David Madden: Immersed in the Seascape July 18, 2019

NOAA Teacher at Sea
David Madden: July 18th, 2019

 

On board off the coast of North Carolina – about 35 miles east of Cape Fear, 40 miles south of Jacksonville, NC.  (33º50’ N, 77º15’W)

Mission: South East Fisheries Independent Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

Here’s our location from the other day, courtesy of windy.com.  And here is a good Gulf Stream explanation from our friends at NOAA:

Date: July 19, 2019

Science and Technology Log

Being at sea has got me thinking; about life at sea, the lives and careers of the men and women on board, and about the marine organisms around us.  Pause there for a minute.  Nature’s beauty and abundance on land is readily seen, so long as you travel to the right location and you’re patient.  The ocean, however, hides its multitudes beneath the waves.  I’ve found myself drawn to the ocean my whole life, and here on the cruise, I am drawn to staring at and contemplating the ocean and its life – the great hidden beneath.  You know the stats: the earth is covered by ~70% water, the deep ocean has been explored less than outer space, the ocean is warming and turning more acidic, etc.  I’m not saying that you and I don’t already know these things.  I’m only saying that you feel them differently when you are in the ocean, when you are immersed for days in the seascape.   

The goal is this cruise is to survey fish.  (SEFIS = Southeast Fisheries Independent Survey).  The science crew repeats a similar protocol each day of the cruise.  It looks something like this:

  1. Chief scientist, Zeb Schobernd, determines the site locations using NOAA sea floor maps. 
  2. The science team (broken into day and night shifts) baits six traps with menhaden fish bait, and starts the two GoPros that are attached to the traps.   
  3. The Pisces crew then deploys the traps, 1-6, at pre-determined locations (see step 1).  They do this by sliding them off the back of the ship.  Traps are attached to buoys for later pick up.
  4. Wait for around 75 minutes.
  5. Pisces Senior Survey Technician, Todd Walsh, along with crew members, Mike and Junior, drop the CTD [Conductivity, Temperature, Depth] probe.  See picture below. 

                *Stay tuned for a video chronicling this process. 

6. After ~75 min, NOAA Corps officers drive back to retrieve the traps, in the order they were dropped. (1-6)

7.  Crew members Mike and Junior, along with scientists, collect the fish in the trap and sort them by species.

8.  All fish are measured for weight and length. 

9. Depending on the species, some fish contribute further information, most notably, their otoliths (to determine age) and a sample of reproductive organs to determine maturity. 

10. Rinse and repeat, four times each day, for the length of the cruise. 

I mostly work with the excellent morning crew.

The most excellent and experienced morning crew.

Mike and Junior, running the CTD, and supporting their favorite NFL teams.

Here’s a view into yesterday’s fish count – more fish and more kinds of fish:

Here is a view off the back of the boat, called the stern, where the traps are dropped. 

On Wednesday the GoPros on one of the fish traps collected footage of a friendly wandering tiger shark.  Our camera technician, Mike Bollinger, using his stereo video technique, determined the size of the shark to be ~ 8.5 feet.  I added the location’s CTD data to the picture.  This is part of an upcoming video full of neat footage.  See below. 

Tiger Shark at 64.55 meters, footage from fish trap GoPro.

Personal Log:

Things continue to be exciting on board.  My mission to film flying fish flying continues (local species unknown/not really sure; probably family: Exocoetidae). But not without some mild success!  I managed to get some of ‘em flying off the port side near the bow.  Man are they quick.  And small.  And the seas were rough.  Yet I remain undeterred!  Here’s a picture of me waiting and watching patiently, followed by a picture of an unlucky little flying fish who abandoned sea and was left stranded at ship.  Poor little fella. 

Waiting patiently for the flying fish to fly. And fly right where I was aiming and focused.

General Updates:

  1. The seas have picked up quite a bit.  Rising up to 5-6 feet.  That may not seem terrifically high, but it sure does rock the ship.  Good thing seas were flat at the start, allowing me to get used to life at sea.   
  2. I just saw some dolphins!  Yippie!  Pictures and video to come.    
  3. Though not legal, I’m dying to take a swim in these beautiful blue waters.    
  4. I don’t think I’ll ever get tired of watching the ocean.  *short of being stranded at sea, I suppose.  See “In the Heart of the Sea: The Tragedy of the Whaleship Essex” – a true story and great book that’s may have served as inspiration for Moby Dick.  I loved the book, haven’t seen the movie.  Or check out the lost at sea portions of the, hard-to-believe-it-actually-happened, “Unbroken” – great book, okay movie. 

Neato Facts =

NOAA Ship Pisces won NOAA ship of the year in 2018.  This is no doubt due to the most excellent crew, seen below.  Congratulations!

We’ve caught a number of moray eels in the fish traps.  They’re super squirmy and unfriendly.  Turns out they also have pharyngeal mouth parts.  Essentially a second mouth that shoots after their first one is opened.  Check out this fascinating look into the morey eel’s jaw biomechanics.

Please let me know if you have any questions or comments. 

Stephen Tomasetti: Red Grouper and Red Tide, August 21, 2014

NOAA Teacher at Sea
Stephen Tomasetti
Aboard NOAA Ship Oregon II
August 11 – 25, 2014

Mission: Shark/Red Snapper Longline Survey
Geographical Area of Cruise: Gulf of Mexico
You can view the geographical location of the cruise here at anytime: http://shiptracker.noaa.gov
Date: Thursday, August 21, 2014

Weather Data from Bridge:
Air Temperature: 30.2 Degrees C
Water Temperature: 29.9 Degrees C
Wind Speed: 7 Knots
Barometric Pressure: 1018.7 Millibars

Science and Technology Log

On the Discovery Channel shark week ended last Sunday night, but on the ship shark week continues. We are approaching a stretch of stations that should be loaded with sharks (if they haven’t moved to other areas due to the red tide…more on that later) over the next few days so I am going to hold off on the shark post until later in the week when I’ll have compiled many more pictures for sharing. Although one of the main goals of the mission is to catch sharks (to monitor trends in population abundance) the ship is constantly, twenty four hours a day, collecting a myriad of oceanographic and weather data that is used by other scientists and organizations.

One fish that we have been catching quite frequently is red grouper, or Epinephelus morio. Typically when we catch one it is brought on board to measure its mass and length. After the measurements are taken we remove the fish’s otoliths for future age examination. Additionally, the gonads are removed to determine its sex and reproductive status.

Red Grouper

Red Grouper

An otolith or “ear bone” is not actually a bone at all, but rather a calcium carbonate structure located near the fish’s brain. Similar to the human inner ear, otoliths help the fish to balance and orient itself. There are three pairs of otoliths in each teleost (bony fish) but we remove the largest pair. The first time I tried I pulverized the otolith, but after some practice I can do it now (although I’d hesitate to say with ease).

The otolith contains bands that correspond to the age, much like rings of a tree trunk. Also, the shape of the otolith varies depending on the species. So if otoliths are found in the stomach of an animal that eats fish, the species it’s eating can often be determined.

The fish’s internal sexual structures, or gonads, also must be removed and saved. These structures are used to determine the sex of the fish, if it’s mature, and its current reproductive condition.

In addition to catching and studying wildlife aboard the Oregon II, a large amount of data is collected on water and weather conditions. To do so, a large, expensive piece of equipment called a “CTD”, for conductivity-temperature-depth, is lowered by a fisherman into the water until it hovers a few meters off the ocean floor. It collects data such as salinity, temperature, dissolved oxygen, water clarity, and chlorophyl concentration in real time and can be studied separately or alongside the results of the fish/shark survey.

Chuck Godwin with the CTD

Skilled Fisherman Chuck Godwin with the CTD

Skilled Fisherman Chuck Godwin and Fisherman Eloy Borges are two of the guys I’ve worked closely with during my time on the Oregon II. Chuck and I are pretty much from the same town in Central Florida! Chuck graduated from UF before serving in the Coast Guard for over ten years. He’s been working for NOAA for a while and after about ten minutes with him you can see why! He is fun and affable and a pleasure to be around. He makes the long days of hard work go by quickly.

Fisherman Eloy Borges worked on commercial freighters for a while before joining NOAA. He’s a laid back, diligent crew member. He’s considerate and encouraging; we work together while slinging bait and attaching the gangions to the mainline or while deploying the hi-flyers. And we bond a lot over our mutual love for Cuban food.

Fisherman Eloy Borges controlling the CTD

Fisherman Eloy Borges controlling the CTD

Personal Log:

Yesterday in between sets, the Bridge watchstanders noticed dead fish in the water everywhere. The dead fish continued for over ten miles. They were the result of red tide in the Gulf. Red tide is caused by an algal bloom, and can devastate marine life, especially near the coast. The ship stopped while a fisherman and two scientists took a smaller boat to investigate and gather samples. They filled a large bag with dead fish and wrote down the GPS coordinates, as well as the date and time, marking it FISH KILL. These samples will be reviewed back in the lab in Pascagoula. Sometimes doing science means changing your plans and adjusting to the circumstances you find yourself in.

Spending twelve hours a day, every day, with the same group of people may seem daunting, but we’ve developed a great team chemistry. The days go by fast! In between sets while we’re cruising to the next location we’ve developed a bunch of activities to keep us busy. I learned how to play Sudoku and a game called Heads Up. Additionally, I’ve begun a daily exercise routine with some of the other scientists and volunteers. The workout is a precautionary measure because I’ll put on ten pounds in two weeks with all of the excellent food we’ve been eating on this cruise (thanks Mark and Steve).

Scientist Andre Debose leading the crew in some exercises

Scientist Andre Debose leading the crew in some exercises

Did You Know: Most grouper species change their sex from female to male as they age!

Kevin McMahon: Fireworks, Red Grouper, and The Deepest Trap, July 7, 2014

NOAA Teacher at Sea

Kevin McMahon

Aboard the NOAA ship Pisces

July 5 – July 18, 2014

Mission: Southeast Fisheries- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 8, 2014

Weather Information from the Bridge

Air Temperature:           26.6 ° C

Relative Humidity:         70%

Wind Speed:                 10.96 knots

 

You will notice that my blogs will now have two sections. The first section called “Science and Technology Log’” is where I will discuss our mission, the data that we are collecting and any other science-related news from our trip.

In the second section, called “Personal Log”, I will share about how it feels to be a part of this expedition and what it is like to live and work on the Pisces. I will also add a glossary at the end of each blog entry for some of the science and ship terms that might be unfamiliar to you.

Science and Technology Log

I am one of many people helping chief scientist, Nate Bacheler, collect data about the abundance of reef fish. Nate is a research fishery biologist and he coordinates the Southeast Fishery Independent Survey.

This work is exactly what you think it is. We are catching fish to collect data on how abundant the reef fish are off the southeast coast of the United States.

They use a trap called a chevron trap, to collect the fish. It gets its name from its unique shape.

 

Chevron Trap

Chevron Trap

 

Each time that the scientists deploy the fish traps, they use the same procedure. For instance, they use the same size of traps, the same number of traps, the same type of bait, the same amount of bait in each trap, and the same “soak time” in the ocean.

Most days, the traps will be deployed three times. Once the traps reach the surface, we sort the fish by species, measure their mass (in kg), and measure their length (in mm).

On some of the more important species that humans use for food, the scientists will take samples for other scientists to examine in order to determine how healthy a particular fish species is.  For example, scientists remove the ear bones, called otoliths, to determine the age of the fish that was caught. Determining the age of the fish from the otoliths is like counting rings on a tree because the otoliths form growth marks each year.

So far, we have caught fish of all different shapes and sizes. On one of our first traps, we caught a red grouper that weighed 11.67 kilograms and was 881 mm long.

 

Kevin McMahon with Red Grouper

Kevin McMahon with Red Grouper

 

Today, we sent a trap that went down 102.97 meters. That was the deepest that the Southeast Fishery Independent Survey has ever deployed! We caught a scamp (which is a type of grouper), many red porgy, and a blackfin snapper. This was the first blackfin snapper that Nate has seen.

Personal Log

Wow, I have just had an amazing few days.

The night before we set off on our cruise, I was able to watch the fireworks from the bow of the boat. Even though it was July 5, the fireworks were delayed one day because of Hurricane Arthur.

The best view of the Morehead City,NC  fireworks show was from the deck of the Pisces.

The best view of the Morehead City,NC fireworks show was from the deck of the Pisces.

The morning came quickly, and, we headed out to sea.

 

This is my last view of land for a while!

This is my last view of land for a while!

Here are some of my initial thoughts:

I am in awe over the vastness of our ocean. I wish that I was a poet because then I could describe it a lot better. To me, it seems like we are a million of miles from the coast. Everywhere you look, you see the most beautiful blue color. I think the Crayola crayon company should create a new color in honor the ocean and call it “ocean blue” if they haven’t already created a crayon this color.

Check out the color of the ocean  while the deck crew wait to deploy the next trap.

Check out the color of the ocean while the deck crew wait to deploy the next trap.

 

But, even though all I see is water in every direction, we are only 60.5 miles south, southeast off the coast from the Beaufort Inlet.

I also am impressed with all the collaboration that is necessary to make the mission a success.  For instance, there are two different groups of scientists on the boat. One group spends the night mapping the ocean floor using multibeam sonar. They share this information with the fishery scientists early in the morning so that they can decide where to place the traps for the next day. The scientists also have to coordinate with the crew of the ship. The scientists are constantly communicating with the crew and the crew are constantly communicating with the scientists. This work could not happen with out the help of everyone on board.

I also like how everyone is conscious about safety. At school we have fire drills and tornado drills in case of emergencies. On the ship, we also have fire drills and “abandon ship” drills. Check out the picture of me in my “gumby” suit during our “abandon ship” drill. I had to go to my lifeboat location and then put on my survival suit to protect me from hypothermia in case I fell in the water in the unlikely event that we had to abandon ship. We also needed to bring a hat, a long-sleeve shirt, and long pants for the “abandon ship” drill. Why do you think we need that?

 

Kevin McMahon in his survival suit

Kevin McMahon in his survival suit

 

GLOSSARY OF TERMS 

Bow – the front end of the ship.

Bridge – the part of the ship that is the command center. The officers navigate the ship from this location. 

Hypothermia- a dangerous condition when your body temperature drops too much, usually as a result of being exposed to cold temperatures for too long.

 

Liz Harrington: Back into Action, August 23, 2013

NOAA Teacher At Sea
Liz Harrington
 Aboard NOAA Ship Oregon II
August 10 – 25, 2013

Mission : Shark/Red Snapper Bottom Longline
Geographical area of cruise: Western Atlantic Ocean and Gulf of Mexico
Date: Aug. 23, 2013

Weather: current conditions from the bridge:
Partly cloudy
Lat. 29.31 °N  Lon. 84.18 °W
Temp.  83 °F (28.8 °C)
Humidity 79%
Wind speed   10-15 kts
Barometer  30.03 in ( 1017.15mb)
Visibility  10 mi

Science and Technology Log:

The weather hasn’t been cooperating with us too well as we have run in to an occasional squall. It is amazing just how quickly that wind can pick up. Yesterday in the course of hauling in the line the wind increased from 18 to 34 knots (A knot is similar to mph, but it uses a nautical mile as a distance. One knot = 1.15 mph).

Red Grouper await processing. Occasionally the catch becomes the bait and we pull in half of a fish.

Red Grouper await processing. Occasionally the catch becomes the bait and we pull in half of a fish.

But the fish have been cooperating. The lull is over and the catch has increased. For the most part we are catching Red Grouper, an occasional Red Snapper and a variety of sharks. Click here to see the shark species found in the Gulf of Mexico. The majority of the sharks have been large enough to cradle. When we hear “hard hats that means it’s a big one” and our team jumps into action. Some of the sharks come up in the cradle quietly, but others come up thrashing about.  They are quickly held down by the fishermen of the deck crew which keeps the sharks quiet and safe. Then the science team steps in to collect the data and insert a tag.  As the cradle is lowered back down it is paused to obtain the shark’s weight. There is an electronic scale located at the top of the cradle. It is then lowered into the water and the shark swims away. I’m still amazed at how efficient the process is. The sharks are measured, tagged and weighed in a matter of just a few minutes.

There is a level of excitement when catching any of these fish and sharks, but the exceptional catch raises that level.  This occurred a couple of days ago. We had something on the line and it was big – really big. Even the crew was yelling about its size.  I knew it was something special. As it got closer to the boat it was identified as a huge Tiger Shark (Galeocerdo cuvier). The crane operator was bringing the cradle and the science team was getting ready when ……it was gone. It had bitten through the line. I guess there always has to be that big one that got away.

The huge Tiger Shark that got away.

The huge Tiger Shark that got away.

The level of excitement rose again when the next day we caught a Great Hammerhead shark (Sphyrna mokarran). Any of the larger Hammerheads or Tiger Sharks are being fitted with a satellite tag. This is attached to their dorsal fin (the large fin on their back).  Whenever the shark comes to the surface, the tag will transmit its location via radio waves to a satellite. The satellite will then send the signal back down to a receiving antennae and on to various labs. This is a type of remote sensing that is commonly used to track animals.  It gives scientists  information about animal’s behavior and migration patterns. These particular satellite tags are from the Louisiana Department of Wildlife and Fisheries.  It is a collaborative effort to get the tags on as many sharks as possible so they can study where they go after being caught.

Satellite tag on Great Hammerhead

Attaching a satellite tag to the dorsal fin of a Great Hammerhead Shark.

While working with the scientists I noticed that they use a combination of metric units, maritime units and imperial units. The fish are measured in millimeters, the electronic scale measured in pounds (normally it measures in  kilograms, but there was a technical issue that required changing to pounds), the handheld scale measure in kilograms, the water current is measured in knots, the depth for the CTD is measured in meters, the distance is measured in nautical miles and the survey areas are divided by fathoms ( 1 fathom = 6 feet), just to name a few.  It is helpful to be familiar with all of them and be able to convert from one type of unit to another.  It has made me think that we should be practicing our metric conversions even more than we currently do in class.  So, my incoming freshmen, get ready.

Personal Log :

The time is passing so quickly here on the ship. I think that is because there is always something happening here.  My daily routine consists of rising around 7:30 am, grabbing a light breakfast and then going to see what the night shift is doing. Often times they are preparing to haul in the line and I can’t resist watching that.  I have an early lunch since my shift will begin at noon, but we are usually prepared to go before that time. For the next twelve hours we will set the line, run the CTD, haul in the line and move on to the next site. Dinner is at 17:00 ( 5:00 pm) but if we are busy we can request a plate be set aside for us.  The distance between sites can be anywhere from less than a nautical mile (nm) to over 60 nm.  The ship can travel about 10 knots depending upon the wind and the current. So, there are times when we have a number of hours between sites. On these occasions I check my email, work on my blog, edit my pictures or just stand on the deck and look out over the water.  I always have my eyes open for animals, but it isn’t often that I see any.  Just water as far as the eye can see.  It gives me a sense of the vastness of the ocean. And I am seeing lots of beautiful cloud features and sunsets.

A beautiful sunset over the Gulf of Mexico.

A beautiful sunset over the Gulf of Mexico.

I had the special privilege of getting a tour by the Chief Marine Engineer, Sean Pfarrer, of the engine room. It is very  loud down there so we had to wear ear plugs.  Sean pointed to different things and I took  pictures. Then upstairs, in the relative quiet of the galley, he took the time to explain to me the role of each component. We had a really interesting discussion. Any mechanical questions that arose after that, Sean was the one I’d go to.  When I return, anyone interested in mechanics can listen to my presentation of the engine room – it’s more interesting than you may think.

The two main engines of the Oregon II

The two main engines of the Oregon II

wind picks up

As the wind picks up the day team scurries to clean up and put gear away because it is too rough to fish. Amy and Cliff clean and rinse the deck.

Sharpnose Shark

Weighing a Sharpnose Shark. photo courtesy of David Seay.

satellite tag

A closer view of the satellite tag attached to the dorsal fin.

measuring shark

Kristin calls out measurements to Amy as Daniel and Eric help hold the shark still.

otoliths

A pair of otoliths from a Red Grouper (Epinephelus morio).

yellowedge grouper

The day team only caught one Yellowedge Grouper (Hyporthodus flavolimbatus). Photo courtesy of David Seay.

sharpnose shark

Teamwork is the key to the quick processing of this Sharpnose Shark. Amy, Daniel and I were done in no time. Photo courtesy of David Seay.

Steven Frantz: Critters at Sea, August 5, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the coast of Florida
Date: August 5, 2012

Weather Data From the Bridge:
Air Temperature (degrees C): 29.0
Wind Speed (knots): 10.28
Wind Direction (degree): 138.68
Relative Humidity (percent): 076
Barometric Pressure (millibars): 1022.33
Water Depth (meters): 28.45
Salinity (PSU): 35.612

Location Data:
Latitude: 3323.40N
Longitude: 07808.17W

Critters at Sea

On my last blog I introduced you to five species of shark found so far. I think you can tell which one is my favorite, which is yours?

Even though our mission is to collect data on sharks, you never know what might come up on the end of a hook (or tangled in the line!). Data is still collected on just about everything else we catch. For today’s blog I have put together a photo journey on the so many other beautiful creatures we have caught.

Basket Starfish

Basket Starfish with pieces of soft red coral

Black Sea Bass

Black Sea Bass

Blue Line Tile Fish (Unfortunately damaged by a shark)

Blue Line Tile Fish (Unfortunately damaged by a shark)

Box Crab

Box Crab

Clearnose Skate

Clearnose Skate

Conger Eel

Conger Eel

Red Grouper

Red Grouper

Mermaid's Purse (egg case from a skate or ray)

Mermaid’s Purse (egg case from a skate or ray)

Candling the Mermaid's Purse reveals the tail and yolk of the animal

Candling the Mermaid’s Purse reveals the tail and yolk of the animal

Hammerjack

Amberjack

Scallop Shell

Scallop Shell

Scomberus japonicus (Can you come up with a common name?)

Scomberus japonicus (Can you come up with a common name?)

Sea Urchin

Sea Urchin

Spider Crab

Spider Crab

Starfish

Starfish

Red Snapper (10Kg)

Red Snapper (10Kg)

There you have it. I hope you enjoy the pictures of just some of the beauty and diversity in the Atlantic Ocean. Be sure to visit my next blog when we tie up loose ends!

Sunset

Sunset

Jennifer Goldner: Sharks 101, August 18, 2011

NOAA Teacher at Sea
Jennifer Goldner
Aboard NOAA Ship Oregon II
(NOAA Ship Tracker)
August 11 — August 24, 2011

Mission: Shark Longline Survey
Geographical Area: Southern Atlantic/Gulf of Mexico
Date: August 18, 2011

Weather Data from the Bridge
Latitude: 26.05 N
Longitude: 84.05 W
Wind Speed: 5.20 kts
Surface Water Temperature: 30.30 C
Air Temperature: 31.20 C
Relative Humidity: 67.00%

Science and Technology Log

Living in the landlocked state of Oklahoma, I am unfamiliar with sharks.  Thus today, with the help of the scientists, I’m going to give some basics of sharks that I have learned this week.  Class title:  Shark 101.  Welcome to class!

Let me start by telling you the various sharks and amount of each we have caught this week in the Gulf of Mexico. We have caught 7 nurse sharks, 2 bull sharks, 4 sandbar sharks, 73 Atlantic sharpnose sharks, 15 blacknose sharks,  5 blacktip sharks, 5 smooth dogfish, 2 silky sharks, and 4 tiger sharks.  For those of you that took the poll, as you can see the correct answer for the type of shark we have caught the most of is the Atlantic sharpnose shark.   The sharks ranged in size from about 2 kilograms (Atlantic sharpnose shark) to 100 kilograms (tiger shark). Keep in mind a kilogram is 2.24 pounds. 

In addition to the sharks caught we have also caught yellowedge, red, and snowy grouper, blueline tilefish, spinycheek scorpionfish, sea stars, and a barracuda.

From the last post you now know that we soak 100 hooks at a time. Throughout the survey we have had as little as no sharks on the line in one location and up to 25 on the line in other locations.

Me holding a spinycheek scorpion fish

Me holding a spinycheek scorpionfish

Blueline tile fish

Blueline tilefish

Drew, Scientist, holding a barracuda

Drew, Scientist, holding a barracuda

yellowedge grouper

Yellowedge grouper

When a shark is brought on board, it is measured for total length, as well as fork length (where the caudal fin separates into the upper and lower lobes).  The sex of the shark is also recorded.  A male shark has claspers, whereas a female shark does not.  The shark’s weight is recorded.  Then the shark is tagged. Lastly, the shark is injected with OTC (Oxytetracycline) which can then be used to validate the shark’s age.  It should be noted that for larger sharks these measurements are done in the cradle.  For perspective, I had Mike, fisherman, lay in the cradle to show the size of it. Also on this trip, some of the scientists tried out a new laser device.  It shoots a 10 cm beam on the shark.  This is then used as a guide to let them know the total length.  Thus, the shark can actually be measured in the water by using this technique.

Do you see the 2 laser dots on the shark?  This 10 cm increment helps scientists estimate the length of the shark.

Mike, Fisherman, in the shark cradle- It is approximately 8 feet long.

Mike, Fisherman, in the shark cradle — It is approximately 8 feet long.

Shark diagram

Shark diagram

Mark Grace, Chief Scientist, weighs a shark

Mark Grace, Chief Scientist, weighs a shark

Male shark on the left (with claspers), female shark on the right (no claspers)

Male shark on the left (with claspers), female shark on the right (no claspers)

Mark Grace, Chief Scientist, and Adam, Scientist, measure a nurse shark in the cradle

Mark Grace, Chief Scientist, and Adam, Scientist, measure a nurse shark in the cradle

Mark Grace, Chief Scientist, assists me tagging an Atlantic sharpnose shark

Mark Grace, Chief Scientist, assists me tagging an Atlantic sharpnose shark

Tim, Lead Fisherman, holds the bull shark while I tag it!

Tim, Lead Fisherman, holds the bull shark while I tag it!

Giving antibiotics to an Atlantic sharpnose shark

Injecting OTC into an Atlantic sharpnose shark

Here are some things I learned about each of the sharks we caught.

1.  Nurse shark:   The dorsal fins are equal size.  They suck their food in and crush it.  Nurse sharks are very feisty.  See the attached video of Tim, Lead Fisherman and Trey, Scientist, holding a nurse shark while measurements are being taken.

The skin of nurse sharks is rough to touch.  Incidentally, all  types of  sharks’ skin is covered in dermal denticles (modified scales) which is what gives them that rough sandpaper type feeling.  If you rub your hand across the shark one way it will feel smooth, but the opposite way will feel coarse.

Dermal denticles, courtesy of Google images

Dermal denticles, courtesy of Google images

Cliff, Fisherman, getting a nurse shark set to measure

Cliff, Fisherman, getting a nurse shark set to measure

2.  Bull shark– These are one of the most aggressive sharks.  They have a high tolerance for low salinity.

Bianca, Scientist, taking a blood sample from a bull shark

Bianca, Scientist, taking a blood sample from a bull shark

bull shark

Bull shark

sandbar shark

Sandbar shark

3. Sandbar shark– These sharks are the most sought after species in the shark industry due to the large dorsal and pectoral fins.  The fins have large ceratotrichia that are among the most favored in the shark fin market.

4.  Atlantic sharpnose shark– The main identifying characteristic of this shark is white spots.

Atlantic sharpnose shark

Atlantic sharpnose shark

5.  Blacknose shark– Like the name portrays, this shark has black on its nose.  These sharks are called “baby lemons” in commercial fish industry because they can have a yellow hue to them.

blacknose shark

Blacknose shark

Me holding a blacknose shark

Me holding a blacknose shark

6.  Blacktip shark- An interesting fact about this shark is that even though it is named “blacktip,” it does not have a black tip on the anal finThe spinner shark, however, does have a black tip on its anal fin.

Jeff and Cliff getting a blacktip shark on board

Jeff and Cliff getting a blacktip shark on board

Tagging a blacktip shark

Tagging a blacktip shark

7. Smooth dogfish– Their teeth are flat because their diet consists of crustaceans, such as crabs and shrimp.

Travis, Scientist, weighing a smooth dogfish

Travis, Scientist, weighing a smooth dogfish

8. Tiger shark– Their teeth work like a can opener.  They are known for their stripes.

A large tiger shark got tangled in our line.  Notice the 2-3 foot sharpnose shark. The tiger shark is about 5 times larger!

A large tiger shark got tangled in our line. Notice the 2-3 foot sharpnose shark at the left. The tiger shark is about 5 times larger!

Me with a tiger shark

Me with a tiger shark

Daniel, Scientist, holding a tiger shark

Daniel, Scientist, holding a tiger shark

9.  Silky shark- Their skin is very smooth like silk.

Daniel, Scientist, holding a silky shark

Daniel, Scientist, holding a silky shark

Another thing I got to see was shark pups because one of the scientists on board, Bianca Prohaska, is studying the reproductive physiology of sharks, skates, and rays.  According to Bianca, there are 3 general modes of reproduction:

1.  oviparous–  Lays egg cases with a yolk (not live birth).  This includes some sharks and all skates.

2.  aplacental viviparous – Develops internally with only the yolk.  This includes rays and some sharks.  Rays also have a milky substance in addition to the yolk.  Some sharks are also oophagous, such as the salmon shark which is when the female provides unfertilized eggs to her growing pups for extra nutrition.  Other sharks, such as the sand tiger, have interuterine cannibalism (the pups eat each other until only 1 is left).

3. placental viviparous– Develop internally initially with a small amount of yolk, then get a placental attachment.  This includes some sharks.

Yet another thing that scientists look at is the content of the shark’s stomach. They do this to study the diet of the sharks.

Skate egg case, Courtesy of Google images

Example of oviparous- Skate egg case, Courtesy of Google images

Placental viviparous

Example of placental viviparous

Dogfish embryo, courtesy of Google images

Example of aplacental viviparous- Dogfish embryo, courtesy of Google images

Contents from the stomach of a smooth dogfish (flounder and squid)

Contents from the stomach of a smooth dogfish (flounder and squid)

Personal Log

Anyone who knows me realizes that I appreciate good food when I eat it.  Okay, on NOAA Ship Oregon II, I have not found just good food, I have found GREAT cuisine!   I am quite sure I have gained a few pounds, courtesy of our wonderful chefs, Walter and Paul.  They have spoiled us all week with shrimp, steak, prime rib, grilled chicken, homemade cinnamon rolls, turkey, dressing, mashed potatoes, and gravy, and the list goes on!   Just talking about it makes me hungry!

Walter is a Chef de Cuisine.  I want to share with you two of the wonderful things, and there are many more, he has prepared for us this week.  The first is called ceviche.  On our shift we caught some grouper.  Walter used these fish to make this wonderful dish.

Grouper used to make ceviche

Grouper used to make ceviche

In addition to the grouper, the ingredients he used were lemon juice, vinegar, onions, jalapeno, kosher salt, and pepper.  He mixed all the ingredients together.  The citric acid cooks the raw fish.  It has to be fresh fish in order to make it.  Instead of lemon juice, apple juice or orange juice can be substituted.  All I know is that since I arrived on NOAA Ship Oregon II, I heard from the entire crew about how great Walter’s ceviche was and it did not disappoint!

Walter, Chef de Cuisine, with his award winning ceviche

Walter, Chef de Cuisine, with his award winning ceviche

Walter's maccaroons

Walter’s macaroons

Another thing Walter is famous for on board NOAA Ship Oregon II are his macaroons.  These are NOT like ANY macaroons you have ever tasted.  These truly melt in your mouth.  Amazingly, he only has 4 ingredients in them: egg whites, powdered sugar, almond paste, and coconut flakes.  They are divine!!

On another note, I would like to give a shout out to my 5th grade students in Jay Upper Elementary School!  (I actually have not had the chance to meet them yet because I am here as a NOAA Teacher at Sea.  I would like to thank my former student, Samantha Morrison, who is substituting for me.  She is doing an outstanding job!!)

Dolphin swimming alongside the ship

Dolphin swimming alongside the ship

Jay 5th Grade:  I cannot wait to meet you!  Thank you for your questions!  We will have lots of discussions when I return about life at sea.  Several of you asked if I have been seasick.  Fortunately, I have not.  Also, you asked if I got to scuba dive.  Only the dive crew can scuba dive.  We are not allowed to have a swim call (go swimming) either.  As you can see, there is plenty to do on board!  Also, you may have noticed that I tried to include some pictures of me tagging some sharks.  Lastly, this dolphin picture was requested by you, too.  Dolphins LOVE to play in the ship’s wake so we see them every day.

Enjoy the view!

I LOVE the scenery out here!  I thought I’d share some of it with you today.

I thought these clouds looked like dragons. What do they look like to you?

I thought these clouds looked like dragons. What do they look like to you?

The vertical development of clouds out here is amazing!

The vertical development of clouds out here is amazing!

Starboard side at sunset

Starboard side at sunset

Sunset from the stern

Sunset from the stern

Sunset in the Gulf of Mexico aboard NOAA Ship Oregon II

Sunset in the Gulf of Mexico aboard NOAA Ship Oregon II

Sunset, port side

Sunset, port side