Cassie Kautzer: TEAMWORK! SAFETY FIRST! August 27, 2014

NOAA Teacher at Sea
Cassie Kautzer
Aboard NOAA Ship Rainier
August 16 – September 5, 2014

Mission: Hydrographic Survey
Geographical Area of Survey: Enroute to Japanese Bay
Date: August 27, 2014

Temperature & Weather:  10.5° C (51° F), Cloudy, Rainy

Science & Technology Log

The past week/ week and a half, docked alongside the US Coast Guard pier in Kodiak – it was easy to see people settle into a routine.  This morning, however, we are preparing to leave the Coast Guard base – there is something in the air. Without it being spoken, it is clear both the NOAA Corps officers and the wage mariners are excited to get underway.  THIS is what they signed up to do!

The Rainier is 231 feet in length, with a breadth (width) of 42 feet. She cannot be run by a single person – it takes a team, a large team, to operate her safely.  Aboard the Rainier there is a crew of NOAA Corps Officers, including Commanding Officer CDR Van Den Ameele (CO), Executive Officer LCDR Holly Jablonski (XO), Field Operations Officer LT Russ Quintero (FOO) and a number of Junior Officers. There is also a full staff of Surveyors, Stewards, Deck Hands, Engineers, a Chief Electronics Tech (ET) and an Electronics Eng. Tech (EET).  All of the people on the Rainier’s nearly 50 member crew take on more than one job and help with whatever is asked of them.  It takes a team of people to drive the ship, a team to deploy launch boats, a team to process survey data, a team level tide gauges, a team to keep the boat in good maintenance, etc…

This is the Crew Board for all team members currently aboard the Rainier.  ENS Micki Ream updates the crew board each leg.

This is the Crew Board for all team members currently aboard the Rainier. ENS Micki Ream updates the crew board each leg.

This morning, in preparation for getting underway, all NOAA Corps officers met for a Nav (navigation) Briefing, to go over the Sail Plan, to make sure all necessary parties were prepared and informed.  NOAA Corps is one of seven uniformed services in the United States.  Its commissioned officers provide NOAA with “an important blend of operational, management, and technical skills that support the agency’s science and surveying programs at sea, in the air, and ashore.” (www.noaa.gov)  The Sail Plan, prepared today by Junior Officer, ENS Cali DeCastro, includes step-by-step guidelines for sailing to our next destination.  For each location or waypoint along the route, the sail plan gives a course heading (CSE), Latitude and Longitude, distance to the that point (in Nautical Miles), the speed (in knots) the ship will be cruising at to get to that point, and the time it will take to get there.   Today we are headed to Japanese Bay, and our cruise to get there is about 98 Nautical Miles and will take us almost 9 hours.

As seen from the fantail (back of the ship) - TEAMWORK!  SAFETY FIRST!

As seen from the fantail (back of the ship) – TEAMWORK! SAFETY FIRST!

It is important to note that nautical miles and knots at sea are different than linear miles and miles per hour on land.  Nautical miles are based on the circumference of the Earth, and are equal to one minute of latitude.  (http://oceanservice.noaa.gov/facts/nauticalmile_knot.html)  Think about the Earth and what it would look like if you sliced it in half right at the Equator.  Looking at one of the halves of the Earth, you could then see the equator as a full circle.  That circle can be divided into 360 degrees, and each degree into 60 minutes.  One minute of arc on the Earth is equivalent to one nautical mile.  Nautical miles are not only used at sea, but also in the air, as planes are following the arc of the Earth as they fly.  1 nautical mile = approximately 1.15 miles.  A knot is a measurement of speed, and one knot is equivalent to 1 nautical mile per hour.

It is also important to be aware of all the safety procedures on board.  There is a lot to keep track of – but the Rainier is well prepared for any kind of emergency situation.  Prior to departing the Coast Guard Base this morning, our emergency alarms and bells were tested.  Emergency bells and whistles are used during a Fire Emergency, an Abandon Ship situation, or a Man Overboard situation.

In any situation, every crew member has an emergency billet assignment.  This assignment tells you where to muster (meet), what to bring, and what to do – dependent on the situation.  For fire and emergency, abandon ship, and man overboard each person has a different assignment.  Within 24 hours of setting sail, the entire crew does safety drill practice (We did this in the early afternoon today!)  For fire and emergency both the general alarm bell and the ship’s whistle will continuously sound for ten seconds; for an abandon ship situation, seven short blasts on the ship’s whistle and general alarm bell will sound, followed by one prolonged blast; and for a man overboard there will be three prolonged blasts of the ship’s whistle and general alarm.

Safety is not only a concern in emergency situations – it is at the forefront of all operations aboard the ship.  Proper safety equipment is donned at necessary times, especially when working on deck or on the survey launches.  Personal Floatation Devices (PFD) are worn anytime equipment is being deployed or handled over the side along with safety belts and lines for those handling equipment over the side.   Every crew member is issued a hard hat and must be worn by everyone involved in recovery or deployment of boats and other equipment.   Closed toed shoes must be worn at all times by all crew and crew must be qualified to handle specific equipment. Everyone is also issued an Immersion Suit (survival suit), affectionately nicknamed a Gumby Suit!  The Immersion suit is a thermal dry suit that is meant to keep someone from getting hypothermia in an abandon ship situation in cold waters.

In my "Gumby" Immersion Suit during our Abandon Ship Drill.  This suit is a universal, meaning it can fit people of many sizes, including someone much much taller than me.  Do I look warm?  (Photo courtesy of Vessel Assistant Carl Stedman.)

In my “Gumby” Immersion Suit during our Abandon Ship Drill. This suit is a universal, meaning it can fit people of many sizes, including someone much much taller than me. Do I look warm? (Photo courtesy of Vessel Assistant Carl Stedman.)

Personal Log

Believe it or not – I have made a lot of connections from the Rainier to my school.  At the bottom of our daily POD’s (Plan Of the Day), the last reminder is, “Take care of yourself.  Take care of your shipmates.  Take care of the ship!”  The environment here has not only made me feel welcome, but safe as well.

I even felt safe when they let me man the helm (steer the ship).  Out of picture, Officer LTJG Adam Pfundt and Able Seaman Robert Steele guide me through my first adventure at the helm!

I even felt safe when they let me man the helm (steer the ship). Out of picture, Officer LTJG Adam Pfundt and Able Seaman Robert Steele guide me through my first adventure at the helm!

 

For my Students

Here is a wildlife update.  I saw Whales today!  I think there were Humpback Whale.  I saw quite a few blowing out near the ocean service.  I marked three in my graph because I only saw three jumping and playing in the water!

graph (2)

Some questions to reflect on…

  1. Why is teamwork important? What can you do to be a good team member?
  2. Can you make any connections between the mission and rules I am learning on the ship and the mission and rules you are learning at school?

Cassie Kautzer: It’s All About the Survey! August 24, 2014

NOAA Teacher at Sea
Cassie Kautzer
Aboard NOAA Ship Rainier
August 16 – September 5, 2014

Mission: Hydrographic Survey
Geographical Area of Survey: Woody Island Channel, Kodiak, Alaska
Date: August 24, 2014

Temperature & Weather:  12° C  (54° F), Cloudy with Drizzly Rain

Science & Technology Log

Survey work continues today (Yes- even on the weekend) in the Woody Island Channel.  While it is easy for me to see why this area is navigationally significant, it made me think about how one would identify which areas need to be surveyed.  The National Ocean Service compiles data and prioritizes areas in need of surveying.  Examples can be seen here for NOAA’s survey priorities in and around Alaska.

Using the areas of critical priority the Hydrographic Surveys Division (HSD) writes project instructions.  Project instructions include all necessary data and guidelines, including: project name, project number, assigned field unit (ship), assigned processing branch, planned acquisition time, purpose and location of survey, and necessary supporting documents.  On the project instructions, the Hydrographic Surveys Division also splits the assigned survey areas into sheets, or manageable sections.

This image shows the project on the North side of Kodiak Island.  The project area is split into sheets.  Sheet 6 is highlighted in pink.  (Photo Courtesy NOAA and Project Instruction packet.)

This image shows the project on the North side of Kodiak Island. The project area is split into sheets. Sheet 6 is highlighted in pink. (Photo Courtesy NOAA and Project Instruction packet.)

This is a completed sheet from the North Kodiak project.

This is a completed sheet from the North Kodiak project.

Each sheet is then assigned to a Hydrographic Survey Technician (HST), a Hydrographic Senior Survey Technician (HSST), or a NOAA Corps Officer.  Usually, one person will be the sheet manager and another will be the sheet assistant.  The sheet manager is often teaching and guiding the sheet assistant, to train them to be able to do this work on their own in the future.   The sheet manager is also responsible for dividing the sheets into polygons. Polygons for hydro surveys are used to divide the survey into smaller sections.  When planning polygons, it is important for the sheet manager to follow specific guidelines- shapes cannot just be randomly drawn on a sheet or chart.  The deeper the water, the larger the polygon can be; the more shoal the area, the smaller the polygon should be.  Polygons should be drawn with the ocean contours, and should be planned for launch boats to run them from offshore to nearshore.  This is a safety step in that launches should be working from deeper areas up to shoaler areas near the shore.  As the boats move back in forth collecting data, it is as if they are mowing the lawn.  The boats always try to slightly overlap the last strip so that no data is missed.  If a small spot or strip of data is missed, its like that little area of grass that didn’t get mowed.  It is called a Holiday in the data, because we have to make a special trip back to gather data on that spot.

Hydro Senior Survey Tech  Brandy Geiger analyzes data and creates polygons for the sheet she is managing for the Woody Island Canal Survey.

Hydro Senior Survey Tech Brandy Geiger analyzes data and creates polygons for the sheet she is managing for the Woody Island Channel Survey.

Senior Tech Barry Jackson, Assistant Tech Dan Negrete, Senior Tech Brandy Geiger, Chief Tech Jim Jacobson, and Senior Tech Starla Robinson look over Woody Island Channel plans to prepare for survey.

Senior Tech Barry Jackson, Assistant Tech Dan Negrete, Senior Tech Brandy Geiger, Chief Tech Jim Jacobson, and Senior Tech Starla Robinson look over Woody Island Channel plans to prepare for survey.

Once plans are completed, the Field Operations Officer (FOO) can plan how many survey launch boats will be deploying, who will be aboard each, and what polygons they will aim to cover each day.  Aboard each launch a skilled coxswain (driver) and a Hydrographer in Charge (HIC) are needed.  There is almost always a third person on board, as it is best/safest to deploy boats with one person at the bow (front), one at the stern (back) and one in the driver’s seat.  Once on the water, the HIC and Coxswain have to cooperate and communicate to make an efficient and safe plan for the day.

Rainier Survey Launch - RA3.

Rainier Survey Launch – RA3.

Hydrographer in Charge (HIC) Starla Robinson and Seaman Surveyor Dennis Brooks look over multibeam data together, as they safely plan next steps to survey in shoal, rocky waters.

Hydrographer in Charge (HIC) Starla Robinson and Seaman Surveyor Dennis Brooks look over multibeam data together, as they safely plan next steps to survey in shoal, rocky waters.

Personal Log

Every day is an adventure!  I so enjoy learning – and it’s a good thing – because just about everything here is new to me!

Jellyfish!

Jellyfish!

Enjoying this beautiful evening- oceanside!

Enjoying this beautiful evening- oceanside!

Assistant Survey Tech Thomas Burrow [from Rogers, Arkansas :) ] processes multibeam data brought back from the launches.

Assistant Survey Tech Thomas Burrow [from Rogers, Arkansas 🙂 ] processes multibeam data brought back from the launches.

A black sand beach on the Kodiak Coast Guard Base.

A black sand beach on the Kodiak Coast Guard Base.

Observing from the observation deck as the Rainer gets underway.

Observing from the Flying Bridge as the Rainer gets underway.

For My Students

The survey says…

*What observations did you make in trying to answer the trivia question about what I found in the water?  Did you decide you saw Harbor Seal, Otter, Octopus, Plants, or Aliens?

You were actually seeing a plant/plants called kelp.  Kelp is a large brown seaweed that often has a long, tough stalk.  Kelp can often be found growing in and around shoal, rocky areas in the ocean.  A lot of kelp in the area is a warning to boats and other vessels that shallow areas or rocky obstructions may be near by, and caution is needed.

A new question for you:

1) What is a polygon?

2) What experiences have you had with the ocean?

 

Cassie Kautzer: Survey Methods! August 22, 2014

NOAA Teacher at Sea
Cassie Kautzer
Aboard NOAA Ship Rainier
August 16 – September 5, 2014

Mission: Hydrographic Survey
Geographical Area of Survey: Woody Island Channel, Kodiak, Alaska
Date: August 22, 2014

Temperature & Weather:  11.5° C  (53° F), Cloudy, Rainy

Science & Technology Log

Today was ‘Day 4’ of surveying in the Woody Island Channel next to Kodiak, Alaska.  The Woody Island Channel is a very busy waterway leading ships, boats, and vessels of all sizes into Kodiak.  The problem at the moment is that much of the Woody Island Channel has shoals (shallow areas) and rocks.  This can be very dangerous, especially since the channel has not been surveyed or mapped since the 1940’s!  At that, in the 40s, surveyors were using Lead Lines to map the ocean floor.  Lead Lines were long ropes, marked with measurements, and with a weight at the end, that were thrown out to measure the depth of the water.  Lead Lines were considered very accurate for their time.  The problem with Lead Lines is that there was no way for surveyors to map the entire ocean floor–the lead line only gave a measurement of depth in one location (point) at a time.

Drawing of Lead Line Survey, formerly used to survey water depths one point at a time.

Drawing of Lead Line Survey, formerly used to survey water depths one point at a time.

Today, NOAA Hydrographers use Multibeam Echosounders.  A Multibeam Echosounder uses sonar to send out hundreds of sound pulses and measures how long it takes for those pulses to come back.  The multibeam echosounder is attached to the hull, or bottom, of the survey launches.  To find out how deep the ocean floor is in an area, depths are generated by measuring how much time it takes for each of hundreds of sound pulses to be sent out from the echosounder, through the water to the ocean floor and back again.  The sound pulses are sent out from the echosounder in an array almost like that of a flashlight.

Image shows swath of echosounding from the hull of the launch.  Different colora represent different depths. (Courtesy of NOAA)

Image shows swath of echosounding from the hull of the launch. Different colors represent different depths. (Courtesy of NOAA)

The deeper the water, the wider the swath (band of sound pulses).  The more shoal (shallow) the water, the smaller the swath.  Basically, a wider area can be surveyed when the water is deeper.  This means that surveying near shore, near rocky areas, and near harbors can be very time consuming.  These surveys do need to be completed, however, if they are in navigationally significant areas, like the Woody Island Channel that Rainier is surveying right now.

Image of hydrographic survey methods as they've changed over time.

Image of hydrographic survey methods as they’ve changed over time.

Technological advances over the years have made it more efficient and more accurate to survey the oceans.

Using multibeam sonar, the Rainier has surveyed thousands of linear nautical miles of ocean in the past couple of years.  In 2012 the Rainier was away from its home port in Newport, Oregon for 179 days–surveying 605 square nautical miles and 9,040 liner nautical miles.  In 2013 Rainier was away from its home port for 169 days – surveying 640 square nautical miles and 7,400 linear nautical miles.  It is NOAA’s goal to get 10,000 linear nautical miles surveyed each field season between all four of its Hydro ships: Rainier, Fairweather, Thomas Jefferson, and Ferdinand R. Hassler.  Several years, the Rainier has come close to this on its own!

Personal Log

I have spent the last four days out on the survey launches, gathering data, with a bunch of amazing people.  I have had the opportunity to drive a launch several times, with skilled Coxwain and Able Seaman Jeff Mays supervising me and helping me adjust to the differences in driving/steering a heavy boat versus driving my car at home.  Jeff always took back over when we got to a rocky area or area that was shoaling up quickly.  I am grateful to him, however, for the opportunity.  As with any skill that needs to be practiced, I got a little better each time I drove.  (Trying to steer in a straight line/path on the water when dealing with wind, water currents, waves, wakes from other boats, and the boats themselves is tough! At least for me.  Coxwains Dennis Brooks and Jeff Mays make it look easy, and always kept me feeling safe aboard the launch boats!)

Me, at the wheel of a survey launch.  (Photo courtesy of HST Jackson Barry)

Me, at the wheel of a survey launch. (Photo courtesy of HSST Barry Jackson )

For My Students

Below is an update on my Alaskan Wildlife sightings.  Remember, these are all animals I have been within 20 feet of (except for the bear).  Along with the wildlife in the graph below, I have also seen hundreds of birds from a distance and several romp of otter (large groups).

Wildlife I have seen thus far, graphed using Create A Graph (nces.ed.gov/nceskids/createagraph)

Wildlife I have seen thus far, graphed using Create A Graph (nces.ed.gov/nceskids/createagraph)

Can you help me identify the pictures below?  It can be quite difficult to identify creatures and “stuff” in the dark ocean waters.

IMG_0129IMG_0138

What is it?

What is it?

Cassie Kautzer: The Big Picture! August 19, 2014

NOAA Teacher at Sea
Cassie Kautzer
Aboard NOAA Ship Rainier
August 16 – September 5, 2014

Mission: Hydrographic Survey
Geographical Area of Survey: Woody Island Channel, Kodiak, Alaska
Date: August 19, 2014

Temperature:  14°C  (~57°F), Mostly Sunny

Science & Technology Log

Plans have changed quite a bit since I first found out I would be joining the Rainier on the next leg of their mission.  Instead of heading to Cold Bay as originally planned for today, several highly skilled crew members are preparing to join the Fairweather, the Rainier’s sister ship, and help get her back to Seattle, Washington, as she is done for the field season.  Those crew members helping out will return to Kodiak and the Rainier next week, in time to head out and survey around the other side of Kodiak Island.  Until their return, the Rainier is staying “alongside”, (or docked) at the Coast Guard Base in Kodiak (the largest Coast Guard Base in the United States).

NOAA Ship Rainier at the Coast Guard Base in Kodiak, AK.

NOAA Ship Rainier at the Coast Guard Base in Kodiak, AK.

While we are alongside, however, there is plenty of work to be done!  Some survey technicians are busy processing and analyzing data from past projects and surveys, while other techs are planning and preparing a survey around the Woody Island Channel, slightly Northeast of where we are currently docked.  The Woody Island Channel is an important one to get surveyed, as most of the maritime traffic (traffic on the water) coming into Kodiak, goes through the Woody Island Channel.

We will begin that survey work tomorrow, taking out several Launch boats (Survey Launches that are about 30 feet long, are carried aboard the Rainier and able to be deployed for survey missions) to begin gathering sounding data from the ocean floor  in that area.  While the survey technicians make their plans and preparations, I found myself thinking about the big picture: Why is NOAA here?  Why do we need scientists mapping the ocean floor?

To be honest, I had never heard of Hydrography before I applied for the NOAA Teacher as Sea program.  Hydrography is the science of mapping the ocean floor. I feel that I should have been aware of this, however, because Hydrography work affects all of our lives, even if we don’t live anywhere near the ocean (like those of us that live in Arkansas!  Here is how:

  • NOAA is responsible for producing nautical charts for all of our waters, including the territories. This is approximately 3.4 million square (nautical) miles of underwater territory and 95,000 linear (nautical) miles of shoreline.
  • Looking globally, only 5% of the oceans have been mapped with modern Sonar techniques. About half of the area that is charted, is from Lead Line Soundings (some dating back to the 1800’s).  And then there are places like the Arctic, that have never been mapped.
  • Today, commerce drives the use of our oceanic highways. More than ¾ of all goods and supplies in the United States are shipped and delivered across our oceans.  More than ½ our domestic oil comes by ship as well.  And, the grain that we export to countries around the world, goes by ship!

Without accurate survey information, these commercial ships, as well as any fishing or recreational vessels, cannot safely navigate (find their way) through different ocean routes.  Running into an unexpected feature (underwater landform, rocks, an old wreck (shipwreck), or other obstructions) can be very dangerous and costly to any ship.  Without updated nautical charts (maps), boats, ships, and vessels of any size face many unknown hazards as they try to navigate safely (often with goods we need) to their destination.  The Woody Island Channel that we will be surveying this week, is just three days in Kodiak, I have seen two freight ships, a Coast Guard Vessel near 300 feet long, and many small fishing vessels travel through this passage.

So the Big Picture?

THIS… is dangerous for people, and affects global commerce, import, exports, etc.   THIS is what hydrographers don’t want to happen:

This MV Miner ran ashore on these rocks on its way from Montreal to Turkey in 2011.  This is one thing NOAA hopes to prevent with updated nautical charts from hydrographic surveys.  (Courtesty of Canada's  TheStar.Com)

This MV Miner ran ashore on these rocks on its way from Montreal to Turkey in 2011. This is one thing NOAA hopes to prevent with updated nautical charts from hydrographic surveys. (Courtesty of Canada’s TheStar.Com)

Personal Log     

The first several days in Alaska have been amazing.  While we are alongside in Kodiak, I have been able to do some exploring after work each day! I have walked along the beach and hiked up into the mountains.

Me, atop Old Woman's Mountain, Kodiak Island, Alaska.  (Courtesy of ENS Micki Ream)

Me, atop Old Woman’s Mountain, Kodiak Island, Alaska. (Courtesy of ENS Micki Ream)

Alaska is beautiful – so majestic!  I have been fortunate enough to enjoy some beautiful weather, in the high 50s, and sunny most days!  This is rather unusual, they tell me- it is usually starting to cool down and get very rainy this time of year.  I told them I must have brought the warm weather with me from Arkansas!  I am going to try and enjoy it while it lasts, as I am sure I will not luck out to spend three weeks in the sunshine!

For My Students

Check out this graph of the wildlife I have seen thus far!  I am only tracking wildlife that I have seen UP CLOSE (within 20 feet – except for the bear – it would be dangerous to get that close to a bear)!

Wildlife I have seen thus far, graphed using Create A Graph (nces.ed.gov/nceskids/createagraph)

Wildlife I have seen thus far, graphed using Create A Graph (nces.ed.gov/nceskids/createagraph)

Oh kids, I am also wondering if you can tell me:

1. What is the difference between SQUARE miles and LINEAR miles?

2. What kind of tools do you think Hydrographers (or Hydrographic Surveyors) need to survey and map the ocean floor?

Cassie Kautzer: Alaska or Bust! August 11, 2014

NOAA Teacher at Sea
Cassie Kautzer
(Almost) Aboard NOAA Ship Rainier
August 16 – September 5, 2014

Mission: Hydrographic Survey
Geographical area of cruise: Cold Bay, Alaska
Date: August 11, 2014

Personal Log

Hi! My name is Cassie Kautzer and I am writing to you from my couch in Northwest Arkansas. I am hiding inside with the air conditioning today because my thermometer shows it being 95 degrees Fahrenheit, and that is too hot for this former Wisconsin girl! I am finishing packing and doing some final research before I head to Alaska on August 16! (I am also very much looking forward to cooler temperatures!)

Science girl power!

Alaska or Bust! This science girl is ready!

 

I am a fifth grade teacher at Monitor Elementary in Springdale, Arkansas! I have loved MONITOR and all my little Mallards since 2008 when I had the honor of joining the Monitor Team. Monitor Elementary houses a very diverse population of around 800 students each year. This school year, I will have the pleasure of teaching science to 112 of those students, and I cannot wait to share this amazing experience with them! Since Arkansas is not a coastal state, neither my students nor I have a lot of experience with marine ecology or tidal influences. In the Paleozoic Era, however, the entire state was covered by relatively shallow ocean, the Ouachita Basin.

I applied for this wonderful learning opportunity for several reasons:

• I am like my students, I learn by DOING! I can’t take all of my students with me (though I would if I could), so I will learn and gather new information, first hand, and take back pictures, videos, stories, lessons, and activities to share with them!
• I want my students to see the bigger picture–how is our life in Arkansas affected by oceans, tides, floods, erosion?
• I want my students to see the scientific opportunities, jobs, and careers that are available to them! I want to help inspire future scientists!
• I want my girls to see women working in scientific fields!
• And… I love adventure, and exploring and learning about our beautiful world! I will not fear the unknown; I will learn and grow as I figure it out!

Whitaker Point, Hawksbill Crag Trail, Arkansas

On top of the world! I made my first visit to Whitaker Point in Arkansas this summer!

My mission this summer, from August 16 – September 5, will be a Hydrographic Survey aboard the NOAA Ship Rainier. NOAA is the National Oceanic and Atmospheric Administration. NOAA’s mission is to understand the Earth’s environment in order to conserve and care for marine (ocean) resources. The Rainier is “one of the most modern and productive survey platforms of its type in the world” and uses multibeam sonar systems to “cover large survey areas in a field season. The ship’s hydrographers acquire and process massive amounts of data and create high-resolution, three-dimensional terrain models of the ocean floor.”  Those models can then be used to identify obstructions and shoals along the bottom of the ocean that are dangerous for navigating ships.  (http://www.omao.noaa.gov/publications/ra_flier.pdf) Hydro ships, like the Rainier, map the ocean floor to help with safe navigation of the seas. Knowing the depth and make-up of the ocean floor surrounding Alaska will benefit all the vessels and ships, large and small, passing through the Gulf of Alaska. Activities onboard can include echosounding, tide gauge installation, shoreline surveying, verification, and mapping, and data processing.

 

NOAA ship Rainier, named for Mt. Rainier - a volcanic cone in Washington state that rises 14,410 feet above sea level.  Photo courtesy of NOAA.

NOAA ship Rainier, named for Mt. Rainier – a volcanic cone in Washington state that rises 14,410 feet above sea level. Photo courtesy of NOAA.

So what does all of that mean?? I am about to find out! NOAA’s Teacher at Sea program aims to provide me, the teacher, with real-world research experience through work with world-renowned scientists, to allow unique insights into oceanic and atmospheric research crucial to our world. To this end, I truly believe the best way to learn is by getting ones hands dirty and trying to figure things out. So, on August 16 I will head to Alaska and meet up the Rainier in Kodiak, AK. On August 18 we will depart from Kodiak and head toward Cold Bay to begin our hydrographic survey mission.

Right now, I have more questions than answers: What will it be like without land beneath my feet for three whole weeks? What hours will I work? How am I going to learn all the crew members’ names? Will I get sea sick? What is echosounding? Will I get to go out on a launch? What marine life am I going to see? Will I ever want to leave Alaska? I guess I am about to find out!

For My Students

Can you find out…..?

1. How can I track the distance and speed I am traveling at while on the Rainier? (What units would I use to measure and share this information with you?)

2. When I am on the Rainier, weather information will be shared in degrees Celsius. How can I convert that information to degrees Farenheit so all of my non-science friends can understand?

“Leave a Reply” at the very bottom of this page! I am looking forward to answering (or trying to answer) your questions and sharing this epic learning adventure with you!

And of course, as Will.I.Am wrote and sang, and I kareoked to my students all year, “Reach for the Stars” and you’re sure to end up in the “Hall of Fame!”

Denise Harrington: Post Processing — Final Days, May 2, 2014

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Rainier
April 20 – May 3, 2014

Geographical Area of Cruise: North Kodiak Island

Date: May 2, 2014, 23:18

Location: 57 43.041’ N  127o 152.32.388’ W

Weather from the Bridge: 13.09C (dry bulb), Wind 1 knots @ 95o, clear, 0′ swell, balmy “crazy nice weather”  say Able Seaman Jeff Mays

Our current location and weather can also be seen at NOAA Shiptracker: http://shiptracker.noaa.gov/Home/Map

Science and Technology Log

Today’s blog is all about post processing, or “cleaning up” the data and being on night shift.  It is a balmy, sliver moon night at port here, in Kodiak.  We have come a long way in the last two weeks, during which survey crews have been working hard to finalize a Cold Bay report from last season before they devote themselves entirely to North Kodiak Island. I am in the plot room with Lieutenant Junior Grade Dan Smith who is on Bridge Duty from midnight until 4 a.m. with Anthony Wright, Able Seaman.

Able Seaman Anthony Wright consults with Ensign Steven Wall about conditions on the bridge and other things.

Able Seaman Anthony Wright consults with Ensign Steven Wall about conditions on the bridge and reports “all conditions normal.”

People work around the clock on Rainier whether it be bridge watch, processing data, or in the engine room.  One thing that makes the night shift a little easier is that there is no shortage of daylight hours in Alaska: within two months, there will be less than an hour of complete darkness at night.

After watching Commander Brennan guide us north, and seeing all the work it entails,  it is a great sight to see him enjoy a 10 p.m. sunset.

After watching Commander Brennan guide us north, with all the work it entails, it is a great sight to see him enjoy a 10 p.m. sunset with his wife (by phone).

In previous blogs, I described how the team plans a survey, collects and processes data.  In this blog, I will explain what we do with the data once it has been processed in the field. Tonight, Lieutenant Dan Smith is reviewing data collected in Sheet 5, of the Cold Bay region on the South Alaskan Peninsula.  In September, 2013, the team surveyed this large, shallow and therefore difficult to survey area.  The weather also made surveying difficult.  Despite the challenges, the team finished collecting data for Sheet 5 and are now processing all the data they collected.

Cold Bay Sheet Map

Cold Bay Sheet Map.  Recall the shallow areas are shaded light blue, and as you can see much of the north end of Sheet 5 is blue.

While I find editing to be one of the most challenging steps in the writing process, it is also the most rewarding.  Through the editing process, particularly if you have a team, work becomes polished, reliable and usable.  The Rainier crew reviews their work for accuracy as a team and while Sheet 5 belongs to Brandy Geiger, every crew member has played a part in making the Sheet 5 Final Report a reality, almost.  On the left screen, Lieutenant Smith is looking at one line of data.  Each color represents a boat, and each dot represents the data from one boat, and each dot represents a depth measurement  computed by the sonar. The right screen shows which areas of the map he has already reviewed in green and the areas he still needs to review in magenta.

Dan looks for noise after midnight.

Lieutenant Smith looks for noise after midnight.

While the plot room is calm today in Kodiak, there have been times when work conditions are challenging, at best. .

The crew continues on, despite the weather, so long as work conditions are safe.

Several days ago, Lieutenant Smith taught me the difference between a sonar ping that truly measured depth, and other dots that were not true representations of the ocean floor.  Once you get an eye for it, you kill the noise quickly.  In addition, when Lieutenant Smith finds a notable rise in the ocean floor he will “designate as a sounding.”  Soundings are those black numbers on a nautical chart that tell you how deep the water is.

This line shows three colors, meaning three boats sent pings down to the ocean floor in this area.

This line shows three colors, meaning three boats sent pings down to the ocean floor in this area.

If the line has dots that rise up in a natural way, the computer program recognizes that these pings didn’t go as far down as the others and makes a rise in the ocean floor indicated with the blue line.  It is the hydrographer’s job to review the computer processed data.  One of the differences between a map and a nautical chart is the high level of precision and review to ensure that a nautical chart is accurate.

This nautical chart went through many layers of analysis, processing and review before becoming published as a  nautical chart that can be used as a legal document.

This nautical chart of Cold Bay went through many layers of analysis, processing and review before becoming published as a nautical chart that can be used as a legal document. It may be updated after Brandy Geiger and NOAA’s hydrography work in the area is completed.

This is a topographical map of the same area, Cold Bay, that provides some information about landmarks but not necessarily the same legal standing or authority.

This is a topographical map of the same area, Cold Bay, that provides some information about landmarks but not necessarily the same legal standing or authority.

NOAA has several interesting online resources with more information about the differences between charts and maps: http://oceanservice.noaa.gov/facts/chart_map.html .

Now let’s kill some noise on this calm May evening.

In this image of a shipwreck on the ocean floor most sonar pings reached the ocean floor or the shipwreck and bounced soundings back to the survey boat.  Look carefully, however, and you see white dots, representing pings that did not make it down to the ocean floor.  Many things can cause these false soundings.  In this case, I predict that the pings bounced back off of a school of fish.  Here, the surveyor kills the “noise” or white pings by circling them with the mouse on his computer. It wouldn’t be natural for the ocean floor or other feature to float unconnected to the ocean floor, and thus, we know those dots are “noise” and not measurements of the ocean floor.

Lieutenant Smith estimates that at least half of his survey time is spent in the plot room planning or processing data.  The window of time the team has in the field to collect data is limited by weather and other conditions, so they must work fast.  Afterward, they spend long, but rewarding hours analyzing the data they have collected to ensure its accuracy and to provide synthesized information to put into a nautical chart that is easy to use and dependable. Lieutenant Smith believes that in many scientific careers, as much time or more time is spent planning, processing and analyzing data than is spent collecting data.

 

Personal Log

As we post process our data, I too, begin post processing this amazing adventure.  I am hesitant to leave: I have learned so much in these two short weeks, I want to stay and keep learning.  But at NOAA we all have many duties, and my collateral, wait–my primary duty is to my students and so, I must return to the classroom.  I will leave many fond memories and a camera, floating somewhere in Driver Bay, behind me.  I will take with me all that I have learned about the complexity of the ocean planet we live on and share my thirst to know more back to the classroom where we can continue our work. I will miss the places I’ve seen and the people I met but look forward to the road or channel of discovery that awaits me and my students.

I am also taking with me a NOAA flag, full of memories from the North Kodiak Island crew and my new friends.

I am also taking with me a NOAA souvenir flag, full of memories from the North Kodiak Island crew — my new friends.

Did You Know? The Sunflower Sea Star is the largest and fastest moving sea star travelling up to one meter per minute.

Here we taking a quick break during a tide gauge set up to look at sea stars and anemones.

Here we taking a quick break during a tide gauge set up to look at sea stars and anemones.

Below are a few photo favorites of my time at sea.

Denise Harrington: The Best Day Ever, April 30, 2014

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Rainier
April 20 – May 3, 2014

Mission: Hydrographic Survey

Geographical Area of Cruise: North Coast Kodiak Island

Date:  April 30, 2014, 11:44 a.m.

Location: 58 03.175’ N  127o 153.27.44’ W

Weather from the Bridge: 6.3C (dry bulb), Wind 5 knots @ 250o, clear, 1-2′ swell.

Our current location and weather can also be seen at NOAA Shiptracker: http://shiptracker.noaa.gov/Home/Map

Science and Technology Log

The last couple of days have been the best ever: beautiful weather, hard work, deep science. We acquired data along the continental shelf and found a cool sea floor canyon and then set benchmarks and tidal gauges.

In hydrography, we gather data in seven steps, by determining: our position on Earth, depth of water, sound speed, tides, attitude (what the boat is doing), imagery and features.  Step 1 is to determine where we are.

In this picture you can see a GOES satellite antenna and a GPS antenna that helps us determine our precise location.

In this picture you can see a GOES satellite antenna (square white one) that is used to transmit tide data ashore and a GPS antenna (the small white eggs shaped one) that provides the tide gauge with both position and UTC time. Photo by Barry Jackson

In this picture  Brandy Geiger, Senior Survey Technician, uses the GOES from various locations to determine the exact location of the tide gauge.

In this picture Brandy Geiger, Senior Survey Technician, uses GPS to record the positions of the benchmarks we have just set for the tide gauge. Photo by Barry Jackson

tide gauge install 023

Where we are happens to be the most beautiful place on earth. Photo by Barry Jackson

 

In Step 2, we determine the depth of the water below us.

Bathymetry is a cool word that means the study of how deep the water is.  Think “bath” water and metry “measure.”  When your mom tells you to get out of the tub, tell her to wait because you’re doing bathymetry.

As I explained in my first blog, we measure depth by sending out a swath of sound, or “pings,” and count how long it takes for the pings to return to the sonar, which sits beneath the ship or smaller boat.

Yesterday we used the multi-beam sonar to scan the sea floor.  Here is a screen shot of the data we collected.  It looks like a deep canyon, because it is!

Here is the image of the trench Starla Robinson, a Senior Survey Technician, and I discovered.  We decided it should be named Denla Canyon, after us.

Here is the image of the sea floor canyon Starla Robinson, a Senior Survey Technician, and I discovered. We decided it should be named Denla Canyon, after the two scientists who discovered it.

Here I am, gathering pings.

Here I am talking with "the bridge,"  the team responsible for navigating the ship while surveyors collect data.

While collecting data, I kept in contact with “the bridge,” the team responsible for navigating the ship, by radio to ensure the ship’s safety and maximum, quality data acquisition.     Photo by Starla Robinson

 

Step 3, we take into consideration the tide’s effect on the depth of the water.  Tides are one predictable influence on water depth. There are over 38 factors or “constituents” that influence the tides.  The gravitational pull of the sun and the moon at various times of the day, the tilt of the earth, the topography, and many other factors cause water to predictably bulge in different places on earth at different times. The Rainier crew works 24 hours a day and 7 days a week, so they must find a way to measure depth throughout the days and month, by taking into account the tide. Arthur Doodson, who was profoundly deaf, invented the Doodson Numbers a system taking into account the factors influencing tide in 1921. Flash forward to the 21st century, our Commanding Officer, Commander Rick Brennan worked with a team of NOAA scientists to develop a software program called TCARI, as an alternate method to do tide adjustments, taking into account 38 factors, even the moon’s wobble. Inventions abound at NOAA.

The Rainier crew worked for 14 hours today to set up a tide gauge station, an in depth study of how the tide affects our survey area.  On this map, there is a Red X for each tide gauge we will install.  This process only happens at the beginning of the season, and I feel fortunate to have been here–the work we did was….amazing.

 

Each Red X is approximately where a tide gauge will be installed.  The one we installed today in Diver's Bay is in the north west corner of the sheet map.

Each Red X is approximately where a tide gauge will be installed. The one we installed today in Driver Bay is in the north west corner of the sheet map.

You can see an animation here that shows the combined effect of two sine waves that produce a signal like our tide data.  Just imagine what it looks like when you factor in 38 different variables.

The earth goes around the sun in 24 hours and moon goes around the earth in a little more than 12 hours, much like these two gray sine waves. Interestingly, when you add two different waves, you get the wonky blue sine wave, with ups and downs. This combined effect of the sun and the moon (two dots) causes the ups and downs of the tide (blue wave). Graph taken from Russell, D. Acoustics and Vibration Animation, PSU, http://www.acs.psu.edu/drussell/demos/superposition/superposition.html.

 

Low tide is the best time to see sea stars, mussels and barnacles, but it is also a more hazardous time in the tidal cycle for mariners to travel. Therefore, navigational charts use the mean lower low water level, low tide, for the soundings, or depth measurements on a chart.  The black numbers seen on a nautical chart, or soundings, represent depth measurements relative to mean lower low tide. Driver Bay, the area on the chart where we installed the tide gauge today, is the crescent shaped bay at the northwest end of Raspberry Island.

This is a nautical chart used to help mariners navigate safely.

This is a nautical chart used to help mariners navigate safely.

Installing Tide Gauge Stations

Before gathering sonar data, ground and boat crews install a tide gauge to measure changes in water level and to determine the mean lower low water level datum. A tide gauge is a neat device that has air pumped into it, and uses air pressure, to determine how deep the water is.   The tide gauge uses a formula of (density of sea water)(gravity)(height) = pressure.  The gauge measures pressure, and we apply factors for gravity and sea water.  The only missing factor is height, which is what we learn as the gauge collects data.  This formula and nuances for particular locations is a fascinating topic for a blog or master’s thesis.  Scientists are looking for tidal fluctuations and other location specific variances. Then, by computer they determine the mean lower low tide depth, factoring in the tidal fluctuations.

There are permanent tide gauge stations all over the world.  The nearest permanent tide gauge station to our study area is in Kodiak and Seldovia.  These permanent gauges take into account many factors that affect tides over a 19 year period of time, not just the gravitational pull of the moon.

The tide gauge stays in place for at least 28 days (one full tidal cycle).  During the month, data of the tides is collected and can be compared to the other tide gauges we install.

Installing the Tide Gauges and Benchmarks

Excitement built as the crew prepared for the “Tide Party,” packing suitcases full of gear and readying the launches.  Installing Tide Gauges signals the beginning of the season and is one of the few times crew gets paid to go on shore.

 

Why Bench Mark?

There are three reasons I have figured out after many discussions with patient NOAA crew as to why we put in bench marks.

 

I installed this benchmark by having a hole drilled in bedrock and affixing the benchmark with concrete if anyone ever returns and needs to know their exact location.

I installed this benchmark in Driver Cove by having a hole drilled in bedrock and affixing the benchmark with concrete if anyone ever returns and needs to know their exact location. Photo by Barry Jackson

The first reason we install benchmarks is to provide a reference framework to ensure both our tide staff and the tide gauge orifice are stable and not moving relative to land.  The second reason is if we ever come back here again to gather or compare data to previous years, we will know the elevation of the tidal datum at this location relative to these benchmarks and can easily install a new tide gauge.  The third reason is that the earth and ocean floor changes constantly.  As scientists, we need to make sure the survey area is “geologically stable.”  We acquire several hours of GPS measurements on the primary benchmark to measure both its horizontal and vertical position relative to the earth’s  reference frame.  Should there ever be an earthquake here, we can come back afterwards and measure that benchmark again and see how much the position of the Earth’s crust has changed.  After the last big earthquake in Alaska, benchmarks were found to move in excess of a meter in some locations!

Teacher on Land Polishing Her Benchmark Photo by Brandy Geiger

Teacher on Land
Polishing Her Benchmark
Photo by Brandy Geiger

Installing the Benchmark

Today, our beach party broke into two groups.  We located stable places, at about 200 foot intervals along the coastline.  We drilled 5 holes on land and filled them with concrete.  A benchmark is a permanent marker you may have seen at landmarks such as a mountain peak or jetty that will remain in place for 100 years or more.  We stamped the benchmark by hand with a hammer and letter stamps with our station identification.   If we chose a good stable spot, the benchmark should remain in the same location as it is now.

Tide Gauge

As one group sets up benchmarks, another group installed the tide gauge.

 

Here, Chief Jim Jacobson, Lead Survey Technician, sets up a staff, or meter stick, I used to measure the change in water depth and others used for leveling.

Here, Chief Jim Jacobson, Lead Survey Technician, sets up a staff, or meter stick, I used to measure the change in water depth and others used for leveling.  Photo by Barry Jackson

To install the tide gauge, you must have at least three approved divers who install the sensor in deep water so that it is always covered by water.  Because there were only two crew on board trained to dive, Lieutenant Bart Buesseler, who is a dive master, was called in to assist the team.   The dive team secured a sensor below the water.  The sensor measures the water depth with an air pressure valve for at least 28 days.  During this time there is a pump on shore that keeps the tube to the orifice pressurized and a pressure sensor in the gauge that records the pressure. The pressure is equal to the number of feet of sea water vertically above the gauge’s orifice. An on-board data logger records this data and will transmit the data to shore through a satellite antenna.

Divers install the tide gauge, and spent most of the day in the cold Alaska waters.  Good thing they were wearing dive suits!  Photo by Barry Jackson

Divers install the tide gauge, and spent most of the day in the cold Alaska waters. Good thing they were wearing dive suits! Photo by Barry Jackson

Leveling Run

After the gauge and benchmarks are in place, a group does a leveling run to measure the benchmark’s height relative to the staff or meter stick.  One person reads the height difference between 5 different benchmarks and the gauge. Then they go back and measure the height difference a second time to “close” the deal.  They will do the same measurements again at the end of the survey in the fall to make sure the survey area has not changed geographically more than ½ a millimeter in height!  Putting the bubble in the middle of the circle and holding it steady, leveling, was a highlight of my day.

Observation

Finally, a person–me– watches the staff (big meter stick above the sensor) and takes measurements of the water level with their eyes every six minutes for three hours.  Meanwhile, the sensor, secured at the orifice to the ocean floor by divers, is also measuring the water level by pressure. The difference between these two numbers is used to determine how far below the water’s surface the orifice has been installed and to relate that distance to the benchmarks we have just leveled to.  If the numbers are consistent, then we know we have reliable measurements.  I won’t find out if they match until tomorrow, but hope they do.  If they don’t match, I’ll have to go back to Driver Bay and try again.

As we finished up the observations, we had a very exciting sunset exit from Raspberry Island.  I was sad to leave such a beautiful place, but glad to have the memories.

Last minute update: word just came back from my supervisor, Ensign J.C. Clark, that my tidal data matches the gauge’s tidal data, which he says is “proof of my awesomeness.” Anyone who can swim with a car battery in tow is pretty awesome in my book too.

The data Starla Robinson and I collected is represented by the red line and the data the gauge collected is represented by the blue line.  The exact measurements we collected are on the table.

The data Starla Robinson and I collected is represented by the red line and the data the gauge collected is represented by the blue line. The exact measurements we collected are on the table.

Spotlight on a Scientist

Lieutenant Bart Buesseler came to us straight from his family home in the Netherlands, and before that from his research vessel, Bay Hydro II.  The main reason our CO asked him to leave his crew in Chesapeake Bay, Maryland, and join us on the Rainier is because he is a dive master, capable of installing our sensors under water, and gifted at training junior officers.

 

Lieutenant Beusseler knows he needs to be particularly nice to  Floyd Pounds, an amazing cook from the south who cooks food from every corner of our ocean planet.

Lieutenant Beusseler knows he needs to be particularly nice to the amazing chefs aboard Rainier, including Floyd Pounds, who cooks food from every corner of our ocean planet with a hint of a southern accent.

During his few years of service, LTJG Buesseler adventured through the Panama Canal, along both coasts of North America, and has done everything from repairing gear to navigating the largest and smallest of NOAA vessels through very narrow straits.  He loves the variety: “if I get tired of one task, I rotate on to another to keep engaged and keep my mind sharp.”  He explains that on a ship, each person is trained to do most tasks.  For example, he says, “during our fast rescue boat training today, Cal led several rotations. But what if he is gone? Everyone needs to be ready to help in a rescue.”  Bart says at NOAA people educate each other, regardless of their assignments, “cultivating information” among themselves. Everyone is skilled at everything aboard Rainier.
In the end, he says that all the things the crew does are with an end goal of making a chart.   His motto? Do what you love to do and that is what he’s doing.

Personal Log

Today was a special day for me for many reasons.  It is majestic here: the stark Alaskan peninsula white against the changing color of the sky, Raspberry Island with its brown, golden, crimson and forest green vegetation, waterfalls and rocky outcroppings.  I’m seeing whales, Puffins, Harlequin Ducks and got up close with the biggest red fox ever.  Most importantly, I felt useful and simultaneously centered myself by doing tide observations, leveling and hiking.  I almost dove through the surf to make it “home” to the ship just in time for a hot shower. Lieutenant Buesseler’s reference to “cultivating information” rings very true to me.  In writing these blogs, there is virtually nothing I came up with independently.  All that I have written is a product of the patient instruction of Rainier crew, especially Commander Brennan. Each day I feel more like I am a member of the NOAA crew here in Alaska.