximately 80 miles offshore. The second day we headed to East Flower Garden Banks, 125 miles offshore. Flower Garden Banks National Marine Sanctuary was expanded from 56 mi² to 160 mi² to protect critical habitat in the Gulf of Mexico in 2021 and is now made up of 17 different reefs and banks. Cameras were dropped at around 48 meters (or 157 ft) the first go around and 116 meters (380 ft) the second. Since the start, we have sampled Rankin Bank, Bright Bank, and started on Geyer Bank, with a total of 62 cameras deployed. That’s a lot of cruisin’ and droppin’.

Camera Operations

Let’s talk about these cameras. Deploying and retrieving cameras occurs ALL DAY LONG. Man, the days are long. Here is a quick summary of the work…

Dropping the camera

There are two camera arrays, one 48” tall and the other 36” tall. These things are beastly. Each Spherical/Satellite camera array has six video cameras and a satellite camera, battery, CTD, tensiomet… tramsmiss…  transmit…. What it is Ken? … TRANSMISSOMETER (measures visibility/turbidity), sonar transmitter, trawl net ball, and bait bag. The first camera goes out at 7 AM and the last by 6:15 PM. Predetermined sampling sites are selected along the U.S. continental shelf using random stratified selection (dividing the area into subgroups).

When at the site, cameras are lifted by the A-frame, dropped with the yank of a chain, and boom, they sink to the bottom. They sit on the seafloor and soak (record footage) for 30 minutes. First camera goes in, we head to the next site, second camera goes in, we retrieve the first, we retrieve the second, and repeat.

Though the deployment itself only takes like two minutes, there is a lot of coordination involved. It’s amazing how the Bridge (NOAA Corps), Deck, and Lab crews work together to effectively deploy and retrieve the cameras. The communication is nonstop. Field Party Chief (FPC if you know him), Paul Felts, is the brains of this operation. Paul keeps scientific operations running smoothly, providing coordinates to selected sites, monitoring conditions, keeping time, processing data, and I am sure so much more. This guy doesn’t stop. The Bridge are they eyes and ears – they are on watch, navigating to sites, and maneuvering and position the ship all while working against the elements. You guys deserve more credit than that, I know. The Deck are the hands (this is a terrible analogy, but I am committed at this point) – they are operating the deck equipment, raising and lowering cameras, and working the lines and buoys. I, Teacher at Sea Jordan Findley, am the appendix. I have potential, but am mostly useless, and can be a real nuisance from time to time.

Personal Log

We are almost one week in and I am still just as excited as day one. Have I encountered challenges, yes, but being out here in the middle of the Gulf is something special. I am greeted every day with a beautiful sunrise and evening sunset. It is spectacular. The water is so beautiful. One of the things I really hadn’t considered to impact my experience at sea is how amazing the people would be. You all inspire me. Every single person on this ship has been so kind and accommodating, allowing me to participate and taking the time to teach me, despite how long they’ve been out at sea or how long their day has been. It’s like one big (mostly) happy family out here. They have me cracking up all the time. Now, they could just be on their best behavior for the ol’ teach (that’s me), but I am convinced they’re just good people. I mean, I even like most of them before my morning coffee. That’s something right there.

I think I am getting my groove. On a typical day on the ship, we wake up at 6 AM (oof), breakfast, then to the lab. I like to take a minute on the back deck to drink my coffee and look out over the water. First deployment (CTD and camera) is at 7 AM. They do some science, and then continue to deploy and retrieve cameras about every 10-30 minutes until sunset. I pop in and out of the lab all day to observe, but try to keep myself busy. When I am not “helping out,” you will find me in my office. Some call it the mess. I don’t mind. It’s also conveniently where all the food is prepared and served, and where the coffee and snacks are located.

We all refuel on coffee during lunch. Shout out to Paul for making that coffee a real punch in the face. Fishing occurs in the afternoon, almost daily. More to come on this, but man it is fun. The rest of the day is a waiting game (at least for me). Living on a ship is weird; there is only so much you can do. Honestly, the first couple of days, I had some concern I might die of boredom, but as things progressed, I got more involved in every aspect of the operation – even driving this beast! Also, been trying to sneak in a workout. Don’t forget to hydrate. That breaks up the day a bit. Dinner rolls around at 5 PM. All I do is eat. I have been eating like a grown man. The crew starts to wrap things up, reset for the next day, and then transition to mapping operations. The day isn’t complete without watching the sunset. Then we just hunker in until bedtime. The ship “rock-a-bye babies” everyone to sleep.

Generally speaking, I have improved immensely on my ability to open doors – solid 8/10. Those heavy brown doors though, they still kick me in the butt on my way through. I am learning my way around the ship for the most part. Mmmm, kind of. There is a door like every five feet. What I have not improved on is my ability to walk. I am walking all sorts of ways but straight. Everyone stands clear when I walk by. They say you’ll get your sea legs, but I am not sure I am convinced.

Did You Know?

A continental shelf is the edge of a continent that lies under the ocean. Though underwater, continental shelves are still considered part of the continent. The boundary of a continent is not the coastline, but the edge of the shelf. The shelf extends to a drop-off point called the shelf break. From the break, the shelf descends deep to the ocean floor. Depths of the shelf where we sample range from 45-165 meters, mostly because it gets to be too dark much past that. The depth of the Gulf of Mexico can be more than 5,000 meters deep! Sorry friends, I am done converting units – we’re doing science out here. Just know that it’s deep.

Jordan Findley: Underway, June 10, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 10, 2022

Weather Data

Partly cloudy
Temperature: 82 °F
Wind: northeast, 10 kt.
Waves: 2 ft.

Track NOAA Ship Pisces

Science and Technology Log

NOAA Ship Pisces will conduct a survey of reef fish located on the U.S. continental shelf and shelf-edge of the Gulf of Mexico (GOM) from April 19 through June 22, 2022 (we are doing the last leg of the survey). 536 sites have been selected to be sampled with Spherical/Satellite array, bandit reels, and CTD during daylight hours and mapping at night.

CTD Operations

CTD casts will be conducted twice a day. CTD stands for conductivity (ability to pass an electrical current), temperature, and depth and it is an instrument that measures just that. The CTD is the key to understanding the physics, chemistry, and biology of the water column. The CTD will also collect water for eDNA (Environmental DNA) sampling. Organisms leave traces of their DNA in their environment (e.g. hair, skin, feces) and from that, scientists can run genetic tests to determine what species are present in a given area.

Camera Operations

Camera operations will utilize three Spherical/Satellite camera arrays. The cameras are baited and sit on the seafloor for 30 minutes. During the soak, the cameras capture footage of the biodiversity. Scientists use the footage to complete a stock assessment analysis. That data combined with other research helps scientists estimate the abundance of fish populations.

Fishing Operations

Bandit reels (basically industrial fishing poles) are deployed after cameras are retrieved. The bandit reels are set up like longlines. The line sits vertically in the water column. When the weighed end of the line reaches the bottom, a surface float is attached to the line. Ten baited hooks are evenly spaced on the bottom 20-30 ft. of the line. All fish captured on the bandit reels are identified, measured, weighed, and have the sex and maturity determined. Select species will have otoliths (ear bones) and gonads collected for age and reproductive research.

Mapping Operations

Bathymetric mapping (basically 3D mapping of the seafloor) will be conducted in and around selected sites at night with the EM 2040 sonar. Sonar emits sound pulses and detects their return after being reflected. Science is cool. A CTD cast will be conducted to obtain speed-of-sound for proper processing of data.

a bathymetric chart of Southeastern U.S. waters, from Texas to around the east coast of Florida. inshore is shallow, colored in reds and oranges, marking the continental shelf. The deepest portions of the Gulf of Mexico are still much shallower than the Atlantic waters east of Florida.
Bathymetry of the Northern Gulf of Mexico and the Atlantic Ocean East of Florida. Photo courtesy of NOAA Geophysical Data Center.

Personal Log

I was dropped off at my hotel at around 8 PM on Tuesday and could see the ship from the road. It sinks in. (NOT THE SHIP! – This had me laughing out loud.) This is actually happening. Suddenly there’s no time for checking in; I headed straight to the wharf, luggage in tow. Completely awestruck, like a giddy school girl, I proceed to walk up and down the length of the boat numerous times taking an embarrassing number of photos. The crew is just staring at me, I’m sure getting a kick out of this crazy tourist. A lovely gentleman (also geeked about the boat) leaned in, “cool boat, huh?”… I’M GOING ON THAT BOAT THURSDAY. Good lord, Jordan, be cool. I basically screamed in his face. He was the sweetest, and a teacher himself. “I know the trip is going to be everything you wanted.” I melt. Gee thanks, Pat.

Our departure was delayed a few hours, which gave me some time settle in and awkwardly roam the ship. This thing is massive (compared to what I know).  I believe it has seven levels. My attempts to open and close doors quickly became a comedy act for any spectators. I was introduced to my roommates at 6 AM. Ain’t nobody trying to chit-chat at 6 AM. I share a stateroom with Amanda Ravas, NOAA Fisheries Biologist, and Caroline Hornfeck, graduate student at the University of West Florida. Caroline is collecting water for eDNA sampling. They are around my age (or at least I’d like to think so), and have been so kind and helpful. It is their first time on Pisces as well, but each are experienced and very knowledgeable. They’ve made me feel right at home, and I feel are going to be a major part of my experience out at sea.  Women in science – go team!  

Operations Officer (NOAA Corps), LT Christopher Duffy, was so kind as to take me under his wing and invite me to the bridge (control room) to observe departure. This was so cool. Navigation is quite the operation. I guess now that I’ve seen it, duh, this boat is massive and the port was so busy with vessels of all sizes. Seven NOAA officers worked together to get us underway safely. Lots of standing on watch and communication involved. They were constantly shouting commands and numbers, and repeating. All confirmed communication was acknowledged with a “very well.” I found this amusing. One of my favorite lines heard while observing was, “There’s a pleasure boat on the port quarter.” “Very well.”

I will now start saying “very well” in my everyday life.

Last mention for now – I haven’t been seasick (so far)! Those that know me well know that is a major accomplishment for me. (As if I had say in the matter).

I am so happy to be here and to have the opportunity to learn from all of the crew (in every department). I am already so impressed by each of them.

Did You Know?

Well most of us do know that water and electricity make a dangerous pair; but, did you know that it’s not water itself that conducts the electricity? It’s the minerals and such dissolved in it. The saltier the water, the more electricity it conducts. Pure water is actually an excellent insulator and does not conduct electricity, but you will never find pure water in nature. Whoa. I went down a rabbit hole with conductivity.

Also random, but kind of fun, the NOAA Teacher at Sea Program started in 1990, the year I was born. NOAA Ship Pisces was commissioned in 2009, the year I graduated high school.

Jordan Findley: Another Teacher at Sea (Finally), June 5, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 5, 2022

Series of Events

In October of 2019, I learned of the NOAA Teacher at Sea Program. Without hesitation – yep, sign me up, and applied in November. In January of 2020, I received the following message: 

Dear Applicant,

On behalf of the National Oceanic and Atmospheric Administration’s (NOAA) Teacher at Sea Selection Committee, we are pleased to inform you that you were selected to be a finalist for the 2020 season! Now onto the next steps…

Stoked. Couldn’t be more thrilled. February 2020, medically cleared and ready for the more information call. 

(Insert Record Scratch Sound Effect)

January 2020, the U.S. Center for Disease Control and Prevention confirms the first U.S. laboratory-confirmed case of COVID-19, and by March of 2020 the United States declares a nationwide emergency. On March 9, 2020, I was notified of the cancellation of the 2020 NOAA Teacher at Sea season in response to the pandemic. 

As for all of us, COVID put a screaming halt to my travel plans, but more importantly the world around us. As the pandemic progressed, the 2021 Teacher at Sea season was also canceled. No, this is not a blog about COVID, and I am in no way downplaying the impact of the pandemic, but it is a part of my story. I, much like all of us, have gained a great deal of perspective, patience, and gratitude (and maybe a few gray hairs) during the last two years, and the anticipation of this trip has made me that much more grateful and excited for the opportunity to participate this season.

Okay, back to the good stuff. March 2022, we are back in action and in April, I received the official cruise offer. NOW I can get excited. In just a few days, June 9-22, 2022, I will be participating in a Gulf SEAMAP Reef Fish Survey on NOAA Ship Pisces. The Pisces will conduct a survey of reef fish on the U.S. continental shelf of the Gulf of Mexico using a custom built spherical stereo/video stationary camera systems and bandit reels. The ship’s EM 2040 multibeam system will be used to map predetermined targeted areas on a nightly basis to improve or increase the reef fish sample universe. A patch test of the EM 2040 multibeam echosounder….

You lost yet? Yea, me too. Looking forward to learning what this actually entails. I shall follow up in layman’s terms.

NOAA Ship Pisces at sea, viewed from above.
NOAA Ship Pisces (R-226). Photo courtesy of NOAA.

Introduction

Oh, ahem. Let me introduce myself. Hi, I’m Jordan Findley.

My resume reads, “I am an environmental professional dedicated to demonstrating environmental advocacy and sustainability, while fostering a generation of future environmental stewards.” Professional is relative here. My professional background is in husbandry and environmental education. On a personal level, those who know me well might describe me as an educator, traveler, and outdoor enthusiast. My interests have always aligned with nature, wildlife, and the outdoors and I am continually astonished by our planet and passionate about protecting it.

I grew up in rural Indiana and spent all of my time outside. At an early age, I gained an appreciation for a simple life, a grand adventure, and the beauty of the natural world around me; and that is the essence of my being. I would simply describe myself as a bit of a wanderer with a thirst for life and motivation to inspire others. I’ve spent my entire existence chasing the next big opportunity, and because of that, life has afforded me some amazing opportunities. I often hear, “I live vicariously through you,” but that really isn’t my hope. My hope is that I inspire and empower others to have their own amazing experiences in life, do what they love, and be the best version of themselves.

“Professional” Profile

To be honest, my background is all over the place and true to myself. I hold a B.A. in Zoology and M.A. in Biology from Miami University (that’s Ohio). My education provided fundamental knowledge of animal, environmental, and social sciences and science education. I traveled to Mexico, Australia, and Kenya during graduate school to study human impact on the environment and community-based approaches to conservation. These experiences abroad vastly broadened my view of the world and the environmental challenges it faces.

I worked seasonally until hired as an educator at Tampa Bay Watch (TBW) in 2016. I will spare you all the details of me bouncing from job to job, but I will say it was then that I had some of the most unique experiences and learned of my passion for education. As much as I thought otherwise, I am an educator at heart, but I knew the classroom was never for me. And though I have mad, mad respect for formal educators (you are all saints), I knew that any facilitation I would be doing had to take place outside. Experiential education became my niche and has been such a rewarding job. I get to teach about what I love, be immersed in nature, and be a part of creating meaningful experiences.

As the Education Program Coordinator at Tampa Bay Watch, I coordinate and facilitate field trips and camps for students K-12 known as Estuary EDventures. Our programs hosted at the Auer Marine Education Center in Tierra Verde, FL focus on estuary ecology and conservation. Students are exposed to the wonders of our natural world through hands-on, marine science labs and immersive field experiences. Our most popular programs are otter trawling and seining. Why wouldn’t they be? We have so much fun collecting animals of the bay, learning about their unique adaptations, and connecting to the marine environment.

A typical trawl at Tampa Bay Watch finds crabs, seahorses, pufferfish, and other organisms [no sound].

Another view of organisms sampled in a trawl [no sound].

Ready for Sea

I cannot even describe how excited I am to be out at sea working with scientists, and learning something new. Let’s be real, I am not sure I really know what to expect, but I’m here for it.

My time at sea will be spent in my home waters of the Gulf of Mexico. I have so much to learn from this trip and such a great platform to share that knowledge thereafter. I am inspired by the students I see every day, some of whom experience a sea star or puffer fish for the first time. The spark in their eyes I will carry with me on this trip. I have been teaching marine science informally for nearly six years and it never ceases to amaze me. I mean, it’s pretty amazing, right? Our oceans are essential for life and home to millions of species, and its conservation is one of the greatest challenges our scientists face. 

I am so incredibly grateful to have been selected to participate in the NOAA Teacher at Sea Program. The allure to this program was the opportunity to be immersed in the research, the hands-on, real-world experience at sea. The goal is to provide my students first-hand exposure to the exciting NOAA research projects at sea. Making their learning relevant through my experience will hopefully ignite a curiosity and excitement for science and build a better understanding and appreciation for our planet.

Let the fun begin!

Dana Kosztur: Science Lab at Sea, April 15, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 15, 2018

Weather Data from the Bridge

Lat: 29° 35.5335′ N Long: 084° 19.8126′ W
Air Temperature: 18.2°C (64.76°F)
Water Temperature: 20.43°C (68.77°F)
Wind speed: 28.11 knots (32.35 mph)
Conditions: stormy, Seas 7 to 9 feet

Science and Technology Log

While I have been at sea,  I have spent time exploring Pisces and getting to know the people on board. This research vessel is 209 feet long, 50 feet wide, and it has a draft of 20 feet.  It is large enough to hold 39 passengers. The crew of the vessel during my sail consists of 5 NOAA Officers, 5 deck crew, 5 engineers, 4 technicians, 2 stewards and 5 scientists.

NOAA Ship Pisces
NOAA Ship Pisces

Pisces is loaded with science equipment. It has the capability to run acoustic surveys, marine mammal surveys, and various fish surveys. The onboard wet lab is used to process the marine life brought in on trawls, long lines, or bandit reels. In the dry lab, the mission data is stored and processed by the scientists and survey technicians on the ship.  There is a side sample station on the starboard deck where the cameras and ROVs are launched and the trawls are deployed on its stern. The centerboard, on the hull underneath the ship, has mounted sensors that send back various types of data for the scientist to use. This vessel was also engineered to be quiet while underway so it won’t scare marine life. The ship shares the oceanographic, hydrographic and weather data it gathers daily to the outside world.

The Commanding Officer gave me a tour of the bridge.  The bridge is the navigation center. The vessel can be operated from one of four different stations. The science that is being conducted determines where the officer will navigate from. The technology on the bridge is quite amazing.  The dynamic positioning system allows the vessel to stay within certain parameters when supporting science missions. It functions almost like an auto-pilot to keep the ship in the proper position.

Bridge Center Navigation
Bridge Center Navigation

"Moo"ving the ship
“Moo”ving the ship

 

NOAA Ship Pisces is like a floating city.   I had the opportunity to explore the engine room with the ship’s first assistant engineer to see how this mini-city works.  He showed me how they process sewage and garbage aboard the vessel. I learned how the vessel creates its own water and power.  I saw the huge engines. This ship has two 8 cylinder engines and two 12 cylinders engines that power the ship. I also learned how the bilge/ballast system keeps the ship stable and how the bow thruster aids in steering

 

one of four engines on Pisces
one of four engines on Pisces

Personal Log

Most of the days pass quickly and I lose track of time.  I can’t believe I have been at sea for 10 days. Having a different type of workday is very unusual to me.  I have taught for almost 18 years so school days are what I know. It is different to work with adults all day instead of children.  It is a definite change of pace. Today is a slow day. We are currently standing-by due to a weather delay. We have moved closer to shore and are riding out the storm.  Hopefully, we will be able to be back up and running tomorrow.

I will surely miss the trips to the galley when I get home. I have probably gained five pounds on this trip. The stewards that cook on this ship do an amazing job.  It is nice to have already prepared meals. I have gotten spoiled by not cooking too. I know will miss the view when I get back to land. Watching the waves never gets old.  I could stare at the water all day. Even when it is stormy the ocean is beautiful.

Being away from home is hard.  It’s difficult not to harass my team teachers about my classroom while I am gone.  I know that my students are well taken care of but it is hard not to worry. The letters from my students, emails from family,  texts from my husband, messages from friends, and sweet videos from my granddaughter help me combat homesickness.

Did You Know?

The Gulf of Mexico is home to 21 marine mammals and 5 sea turtle species

Student questions

How many species of sharks are in the gulf?  There are approximately 49 shark species in the gulf.

Dana Kosztur: Unexpected Visitors, April 11, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18, 2018

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 11, 2018

Weather Data from the Bridge

Lat: 29° 54.7331′ N Long: 087° 12.1562′ W
Air Temperature: 22.5°C (72.5°F)
Water Temperature: 21.29°C (70°F)
Wind speed: 5.8 knots (6.7mph)
Conditions: blue sky, flat seas

Science and Technology Log

This week I have learned a lot about the reef fish studied in this SEAMAP survey. I have learned how to weigh the fish and take various length measurements. I have also learned how to examine the gonads and distinguish a male from a female.  I can now properly remove the otolith bones from the otic capsule that is located at the base of the fish’s skull.

 

We have had some unusual catches that have provided great learning experiences as well.  The bandit reel caught a sharksucker on the line as it returned. This fish belongs to the Remora family.  It attaches to sharks and other marine animals. This was a really unusual creature to observe.

Dana and shark sucker
TAS Dana Kosztur displays a sharksucker captured on the bandit reel.

The camera arrays had fireworms hitch a ride to the deck from the bottom of the gulf. These guys look like large spikey caterpillars. They have venom in their bristles that can cause a painful sting.  

Fireworm
This fireworm hitched a ride on a camera array.

Personal Log

Today was a beautiful day.  The water is such a beautiful blue.  The sky was cloudless last night so I finally got to look at the stars.  The night sky seems much more vast and bright away from the light pollution on land.  The stars are amazingly bright. I am enjoying life on the ship but I do miss home. I have a greater respect for those that work away from home for long periods of time.  Teamwork and a positive attitude seem to be the lifeblood of this NOAA vessel and that makes it much easier to adjust.

Did You Know?

Many birds will often land on the vessel to rest during their migration route across the Gulf of Mexico.     

Barn swallows
Migrating barn swallows

Waves transmit energy, not water.

Cow at sea
Cow at sea

Questions from students:

Why do scientists need to know what types of fish are on the reef?  

It is important to manage and maintain the reef fish species because they are often over-fished.

Scamp grouper
Scamp grouper

 

Dana Kosztur: Cruising with Camera Arrays, April 8, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18, 2018

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 8, 2018

Weather Data from the Bridge

Lat: 29o 20.6309′ N      Long: 087o 46.1490′ W
Air Temperature: 18.1oC (64.5oF)
Water Temperature: 22.29oC (72oF)
Wind speed: 10.81 knots (12.4 mph)
Conditions: cloudy,  1 to 2 ft seas

Science and Technology Log

The most important equipment on this mission are the camera arrays. Most of the data collected are dependent on these cameras.  I mentioned in my last entry the two types of camera arrays used in this survey are the SatCam and the RIOT.  The video taken from these camera arrays is stitched together in a five-panel single view. The videos are reviewed and each species that appears is counted and recorded.  Images help the scientist determine the population of fish at a given site. The RIOT is a two-stacked spherical camera housing unit that contains 5 horizontal cameras and one upward facing camera.  The RIOT is the more expensive of the two arrays, but it gives the scientist a greater ability to measure fish when they are captured in the dual videos.  

 

IMG_0759
deploying the RIOT

 

Over the past few days, we have caught several species of fish on the bandit reels. We have caught red snapper, vermilion snapper, and red porgy. These lines have 10 baited hooks and they are dropped into the water on a randomly selected site.  In order to obtain a proper sample of the fish, very little human interaction is made with the reel or the line. This leaves out any fisherman bias and allows for natural sampling of species on the site.  The hook sizes are rotated with each drop. The hooks sizes are 8, 11, and 15. If reel 1 starts with size 8 hook, it will have size 11 on the next drop, and then 15 on the third. Each reel has a different rotating pattern.  This allows each hook size to be in the water over the same site. The data will help determine if a certain hook type is favored by a species of fish.

 

IMG_07742
recording red snapper data

 

IMG_0756
class mascot

 

Personal Log

My students will return to school tomorrow from spring break.  I am a little sad I am not there with them.  They wrote letters for me to read while I was away. I have read some of these already and they are pretty funny.  I want to reassure them that I will not fall overboard and that I am eating well.  I will answer student questions on the bottom of my blogs.

We are in the Gulf of Mexico about 70 to 80 miles offshore, on the Mississippi-Alabama Continental shelf.  I have not been this far out in the gulf before today. It is pretty humbling to look out and just see blue water. The sunrises and sunsets are spectacular. You can’t always see them though. The weather has been pretty gloomy the last two days, so I was unable to see last night’s sunset or this morning’s sunrise.   We had a storm yesterday followed by the much cooler weather today.  I hope this is the only cold snap we get.  I am not a fan of cold boat work.

Did You Know?

Turbidity is how cloudy the water is based on the suspended solids. The higher the turbidity the more sediment, algae and other solids are suspended in the water.  Clear water has low turbidity.

Questions from students:

What is hydrography? The science that measures and describes the physical features of bodies of water and land close to these bodies of water.  Multibeam echosounders are used to obtain hydrographic data.

New species that I have seen:  Red Porgy:  Pagrus pagrus

                           Vermilion Snapper:  Rhomboplites aurorubens

 

IMG_0773
Red Porgy teeth

 

Kimberly Scantlebury: It’s All About the Little Things, May 8, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 8, 2017

Weather Data from the Bridge

Time: 18:00

Latitude: 2755.757 N, Longitude: 9200.0239 W

Wind Speed: 14.21  knots, Barometric Pressure: 1015.3 hPa

Air Temperature: 24.56  C, Water Temperature: 24.4  C

Salinity: 36.37  PSU, Conditions: 50% cloud cover, light wind, seas 2-4 feet

Science and Technology Log

IMG_2969
The CTD

The CTD (conductivity, temperature, depth) array is another important tool. It goes down at each station, which means data is captured ten-twelve times a day. It drops 50 m/min so it only takes minutes to reach the bottom where other winch/device systems can take an hour to do the same. This array scans eight times per second for the following environmental factors:

  • Depth (m)
  • Conductivity (converts to salinity in ppt)
  • Temperature (C)
  • Dissolved oxygen (mg/mL)
  • Transmissivity (%)
  • Fluorescence (mg/m^3)
  • Descent rate (m/sec)
  • Sound velocity (m/sec)
  • Density (kg/m^3)

There are two sensors for most readings and the difference between them is shown in real time and recorded. For example, the dissolved oxygen sensor is most apt to have calibration issues. If the two sensors are off each other by 0.1 mg/L then something needs to be done.

Software programs filter the data to cut out superfluous numbers such as when the CTD is acclimating in the water for three minutes prior to diving. Another program aligns the readings when the water is working through the sensors. Since a portion of water will reach one sensor first, then another, then another, and so on, the data from each exact portion of water is aligned with each environmental factor. There are many other sophisticated software programs that clean up the data for use besides these two.

These readings are uploaded to the Navy every twelve hours, which provides almost real-time data of the Gulf. The military uses this environmental data to determine how sound will travel through sound channels by locating thermoclines as well as identifying submarines. NOAA describes a thermocline as, “the transition layer between warmer mixed water at the ocean’s surface and cooler deep water below.” Sound channels are how whales are able to communicate over long distances.

NOAA Ocean Explorer: Sound in the Sea 2001
This “channeling” of sound occurs because of the properties of sound and the temperature and pressure differences at different depths in the ocean. (NOAA)

The transmissometer measures the optical properties of the water, which allows scientists to track particulates in the water. Many of these are clay particles suspended in the water column. Atmospheric scientists are interested in particulates in the air and measure 400 m. In the water, 0.5 m is recorded since too many particulate affects visibility very quickly. This affects the cameras since light reflecting off the clay can further reduce visibility.   

Fluorescence allows scientists to measure chlorophyll A in the water. The chlorophyll molecule is what absorbs energy in photosynthetic plants, algae, and bacteria. Therefore, it is an indicator of the concentration of organisms that make up the base of food chains. In an ecosystem, it’s all about the little things! Oxygen, salinity, clay particles, photosynthetic organisms, and more (most we can not actually see), create a foundation that affects the fish we catch more than those fish affect the little things.  

The relationship between abiotic (nonliving) and biotic (living) factors is fascinating. Oxygen is a great example. When nitrates and phosphates wash down the Mississippi River from the breadbasket of America, it flows into the Gulf of Mexico. These nutrients can make algae go crazy and lead to algae blooms. The algae then use up the oxygen, creating dead zones. Fish can move higher up the water column or away from the area, but organisms fixed to the substrate (of which there are many in a reef system) can not. Over time, too many algae blooms can affect the productivity of an area.

Salt domes were created millions of years ago when an ancient sea dried up prior to reflooding into what we have today. Some salt domes melted and pressurized into super saline water, which sinks and pools. These areas create unique microclimates suitable to species like some mussels. A microclimate is a small or restricted area with a climate unique to what surrounds it.

IMG_3032
The ship’s sonar revealing a granite spire a camera array was deployed on.

Another great example is how geology affects biology. Some of these salt domes collapsed leaving granite spires 30-35 meters tall and 10 meters across. These solid substrates create a magical biological trickle down effect. The algae and coral attach to the hard rock, and soon bigger and bigger organisms populate this microclimate. Similar microclimates are created in the Gulf of Mexico from oil rigs and other hard surfaces humans add to the water.

Jillian’s net also takes a ride with the CTD. She is a PhD student at Texas A&M University studying the abundance and distribution of zooplankton in the northern Gulf of Mexico because it is the primary food source of some commercially important larval fish species. Her net is sized to capture the hundreds of different zooplankton species that may be populating the area. The term zooplankton comes from the Greek zoo (animal) and planktos (wanderer/drifter). Many are microscopic, but Jillian’s samples reveal some translucent critters you can see with the naked eye. Her work and the work of others like her ensures we will have a deeper understanding of the ocean.   

This slideshow requires JavaScript.

Personal Log

Prior to this I had never been to the Gulf of Mexico other than on a cruise ship (not exactly the place to learn a lot of science). It has been unexpected to see differences and parallels between the Gulf of Mexico and Gulf of Maine, which I am more familiar. NOAA scientist, John, described the Gulf to me as, “a big bathtub.” In both, the geology of the area, which was formed millions of years ago, affects that way these ecosystems run.   

Quote of the Day:
Jillian: “Joey, are we fishing at this station?”
Joey: “I dunno. I haven’t had my coffee yet.”
Jillian: “It’s 3:30 in the afternoon!”

Did You Know?

Zooplankton in the Gulf of Mexico are smaller than zooplankton in the Gulf of Maine. Larger species are found in colder water.  

why_zoo
Zooplankton under microscope (NOAA)

Kimberly Scantlebury: Getting Ready to Ship Out. April 26, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 26, 2017

Weather Data from the Bridge

16806786_610426269901_2847107978351918522_n
At home in New England, where you can enjoy the mountains and the sea all in a day.

Greetings from New Hampshire! Our variable spring weather is getting me ready for the coolness at sea compared to hot Galveston, Texas, where I will ship off in a few days.

It is currently 50 F and raining with a light wind, the perfect weather to reflect on this upcoming adventure.

Science and Technology Log

I am excited to soon be a part of the 2017 SEAMAP Reef Survey. The National Oceanic and Atmospheric Administration (NOAA) writes the objective of these surveys is, “ to provide an index of the relative abundances of fish species associated with topographic features (banks, ledges) located on the continental shelf of the Gulf of Mexico in the area from Brownsville, Texas to Dry Tortugas, Florida.” The health of the Gulf is important from an ecological and economic perspective. Good science demands good research.

We will be working 12 hour shifts aboard the NOAA Ship Pisces. I expect to work hard and learn a lot about the science using cameras, fish traps, and vertical long lines. I also look forward to learning more about life aboard a fisheries research vessel and the career opportunities available to my students as they think about their own futures.

Personal Log

I’ve been teaching science in Maine and New Hampshire for eight years and always strive to stay connected to science research. I aim to keep my students directly connected through citizen science opportunities and my own continuing professional development. Living in coastal states, it is easier to remember the ocean plays a large role in our lives. The culture of lobster, fried clams, and beach days requires a healthy ocean.

I love adventure and have always wanted to “go out to sea.” This was the perfect opportunity! I was fortunate to take a Fisheries Science & Techniques class with Dave Potter while attending Unity College and look forward to revisiting some of that work, like measuring otoliths (ear bones, used to age fish). I have also benefited from professional development with The Bigelow Laboratory for Ocean Sciences and other ocean science experiences. One of the best parts of science teaching is you are always learning!

11264902_575518814721_8101743023779813565_n
Science teachers benefit from quality professional development to stay informed in their content areas.

There was a lot of preparation involved since I am missing two weeks of school. I work at The Founders Academy, a public charter school in Manchester, New Hampshire. We serve students from 30 towns, but about a third come from Manchester. The school’s Vision is to: prepare wise, principled leaders by offering a classical education and providing a wide array of opportunities to lead:

  • Preparing students to be productive citizens.
  • Teaching students how to apply the American experience and adapt to become leaders in today’s and tomorrow’s global economy.
  • Emphasis on building ethical and responsible leaders in society.

I look forward to bringing my experiences with NOAA Teacher at Sea Program back to school! It is difficult to leave my students for two weeks, but so worth it. It is exciting to connect with middle and high school students all of the lessons we can learn from the work NOAA does. My school community has been very supportive, especially another science teacher who generously volunteered to teach my middle school classes while I am at sea.

13417611_591938624291_8919445317025949442_n
I am grateful for the support at home for helping me participate in the NOAA Teacher at Sea Program.

My boyfriend too is holding down the fort at home and with Stone & Fire Pizza as I go off on another adventure. Our old guinea pigs, Montana & Macaroni, prefer staying at home, but put up with us taking them on vacation to Rangeley, Maine. I am grateful for the support and understanding of everyone and for the opportunity NOAA has offered me.

Did You Know?

NOAA Corps is one of the seven uniformed services of the United States.

NOAA is the scientific agency of the Department of Commerce. The agency was founded in 1970 by consolidating different organizations that existed since the 1800’s, making NOAA’s scientific legacy the oldest in the U.S. government.

IMG_0993
As a science teacher, it is funny that I really do have guinea pigs. Here is our rescue pig Montana, who is 7-8 years old.

Denise Harrington: Tenacity – May 7, 2016

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Pisces (In Port)
May 04, 2016 – May 17, 2016

Mission: SEAMAP Reef Fish Survey

Geographical Area of Cruise: Gulf of Mexico

Date: Saturday, May 7, 2016

Tenacity helps NOAA manage our seafood supply.

P1050630

Tenacity, otherwise known as perseverance or stamina, is a required skill at the National Oceanic and Atmospheric Administration (NOAA). Aboard NOAA Ship Pisces, we are all anxious to head out to collect data about the type and abundance of reef fish along the continental shelf and shelf edge of the Gulf of Mexico.  However, things don’t always go as planned. Much like the animals we study, scientists must rapidly adapt to their changing circumstances. Instead of waiting for a problem to be solved, fisheries biologists of all ages and experience work in the lab, using the newest, most sophisticated technology in the world to meet our demand for seafood.

As I ate dinner tonight in the mess (the area where the crew eats), I stared at the Pisces’ motto on the tablecloth, “patience and tenacity.”

P1050609

The Pisces is a “quiet” ship; it uses generators to supply power to an electric motor that turns the ship’s propeller. The ship’s motor (or a mysteriously related part) is not working properly, and without a motor, we will not sail. This change of plans provides other opportunities for me, and you, to learn about many fascinating projects developing in the lab. Sound science begins right here at the Southeast Fisheries Science Center Laboratory in Pascagoula, Mississippi.

P1050488

Kevin Rademacher, a fishery biologist in the Reef Fish Unit, meets me at the lab where he works when he isn’t at sea. As he introduces me to other biologists working in the protected species, plankton, and long line units, I begin to appreciate the great biodiversity of species in the Gulf of Mexico. I get a glimpse of the methods biologists use to conduct research in the field, and in the lab.

While it looks like a regular old office building on the outside, the center of the building is filled with labs where fish are taken to be discovered.  Mark Grace, a fisheries biologist in the lab, made one such discovery of a rare species of pocket shark on a survey in the gulf. The only other specimen of a pocket shark was found coast of Peru in 1979. Mark’s discovery raises more questions in my mind than answers.

When I met Mark, he explained that capability of technology to gather data has outpaced our ability to process it. “Twenty years ago, we used a pencil and a clipboard. Think about the 1980s when they started computerizing data points compared to the present time… maybe in the future when scientists look back on the use of computers in science, it will be considered to be as important as Galileo looking at the stars” he said. It’s important because as Mark also explains,  “This correspondence is a good example.  We can send text, website links, images, etc…and now its a matter of digital records that will carry in to the future.”

How do fishery biologists find fish?

P1050731
Charlie McVea, a retired NOAA marine biologist, and his trusty assistant Scout, pictured above, learned they may need more sophisticated equipment to locate fish.

Earth has one big connected ocean that covers the many features beneath it. Looking below the surface to the ocean floor, we find a fascinating combination of continental shelves, canyons, reefs, and even tiny bumps that make unique homes for all of the living creatures that live there.  Brandi Noble, one of 30-40 fishery biologists in the lab, uses very complicated sonar (sound) equipment to find “fish hot spots,” the kinds of places fish like to go for food, shelter and safety from predators. Fisheries sonar sends pulses of sound, or pings, into the water.  Fishery biologists are looking for a varied echo sound that indicates they’ve found rocky bottoms, ledges, and reefs that snapper and grouper inhabit.

The sonar can also survey fish in a non-invasive way. Most fish have a swim bladder, or a gas filled chamber, which reflects sonar’s sound waves.  A bigger fish will create a returning echo of greater strength. This way, fisheries biologists can identify and count fish without hurting them.

sonar fish
The circular image shows a three-dimensional map NOAA scientists created from the sonar data they collected about the seafloor and a school of fish.

Ship Pisces uses a scientific methods to survey, determining relative abundance and types of fish in each area. They establish blocks of habitat along the continental shelf to survey and then randomly sample sites that they will survey with video cameras, CTD (measures temperature, salinity, and dissolved oxygen in the water), and fishing. Back in the lab, they spend hours, weeks, and years, analyzing the data they collect at sea. During the 2012 SEAMAP Reef Fish Survey, the most common reef fish caught were 179 red snapper (Lutjanus campechanus), 22 vermillion snapper (Rhomboplites aurorubens), and 10 red porgy (Pagrus pagrus).  Comparing the 2012 data with survey results from 2016 and other years will help policy makers develop fishing regulations to protect the stock of these and other tasty fish.

How do fishery biologists manage all the information they collect during a survey?

Scientists migrate between offices and labs, supporting each other as they identify fish and marine mammals from previous research expeditions.

P1050572
Kevin Rademacher, at work in the lab.

Our mission, the SEAMAP Reef Fish Survey has been broken into four parts or legs.  The goal is to survey some of the most popular commercially harvested fish in the Gulf of Mexico.  Kevin Rademacher is the Field Party Chief for Leg 1 and Leg 3 of the survey.

Last week, he showed me collections of frozen fish, beetle infested fish, and fish on video. At one point the telephone rang, it was Andrew Paul Felts, another biologist down the hall. “Is it staying in one spot?” Kevin asks. “I bet it’s Chromis. They hang over a spot all the time.”

We head a couple doors down and enter a dark room.  Behind the blue glow of the screen sits Paul, working in the dark, like the deep water inhabitants of the video he watches. Paul observes the physical characteristics of a fish: size, shape, fins, color.  He also watches its behavior. Does it swim in a school or alone?  Does it stay in one spot or move around a lot?  He looks at its habitat, such as a rocky or sandy bottom, and its range, or place on the map.

As you watch the video below, observe how each fish looks, its habitat, and its behavior.

To learn about fisheries, biologists use the same strategies students at South Prairie Elementary use.   Paul is using his “eagle eyes,” or practiced skills of observation, as he identifies and counts fish on the screen.   All the scientists read, re-read and then “read the book a third time” like a “trying lion” to make sense out of their observations.  Finally, Paul calls Kevin, the “wise owl,” to make sure he isn’t making a mistake when he identifies a questionable fish. paul screen

Using Latin terminology such as “Chromis” or “Homo” allows scientists to use the same names for organisms. This makes it easier for scientists worldwide, who speak different languages, to communicate clearly with each other as they classify the living things they study.

I appreciate how each member of the NOAA staff, on land and at sea, look at each situation as a springboard to more challenging inquiry.  They share with each other and with us what they have learned about the diversity of life in the ocean, and how humans are linked to the ocean.  With the knowledge we gain from their hard work and tenacity, we can make better choices to protect our food supply and support the diversity of life on Earth.

 

This slideshow requires JavaScript.

 

P1050551
Spined Pygmy Shark Jaw (Squaliolus laticaudus)

Personal Log

Crew members tell me that every day at sea is a Monday.  In port, they are able to spend time with family and their communities.  I have been able to learn a bit about Pascagoula, kayak with locals, and see many new birds like the least tern, swallow tailed kite, eastern bluebird and clapper rail.  Can you guess what I ate for dinner last night?P1050747

 

 

 

 

Denise Harrington, Getting Ready for an Adventure, April 23, 2016

NOAA Teacher at Sea
Denise Harrington
(Almost) aboard NOAA Ship Pisces
May 04, 2016 – May 17, 2016

Greetings from Garibaldi, Oregon. My name is Denise Harrington and I teach Second Grade at South Prairie Elementary School in Tillamook, Oregon, along the north Oregon coast. There are 300 amazing second and third graders at our school who can prove to you that no matter how young you are, you can be a great scientist.  Last year they were caught on camera by Oregon Field Guide studying the diversity of life present in our ocean.

 

I applied to become a NOAA Teacher at Sea because I wanted to work with scientists in the field. I seem to learn best by doing.  In 2014, I joined the crew of NOAA ship Rainier, mapping the ocean floor near Kodiak Island, Alaska.  I learned how vast, connected, and undiscovered our oceans are. Students watched in disbelief after we discovered a sea floor canyon.  I learned about the technology and skills used to map the ocean floor. I learned how NOAA helps us stay safe by making accurate nautical charts.  It was, for our students and myself, a life changing experience.

As an avid sea kayaker, I was able to share my deeper understanding of the ocean with fellow paddlers. Photo courtesy of Bill Vonnegut

Now, I am fortunate enough to participate in another NOAA survey. On this survey aboard NOAA ship Pisces, scientists will be collecting data about how many fish inhabit the area along banks and ledges of the Continental Shelf of the Gulf of Mexico.
NOAA believes in the value of sharing what they do with the public, and students in particular. The crew of Pisces even let fifth grader students from Southaven, Mississippi name the ship after they won a writing contest. Maybe you can name the next NOAA ship!

On May 3, 2016, Ship Pisces will begin Leg 3 of their survey of reef fish. I have so many questions.  I asked Chief Scientist Kevin Rademacher why the many survey partners chose snapper and grouper to survey. He replied “Snapper and grouper are some of the most important commercial fisheries here in the Gulf of Mexico. There are 14 species of snapper in the Gulf of Mexico that are good to eat. Of those the most commercially important is the red snapper. It is also currently over-fished.”   When I hear “over-fished” I wonder if our second graders will have many or any red snapper to eat when they they grow up. Yikes!

Another important commercial catch is grouper.  My brother, Greg, who fishes along the Kenai River in Alaska understands why grouper is a focus of the survey. “It’s tasty,” he says. I can’t believe he finds grouper tastier than salmon.  NOAA is making sure that we know what fish we have and make sure we save some for later, so that everyone can decide which fish is the tastiest when they grow up.

I have so many questions keeping me up at night as I prepare for my adventure. What do I need to know about fish to do my job on the ship?  Will I see evidence of the largest oil spill in U.S. history, the Deepwater Horizon spill? How crowded will we all be aboard Ship Pisces? If I dissect fish, will it be gross? Will it stink?  Will I get sea sick? With my head spinning with questions, I know I am learning. Yet there is nothing more I can do now to prepare myself for all that I will learn, except to be early to the airport in Portland, Oregon, and to the ship in Pascagoula, Mississippi, on May 3rd.

I will get home in time to watch my daughter, Elizabeth, graduate from high school.  Ever since I returned from the NOAA cruise in Alaska, she has been studying marine biology and even competed in the National Ocean Sciences Bowl.

liz with a crab

 

During research in the Gulf of Mexico with the crew of Ship Pisces, I will learn about the many living things in the Gulf of Mexico and about the technology they use to protect and manage commercial fisheries.  Soon, you will be able to watch me collect data about our ocean critters. Hope for fair winds and following seas as I join the crew on Ship Pisces, “working to protect, restore, and manage the use of our living ocean resources.”

Jennifer Petro: Getting Ready to Set Sail, July 1, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA ship Pisces
July 1 – July 14, 2013

Mission: Marine Protected Area Survey
Geographic Area of Cruise: South Atlantic United States
Date:  July 1, 2013

Weather Data:
Air temperature: 28 Degrees C (82 Degrees F)
Barometer: 1013.1 mb
Humidity: 74%
Wind direction: SW
Wind speed: 11.29 knots
Water temp: 29.6 C
Latitude: 30.39°N
Longitude: 81.43°W

Science and Technology Log

Hello from aboard NOAA ship  Pisces.  We are gearing up to set sail so I will take this opportunity to introduce myself before we get underway!  My name is Jennifer Petro and I am an 8th grade Science Teacher at Everitt Middle School in Panama City , Florida.  I am particularly excited about this mission as I am working alongside scientists from the NOAA Southeast Fisheries Science Lab located on Panama City Beach.  I will also be working with scientist from Harbor Branch Oceanographic Institute as well as Woods Hole Oceanographic Institute. The focus of this mission is to survey fish and invertebrate populations in Marine Protected Areas (MPAs) from Florida to North Carolina.  We will also be doing mapping of new areas to determine future MPAs.

The scientist have been busy setting up and calibrating their equipment.  We will be using an ROV, Remotely Operated (underwater) Vehicle, to view the MPAs.  There are several cameras attached to the ROV which the scientist will use to identify and count species.  There are many feet of wire and cables being set up in the dry lab.

DSCF1919
NOAA Scientists Stacey Harter and Stephanie Farrington setting up equipment for ROV dives during our Marine Protected Area surveys.

Personal Log

Currently we are still at port and are scheduled to set sail in a few hours.  The Pisces is a rather comfortable vessel.  We arrived yesterday afternoon so I already have one night’s sleep on board under my belt.  I imagine things will change when we are out at sea, but for the moment she is gently swaying in port.  I share a room with one of the scientists and we in turn share a bathroom.  Pretty great so far! The Pisces is currently moored at NAS in Mayport , FL and is dwarfed in size to all of the naval vessels that surround her!

DSCF1922
NOAA Ship Pisces

NOAA ship Pisces
NOAA ship Pisces

Today’s post is going to be rather short.  My excitement is definitely building.  we set sail in just about an hour so my next post will be from sea!

Fair weather and calm seas to all.

Elizabeth Nyman: First Day at Sea, May 28, 2013

NOAA Teacher at Sea
Elizabeth Nyman
Aboard NOAA Ship Pisces
May 28 – June 7, 2013

Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: May 28, 2013

Weather Data:
Surface Water Temperature: 23.84 degrees Celsius
Air Temperature: 23.90 degrees Celsius
Barometric Pressure: 1017.8 mb

Science and Technology Log

So I’ve known for about two months or so that I was going to be taking part in one leg of an ongoing reef fishery survey. I even had an idea that it involved surveying fish that lived on reefs. But after our first full day at sea, and many hours of helping take part in the scientific work, I now begin to understand how exactly one surveys reef fish.

There’s a couple of different things that the scientific crew is doing to observe and understand the reef fish population. First, there is an ongoing video recording process throughout the day, from just after sunrise to just before sunset. For this, the ship and scientific crew lower a large, 600 pound camera array off of the starboard side of the ship. The cameras will go and sit on the sea floor and record all the fish that pass in front of it, for a total recording time of 25 minutes. After this time has passed, plus a little extra time, the cameras are pulled back up, the recordings are downloaded, we move to a different spot and the process begins again.

Underwater Camera Array
Hauling the camera array back on deck. I said it was big, didn’t I?

The video is reviewed the next day. Since this is our first day at sea, I didn’t get much of a chance to see any reef fishery footage, though I’m told that’s on the agenda for tomorrow. What I spent most of my time doing was helping out with another part of the survey process, something called the bandit reels. They’re used for good old-fashioned hook and line fishing.

Bandit Reel
It looks like a nice day to go fishing, huh?

There are three bandit reels on the Pisces, and each one can hold 10 fishing hooks. Each reel has different sized hooks, and the hook sizes are changed every drop. The line has a weight at the bottom to bring the hooks down to the sea floor, which have been baited with mackerel bits. After five minutes, the line is reeled back in, and you have fish…or you don’t.

My first drop, which had the biggest hooks, had a whole bunch of nothing. As did everyone else’s, though, so it wasn’t a testament to my poor fishing skills.

The second drop, however, was luckier.

Eel on hook.
I caught a moray eel!

A spotted moray eel! I was excited, anyway. But morays aren’t one of the fish that we’re looking for out here, so it wasn’t a particularly useful catch.

Our third drop was the most successful. Our bandit reel hauled in seven fish, one of whom got away (the biggest one, of course, one the size of a killer whale…yeah, just kidding!). The other six were brought into the wet lab, where they joined the other fish caught on that drop and would be measured and dissected.

Fish on a measuring board.
We caught a big one!

The fish are measured three different ways. The first, by total length, examines exactly that, the total length of the fish from the nose all the way to the tip of the tail. The second measure goes from the nose to the fork in the tail, so it’s a shorter distance. The third, standard length, goes from the nose to just before the tail fin, where the fish’s vertebrae end, and is the shortest of all. They’re also weighed at this time as well.

After that, we start cutting into the fish. Two things are of interest here: the ear bone and the sex organs. The ear bones are removed from each fish, because they can be tested to determine the age of the fish. The sex organs will reveal gender, obviously, but also are examined to see how fertile each specimen is. We don’t do this kind of analysis on the ship, however. The ear bones and sex organs are sent back to the NOAA lab in Panama City, Florida, where they will conduct all those tests.

Personal Log

The best part of my first day at sea was definitely the ship safety drills.

Wait, what?

No, seriously.  The absolute highlight of this one was my chance to try on what’s known as the Gumby suit. The Gumby suit is a nickname for a immersion survival suit – if we have to abandon ship and float around in the water, the suit will protect us from the elements. Now, we’re down here in the Gulf of Mexico, so that seems a little crazy, but think about how you’d feel if you were stuck in the water for hours on end. In really cold waters, that suit may be the difference between life and death.

The drills are important, and they’re mandated for a reason. In an emergency, all of this stuff can save lives.

Why do I like the drills so much? We’re required to have safety drills by law, and so as someone who studies and teaches international law, I always enjoy taking part in these things. It’s a chance to see the stuff in action that I talk about in class. And that’s kind of what this program is all about – the chance to experience things firsthand as opposed to just having to read about them.

Gumby suit
I guess you kind of have to take my word for it, but that’s me in there.

Did You Know?

You’re supposed to be able to put on a Gumby suit in under a minute. They wouldn’t do much good if they took too long to put on.

Carmen Andrews: News from Somewhere in the Atlantic Ocean off the Coast of Georgia, July 9, 2012

NOAA Teacher at Sea
Carmen Andrews
Aboard R/V Savannah
July 7 – July 18, 2012

Mission: SEFIS Reef Fish Survey
Geographical Location: Atlantic Ocean, off the coasts of Georgia and Florida
Date: July 9, 2012

Location Data:
Latitude: 30 ° 54.55’   N
Longitude: 80 ° 37.36’  W       

Weather Data:
Air Temperature: 28.5°C (approx. 84°F)
Wind Speed: 6 knots
Wind Direction: from SW
Surface Water Temperature: 28.16 °C (approx. 83°F)
Weather conditions: Sunny and fair

Science and Technology Log

Purpose of the research cruise and background information

The Research Vessel, or R/V Savannah is currently sampling several species of fish that live in the bottom or benthic habitats off the coasts of Georgia and Florida.

Reef fish study area
The coastal zone of Georgia and Florida and the Atlantic Ocean area where the R/V Savannah is currently surveying reef fish

These important reef habitats are a series of rocky areas that are referred to as hard bottom or “live” bottom areas by marine scientists. The reef area includes ledges or cliff-like formations that occur near the continental shelf of the southeast coast. They are called ‘reefs’ because of their topography – not because they are formed by large coral colonies, as in warmer waters. These zones can be envisioned as strings of rocky undersea islands that lie between softer areas of silt and sand. They are highly productive areas that are rich in marine organism diversity. Several species of snapper, grouper, sea bass, porgy, as well as moray eels, and other fish inhabit this hard benthic habitat.

Reef fish
Hard bottom of reef habitat, showing benthic fish — black sea bass is on left and gray trigger fish is on right side of image.

It is also home to many invertebrate species of coral, bryozoans, echinoderms, arthropods and mollusks.

Bottom organisms pulled up with fish traps
Bottom-dwelling organisms, pulled up with fish traps deployed in the reef zone.

The rock material, or substrate of the sea bottom, is thought to be limestone — similar to that found in most of Florida. There are places where ancient rivers once flowed to a more distant ocean shoreline than now. Scientists think that these are remnants of old coastlines that are now submerged beneath the Atlantic Ocean. Researchers still have much to discover about this little known ocean region that lies so close to where so many people live and work.

The biological research of this voyage focuses primarily on two kinds of popular fish – snappers and groupers. These are generic terms for a number of species that are sought by commercial and sports fishing interests. The two varieties of fish are so popular with consumers who purchase them in supermarkets, fish markets and restaurants, that their populations may be in decline.

Red snapper close up
Red snapper in its reef habitat

At this time, all red snapper fishing is banned in the southeast Atlantic fishery because the fish populations, also known as stocks, are so low.

How the fish are collected for study

The fish are caught in wire chevron traps. Six baited traps are dropped, one by one from the stern of the R/V Savannah. The traps are laid in water depths ranging from 40 to 250 feet in designated reef areas. Each trap is equipped with a high definition underwater video camera to monitor and record the comings and goings of fish around and within the traps, as well as a second camera that records the adjacent habitat.

Chevron fish trap
Fish swimming in and out of a chevron fish trap

I will provide the details of the fish trapping and data capture methods in a future blog.

Who is doing the research?

When not at sea, the R/V Savannah is docked at the Skidaway Institute of Oceanography (SKIO)on Skidaway Island, south of Savannah, Georgia. The institute is part of the University of Georgia. The SKIO complex is also the headquarters of the Gray’s Reef National Marine Sanctuary. The facility there has a small aquarium and the regional NOAA office.

The fisheries research being done on this cruise is a cooperative effort between federal and state agencies. The reef fish survey is one of several that are done annually as part of SEFIS, the Southeast Fisheries Independent Survey. The people who work to conduct this survey are located in Beaufort, North Carolina. SEFIS is part of NOAA.

The other members of the research team are from MARMAP, the Marine Research Monitoring Assessment and Prediction agency, which is part of the South Carolina Department of Natural Resources . This team is from Charleston, South Carolina.

Carmen, suited up to retrieve fish from traps
Mrs. Andrews, on deck near the stern of the R/V Savannah, getting ready to unload fish traps

NOAA also allows “civilians” like me — one of the Teachers at Sea– as well as university undergraduate and graduate students to actively participate in this research.

Lesley Urasky: Do You See What the Pisces “Hears”?, June 22, 2012

NOAA Teacher at Sea
Lesley Urasky
Aboard the NOAA ship Pisces
June 16 – June 29, 2012

Mission:  SEAMAP Caribbean Reef Fish Survey
Geographical area of cruise: St. Croix, U.S. Virgin Islands
Date: June 22, 2012

Location:
Latitude: 18.5472
Longitude: -65.1325

Weather Data from the Bridge:

Air Temperature: 28.6°C (83.5°F)
Wind Speed:  9 knots (10.5 mph), Beaufort scale: 3
Wind Direction: from SE
Relative Humidity: 77%
Barometric Pressure: 1,014.80  mb
Surface Water Temperature: 28.1°C (82.6°F)

Science and Technology Log

Another aspect (much more technical) of the scientific research conducted on this cruise is the collection of acoustic data.  This field is continually evolving as the detection resolution improves allowing scientists to more precisely identify fish.  This has been used with more success in fisheries farther north because the schools of fish are more likely to be monospecific (a single species).  However, the technique still needs improvement in warmer waters where the fish assemblages tend to be multi-specific (having a much greater variety of fish).

General idea behind an acoustic sounder being used to detect fish. (Source: www.biosonicinc.com)

This field of study is called Hydroacoustics (hydro- means water, and acoustics refers to sound).   It is the science of  how sound moves through water. Leonardo da Vinci noticed how sound travels through water in 1490.  He noticed that, “If you cause your ship to stop and place the head of a long tube in the water and place the outer extremity to your ear, you will hear ships at a great distance from you.” (Urick, Robert J. Principles of Underwater Sound, 3rd Edition. New York. McGraw-Hill, 1983.)  World War I helped promote innovation in the field, especially with the need for anti-submarine detection devices (Wood, A. B., From the Board of Invention and Research to the Royal Naval Scientific Service, Journal of the Royal Naval Scientific Service Vol 20, No 4, pp 1-100 (185-284)).

Hydroacoustic instruments utilize SOund Navigation and Ranging, more commonly referred to as SONAR.  The ship Pisces is equipped with a system located on the center board; this is a flat structure that can be raised/lowered through the water column beneath the center of the ship.

Line drawing of the NOAA ship Pisces showing the location of the center board.

The system used is a sonar beam that is split into quadrants.  This instrument is used to assist in determining fish abundance and distribution.  The premise is relatively simple: an echo sounder transmits a pulse of energy waves (sound), when the pulse strikes an object, it is reflected (bounced) back to the transducer.  The echo sounder is then processed and sent to a video display.  This is the same general process behind the recreationally available fishfinder.

Acoustic beam split into quadrants (Source: http://www.htisonar.com

A short burst of energy is focused into a narrow beam.  When this beam encounters an object such as a fish, a school of fish, plankton, or other object, some of the energy bounces back up through the water to the transducer.   It is the detection of these reflections that allow scientists to determine location, size, and abundance of fish.  These reflections show up on our video monitor.  These measurements are combined with groundtruthed data (for example, fish collected in the field, camera images).

One of the difficulties in data interpretation is that often, the signals that appear on the computer monitor have false readings.  This is a result of the sound wave bouncing multiple times.  It travels to the bottom from the transducer, strikes an object, returns to the ship, bounces off the ship back toward the bottom, strikes another object, and is detected yet again.

Real-time annotated echogram at sampling site.

The Pisces is actually home to one of six multi-beam acoustic instruments in the world.  Of the six in existence, NOAA has five of them.  The benefit of running a multi-beam instrument is that each beam can be set to measure a different frequency (kHz), thus enabling detection of many more features (different species of fish, etc.)

Scientific multibeam echo sounder (Source: www. simrad.com)

Personal Log

Last night the crew of the Pisces carried out a task that they don’t normally perform.  The Pisces was created for fisheries research projects – it focuses on collecting fish samples either by bandit reel, longline, or trawling.  This particular operation was to deploy the anchor for a buoy that will be attached at a later date.  When the buoy is ready to be attached, another vessel will bring it out to the site and divers will go down to the anchor to make the final attachment.

The anchor consists of a huge rebar-reinforced concrete block with a very long chain that has marker floats attached at the end.  Logistically, this took some planning; the A-frame had to be raised and the anchor lifted with the Gilson winch with a 1″ spectra line (has an enormous tensile strength).  The gate to the ship’s ramp was lowered and the A-frame (or as the deck hands call it, the “Tuna Tower”)  repositioned so the anchor was hanging over the water.  The rope holding the anchor, chain, and float was cut through, and the anchor plunged to the ocean bottom.  Again, the crew made the operation go smoothly and demonstrated their ability to complete unexpectedly assigned tasks.

Today was a slow fishing day – no fish at all.  Without any fish to “work up” (collect samples from), the day goes more slowly and we have more down time.  With the extra time, I had a chance to interview Kevin Rademacher, the Chief Scientist on the cruise.

LU: What is your official job title and what are your job duties?

KR: I’m a Research Fisheries Biologist.  I work for the Reef Fish Unit at the NOAA Fisheries Lab in Pascagoula, MS.  I am the Senior Tape Reader/Reviewer, in charge of the readers that analyze  the video data we collect from Reef Fish Surveys.  I also help plan, organize, and run the surveys.  Additionally, I participate in trawl surveys and anything else the lab needs done.

LU: When did you first become interested in the ocean and marine sciences?

KR: I guess that would have been when I was really young.  There is a photo from the Panama City, Florida newspaper, two weeks after I was born with my parents pulling me in a homemade wagon along the beach!  I knew in junior high school that I wanted to be a cross between Jacques Cousteau and Marlin Perkins of Mutual of Omaha’s Wild Kingdom.

LU: It’s such a broad field; how did you narrow your focus down to what you’re currently doing?

KR: I got lucky and kind of fell into reading underwater videos at the initial stages of the project and fell in love with being the proverbial “fly on the wall”! It has allowed me to see the fish in their natural  habitat, different color phases, behavior, etc.

LU: If you were to go into another area of ocean research, what would it be?

KR: Marine Mammal Studies.  After college I trained dolphins and sea lions and put on shows with them for a local Oceanarium on the Mississippi Gulf Coast.

LU: What is the biggest challenge in your job?

KR: Communicating with people and writing papers.

Ariane Frappier and Kevin Rademacher reviewing a dichotomous key in order to determine the species of a fish we caught.

LU: What do you think is the biggest issue of contention in your field?

KR: The impression that commercial fishermen have regarding the work we do to regulate the fisheries they work in.

LU: What are some effects of climate change that you’ve witnessed during your career in fisheries research?

KR: The decline of coral reefs and overfishing of some species.

LU: In what areas of marine science do you foresee a lot of career paths and job opportunities?

KR: Ecosystem management and data modelers.  There has also been a decline in taxonomists over the past few decades.

LU: How would you explain your work to a layperson?

KR: I use underwater cameras to help assess populations of reef fish, especially snappers and groupers.  The data collected is used to manage those fisheries.

LU: If a high school student wanted to go into your field of study/marine science in general, what kinds of courses would you recommend they take?

KR: Math, Biology, Chemistry, and any other science courses available.

LU: Do you recommend students interested in your field pursue original research as high school students or undergraduates?  If so, what kind?

KR: Most definitely! Whatever they are interested in would be beneficial.

Well, only two more days left with the scientists before we pull into San Juan, Puerto Rico.  We have 17 more daytime sites to sample and then this survey will be over.  The scientific crew will be flying home on the 25th, and once home, their work will really begin.  Back in the lab, they will be analyzing the data and reviewing the video.  Some of them will be going back out on other cruises.  Kevin Rademacher will be going out on another reef fish survey in the eastern Gulf of Mexico.  It is currently delayed because of the potential formation of tropical storm Debby.  Joey Salisbury has a couple more; he will be going on a longline cruise and then another reef fish survey, both of which will be in the Gulf of Mexico.  Arian Frappier will be heading off to begin a masters program in marine systems and coastal studies at Texas A&M Corpus Christi.

After a day’s shore leave in San Juan, I’ll continue on to Mayport on the Pisces.  During this time, I’ll focus on the crew members and their jobs.  The cruise will definitely take on a different feel at this point, but it will give me an opportunity to explore other ocean related careers.

Carmen Andrews: Introduction June 20, 2012

NOAA Teacher at Sea
Carmen Andrews
Aboard R/V Savannah
July 6 – 18, 2012

Carmen Andrews
Carmen Andrews

Hello! 

Happy Summer Solstice Day! I am Carmen Andrews.  I work as a science specialist at  Six to Six Interdistrict Magnet School in Bridgeport, CT.  I have just finished my 5th year at this school.  I create science curriculum for grades pre-K through 8. I also teach many classes to help teachers improve their understanding of science concepts and inquiry methods.

Six to Six Magnet School
Six to Six Interdistrict Magnet School, Bridgeport, CT

Our school has a unique academic program that incorporates partnerships with the Maritime Aquarium in Norwalk, CT and the Eli Whitney Museum in Hamden, CT.  Our students visit many other places, including the Yale Peabody Museum and Yale Leitner Family Planetarium and Observatory in New Haven. We also allow our students to remotely operate the Gold Apple Valley Radio Telescope in California. My favorite places to teach classes are the unspoiled outdoor sites in Connecticut where we take our students for field studies.

4th Grade Marsh Field Study
4th Graders on a Marsh Field Study

Kindergarteners Investigating Invertebrates
Kindergarteners Investigating Marine Invertebrates

Sixth Graders
6th Graders Counting Intertidal Organisms Using a Quadrat

I love research!

One of my passions as an educator is creating opportunities for students to investigate real world problems using science inquiry. This year my 6th and 7th graders took on a big environmental research project. They were asked to research bioremediation and to develop a creative solution to a major problem in their community  — toxic oil spills. The work was funded by a NSTA/Toyota Tapestry Grant award, which enabled us to find out about blue and gray oyster mushrooms’ ability to metabolize oil spills in soil. Our project is called Going Green in Brownfields: A New Diet for Mushrooms. You can see our blog here: mushroomdiet.info 

Mushroom Harvest
A 7th Grader Massing Blue Oyster Mushrooms Grown in Motor Oil

My Teacher at Sea Adventure

The NOAA Teacher at Sea program was created to provide teachers with experiences in science research. We share our knowledge with our school communities using blogs, teaching and writing articles when we return from our Teacher at Sea assignment. I am very excited to learn about the work of NOAA in monitoring fisheries in U.S. coastal waters. I am eager to share this  scientific research with students. I also want to expose students to the variety of maritime and marine science careers that they can consider pursuing in later life.

I will be departing on the R/V Savannah in about 2 weeks to participate in a reef fish survey.  The next time I write, I will most likely be somewhere near Skidaway Island, GA.  My target audience for my blogs while I am at sea, are students, colleagues and friends of all ages. Please feel free to post your comments and questions about this important science research.

Kristy Weaver: What’s a Reef Fish Survey? May 30, 2012

NOAA Teacher at Sea
Kristy Weaver
Aboard The R/V Savannah
May 23 – June 1, 2012

Mission: Reef Fish Survey
Location: 44 miles off the coast of Jacksonville, FL
Date: May 30, 2012

Current Weather: 80 degrees and sunny

Science and Technology Log

Today is our last full day at sea.  We have caught about 2,000 fish in the past week!  A lot of them were thrown back into the water because we only need to keep a fraction of them for the reef fish survey.  The fish that we keep are studied by the scientists for a few reasons.

First, every fish we catch is measured and weighed.

David, a fisheries biologist, measures every fish that we catch

Then we have a sheet that tells us which fish we “keep” and which fish we “toss” back into the ocean.

Stephen writes down the length of every fish as David calls out the numbers

After Stephen writes down the length he uses this paper to tell David to keep the fish or toss it back into the ocean

Every fish that we keep gets its own ID number and envelope.

After it gets dark we stop fishing and go inside to the lab to collect information about the fish we caught that day.  Every single fish that we keep gets its own ID number, and gets weighed and measured again.  We write everything down.  These notes are data.

Here I am writing down the length and weight of each fish as Stephen weighs and measures them

When you make observations using your senses you are collecting data too!  Can you think of a time you collected data or made an observation like a scientist?

After we  record the length and weight I give Stephen the envelope and the other scientists come get the fish.

Passing Stephen the envelope for the fish he just measured and weighed

Scientists Jennifer and David take parts of the fish that they will study under a microscope later

Once all of the information is brought back to the scientists at the lab, they look at different parts of the fish using a microscope.  This will tell the scientists three main things…

1) Is the fish a male (boy) or a female (girl)?

2)How old is the fish?

And

3) Are these fish from all different families, or are they all related to each other?

Once the scientists answer these questions, they can decide if its okay for people to go fishing for certain types of fish, or if too many fish are being taken out of the ocean and need to be protected.  Right now fisheries are not allowed to take Red Snapper out of the Atlantic Ocean.  That fish is a very important part of our survey.

Special thanks to Captain Raymond and the crew and of the R/V Savannah and to Zeb, the chief scientist, and his team of scientists for a great experience!

Ok, I got him!  He was heavy!

This Red Snapper nearly knocked me over

Kristy Weaver: Ms. Weaver Goes to Sea


NOAA Teacher at Sea
Kristy Weaver
Aboard R/V Savannah
May 23 – 31, 2012

Hello from Hillside, New Jersey! First, for any out-of-state readers, allow me to say that despite what you may have seen on “reality” television about this beautiful state, we do not all tease our hair and have VIP memberships to tanning salons.  (Okay, so I may tease it a little, but only for special occasions!  Yes, this is my attempt at humor; bear with me.)  All kidding aside,  thank you for visiting.  I am excited to tell you about the NOAA Teacher at Sea Program!

Perhaps I should introduce myself before I start making corny jokes.  I am Kristy Weaver and I am happy to say I have been a first grade teacher here at The A. P. Morris Early Childhood Center for the past 12 years.  Our building is home to every pre-k, kindergarten, and first grade classroom in the district, and we  are currently a community of 668 students.

Hillside is part of the Partnership for Systemic Change which is a collaboration between the Merck Institute for Science Education (MISE) and six other urban or semi-urban school districts.  Through this partnership I have been a part of the Academy for Leadership in Science Instruction, which is an intensive staff development series that takes place over the course of three years.  I have also been a Peer Teacher Workshop facilitator and have had the opportunity to discuss effective science instruction at length with my fellow science teachers and professionals from MISE and partner districts.

Here is a little video trailer my class helped make to tell everyone about my trip.  See if you can spot the cameo appearance from our beloved class pet, Jerry.  My students had the responsibility of casting him in this role and are all super excited that Jerry will now be “famous.”

The purpose of the NOAA Teacher at Sea program is to provide teachers with real life experiences with scientific research and for us to then share that knowledge with the community upon our return.  This will strengthen my own content knowledge and expose our students to scientific research and science careers while increasing environmental awareness.  I am passionate about the pedagogy behind effective science instruction and while I hope that this experience will be shared with many classes, it will definitely be utilized to its fullest potential in my district.  This opportunity already inspired an impromptu math lesson when I showed my class my ship,  the R/V Savannah.  In order to grasp how big the 92 foot vessel is, we used 60 inch measuring tapes and counted by fives until we got to 90 feet.  Then we estimated two feet to help us get a sense of the size of the R/V Savannah.

This is my class, 92 feet down the hall! Wow! The R/V Savannah is larger than we thought!

I love being a teacher, and it is definitely where my passion lies.   However,  when I was a child I never  felt that being a scientist was an option for me because I didn’t know where to begin.  I had an innate curiosity about the water, but didn’t know that I could have built a career around it.   It’s my job to make sure that my students are afforded every opportunity, know that their dreams are within their reach,  and feel as if the world is at their fingertips- because it is!

How Did I Hear About Teacher at Sea?

Two years ago I attended the National Science Teachers Association Convention in Philadelphia, PA.  One of the booths at the exhibition center was for NOAA‘s (National Oceanic and Atmospheric Administration) Teacher at Sea Program.  It was fascinating to talk with teachers who had gone out to sea with NOAA in the past, and I immediately knew it was something I would pursue.  My whole life I had lived vicariously through scientists on various nature shows, and I was thrilled to learn that I even had the possibility to experience something like this first hand.

What the Research Says

So how is this going to help first graders?  In 2011 Microsoft Corp. commissioned two national surveys with Harris Interactive for parent and student opinions on how to motivate the next generation of STEM (Science, Technology, Engineering and Mathematics) professionals.

For most, the decision to study STEM started before college.

  • Nearly four in five STEM college students said they decided to study STEM in high school or earlier (78 percent). One in five (21 percent) decided in middle school or earlier.
  • More than half (57 percent) of STEM college students said that before going to college, a teacher or class got them interested in STEM.

This gives me, a first grade teacher, the opportunity to plant the seed early and expose children to STEM careers before they even reach the second grade.  If I can motivate just one child with this experience, or prove to them that they too should chase their dreams, then any amount of seasickness will be worthwhile.

Speaking of Motivation…Here is Mine:

Barnegat Lighthouse
“Old Barney”
Long Beach Island, NJ
Photo by Captain Al Kuebler

I have always been fascinated by the ocean and how something could be equally tranquil and ferocious.  As a child I never “sat still” and my boundless energy had me bouncing from one activity to the next with less than a heart beat in-between.  Yet, even as early as three years old, I can remember sitting on my grandfather’s lap in Long Beach Island and just staring out at the water for what seemed like hours.  In retrospect it may have only been 15 minutes, but regardless, just looking at the ocean had me calm, captivated, and thoroughly entertained in the silence of my own thoughts.

Feeding Sea Turtles at the Camden Aquarium

When I was young I always loved the underwater pieces in my parents’ National Geographic magazines, but it never crossed my mind that I could someday be a diver.  When I grew up a little I decided that it was something I would definitely do “someday.”  I finally realized that someday never comes unless you make your “someday” today.  I became a certified diver three years ago, and up until this point, it is one of the best things I have ever done.  As an adult, I have always watched nature shows, but never in my wildest dreams did I believe that I would someday have the opportunity to experience something like Teacher at Sea.  I think this helps send an important message to my students: You should always  go out and experience everything you want in life.  I did a shipwreck dive to 109 feet, have fed sea turtles, swam with sharks, flew a helicopter, , and have been on a trapeze in two different countries.  Yet somehow, I have a feeling that all of these things will pale in comparison to the adventure I am about to have.

Me at the Saltwater Marsh in Stone Harbor, NJ
Photo by Myron Weaver- Hi Dad 🙂

So What’s Next?

I am getting ready to head out to sea and my students and I are so excited.  The next time I write I will most likely be somewhere near Savannah, GA where I will be setting sail on the R/V Savannah for an 8 day reef fish survey.  While the first grade students are my target audience for my blogs while I am at sea, I encourage people of all ages to follow me along my journey.  I hope that everyone will be able to get something out of it, and that secondary teachers will be able to use this experience as a starting point for some of their lessons as well.

Please feel free to post your comments or questions, and I will do my best to bring back the information you are most curious about!

Marian Wagner: Preparing for Departure, August 12, 2011

NOAA Teacher at Sea
Marian Wagner
Aboard R/V Savannah
August 16 — 26, 2011

Mission: Reef Fish Survey
Geographical Area: Atlantic Ocean (Off the Georgia and Florida Coasts)
Date: August 12, 2011

Introductory Log

Naturalizing at my home beach in Seattle, Golden Gardens

I’m off to live the life of a NOAA research scientist aboard the Research Vessel (R/V) Savannah Our work is part of a population monitoring mission (estimating number of fish in population), doing fishery-independent sampling of reef fishes in the Atlantic off the coasts of Georgia and Florida.  See “terms defined” below to learn more.

Preparing to work with and make the most of my time with a team of scientists as a NOAA Teacher at Sea (TAS) participant means I have a lot to learn in a short amount of time!  This morning, I leave Seattle, and tonight I arrive in Savannah, GA.  I can’t believe this day has finally arrived!

I teach 3rd and 4th grade at Salmon Bay School in Seattle Public Schools, and students and families will tell you teaching SCIENCE! is my passion.  Central to my passion in teaching science is the importance of teaching students and teachers that we must better understand and protect the earth’s resources with which we are interdependent, and develop a more responsible and sustainable relationship with how we use these resources.  The fundamental goal of all my various ways of incorporating this NOAA research experience into my teaching will be to help students and teachers understand the ocean better and our relationships with it, and use this knowledge to protect the world’s oceans.

I have never had first-hand experience in conducting field research (outside of research with children for educational purposes), and I believe it is especially essential in the leadership roles I have come to serve in science education that I have this foundational knowledge first-hand of HOW research is conducted in the field.  I look forward to getting my hands dirty! (salty?)

A few days ago I received word that I have passed all my requirements to be endorsed to teach 6-12 grade biology and this experience will stretch me beyond coursework and provide a true field research experience, especially essential if I decide to use my biology endorsement to teach middle school or high school level biology, where I will draw upon this research experience in many valuable ways, especially by sharing methods of conducting research and by exposing students to the career options of working as a field scientist.

My 3rd and 4th graders (and my alumni too, I hope!) are sure to hear extensively about this field science research experience that I am about to dive into!  Time to dress for the airport!

Terms Defined:

Fishery-independent sampling means data are collected separately from the landings of any commercial fisheries, and thus can be separated from economic factors that would compromise population trends based on how many fish are caught in a year (e.g., price of fish or fuel).  So fishery-independent data are the closest we can come to a census, and are some of the most reliable data fed in to a “stock assessment”. The data we collect will have direct implications for stock assessment of these fish and ecosystem-based management of southeast U.S. marine fisheries.  Here’s a link  to more information on the work we are doing.

Seattle-ites: For more information, here’s a link to Federal stock assessment work in the Seattle area, perhaps more helpful because you might recognize your local species and habitats.

Elizabeth Warren, July 15, 2010

NOAA Teacher At Sea: Elizabeth Warren
Aboard NOAA Ship Pisces

Mission: Reef Fish Surveys
Geographical Area of Cruise: Gulf of Mexico
Date: July, 15 2010

A case of the Upy-Downy’s

By breakfast on the last day we had already spotted land.

Land Spotted
Land Spotted

Crew of the Pisces
Crew of the Pisces

I went up to the flying deck and could not have been more disappointed to see the Mississippi Coast. I couldn’t believe how quickly my trip went by. I learned a lot!

Scientists on my cruise
Scientists on my cruise

The crew of the Pisces and the NOAA scientists were some of the nicest (even with all the teasing) people I have ever met. I’m so grateful that I was able to have this experience. I said goodbye to as many of the crew I could find, many take off as soon as they get into port or go to sleep, and each one told me I should come back again. I would love to! I’ve already asked and plan on applying again for next year.

Now, I’m home in Seattle, Washington. . As I was flying in,  I was greeted by one of the reasons I live on the West Coast.

Mount Rainier
Mount Rainier

As a result of having been aboard a ship,  I have a case of the upy-downy’s (getting my land legs back). The world keeps moving like I’m still on board the ship. The upy downy’s are also affecting my mood.  I’m happy to be home, sleep in a real bed, see my family and my neph-puppy but I’m also sad that my adventure is over. I can’t wait to get back in the classroom and share all that I have learned with my students!

Thank you for reading my blog and again thank you to NOAA and the Pisces!

Anne Marie Wotkyns, July 10-11, 2010

NOAA Teacher at Sea
Anne Marie Wotkyns
Onboard NOAA Ship Pisces
July 7 – 13, 2010

NOAA Teacher at Sea: Anne Marie Wotkyns
NOAA Ship Pisces
Mission: Reef Fish Survey
Geographic Area: Gulf of Mexico
Date: Saturday July 10, Sunday, July 11, 2010
Latitude: Saturday 27⁰54.8057 N Sunday 27⁰51.098 N
Longitude: Saturday 093⁰18.2990 W Sunday 093⁰04.100 W

Weather Data from the Bridge

Air Temperature: Saturday 30.3⁰C Sunday 30.4⁰C
Water Temperature: Saturday 30.5⁰C Sunday 30.35⁰C
Wind: Saturday 2.55 knots Sunday 1 knot
Other Weather Features:
Saturday 62% humidity, cloud cover 20% Sunday 67% humidity, cloud cover 35%
Saturday Swell Height .2 meter Sunday .4 meter
Saturday Wave Height .05 meter Sunday .25meter

Science and Technology Log

Temperature Depth Recorder
Temperature Depth Recorder

Temperature Depth Recorder
Temperature Depth Recorder

There are several types of sensing equipment we have been using on this cruise. Each time we drop the camera array at a site attached to the array is a little device called a Temperature Depth Recorder or a TDR. As the camera array sinks to the bottom, the TDR records the temperature and depth. When the camera array is brought back on board the ship one of the scientists, or one of us teachers, unclips it and brings it into the lab. To get the information off you hit it once with a magnet that communicates with the chip inside telling it you want to download the information. Then you place a stylus on the device and it downloads the information to the computer. The data is saved under the name of the site and then the information is entered into a spreadsheet that converts the information from the psi(pounds per square inch) to meters of depth. To clear the TDR you hit it four times with the magnet and when it flashes red it is clear! Liz and I learned to do this the first day we did stations and we usually took turns entering the information. This was done 8 times on Saturday and 7 times on Sunday.

At every station, a CTD is also dropped into the water. A CTD (Conductivity Temperature Recorder) gives a hydrographic profile of the water column. The CTD is attached to the bottom of a rosette or carousel that also contains water sampling bottles. Attached to the rosette is a conductive wire that sends information to the lab. Mike, the survey technician, comes into the lab after every camera array is dropped and runs the CTD process. The CTD is placed in the water and allowed to acclimate for 3 minutes before they begin taking readings. The CTD is dropped to the bottom of the seafloor and then raised again. Mike monitors this from the dry lab. Once a week he uses the water bottles to take water samples. To take a sample he uses a remote from inside the dry lab to trigger the bottles at a given depth to close them. The CTD can also be programmed to close different bottles at different depths. It was very interesting to watch the EK60 echo sounder screen as the CTD lowered and raised.

Data from CTD
Data from CTD

CTD
CTD

Each morning, Chief Scientist Kevin goes through the video footage from the previous day. For each site he identifies what the bottom substrate was (“sandy flat bottom”, “coralline algal bottom”, “malacanthus mounds,” etc) and then he identifies briefly any fish that he sees. When he is doing this, he will call us over and explain how he can tell what the species is or what behavior a fish is exhibiting.

Video footage
Video footage

Video footage
Video footage

Saturday, we dropped the camera array at 8 different stations on Bright Bank sites. The two chevron fish traps brought up NO FISH! On the bandit reel we caught one fish. It was a sand tile fish, Malacanthus pulmieri, a “banana shaped” bottom dweller that lives in large rock-covered mounds. Wearing rubber gloves, I weighed and measured him quickly and then we threw him back alive. He was 494 mm (49.4 cm) long and weighed .550 kg. I’m not very comfortable touching the fish or the bait we’ve been using, so I was quite proud of myself!

Sand-tile fish
Sand-tile fish

Measuring
Measuring

Weighing
Weighing

Frustrated Kevin
Frustrated Kevin

That was the only fish we caught all day! Today was a little frustrating. It even got Kevin a little down!

Sunday brought our last day of work on the reef survey. The Pisces was on the north half of Geyer Bank, still off the coast of Louisiana. I was determined to fully participate in all aspects of the science, so I bravely donned my gloves and baited the bandit reel’s 10 hooks with chunks of mackerel. We were positive we would catch more fish today!

Baiting the bandit reel
Baiting the bandit reel


The camera cage came up with some interesting “hitchhikers” aboard. One was a round sponge, about the size of a softball. At first we thought it was a rock, but when I grabbed it, it was soft and squishy. Sponges are filter feeders which draw in water through many small , incurrent pores. Food and oxygen are filtered out and then exit through one or more larger excurrent openings.

In the fish lab, Kevin found a large cymothoid isopod, a crustacean that attaches to fish using its hook-like legs and scavenges food as the fish feeds. It reminded me of a cockroach more than a “rolly-polly”, the land isopod found in our gardens.

Cymothoid isopod
Round sponge

Cymothoid isopod
Cymothoid isopod

The day continued with seven camera drops, the bandit reel deployment, and two chevron fish traps. Despite positive thinking and Liz doing her “fish dance,” both fish traps came up empty. So the 2nd bandit reel was our last chance for fish. We were excited to see the “fishing pole” part of the reel bouncing up and down. It was reeled in and here’s what we caught!

Barracuda
Barracuda

Barracuda
Barracuda

It was a great barracuda, Sphyraena barracuda, 939 mm (93.9 cm) long and weighing 3.49 kg. Joey measured and weighed it, carefully avoiding its sharp teeth. He released the large predator and our last catch quickly swam away.

An interesting souvenir I will be taking home are some fish otoliths. Otoliths are fish earbones. Bony fish lay down layers of bone on their otoliths as they age, similar to the rings on a tree. Scientists use the otoliths to determine the age of a fish. Kevin collected the otoliths from a yellowedge grouper one of the crew caught and gave one each to Liz and I. Then he helped me remove the otoliths from a red porgy – quite a messy procedure, but very rewarding to cut open the skull and see the earbones!

Otoliths
Otoliths

In tomorrow’s log, I’ll share what we learned on our tour of the engine room, and about the different job opportunities on the ship.

Personal Log

Two nights ago, the ship’s captain (Commanding Officer Jerry Adams) had invited Liz and I up to the bridge to help “steer” the ship. He explained that we were driving a 52 million dollar vessel with 30 lives on board, so we were feeling pretty nervous! The Pisces was moving to the next day’s work area so the bridge crew would be driving all night. I got to steer first, my hands tightly gripping the wheel Captain Jerry and Ensign Kelly Schill explained how to drive and the proper language to use. When steering, you are following a set course using a gyroscopic compass as well as a digital heading read out. You are steering the rudder by degrees. The heading is stated in single digits so 173 would be one seven three.

We were sailing at night, so all the bridge lights were kept turned off to better see the lights of other boats and oil rigs. The bridge crew even had red flashlights so they wouldn’t ruin their night vision. Liz and I both got a chance to steer the ship in circles. I even did a Williamson turn, which is done when there is a man overboard. You turn 60⁰ in one direction and then turn the other direction so you are back on your reciprocal course to pick up the person who is overboard. While I was doing this, the ETA (estimated time of arrival to our next destination) display changed from “ 6:10 am” to “NEVER.” We both laughed pretty hard about that!

The Dynamic Positioning system (similar to an automatic pilot system) is called Betty. She can talk to the crew on the bridge and is reportedly extremely polite. I find is amazing how the ship can maintain such a steady course, with the computers adjusting for the constant changes in current, wind, and other factors which affect the ship’s steering. The DP also keeps the Pisces in one place when we are at a science station. The Captain promised to show us more about the DP on our next bridge visit. Everything on the bridge is electronic. You can click a button and see how much fresh water is on board, how much fuel, which engines are working and even wake someone up! The technology is truly amazing. I keep thinking about my grandfather who sailed in the Swedish Merchant Marines in the 1930’s. What would he have thought all this?

Where has Pascy the penguin been in the last 2 days? Check out his pictures!


Pascy helps me write my log entry out on the back deck at sunset!

Safety is very important! Pascy wears his hardhat whenever he works out on the deck with equipment.


On the lookout for other ships and oil rigs!


Pascy helps with the Pisces’ navigation. He’s double checking the computer’s course.


Pascy in the captain’s chair on the bridge.