Dana Kosztur: Science Lab at Sea, April 15, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 15, 2018

Weather Data from the Bridge

Lat: 29° 35.5335′ N Long: 084° 19.8126′ W
Air Temperature: 18.2°C (64.76°F)
Water Temperature: 20.43°C (68.77°F)
Wind speed: 28.11 knots (32.35 mph)
Conditions: stormy, Seas 7 to 9 feet

Science and Technology Log

While I have been at sea,  I have spent time exploring Pisces and getting to know the people on board. This research vessel is 209 feet long, 50 feet wide, and it has a draft of 20 feet.  It is large enough to hold 39 passengers. The crew of the vessel during my sail consists of 5 NOAA Officers, 5 deck crew, 5 engineers, 4 technicians, 2 stewards and 5 scientists.

NOAA Ship Pisces

NOAA Ship Pisces

Pisces is loaded with science equipment. It has the capability to run acoustic surveys, marine mammal surveys, and various fish surveys. The onboard wet lab is used to process the marine life brought in on trawls, long lines, or bandit reels. In the dry lab, the mission data is stored and processed by the scientists and survey technicians on the ship.  There is a side sample station on the starboard deck where the cameras and ROVs are launched and the trawls are deployed on its stern. The centerboard, on the hull underneath the ship, has mounted sensors that send back various types of data for the scientist to use. This vessel was also engineered to be quiet while underway so it won’t scare marine life. The ship shares the oceanographic, hydrographic and weather data it gathers daily to the outside world.

The Commanding Officer gave me a tour of the bridge.  The bridge is the navigation center. The vessel can be operated from one of four different stations. The science that is being conducted determines where the officer will navigate from. The technology on the bridge is quite amazing.  The dynamic positioning system allows the vessel to stay within certain parameters when supporting science missions. It functions almost like an auto-pilot to keep the ship in the proper position.

Bridge Center Navigation

Bridge Center Navigation

"Moo"ving the ship

“Moo”ving the ship

 

NOAA Ship Pisces is like a floating city.   I had the opportunity to explore the engine room with the ship’s first assistant engineer to see how this mini-city works.  He showed me how they process sewage and garbage aboard the vessel. I learned how the vessel creates its own water and power.  I saw the huge engines. This ship has two 8 cylinder engines and two 12 cylinders engines that power the ship. I also learned how the bilge/ballast system keeps the ship stable and how the bow thruster aids in steering

 

one of four engines on Pisces

one of four engines on Pisces

Personal Log

Most of the days pass quickly and I lose track of time.  I can’t believe I have been at sea for 10 days. Having a different type of workday is very unusual to me.  I have taught for almost 18 years so school days are what I know. It is different to work with adults all day instead of children.  It is a definite change of pace. Today is a slow day. We are currently standing-by due to a weather delay. We have moved closer to shore and are riding out the storm.  Hopefully, we will be able to be back up and running tomorrow.

I will surely miss the trips to the galley when I get home. I have probably gained five pounds on this trip. The stewards that cook on this ship do an amazing job.  It is nice to have already prepared meals. I have gotten spoiled by not cooking too. I know will miss the view when I get back to land. Watching the waves never gets old.  I could stare at the water all day. Even when it is stormy the ocean is beautiful.

Being away from home is hard.  It’s difficult not to harass my team teachers about my classroom while I am gone.  I know that my students are well taken care of but it is hard not to worry. The letters from my students, emails from family,  texts from my husband, messages from friends, and sweet videos from my granddaughter help me combat homesickness.

Did You Know?

The Gulf of Mexico is home to 21 marine mammals and 5 sea turtle species

Student questions

How many species of sharks are in the gulf?  There are approximately 49 shark species in the gulf.

Dana Kosztur: Unexpected Visitors, April 11, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18, 2018

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 11, 2018

Weather Data from the Bridge

Lat: 29° 54.7331′ N Long: 087° 12.1562′ W
Air Temperature: 22.5°C (72.5°F)
Water Temperature: 21.29°C (70°F)
Wind speed: 5.8 knots (6.7mph)
Conditions: blue sky, flat seas

Science and Technology Log

This week I have learned a lot about the reef fish studied in this SEAMAP survey. I have learned how to weigh the fish and take various length measurements. I have also learned how to examine the gonads and distinguish a male from a female.  I can now properly remove the otolith bones from the otic capsule that is located at the base of the fish’s skull.

 

We have had some unusual catches that have provided great learning experiences as well.  The bandit reel caught a sharksucker on the line as it returned. This fish belongs to the Remora family.  It attaches to sharks and other marine animals. This was a really unusual creature to observe.

Dana and shark sucker

TAS Dana Kosztur displays a sharksucker captured on the bandit reel.

The camera arrays had fireworms hitch a ride to the deck from the bottom of the gulf. These guys look like large spikey caterpillars. They have venom in their bristles that can cause a painful sting.  

Fireworm

This fireworm hitched a ride on a camera array.

Personal Log

Today was a beautiful day.  The water is such a beautiful blue.  The sky was cloudless last night so I finally got to look at the stars.  The night sky seems much more vast and bright away from the light pollution on land.  The stars are amazingly bright. I am enjoying life on the ship but I do miss home. I have a greater respect for those that work away from home for long periods of time.  Teamwork and a positive attitude seem to be the lifeblood of this NOAA vessel and that makes it much easier to adjust.

Did You Know?

Many birds will often land on the vessel to rest during their migration route across the Gulf of Mexico.     

Barn swallows

Migrating barn swallows

Waves transmit energy, not water.

Cow at sea

Cow at sea

Questions from students:

Why do scientists need to know what types of fish are on the reef?  

It is important to manage and maintain the reef fish species because they are often over-fished.

Scamp grouper

Scamp grouper

 

Dana Kosztur: Cruising with Camera Arrays, April 8, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18, 2018

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 8, 2018

Weather Data from the Bridge

Lat: 29o 20.6309′ N      Long: 087o 46.1490′ W
Air Temperature: 18.1oC (64.5oF)
Water Temperature: 22.29oC (72oF)
Wind speed: 10.81 knots (12.4 mph)
Conditions: cloudy,  1 to 2 ft seas

Science and Technology Log

The most important equipment on this mission are the camera arrays. Most of the data collected are dependent on these cameras.  I mentioned in my last entry the two types of camera arrays used in this survey are the SatCam and the RIOT.  The video taken from these camera arrays is stitched together in a five-panel single view. The videos are reviewed and each species that appears is counted and recorded.  Images help the scientist determine the population of fish at a given site. The RIOT is a two-stacked spherical camera housing unit that contains 5 horizontal cameras and one upward facing camera.  The RIOT is the more expensive of the two arrays, but it gives the scientist a greater ability to measure fish when they are captured in the dual videos.  

 

IMG_0759

deploying the RIOT

 

Over the past few days, we have caught several species of fish on the bandit reels. We have caught red snapper, vermilion snapper, and red porgy. These lines have 10 baited hooks and they are dropped into the water on a randomly selected site.  In order to obtain a proper sample of the fish, very little human interaction is made with the reel or the line. This leaves out any fisherman bias and allows for natural sampling of species on the site.  The hook sizes are rotated with each drop. The hooks sizes are 8, 11, and 15. If reel 1 starts with size 8 hook, it will have size 11 on the next drop, and then 15 on the third. Each reel has a different rotating pattern.  This allows each hook size to be in the water over the same site. The data will help determine if a certain hook type is favored by a species of fish.

 

IMG_07742

recording red snapper data

 

IMG_0756

class mascot

 

Personal Log

My students will return to school tomorrow from spring break.  I am a little sad I am not there with them.  They wrote letters for me to read while I was away. I have read some of these already and they are pretty funny.  I want to reassure them that I will not fall overboard and that I am eating well.  I will answer student questions on the bottom of my blogs.

We are in the Gulf of Mexico about 70 to 80 miles offshore, on the Mississippi-Alabama Continental shelf.  I have not been this far out in the gulf before today. It is pretty humbling to look out and just see blue water. The sunrises and sunsets are spectacular. You can’t always see them though. The weather has been pretty gloomy the last two days, so I was unable to see last night’s sunset or this morning’s sunrise.   We had a storm yesterday followed by the much cooler weather today.  I hope this is the only cold snap we get.  I am not a fan of cold boat work.

Did You Know?

Turbidity is how cloudy the water is based on the suspended solids. The higher the turbidity the more sediment, algae and other solids are suspended in the water.  Clear water has low turbidity.

Questions from students:

What is hydrography? The science that measures and describes the physical features of bodies of water and land close to these bodies of water.  Multibeam echosounders are used to obtain hydrographic data.

New species that I have seen:  Red Porgy:  Pagrus pagrus

                           Vermilion Snapper:  Rhomboplites aurorubens

 

IMG_0773

Red Porgy teeth

 

Kimberly Scantlebury: It’s All About the Little Things, May 8, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 8, 2017

Weather Data from the Bridge

Time: 18:00

Latitude: 2755.757 N, Longitude: 9200.0239 W

Wind Speed: 14.21  knots, Barometric Pressure: 1015.3 hPa

Air Temperature: 24.56  C, Water Temperature: 24.4  C

Salinity: 36.37  PSU, Conditions: 50% cloud cover, light wind, seas 2-4 feet

Science and Technology Log

IMG_2969

The CTD

The CTD (conductivity, temperature, depth) array is another important tool. It goes down at each station, which means data is captured ten-twelve times a day. It drops 50 m/min so it only takes minutes to reach the bottom where other winch/device systems can take an hour to do the same. This array scans eight times per second for the following environmental factors:

  • Depth (m)
  • Conductivity (converts to salinity in ppt)
  • Temperature (C)
  • Dissolved oxygen (mg/mL)
  • Transmissivity (%)
  • Fluorescence (mg/m^3)
  • Descent rate (m/sec)
  • Sound velocity (m/sec)
  • Density (kg/m^3)

There are two sensors for most readings and the difference between them is shown in real time and recorded. For example, the dissolved oxygen sensor is most apt to have calibration issues. If the two sensors are off each other by 0.1 mg/L then something needs to be done.

Software programs filter the data to cut out superfluous numbers such as when the CTD is acclimating in the water for three minutes prior to diving. Another program aligns the readings when the water is working through the sensors. Since a portion of water will reach one sensor first, then another, then another, and so on, the data from each exact portion of water is aligned with each environmental factor. There are many other sophisticated software programs that clean up the data for use besides these two.

These readings are uploaded to the Navy every twelve hours, which provides almost real-time data of the Gulf. The military uses this environmental data to determine how sound will travel through sound channels by locating thermoclines as well as identifying submarines. NOAA describes a thermocline as, “the transition layer between warmer mixed water at the ocean’s surface and cooler deep water below.” Sound channels are how whales are able to communicate over long distances.

NOAA Ocean Explorer: Sound in the Sea 2001

This “channeling” of sound occurs because of the properties of sound and the temperature and pressure differences at different depths in the ocean. (NOAA)

The transmissometer measures the optical properties of the water, which allows scientists to track particulates in the water. Many of these are clay particles suspended in the water column. Atmospheric scientists are interested in particulates in the air and measure 400 m. In the water, 0.5 m is recorded since too many particulate affects visibility very quickly. This affects the cameras since light reflecting off the clay can further reduce visibility.   

Fluorescence allows scientists to measure chlorophyll A in the water. The chlorophyll molecule is what absorbs energy in photosynthetic plants, algae, and bacteria. Therefore, it is an indicator of the concentration of organisms that make up the base of food chains. In an ecosystem, it’s all about the little things! Oxygen, salinity, clay particles, photosynthetic organisms, and more (most we can not actually see), create a foundation that affects the fish we catch more than those fish affect the little things.  

The relationship between abiotic (nonliving) and biotic (living) factors is fascinating. Oxygen is a great example. When nitrates and phosphates wash down the Mississippi River from the breadbasket of America, it flows into the Gulf of Mexico. These nutrients can make algae go crazy and lead to algae blooms. The algae then use up the oxygen, creating dead zones. Fish can move higher up the water column or away from the area, but organisms fixed to the substrate (of which there are many in a reef system) can not. Over time, too many algae blooms can affect the productivity of an area.

Salt domes were created millions of years ago when an ancient sea dried up prior to reflooding into what we have today. Some salt domes melted and pressurized into super saline water, which sinks and pools. These areas create unique microclimates suitable to species like some mussels. A microclimate is a small or restricted area with a climate unique to what surrounds it.

IMG_3032

The ship’s sonar revealing a granite spire a camera array was deployed on.

Another great example is how geology affects biology. Some of these salt domes collapsed leaving granite spires 30-35 meters tall and 10 meters across. These solid substrates create a magical biological trickle down effect. The algae and coral attach to the hard rock, and soon bigger and bigger organisms populate this microclimate. Similar microclimates are created in the Gulf of Mexico from oil rigs and other hard surfaces humans add to the water.

Jillian’s net also takes a ride with the CTD. She is a PhD student at Texas A&M University studying the abundance and distribution of zooplankton in the northern Gulf of Mexico because it is the primary food source of some commercially important larval fish species. Her net is sized to capture the hundreds of different zooplankton species that may be populating the area. The term zooplankton comes from the Greek zoo (animal) and planktos (wanderer/drifter). Many are microscopic, but Jillian’s samples reveal some translucent critters you can see with the naked eye. Her work and the work of others like her ensures we will have a deeper understanding of the ocean.   

This slideshow requires JavaScript.

Personal Log

Prior to this I had never been to the Gulf of Mexico other than on a cruise ship (not exactly the place to learn a lot of science). It has been unexpected to see differences and parallels between the Gulf of Mexico and Gulf of Maine, which I am more familiar. NOAA scientist, John, described the Gulf to me as, “a big bathtub.” In both, the geology of the area, which was formed millions of years ago, affects that way these ecosystems run.   

Quote of the Day:
Jillian: “Joey, are we fishing at this station?”
Joey: “I dunno. I haven’t had my coffee yet.”
Jillian: “It’s 3:30 in the afternoon!”

Did You Know?

Zooplankton in the Gulf of Mexico are smaller than zooplankton in the Gulf of Maine. Larger species are found in colder water.  

why_zoo

Zooplankton under microscope (NOAA)

Kimberly Scantlebury: Getting Ready to Ship Out. April 26, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 26, 2017

Weather Data from the Bridge

16806786_610426269901_2847107978351918522_n

At home in New England, where you can enjoy the mountains and the sea all in a day.

Greetings from New Hampshire! Our variable spring weather is getting me ready for the coolness at sea compared to hot Galveston, Texas, where I will ship off in a few days.

It is currently 50 F and raining with a light wind, the perfect weather to reflect on this upcoming adventure.

Science and Technology Log

I am excited to soon be a part of the 2017 SEAMAP Reef Survey. The National Oceanic and Atmospheric Administration (NOAA) writes the objective of these surveys is, “ to provide an index of the relative abundances of fish species associated with topographic features (banks, ledges) located on the continental shelf of the Gulf of Mexico in the area from Brownsville, Texas to Dry Tortugas, Florida.” The health of the Gulf is important from an ecological and economic perspective. Good science demands good research.

We will be working 12 hour shifts aboard the NOAA Ship Pisces. I expect to work hard and learn a lot about the science using cameras, fish traps, and vertical long lines. I also look forward to learning more about life aboard a fisheries research vessel and the career opportunities available to my students as they think about their own futures.

Personal Log

I’ve been teaching science in Maine and New Hampshire for eight years and always strive to stay connected to science research. I aim to keep my students directly connected through citizen science opportunities and my own continuing professional development. Living in coastal states, it is easier to remember the ocean plays a large role in our lives. The culture of lobster, fried clams, and beach days requires a healthy ocean.

I love adventure and have always wanted to “go out to sea.” This was the perfect opportunity! I was fortunate to take a Fisheries Science & Techniques class with Dave Potter while attending Unity College and look forward to revisiting some of that work, like measuring otoliths (ear bones, used to age fish). I have also benefited from professional development with The Bigelow Laboratory for Ocean Sciences and other ocean science experiences. One of the best parts of science teaching is you are always learning!

11264902_575518814721_8101743023779813565_n

Science teachers benefit from quality professional development to stay informed in their content areas.

There was a lot of preparation involved since I am missing two weeks of school. I work at The Founders Academy, a public charter school in Manchester, New Hampshire. We serve students from 30 towns, but about a third come from Manchester. The school’s Vision is to: prepare wise, principled leaders by offering a classical education and providing a wide array of opportunities to lead:

  • Preparing students to be productive citizens.
  • Teaching students how to apply the American experience and adapt to become leaders in today’s and tomorrow’s global economy.
  • Emphasis on building ethical and responsible leaders in society.

I look forward to bringing my experiences with NOAA Teacher at Sea Program back to school! It is difficult to leave my students for two weeks, but so worth it. It is exciting to connect with middle and high school students all of the lessons we can learn from the work NOAA does. My school community has been very supportive, especially another science teacher who generously volunteered to teach my middle school classes while I am at sea.

13417611_591938624291_8919445317025949442_n

I am grateful for the support at home for helping me participate in the NOAA Teacher at Sea Program.

My boyfriend too is holding down the fort at home and with Stone & Fire Pizza as I go off on another adventure. Our old guinea pigs, Montana & Macaroni, prefer staying at home, but put up with us taking them on vacation to Rangeley, Maine. I am grateful for the support and understanding of everyone and for the opportunity NOAA has offered me.

Did You Know?

NOAA Corps is one of the seven uniformed services of the United States.

NOAA is the scientific agency of the Department of Commerce. The agency was founded in 1970 by consolidating different organizations that existed since the 1800’s, making NOAA’s scientific legacy the oldest in the U.S. government.

IMG_0993

As a science teacher, it is funny that I really do have guinea pigs. Here is our rescue pig Montana, who is 7-8 years old.

Denise Harrington: Tenacity – May 7, 2016

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Pisces (In Port)
May 04, 2016 – May 17, 2016

Mission: SEAMAP Reef Fish Survey

Geographical Area of Cruise: Gulf of Mexico

Date: Saturday, May 7, 2016

Tenacity helps NOAA manage our seafood supply.

P1050630

Tenacity, otherwise known as perseverance or stamina, is a required skill at the National Oceanic and Atmospheric Administration (NOAA). Aboard NOAA Ship Pisces, we are all anxious to head out to collect data about the type and abundance of reef fish along the continental shelf and shelf edge of the Gulf of Mexico.  However, things don’t always go as planned. Much like the animals we study, scientists must rapidly adapt to their changing circumstances. Instead of waiting for a problem to be solved, fisheries biologists of all ages and experience work in the lab, using the newest, most sophisticated technology in the world to meet our demand for seafood.

As I ate dinner tonight in the mess (the area where the crew eats), I stared at the Pisces’ motto on the tablecloth, “patience and tenacity.”

P1050609

The Pisces is a “quiet” ship; it uses generators to supply power to an electric motor that turns the ship’s propeller. The ship’s motor (or a mysteriously related part) is not working properly, and without a motor, we will not sail. This change of plans provides other opportunities for me, and you, to learn about many fascinating projects developing in the lab. Sound science begins right here at the Southeast Fisheries Science Center Laboratory in Pascagoula, Mississippi.

P1050488

Kevin Rademacher, a fishery biologist in the Reef Fish Unit, meets me at the lab where he works when he isn’t at sea. As he introduces me to other biologists working in the protected species, plankton, and long line units, I begin to appreciate the great biodiversity of species in the Gulf of Mexico. I get a glimpse of the methods biologists use to conduct research in the field, and in the lab.

While it looks like a regular old office building on the outside, the center of the building is filled with labs where fish are taken to be discovered.  Mark Grace, a fisheries biologist in the lab, made one such discovery of a rare species of pocket shark on a survey in the gulf. The only other specimen of a pocket shark was found coast of Peru in 1979. Mark’s discovery raises more questions in my mind than answers.

When I met Mark, he explained that capability of technology to gather data has outpaced our ability to process it. “Twenty years ago, we used a pencil and a clipboard. Think about the 1980s when they started computerizing data points compared to the present time… maybe in the future when scientists look back on the use of computers in science, it will be considered to be as important as Galileo looking at the stars” he said. It’s important because as Mark also explains,  “This correspondence is a good example.  We can send text, website links, images, etc…and now its a matter of digital records that will carry in to the future.”

How do fishery biologists find fish?

P1050731

Charlie McVea, a retired NOAA marine biologist, and his trusty assistant Scout, pictured above, learned they may need more sophisticated equipment to locate fish.

Earth has one big connected ocean that covers the many features beneath it. Looking below the surface to the ocean floor, we find a fascinating combination of continental shelves, canyons, reefs, and even tiny bumps that make unique homes for all of the living creatures that live there.  Brandi Noble, one of 30-40 fishery biologists in the lab, uses very complicated sonar (sound) equipment to find “fish hot spots,” the kinds of places fish like to go for food, shelter and safety from predators. Fisheries sonar sends pulses of sound, or pings, into the water.  Fishery biologists are looking for a varied echo sound that indicates they’ve found rocky bottoms, ledges, and reefs that snapper and grouper inhabit.

The sonar can also survey fish in a non-invasive way. Most fish have a swim bladder, or a gas filled chamber, which reflects sonar’s sound waves.  A bigger fish will create a returning echo of greater strength. This way, fisheries biologists can identify and count fish without hurting them.

sonar fish

The circular image shows a three-dimensional map NOAA scientists created from the sonar data they collected about the seafloor and a school of fish.

Ship Pisces uses a scientific methods to survey, determining relative abundance and types of fish in each area. They establish blocks of habitat along the continental shelf to survey and then randomly sample sites that they will survey with video cameras, CTD (measures temperature, salinity, and dissolved oxygen in the water), and fishing. Back in the lab, they spend hours, weeks, and years, analyzing the data they collect at sea. During the 2012 SEAMAP Reef Fish Survey, the most common reef fish caught were 179 red snapper (Lutjanus campechanus), 22 vermillion snapper (Rhomboplites aurorubens), and 10 red porgy (Pagrus pagrus).  Comparing the 2012 data with survey results from 2016 and other years will help policy makers develop fishing regulations to protect the stock of these and other tasty fish.

How do fishery biologists manage all the information they collect during a survey?

Scientists migrate between offices and labs, supporting each other as they identify fish and marine mammals from previous research expeditions.

P1050572

Kevin Rademacher, at work in the lab.

Our mission, the SEAMAP Reef Fish Survey has been broken into four parts or legs.  The goal is to survey some of the most popular commercially harvested fish in the Gulf of Mexico.  Kevin Rademacher is the Field Party Chief for Leg 1 and Leg 3 of the survey.

Last week, he showed me collections of frozen fish, beetle infested fish, and fish on video. At one point the telephone rang, it was Andrew Paul Felts, another biologist down the hall. “Is it staying in one spot?” Kevin asks. “I bet it’s Chromis. They hang over a spot all the time.”

We head a couple doors down and enter a dark room.  Behind the blue glow of the screen sits Paul, working in the dark, like the deep water inhabitants of the video he watches. Paul observes the physical characteristics of a fish: size, shape, fins, color.  He also watches its behavior. Does it swim in a school or alone?  Does it stay in one spot or move around a lot?  He looks at its habitat, such as a rocky or sandy bottom, and its range, or place on the map.

As you watch the video below, observe how each fish looks, its habitat, and its behavior.

To learn about fisheries, biologists use the same strategies students at South Prairie Elementary use.   Paul is using his “eagle eyes,” or practiced skills of observation, as he identifies and counts fish on the screen.   All the scientists read, re-read and then “read the book a third time” like a “trying lion” to make sense out of their observations.  Finally, Paul calls Kevin, the “wise owl,” to make sure he isn’t making a mistake when he identifies a questionable fish. paul screen

Using Latin terminology such as “Chromis” or “Homo” allows scientists to use the same names for organisms. This makes it easier for scientists worldwide, who speak different languages, to communicate clearly with each other as they classify the living things they study.

I appreciate how each member of the NOAA staff, on land and at sea, look at each situation as a springboard to more challenging inquiry.  They share with each other and with us what they have learned about the diversity of life in the ocean, and how humans are linked to the ocean.  With the knowledge we gain from their hard work and tenacity, we can make better choices to protect our food supply and support the diversity of life on Earth.

 

This slideshow requires JavaScript.

 

P1050551

Spined Pygmy Shark Jaw (Squaliolus laticaudus)

Personal Log

Crew members tell me that every day at sea is a Monday.  In port, they are able to spend time with family and their communities.  I have been able to learn a bit about Pascagoula, kayak with locals, and see many new birds like the least tern, swallow tailed kite, eastern bluebird and clapper rail.  Can you guess what I ate for dinner last night?P1050747

 

 

 

 

Denise Harrington, Getting Ready for an Adventure, April 23, 2016

NOAA Teacher at Sea
Denise Harrington
(Almost) aboard NOAA Ship Pisces
May 04, 2016 – May 17, 2016

Greetings from Garibaldi, Oregon. My name is Denise Harrington and I teach Second Grade at South Prairie Elementary School in Tillamook, Oregon, along the north Oregon coast. There are 300 amazing second and third graders at our school who can prove to you that no matter how young you are, you can be a great scientist.  Last year they were caught on camera by Oregon Field Guide studying the diversity of life present in our ocean.

 

I applied to become a NOAA Teacher at Sea because I wanted to work with scientists in the field. I seem to learn best by doing.  In 2014, I joined the crew of NOAA ship Rainier, mapping the ocean floor near Kodiak Island, Alaska.  I learned how vast, connected, and undiscovered our oceans are. Students watched in disbelief after we discovered a sea floor canyon.  I learned about the technology and skills used to map the ocean floor. I learned how NOAA helps us stay safe by making accurate nautical charts.  It was, for our students and myself, a life changing experience.

As an avid sea kayaker, I was able to share my deeper understanding of the ocean with fellow paddlers. Photo courtesy of Bill Vonnegut

Now, I am fortunate enough to participate in another NOAA survey. On this survey aboard NOAA ship Pisces, scientists will be collecting data about how many fish inhabit the area along banks and ledges of the Continental Shelf of the Gulf of Mexico.
NOAA believes in the value of sharing what they do with the public, and students in particular. The crew of Pisces even let fifth grader students from Southaven, Mississippi name the ship after they won a writing contest. Maybe you can name the next NOAA ship!

On May 3, 2016, Ship Pisces will begin Leg 3 of their survey of reef fish. I have so many questions.  I asked Chief Scientist Kevin Rademacher why the many survey partners chose snapper and grouper to survey. He replied “Snapper and grouper are some of the most important commercial fisheries here in the Gulf of Mexico. There are 14 species of snapper in the Gulf of Mexico that are good to eat. Of those the most commercially important is the red snapper. It is also currently over-fished.”   When I hear “over-fished” I wonder if our second graders will have many or any red snapper to eat when they they grow up. Yikes!

Another important commercial catch is grouper.  My brother, Greg, who fishes along the Kenai River in Alaska understands why grouper is a focus of the survey. “It’s tasty,” he says. I can’t believe he finds grouper tastier than salmon.  NOAA is making sure that we know what fish we have and make sure we save some for later, so that everyone can decide which fish is the tastiest when they grow up.

I have so many questions keeping me up at night as I prepare for my adventure. What do I need to know about fish to do my job on the ship?  Will I see evidence of the largest oil spill in U.S. history, the Deepwater Horizon spill? How crowded will we all be aboard Ship Pisces? If I dissect fish, will it be gross? Will it stink?  Will I get sea sick? With my head spinning with questions, I know I am learning. Yet there is nothing more I can do now to prepare myself for all that I will learn, except to be early to the airport in Portland, Oregon, and to the ship in Pascagoula, Mississippi, on May 3rd.

I will get home in time to watch my daughter, Elizabeth, graduate from high school.  Ever since I returned from the NOAA cruise in Alaska, she has been studying marine biology and even competed in the National Ocean Sciences Bowl.

liz with a crab

 

During research in the Gulf of Mexico with the crew of Ship Pisces, I will learn about the many living things in the Gulf of Mexico and about the technology they use to protect and manage commercial fisheries.  Soon, you will be able to watch me collect data about our ocean critters. Hope for fair winds and following seas as I join the crew on Ship Pisces, “working to protect, restore, and manage the use of our living ocean resources.”