Linda Kurtz: Navigating Fair Winds and Following Seas – Fairweather Edition, August 13, 2019

NOAA Teacher at Sea

Linda Kurtz

Aboard NOAA Ship Fairweather

August 12-23, 2019


Mission: Cascadia Mapping Project

Geographic Area of Cruise: Northwest Pacific

Date: 8/13/2019

Weather Data from the Bridge

August 12th
Latitude & Longitude: 43 50.134N, 124◦49.472 W
Windspeed: 19mph
Geographic Area:  Northwest Pacific Ocean
Cruise Speed:  12 knots
Sea Temperature 20◦Celcius
Air Temperature 70◦Fahrenheit


Science and Technology Log

Yesterday, we embarked on this Hydrographic Survey Project, leaving Newport and heading out to the Pacific Ocean.  The 231-foot Fairweather is manned by 35 people and they are all essential to making this research run smoothly, keeping the ship on course, maintaining the ship, and feeding all of us!  Why is this Hydrographic survey mission important?  We’ll take a “deep dive” into hydrographic surveys in an upcoming blog, but there are several overlapping reasons why this research is important.  On previous hydrographic maps of the sea floor, there are “gaps” in data, not giving scientists and mariners a complete picture of this area.  The data is used for nautical safety, setting aside areas where there are likely abundant undersea wildlife as conservation areas, looking at the sea floor to determine if areas are good for wind turbine placement, and most importantly to the residents off the Pacific coast, locating fault lines –especially subduction zones, which can generate the largest earthquakes and cause dangerous tsunamis.  More about this and the science of Hydrography in a later post.  For now, we’ll focus on Navigation.


Science Word of the day:  NAVIGATION

The word NAVIGATION is a noun, defined: the process or activity of accurately ascertaining one’s position and planning and following a route.

synonyms: helmsmanship, steersmanship, seamanship, map-reading, chart-reading, wayfinding. “Cooper learned the skills of navigation.”


Time to leave port: 12:30 pm August 12th

As we were pulling away from the dock and headed out of Newport, someone was navigating this very large ship through narrow spaces, avoiding other boats, crab traps, and other hazards, and I began wondering… who is driving this ship and what tools do they have to help them navigate and keep us safe?  Navigation is the science of “finding your way to a specific destination.”  So, I made way to the bridge to find out. There was so much to learn, and the bridge crew was very patient taking me through who worked on the bridge as well as the various tools and technological resources they used to guide the Fairweather exactly where it needed to be.  First the humans who run the ship, then the tools!

On the bridge you have 3 key members in charge of navigation and steering the boat.  These are not to be confused with the CO or Commanding Officer who always oversees the ship but may always not always be present on the bridge (or deck). The CO is kind of like a principal in a school (if the school were floating and had to avoid other buildings and large mammals of course.) 

 1st in charge of the bridge watch is the OOD or Officer of the Deck.   The OOD is responsible for making all the safety decisions on the deck, giving commands on how to avoid other vessels and wildlife such as whales!  The OOD oversees the deck and reports regularly to the CO as needed. 

2nd in charge of the bridge watch is the JOOD or Junior Officer of the Deck.  The Junior Officer is responsible to the CO and OOD and uses both technology driven location data and plot mapping with paper to locate the position of the ship and use that location to plan the course for the ship.

The 3rd member of the bridge team is the helmsman.  The helmsman is the person who is actually driving the ship while following the commands of the OOD and JOOD.  Tools the helmsman uses include magnetic compasses on deck and electronic heading readouts to adjust course to stay on a particular heading (or direction of travel.)  The helmsman has another duty as lookout.  The lookout watches the ocean in front of the ship for land objects (we saw a lighthouse today), ocean mammals such as whales (we’ve seen 3 so far) or debris in the ocean so Fairweather can navigate around them.

Kevin Tennyson
Officer of the Deck (OOD): Kevin Tennyson
Calderon and Ostermyer
Junior Officer of the Deck (JOOD) Jeff Calderon and Helmsman Terry Ostermyer


There are so many devices on the bridge, I’ll share a few of them and their functions.  This blog post would take DAYS to read if we went over them all!

Let’s explore: what tools does the crew aboard Fairweather use for NAVIGATION?

Radar is a system that uses waves of energy to sense objects. These waves are in the form of high frequency radio waves which can find a faraway object and tell how fast it is moving. 

Radar is very useful because it can sense objects even at night and through thick clouds.   Radar helps the Fairweather navigate by detecting objects and vessels in the immediate area.  On Fairweather, you can see the objects that are near or could be in the determined path of travel.

RADAR
RADAR showing other watercraft and objects that could come into contact with Fairweather, for safe NAVIGATION.
Close up of RADAR
Close up of RADAR screen showing blue lines (indicative of speed) trailing other detected objects

While the picture above shows where the objects and vessels are, the “blue trail” shows how far they have traveled in 6 minutes.  A longer blue trail means a faster moving vessel and a shorter or no tail means little or no movement.  This tool also helps the Fairweather crew determine the path of travel of the other vessels so they can either navigate around or warn the other vessel of the Fairweather’s heading. 

Fairweather bridge crew also must follow what STEM students call the 4C’s: Communication, Collaboration, Critical Thinking, & Creativity.

To communicate while at sea, the crew must communicate via radio.

radio
Communication is essential for safe navigation.

Notice the abbreviations for the MF/HF or Medium Frequency/High Frequency, which has the longest range and you can communicate via voice or text. VHF or Very High Frequency are voice radios only.  Marine VHF radios work on a line-of-sight basis. That is, they can transmit and receive to and from another antenna as long as that antenna is above the horizon. How far is that? Standing on the bridge of a ship, the distance to the horizon is usually about 10-12 miles.  So, if there is a vessel within that 10-12 mile or so range, the Fairweather crew can communicate with them via the VHF radio.


Weather Tools:

It is crucial to gather weather data and analyze the information from various weather instruments onboard to keep the Fairweather safe. Sopecreek Elementary has a Weather Station too!  As you look through the photos below, see if you can find what weather instruments (and readings) Fairweather uses and compare and contrast with Sopecreek’s WEATHER STEM station!  What type of instruments do you think are the same, and which are different?

Weather Data
Data from the bridge on Day 2
Weather Data Time Series
Weather Data Time Series
weather data updates
Weather data updates – the ship can NAVIGATE to avoid dangerous weather


With all of tools discussed above, the Fairweather is approaching the Cascadia Margin that needs to be surveyed using science of Hydrography and Bathymetry (more about those concepts coming soon!)

The area to be survey has already been identified, now the ship must approach the area (the red polygon in the middle of the screenshot below).  Now the crew must plot a course to cover the area in horizontal “swaths” to aid in accurate mapping.  The bridge and the hydrographic survey team collaborate and communicate about speed, distance between horizontal lines, and timing of turns. 

See the initial area to mapped and the progress made in the first two days in the pictures below!

Cascadia Margin chart
Cascadia Margin: 1st Region the Fairweather is mapping
mapping progress
Progress mapping – navigation the survey area – colored lines indicate where the ship has been


Personal Log

It’s been a great start to this Teacher at Sea adventure!  There is so much to take in and share with my students (I miss you so much!) and my fellow teachers from across the country!  Today, we went from sunny skies and calm 2-4 foot seas, to foggy conditions and 6-8 foot seas!  The ship is definitely moving today!  I keep thinking about STEM activities to secure items and then testing against the varying degree of pitch on the ship!  For safety, the entire crew is tying up any loose items and securing all things on board, we’ll have to think of STEM challenges to simulate this for sure! 


Did You Know?

When steering a ship, an unwritten rule is you don’t want the speed of the ship (in KNOTS) and the degree of the turn of the rudder (in DEGREES) to exceed the number 30! 


Question of the Day: 

How many possible combinations of KNOTS and DEGREES are there? Can you draw or plot out what that would look like?


New Terms/Phrases:

Thermosalinigraph:  Measures the temperature and salinity of the water.

Challenge yourself: see if you can learn and apply the terms below and add new terms from this blog or from your research to the list!

ECDIS:  Electronic chart display information system

Longitude and Latitude

True North

Magnetic North


Animals Seen Today:

Dall’s Porpoise

Humpback Whale

Curious about STEM Careers with NOAA?  All the officers on deck had a background in some type of science but none were the same.  Everyone on board comes from different backgrounds but are united by the OJT (On the Job Training) and the common purpose of the hydrographic survey mission.   Learn more here:  https://www.noaa.gov/education

Ashley Cosme: Special Situation Lights, September 11, 2018

NOAA Teacher at Sea

Ashley Cosme

Aboard NOAA Ship Oregon II

August 31 – September 14, 2018

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 11, 2018

Weather data from the Bridge:

  • Latitude: 28 40.5N
  • Longitude: 91 08.5W
  • Wind speed: 22 Knots
  • Wind direction: 080 (East)
  • Sky cover: Scattered
  • Visibility: 10 miles
  • Barometric pressure: 1014.5 atm
  • Sea wave height: 3-4 feet
  • Sea Water Temp: 29.9°C
  • Dry Bulb: 25.9°C
  • Wet Blub: 24.6°C

 

Science and Technology:

When NOAA Corps officers go through training they learn a poem to help them remember how to identify Special Situation Lights on other vessels.

Red over green, sailing machine.

Red over white, fishing boat in sight.

Green over white, trawling at night.

White over red, pilot ahead.

Red over red, captain is dead.

mast of the Oregon II
The mast of the Oregon II is identified by the arrow.

When driving a vessel like the Oregon II it is always important to have the ability to analyze the radar, locate other vessels in the water, and determine their current situation by reading their mast lights.  Line 1 of the poem describes a vessel that is currently sailing by use of wind without the use of an engine, line 2 describes a boat engaged in fishing operations, line 3 indicates that the vessel is currently trawling a net behind the boat, line 4 indicates that the vessel is a pilot boat (a boat containing a pilot, who helps guide larger tanker and cargo ships into harbors), and line 5 of the poem is used for a situation when the vessel is not operating properly and other vessels should steer clear.

 

 

 

Personal Log:

blacktip shark
NOAA Scientist, Adam, Pollack, and I measuring and tagging a blacktip shark (Carcharhinus limbatus)

There are currently three named storms in the Atlantic, including a category 4 hurricane (Florence) that is headed towards the Carolinas.  I have never experienced a bad storm while out on the water.  The waves the last 24 hours have ranged from 3-5 feet, with an occasional 8 foot wave.  We have changed our port call location and will now be going back to Pascagoula, Mississippi instead of Galveston, Texas.  There was also no internet for part of the day so my team and I sat in the dry lab and told ghost stories.  I was also introduced to the “dinosaur game” in Google Chrome, which is sort of like a low budget Mario.  Apparently it is the dinosaur’s birthday so he is wearing a birthday hat.

I am still making the most of every minute that I am out here.  Our last haulback was very active with many large blacktip sharks.  It is a workout trying to handle the sharks on deck, while collecting all required data, and getting them back in the water as fast as possible.  I am loving every second!

 

 

Did you know:

Sharks possess dermal denticles (skin teeth) that makes their skin feel rough when running your hand tail to nose.  Shark skin used to be used as sandpaper before it was commercially manufactured.  It can also give you shark burn, which is sort of like a rug burn, if the shark brushes up against you.

 

Animals Seen:

Atlantic Sharpnose Shark (Rhizoprionodon terraenovae)

Blacknose Shark (Carcharhinus acronotus)

Blacktip Shark (Carcharhinus limbatus)

Flying Fish (Exocoetus peruvianus)

Gafftopsail Catfish (Bagre marinus)

Pantropical Spotted Dolphin (Stenella attenuate)

Red Snapper (Lutjanus campechanus)

Spinner Shark (Carcharhinus brevipinna)

Tiger Shark (Galeocerdo cuvier)

Thomas Savage: Which radars are used on the bridge? August 6, 2018

NOAA Teacher at Sea

Tom Savage

NOAA Ship Fairweather

August 6 – 23, 2018

 

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, northwest Alaska

Date: August 6, 2018

Weather data from the Bridge

Wind speed 14 knots
Visibility: 5 nautical  miles
Barometer: 1007.5 mB
Temp:  8.5 C     47 F
Cloud Height: 10,000 ft
Type: Alto Stratus
Sea Height 2 feet

Science and Technology 

The focus of the NOAA ship Fairweather is to generate and update existing maps of the ocean floor called hydrography. The ship is outfitted with state of the art mapping equipment which uses single and multibeam sonar in capturing the physical topography of the ocean floor (more on this in a future blog).  The region we are mapping is located off the coast of Point Hope in north west Alaska.  It takes an amazing amount of technology especially navigational tools located in the bridge to navigate the ship within this challenging region called the Chukchi Sea.  There are two types of radar on the bridge used to navigate the ship using different radio frequencies, the X band and S band.

The X Band radar generates radio waves with 3 cm and 9 GHz, respectively. The radar is positioned high above the bridge and has the ability to pick up ships up to 40 miles in the distance. During the best weather conditions, officers on the bridge can see the horizon at a distance of 6 miles with the highest powered binoculars and make out other vessels out to about 14 miles. This radar extends the visual range of officers especially identifying ships that are not visible through the use of binoculars. This radar is useful for detecting smaller objects such as small boats in the vicinity of the ship, due to its ability to better resolve smaller objects.

The S Band radar generates radio waves with 9cm and 3 GHz … for context, a microwave oven operates at around 2.5 GHz; a car radio receives at 0.1 GHz (though most people think in MHz… e.g. “You’re listening to The Mountain on 105.9 (MHz)”… the lower frequency of the radio means it’s even less affected by rain and can travel even farther – both good things if you’re running a radio station). This type sound wave have longer distances between each crest. As a result, the sound wave can better track larger objects than the X band and objects at greater distances. In addition, this radar can be used to detect ships through walls of rain. This radar is used by weather forecasters to track types of precipitation, direction and severity and to identify possible rotations that could develop tornado. Another unique property of this radar is its ability to track precipitation on the other side of mountains. In this region of Point Hope, the Brooks Range is visible to the east and knowing the precipitation and direction is important for planning ship operations.

 

X Band Radar
Ensign Tennyson operating the X Band Radar

Another vital role of these radars is to track current position of the ship when anchored. By using four known coordinates of physical objects on land, in our case, the Brooks Range, located to our east, and known peninsulas are targeted. Officers will use the alidade (and compass rose) located outside the bridge to get their bearings and confirm the ships geographic coordinates. This information reveals whether the ship’s anchor is being dragged.

Alidade
Ensign Tennyson operating an alidade

 

Geography – Point Hope is located just above the Arctic Circle; why is NOAA mapping this region?  The sea ice in this region of Point Hope continues to disappear as a reflection of increased global temperatures. This has generated an opportunity for merchant ships to sail north of Canada instead of using the Panama Canal. The mapping of the ocean floor will provide mariners accurate maps resulting in safer passage.

Personal Log

My journey began at 6 am as my plane from the Asheville airport departed. Traveling over Alaska viewing the Rockies and glaciers from the window has been inspiring and reveals how big Alaska really is.  As soon as I landed in Nome, Alaska, around 1 am eastern time, I was reminded again how important it is to be flexible when participating in any NOAA research. After meeting up with the junior officer at the airport, he informed me that the ship is leaving in two hours due to an approaching storm. Scientists conducting research on board a ship at sea are always at the mercy of mother nature. Everyone on board NOAA’s hydrographic ship Fairweather has been exceptionally welcoming and nice which made my transition to life at sea smooth. The tradition of excellent food on board NOAA ships continues!!

Flying out of Asheville
Flying out of Asheville

 

I am looking forward to learning as much as I can during this three week adventure and bring back inspiring lessons and labs to the classroom. It is always my hope and vision to provide real world science in action to excite and encourage our students to explore and possible explore careers in science.

Until next time, happy sailing !

~ Tom

 

 

 

 

Brandy Hill: How to Mow the Lawn and Needle Gunnin’, July 3, 2018

NOAA Teacher at Sea

Brandy Hill

Aboard NOAA Ship Thomas Jefferson

June 25, 2018 – July 6, 2018

 

Mission: Hydrographic Survey- Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: July 3, 2018

 

Weather Data from the Bridge

Latitude: 29° 17.5’ N

Longitude: 094° 27.7’ W

Visibility: 10+ NM

Sky Condition: 3/8

Wind: 10 kts

Temperature:

Sea Water: 29.5° C

Air: 31.1° C

 

Science and Technology Log

Radar
The ship is equipped with AIS or automatic identification system. AIS is the primary method of collision avoidance for water transport. It provides unique identification, position, course, and speed of ships equipped with AIS. All vessels with 300 or more gross tonnage and all passenger ships must be equipped with AIS.

In the beginning, it took me a little while to realize that we were passing by some of the same oil platforms and seeing the same ships on the radar screen (above). For example, today the Thomas Jefferson covered many nautical miles within the same 2.5 NM area. This is characteristic of a hydrographic survey. A sheet (area to be surveyed) is split into sections and a plan is devised for the ship to cover (using sonar) the area in a “mow the lawn” approach. In the photo below, you can see the blue lines clustered together. These are the main scheme lines and provide the majority of data. The lines going perpendicular in a loose “zig-zag” to the main scheme lines are called crosslines. While main scheme provides the majority of sonar data, crosslines provide validation. For every 100 nautical miles of main scheme, 4 NM of cross lines (4%) must be completed.

CoastalExplorer
You can see the main scheme and cross lines in this image using the Coastal Explorer program.

You can also see the main scheme and crossline(s) in the Hypack viewer below. Hypack is a software program controlled from the Plot (Survey) Room and is duplicated on a screen on the Bridge (steering deck). This allows Bridge watch standers to see track lines and the desired line azimuth (direction). In this case the line azimuth is around 314°. Additionally, the bottom portion showing -0.0 means that the ship is precisely on track (no cross-track errors). Typically, during a survey from the main ship, there is room for up to 10 meters of error in either direction and the sonar data coverage will still be complete. Once the course is set, the ship can be driven in autopilot and manually steered when making a turn. The high-tech equipment allows the rudder to correct and maintain the desired course and minimize cross-track error. Still, at least two people are always on the bridge: an officer who makes the steering orders and maintains watch and a helmsman who steers the ship. I was fortunate to be able to make two cross line turns after a ship steering lesson from AB (able seaman) Tom Bascom who has been on ships his whole life.

HyPack
Hypack software is one point of communication between Survey and the Bridge Watch.

Communication between Survey and the Bridge Watch is critical. Every time the ship makes a turn, the side scan towfish and MVP must be taken in. The Bridge also notifies Survey if there are any hazards or reasons to pull in survey equipment.

At night, the ship is put into “night mode” and all lights are switched to red. The windows are covered with a protective tinted sheet and all computer screens switch over. The CO leaves a journal with posted Night Orders. These include important summary points from the day and things to look out for at night It also includes a reminder to complete hourly security rounds since most shipmates are asleep. A “Rules of the Road” section is included which serves as a daily quiz for officers. My favorite part of CO’s Night Orders are the riddles, but they are quite difficult and easy to over think. So far, I have guessed one out of five correctly.

Bridge Watch Night Vision
ENS Sydney Catoire explains how important it is to preserve your night vision while maintaining watch, thus the dimming and/or use of red lighting. Her favorite watch time is from 0800-1200.

CO Night Orders from June 28, 2018
CO Night Orders from June 28, 2018

With a lot of my time spent looking at computer screens in survey, I was happy to spend an afternoon outside with the Deck Crew. Their job is highly diverse. Rob Bayliss, boatswain group leader, explained that the crew is responsible for maintaining the deck and ship. This includes an ongoing battle with rust, priming, painting, and refinishing surfaces. Rob wiped his hand along the rail and showed the massive amount of salt crystals collected throughout the day. The crew has a PR event and will give public tours the day we arrive in port, so the ship is in full preparation!

Needle Gun
I was introduced to the needle gun- a high powered tool used for pounding paint and rust off surfaces to prepare them for the wire wheel and paint primer. CO thanked me for my contribution at maintaining the preservation of the TJ.

Revarnishing Deck Work
One of the Thomas Jefferson wooden plaques sanded and receiving a fresh coat of varnish.

I also spoke with Chief Boatswain, Bernard Pooser. He (along with many crew members) have extensive experience in the navy. Pooser enjoys life on the ship but says, “It’s not for everyone; you have to make it work for you.” He claims that the trick is to find a work and recreation balance while on the ship. He gave me some examples like being sure to take breaks and have fun. Pooser even pulled out a corn hole set that we may use one of these evenings.

Chief Boatswain Bernard Pooser
Chief Boatswain Bernard Pooser

 

Peaks

+ It’s been fun being on the bridge at night because all of the ships and platforms light up.

+ I was given my own stateroom which was nicely furnished by its usual occupant. She has even installed a hammock chair!

+I hadn’t realized how responsive the ship would be when steering. At 208 feet, I thought it would be a bit more delayed. The maximum turn angle is 35 degrees and we have usually been making turns around between 5-15 degrees.

+We saw two sea turtles and dolphins while taking bottom samples! (See future post.)

 

Heather O’Connell: Voyage through the Inside Passage, June 9, 2018

NOAA Teacher at Sea

Heather O’Connell

NOAA Ship Rainier

June 7 – 21, 2018

Mission: Hydrographic Survey

Geographic Area of Cruise: Seattle, Washington to Southeast, Alaska

Date: 6/9/18

Weather Data from the Bridge:

Latitude and Longitude : 49°49.7’ N, 124 °56.8’ W, Sky Condition: Overcast , Visibility: 10+ nautical miles, Wind Speed: 5 knots, Air Temperature: 12.2°C

Science and Technology Log

Today while in transit through the Inside Passage, I learned to mark the position of the vessel from the pilot house, or Bridge of the ship, using three different methods thanks to Junior Officer Airlie Pickett. Utilizing this triangulation of data ensures accuracy in the placement of the ship on the two dimensional chart located on the port side of the bridge. This process must be completed every fifteen minutes when the ship is in motion close to small landmasses or every thirty minutes when further from land.

The first method involves choosing three different landmarks and recording the angular measurement to the body using alidades. Alidades are located on the port and starboard sides directly outside of the Bridge. When looking at your landmark, it is important to choose the easternmost or westernmost side of the body with a more prominent feature. When viewing the landmass through the alidade, there will be a bearing of the object in relation to the bridge. Once you have the measurements, use the north lines on the map as the zero degree of the protractor and mark a line with the proper angular measurement from the landmass. Repeat this process for the other two locations. Then, draw a circle within the triangle formed from the three intersecting lines along with the time to mark the placement of the ship.

Alidade on the port side of ship
Alidade on the port side of ship

Another way to mark the placement of the vessel visually is to look at the radar for three known landmarks. Record the distance to each landmark. One nautical mile equals one minute of latitude. Longitude cannot be used for distance since these values change as you approach the poles of the Earth. Use a compass to mark the appropriate distance from the scale on the perimeter of the map. Then, draw an arc with the compass from the landmass. Repeat this process for both of the other landmarks. The three arcs intersect at the current location of the vessel and should be marked with a circle and the time.

Protractor and compass
Protractor and compass used to mark the course of the ship on the chart.

The two visual methods for marking the placement of the vessel are used in conjunction with an electronic fix. The digital latitude and longitude recording  from the G.P.S, or Global Positioning System, provides the third check. This data is recorded and then charted using the latitude and longitude marks on the perimeter of the chart.

Another responsibility of the navigator is to mark on the nautical chart the approximate location of the ship moving forward. This is called D.R, or dead reckon, and it shows where you would be if you were to continue on coarse at the current speed for up to two hours.

Personal Log

As we approached the Inside Passage, a feeling of peace and serenity came over me as I viewed snow capped mountains beyond islands with endless evergreen trees. The feelings of the navigators may be different since this is a treacherous journey to traverse, although it is preferred to the open sea. The Inside Passage proves to be a great learning opportunity for new junior officers without much navigation experience. However, due to the weather issues and narrow passages, the Commanding Officer, Senior Watch Officer and Officer of the Deck have extended experience navigating the Inside Passage.

The strong currents at Seymour Narrows in British Columbia can make this voyage dangerous. This was taken into consideration and we crossed them during slack tide, the time between high and low tide, with a current of only about two knots. Tides can get as high as 15 knots during maximum ebb and flood tides. The visible circular tides, or eddies, are created from the current coming off of Vancouver Island being forced into a narrow channel. As Senior Survey Technician Jackson shared, the Seymour Narrows once had Ripple Rock, a two peak mountain, that caused several shipwrecks and was home to the largest non-nuclear explosion in North America in 1958.

Inside Passage by Seymour Narrows
Inside Passage by Seymour Narrows

As we entered the Inside Passage, islands covered in Western red cedar, Sitka spruce and Western hemlock provided the beautiful green amongst the spectacular ocean and sky blue. These colors paint the canvas indicative of the Pacific Northwest that make my soul feel at home. The cloud covered sky could be seen in every direction. We saw moon jellyfish floating by from the flying bridge and later a group of porpoises jumping up out of the water. The watch from the deck crew would spot lighthouses and fishing boats with binoculars well before anyone with a naked eye. I observed the approaching sunset from the bow of the ship and felt gratitude for the day.

Approaching sunset in Inner Passage
Inner Passage Sunset

Did You Know?

There are two different types of radar on the Bridge. S Band radar sends out pulses between 4 and 8 centimeters at 2-4 GHz and can go over longer distances. This is helpful to determine what is happening far from the boat. The X Band radar sends out smaller pulses of 2.5 -4 cm at 8-12 GHertz and can create a clear image of what is occurring close to the boat. Both radar systems provide useful information and must be used in conjunction with one another to have an understanding of what is happening near and far from the ship.

Source – https://www.everythingweather.com/weather-radar/bands.shtml

Louise Todd, From the Bridge, September 26, 2013

NOAA Teacher at Sea
Louise Todd
Aboard NOAA Ship Oregon II
September 13 – 29, 2013

Mission: Shark and Red Snapper Bottom Longline Survey
Geographical Area of Cruise: Gulf of Mexico
Date: September 26, 2013

Weather Data from the Bridge:
Barometric Pressure: 1012.23mb
Sea Temperature: 28.4˚C
Air Temperature: 29.6˚C
Wind speed: 6.43knots

Science and Technology Log:

This morning I went up to the bridge to learn about how the NOAA Corps Officers and the Captain navigate and maneuver the Oregon II.  Ensign Rachel Pryor, my roommate, and Captain Dave Nelson gave me a great tour of the bridge!

The Oregon II is 172 feet long and has a maximum speed of 11 knots.  It was built in 1967.  It has two engines although usually only one engine is used.  The second engine is used when transiting in and out of channels or to give the ship more power when in fairways, the areas of high traffic in the Gulf.  The Oregon II has a draft of 15 feet which means the hull extends 15 feet underneath the water line.  My stateroom is below the water line!  Typically the ship will not go into water shallower than 30 feet.

The bridge has a large number of monitors that provide a range of information to assist with navigation.  There are two radar screens, one typically set to a range of 12 miles and one typically set to a range of 8 miles.  These screens enable the officer navigating the ship to see obstructions, other ships and buoys.  When the radar picks up another vessel, it lists a wealth of information on the vessel including its current rate of speed and its destination.  The radar is also useful in displaying squalls, fast moving storms,  as they develop.

Radar Screen
The radar screen is on the far right

Weather is constantly being displayed on another monitor to help the officer determine what to expect throughout the day.

The Nobeltec is a computerized version of navigation charts that illustrates where the ship is and gives information on the distance until our next station, similar to a GPS in your car.  ENS Pryor compares the Nobeltec to hard copies of the chart every 30 minutes.  Using the hard copies of the charts provides insurance in case the Nobeltec is not working.

Charts
Navigation charts

When we arrive at a station, the speed and direction of the wind are carefully considered by the Officer of the Deck (OOD) as they are crucial in successfully setting and hauling back the line.  It is important that the ship is being pushed off of the line so the line doesn’t get tangled up in the propeller of the ship.  While we are setting the line, the OODis able to stop the engines and even back the ship up to maintain slack in the main line as needed.  Cameras on the stern enable the OOD to see the line being set out and make adjustments in the direction of the ship if needed.  The same considerations are taken when we are hauling back.  The ship typically does not go over 2 knots when the line is being brought back in.  The speed can be reduced as needed during the haul back.  The OOD carefully monitors the haul back from a small window on the side of the bridge.  A lot of work goes into navigating the Oregon II safely!

Personal Log:

I was amazed to see all the monitors up on the bridge!  Keeping everything straight requires a lot of focus.  Being up on the bridge gave me a new perspective of all that goes into each station.  We wouldn’t be able to see all of these sharks without the careful driving from the OOD.

The water has been very calm the past few days. It is like being on a lake.  We’ve had nice weather too!  A good breeze has kept us from getting too hot when we are setting the line or hauling back.

Did you Know?

The stations where we sample are placed into categories depending on their depth.  There are A, B and C stations.  A stations are the most shallow, 5-30 fathoms.  B stations are between 30 and 100 fathoms.  C stations are the deepest, 100-200 fathoms.  One fathom is equal to 6 feet.  A fathometer is used to measure the depth.

Fathometer
The fathometer is the screen on the left

Marsha Skoczek: Who’s Driving this Ship, Anyway? July 9, 2012

NOAA Teacher at Sea
Marsha Skoczek
Aboard NOAA Ship Pisces
July 6 – 19, 2012

Mission: Marine Protected Areas Survey
Geographic area of cruise:  Subtropical North Atlantic, off the east coast of Georgia
Date:  July 9, 2012

Location:
Latitude:  31.30748N
Longitude:  79.43986W

Weather Data from the Bridge
Air Temperature:  29.5C (84 F)
Wind Speed:   10.4 knots (11.9 mph)
Wind Direction:  From the SSW
Relative Humidity:  81%
Barometric Pressure:  1015.7
Surface Water Temperature:  27.88C (82.4F)

Science and Technology Log

Today, the current was too strong in the area we were going to send the ROV.  The boat and the ROV were not able to keep close enough to the assigned transect line, so the dives for today were cancelled.  Since we had some extra time until the Pisces was able to get us to our next location, I decided to spend some time on the bridge learning about how the Pisces works.

Myself and ENS Pawlishen working on the nautical charts.

Third Officer, Pete Langolis, was on duty when I got to the bridge, and he was nice enough to show me around.  After he let me ring the bell for the noon test of the master alarm system, we got started.  The Pisces is able to keep its course by using both a magnetic compass as well as a gyrocompass.  The magnetic compass has the potential for interference depending on the conditions around it such as the roof of the ship, the types of metals that make up the ship, etc.  To find the correct bearing for the Pisces to travel along, the officer on duty has to take into consideration four factors, where is true north, the variation from the compass rose on the nautical chart, where is magnetic north, and the deviation from magnetic north from the deviation card (this will be different from ship to ship).  This all calculates into the correct compass heading for the officer on the bridge to drive the ship.  Once the correct heading is calculated, it can be programmed into the ship’s tracking computers as well as the bow thruster which acts as an autopilot for the ship.  Every thirty minutes, the officer on deck has to verify with the paper nautical charts that the ship is still on the correct heading.  Any variations from the original heading can be corrected simply by changing the direction on the autopilot.  You can follow along with our current position using the NOAA Ship Tracker website.  Select Pisces from the box in the upper left.

When you are out in the middle of the open ocean, the last thing you want to do is run into another vessel.  The Pisces is equipped with two different radar systems that help look for other ships in the area.  The S-Band radar sends out a longer pulse signal which is good for locating ships that are further away and also seeing through dense fog.  The X Band radar sends out a short pulse signal which better helps to locate ships in closer proximity to the Pisces.

X band radar showing the location of ships near the Pisces

Both of these radars are tied to the Automated Information System (AIS) as well as the Global Positioning System (GPS).  The information about each ship identified on the radar screen can be pulled up and used to help steer the Pisces around other vessels such as cargo ships, commercial fishing vessels, or other military vessels. All targets located by the radar need to be visually confirmed by the officer on deck to insure that they are not on a course that will come too close to the Pisces.

Engine monitor screen on the bridge.

The Pisces has a single propeller  that is powered by two electric motors.  These motors are powered by four diesel generators.  Before we could leave port last Friday, we had to fuel up with 70,000 gallons of diesel fuel.  This took about six hours to complete.  This amount of fuel should last the Pisces several months at sea.  The whole propulsion system can be monitored electronically from the bridge to ensure that everything is running smoothly.

So, who actually drives the ship?  Three NOAA Corps officers share bridge watch in shifts of 4 hours on, 8 hours off.  This doesn’t mean they spend the other 8 hours sleeping. All of the officers on board Pisces have other responsibilities such as the Navigation Officer (NAV), the Operations Officer (OPS), Executive Officer (XO) and the Commanding Officer (CO).  Before a new junior ensign can be left on their own to be in charge of the bridge, not only do they complete a twenty-week training, they will also spend about six months shadowing a senior officer.  This lets them get hands on training and experience while still having someone watching over their shoulder double checking everything.  After all, the lives of everyone aboard the Pisces depend on them doing everything correctly.

Personal Log

Being out to sea away from land is not something I have ever done before.  I am struck by the vastness of the ocean.  Everywhere you

Lobate ctenophores are translucent and give off a bioluminescent glow. Bolinopsis infundibulum. Picture: OAR/National Undersea Research Program (NURP)
High resolution (Credit: NOAA)

look, there is nothing but blue water.  It is truly hypnotizing.  Also, knowing that there might not be another vessel within hundreds of miles of us is a little weird.  Last night I went out with my roommate, Stephanie, to see the stars.  There is no light pollution out here in the open ocean, so we were able to see every star in the sky, including the Milky Way Galaxy.  It was an incredible view.  We also could see the bioluminescent organisms as they were getting turned up in the ship’s wake, animals such as jellyfish, copepods, and ostracods.  It was really neat to see bioluminescence in action.

Ocean Careers Interview

In this section, I will be interviewing scientists and crew members to give my students ideas for careers they may find interesting and might want to pursue someday.  Today I interviewed NOAA Corps officers Ensign Michael Doig and Ensign Junior Officer Douglas Pawlishen.

Ensign Michael Doig

ENS Doig, what is your job title?  I am the Navigation Officer for the Pisces and an Ensign in the NOAA Corps.

What type of responsibilities do you have with this job?  I am one of the officers that has bridge duty to steer the ship.  I also keep the nautical charts up to date, maintain the ship’s inventory, and train the new junior ensigns.

What type of education did you need to get this job?  I have a Bachelors’ Degree in Zoology from University of Hawaii and a Masters’ Degree in Science Education.

What types of experiences have you had with this job?  I have been fortunate enough to travel all over the Atlantic and Gulf of Mexico on board the Pisces.  One of the coolest things I have seen is a pod of orca whales trying to kill a baby sperm whale in the Gulf of Mexico.  The baby sent out a distress call and all of the adult sperm whales encircled the baby to protect it.  The baby sperm whale was saved.

How is the NOAA Corps different from other jobs?  First, when you apply for the NOAA Corps, they look at all of the math and science courses you have taken in college.  They are looking for students with strong background in those fields.  After you are accepted and make it through training, you are assigned to a NOAA ship for two years.  After those two years, you can apply for a land assignment, but that will probably only last for about three years before you have to go back out to sea on a new ship.  You work year round and are granted thirty days of personal leave for the year.

Since your time on the Pisces is almost finished, what land assignment are you applying for at the end of your two years?  I have applied to work in the Miami NOAA branch studying coral reef restoration.

What is your best advice for a student wanting to become a scientist?  Companies are always looking for employees with strong backgrounds in science. Don’t be afraid of those upper level physics classes or upper level math classes.  Get in there and do it!!

 

Junior Ensign Douglas Pawlishen

Ensign Pawlishen, what is your job title?  I am an Ensign Junior Officer aboard the Pisces.  This is my first ship assignment in the NOAA Corps and I just started on the ship last Thursday.

What type of job responsibilities do you have on this ship? To shadow Ensign Doig so he can train me about life aboard the Pisces.

Why did you decide to join the NOAA Corps?  I wanted a job where I wouldn’t be stuck in an office all day every day doing the same thing over and over again.  With my science background, I thought the NOAA Corps offered me the opportunity to do something more hands on and different every day.

What type of education do you need to get this job?  I have a Bachelors’ Degree from University of Massachusetts  Amherst in Natural Resources and  a minor in both Criminal Justice and Wildlife Management.

What types of experiences have you had with this job?  Well, since I am brand new, I haven’t really been out to sea yet.  My best experience so far was aboard the Coast Guard Eagle, which is a massive sail boat confiscated in World War II from the Germans.  All of the NOAA Corps cadets along with the Coast Guard cadets have to spend two weeks on board sailing the Coast Guard Ship Eagle and developing our team work skills.

Lesley Urasky: Get that fish outta here! The invasive lionfish, June 24, 2012

NOAA Teacher at Sea
Lesley Urasky
Aboard the NOAA ship Pisces
June 16 – June 29, 2012

Mission:  SEAMAP Caribbean Reef Fish Survey
Geographical area of cruise: St. Croix, U.S. Virgin Islands
Date: June 24, 2012

Location:
Latitude: 19.8584
Longitude: -66.4717

Weather Data from the Bridge:

Air Temperature: 29°C (84°F)
Wind Speed:   16 knots (18 mph), Beaufort scale:  4
Wind Direction: from SE
Relative Humidity: 76%
Barometric Pressure:   1,015.3 mb
Surface Water Temperature: 28°C (82°F)

Lionfish in its native habitat. ( Source: National Geographic; Photograph by Wolcott Henry)

Science and Technology Log

One of the species the scientists are continually scanning for in their videos is the appearance of the Lionfish (Pterois volitans/miles); this is one fish they’re hoping not to see.  It is not native to these waters and is what is known as an invasive or exotic  species.

An invasive species is one that is not indigenous (native) to an ecosystem or area.  Many times these organisms are able to exponentially increase their populations because they may have no natural predators, competition for resources, or they may be able to utilize those resources not used by native organisms.  Most invasions are caused by human actions.  This may involve intentional introduction (many invasive plant species were brought in to create a familiar environment or crop/foraging source), accidentally (rats travelling on ships to distant ports), or unintentionally (people releasing pets that they can no longer take care of). Invasive organisms are problematic because:

  • They can reduce natural biodiversity and native species.
    • Push other species to extinction
    • Interbreed, producing hybrids
  • Degrade or change ecosystem functions
  • Economically:
    • They can be expensive to manage
    • Affect locally produced products causing a decline in revenue (decline of honey bees due to a mite infestation which, in turn, decreases pollination rates)

Within its native habitat, the Indo-Pacific region, the Lionfish  (Pterois volitans/miles) is not a problem because that is where they evolved.  It is in the family Family Scorpaenidae (Scorpionfishes). They inhabit reef systems between depths of 10 m – 175 m.  During the day, they generally can be found within crevices along the reef; at night they emerge to forage in deeper waters, feeding upon smaller fish and crustaceans.

Native range of the Lionfish

Lionfish are venomous and when a person is “stung” by the spines on the dorsal fin, they experience extreme pain, nausea, and can have breathing difficulties.  However, a sting is rarely fatal.  Despite the hazards of the spines, Lionfish are a popular aquarium species.  The problem arises when pet owners irresponsibly get rid of the fish in their aquariums.  Instead of giving them away to pet shops, schools, organizations, or other fish enthusiasts, or contacting a local veterinarian about how to humanely dispose of them, they release them into a nearby marine body of water.  It’s important to realize that even the smallest, seemingly isolated act can have such large consequences.  Remember, if one person is doing it, chances are, others are too. The responsibility of owning an organism is also knowing how to manage it; we need to realize how to protect our marine habitats.

This is where the problem in the Atlantic began.  The occurrence of Lionfish was first noticed along the southeastern coast of Florida in 1985.  An invasive species is considered established when a breeding population develops.  Since their establishment in the waters off of Florida, they have rapidly spread throughout the Atlantic as far north as Rhode Island/Massachusetts , throughout the Caribbean, and into the Gulf of Mexico.

Animated map depicting the spread of the Lionfish

While on our cruise every sighting of a Lionfish was cause for further examination.  There was one Lionfish that exhibited a behavior that Kevin Rademacher (Chief Scientist) had never seen before.  The fish was on the bottom and moving himself along instead of freely swimming.  Videos like this are instrumental in helping scientists figure out Lionfish behavior in their “new” environment as well as their interactions with the surrounding organisms and environment.  Hopefully, as this database continues to grow, scientists will develop new understandings of the Lionfish and its effect on the waters of the Atlantic, Caribbean, and Gulf of Mexico.

Divers are encouraged to kill any Lionfish they encounter.  The only safe way to do this is from a distance (remember, their dorsal spines are venomous); usually, this is accomplished by using a spear gun.  The Commander of the Pisces, Peter Fischel,  was doing a final dive off the pier before we left St. Croix.  He saw three Lionfish, speared them, and brought them to the scientific crew for data collection.  These were frozen and placed in a Ziploc back for preservation.  They will be examined back at the lab in Pascagoula, Mississippi.

Three Lionfish caught along the Frederickstad, St. Croix pier. (Notice the 6″ ruler for scale.)

Personal Log

The science portion of the cruise is coming to a close. Today was our last day of sampling.  As with yesterday, no fish were caught by the day crew, so we were able to begin cleaning and packing throughout the day instead of waiting until the end.  A few days after we arrive in Mayport, Florida, the Pisces will be going out on another cruise along the east coast.  On Sunday, July 1st, Joey Salisbury will be arriving in Mayport with a trailer to unload all the scientific equipment and personal gear from this research cruise.

Bandit reel with St. Thomas in the background

In addition to packing, the wet lab and deck have to be cleaned.  This entails scrubbing down the tables, coolers, and rails along the deck where we baited our hooks to remove all the fish “scum” that has accumulated over the past three weeks.  Between the four of us, we were able to make quick work of the job.  There is only one task left for me to do, and that is to take all of our leftover bait, Atlantic Mackerel, and throw it overboard once we are away from the islands.  (The bait has been used over the course of the past two years, and has essentially outlived its freshness.)

Day operations crew on the Pisces Caribbean Reef Fish Survey (left to right: Ariane Frappier, Kevin Rademacher (Chief Scientist), Joey Salisbury, and myself).


I want to thank all the scientists on the day operations crew and the deck hands for making me feel so welcome, being ever so patient as I learned how to bait hook, load the bandit reel, remove otoliths, sex  the fish, and answer every type of question I had.  They’re all amazing people and are passionate about their jobs.  Kevin was not only great at thoroughly answering any and all questions, but anticipated those I might have and brought interesting things to my attention.  Thank you everyone for an amazing experience that I’ll never forget!

Another incredible person that helped make my trip memorable is my roommate, NOAA Operations Officer, Kelly Schill.  She was very welcoming and made me feel immediately at home on the ship.  She gave me a thorough tour and introduced me to the crew.  I interviewed her briefly about her job in the NOAA Corps.

Kelly Schill, Operations Officer aboard the NOAA ship Pisces. (Source: http://www.noaacorps.noaa.gov)

LU: Kelly, what is your job title and what do you do?

KS: I am a Lieutenant junior grade in the NOAA Corps.  The NOAA Corps is one of the 7 uniformed services and I serve as the Operations Officer aboard the NOAA Ship Pisces.

LU: How long have you been working with NOAA?

KS: I have worked for NOAA a total of 4 years; 3 of which were aboard the NOAA Ship Pisces as a NOAA Corps Officer. My first year, I was a physical scientist and developed geospatial visualizations to assist in the generation of navigational warnings and maritime safety information for Dangers to Navigation for the NOAA and contractor surveys.  I assisted NOAA Ship Thomas Jefferson in the field with the acquisition, converting and cleaning of multi-beam and side-scan sonar data.

Aboard the NOAA Ship Pisces, my responsibility is to be the liaison between the ship’s crew and scientific party to ensure the mission is carried out smoothly and efficiently.  A big part of my job is to handle the logistics and transportation, such as project planning and setting up dockage at different ports from Texas to the Caribbean up to Massachusetts. Most importantly, to continue to learn the intricacies of the ship, effectively operate, and practice safe navigation at all times.

LU: What background and skills are necessary for your job?

KS:  A Bachelors Degree of sciences.  You must complete a year of chemistry, physics and calculus.  Geographic information System (GIS) is equally important. To be well-rounded, internships or field research experience is highly recommended.

Kelly Schill showing off the otolith she just extracted from a Red Hind.

LU: What type(s) of training have you been through for your job?

KS: Being in the uniform service, I was sent to Basic Officer Training Course (BOTC) to learn military etiquette, terrestrial and celestial navigation, safety aboard ships, search and rescue, fire prevention, hands on experience in driving small boats up to larger vessels, etc.  Once out of BOTC and on an assigned ship, I was able to attend further training:  hazardous material courses, dive school, rescue swimming, and medical. There are many more opportunities that were offered. I have only touched on a few.

LU: Have you worked on other ships not associated with scientific research?  If so, what was your job and what type of ship was it?

KS: No, all my experiences were on ships regarding scientific research:  NOAA Ship Thomas Jefferson (hydrographic ship) and the NOAA Ship Pisces (fisheries ship).

LU: Does being on a science research ship bring any specific/different expectations than being on another type of merchant ship?

KS: I am unfamiliar with the expectations on a merchant ship.  Generally, the research vessels are used to support studies intended to increase the public’s understanding of the world’s oceans and climate. Research vessels are not set on a point A to point B system. Various operations are conducted from fisheries, bathymetry, oceanographic, to marine mammal data collection.   These various research projects dictate operation area.  Contrary to research vessels, merchant ships usually have a set destination, from point A to point B transporting cargo of one type or another.

LU:  We are in the middle of a huge ocean, and our destination – a specific sampling site – is a pinpoint on a map. What has to be considered to make sure you get to the exact location?

NOAA ship Pisces ECDIS map. This is a nautical map that is updated monthly.

Closeup of navigational maps showing the location of our sampling sites.

KS:  We use a number of tools: ECDIS, Rosepoint, paper charts, GPS, Dynamic Positioning, and of course manual operation. The scientists will provide a location where they want the ship to be for operations to take place. We use all navigational tools to navigate to that position by creating a route, based on a good GPS feed. Navigational tools include: ECDIS (shows an electronic vector chart), Rosepoint (shows an electronic raster chart), and paper charts.  Multiple navigational tools are for redundancy to ensure safe navigation.

All routes are created on the side of safety to avoid collision with shoals, wrecks, land, neighboring ships, platforms, buoys, obstructions, etc. Once, we are close to our sampling station, the ship is set up into the wind or the current (whichever force is stronger), reduce propulsion, turn rudder hard over to one side to assist in the reduction of propulsion and to line up on a heading in favor of wind or current. The bow thruster can assist in turns as well. Depending on how strict the mission is to hold an exact coordinate, the dynamic position is dialed in and activated.  Otherwise, the watch stander will manually control the engine speed, bow thruster, and rudder to maintain position utilizing outside forces, such as wind, swell, wave state, and currents.

The ship’s radar. The yellow objects at the bottom are St. Thomas and its surrounding small islands, while other vessels will appear in green.

LU: Once we reach a site, what do you need to do to maintain that position during the sampling process?

KS: Every ship has its perks and not all are the same in maintaining a position during the sampling process. Our ship has dynamic positioning (DPS) which uses the rudder, propulsion, and a bow thruster simultaneously to hold position. However, just like any software system, it only works as well as the operator.  The parameters have to be just right to accomplish this goal.  Parameters are set up based on wind speed, swells, sea state, and currents.  All must jive for a positive outcome. Our ship works more efficiently facing into the wind or current; whichever force is the strongest. If both are strong, we split the difference. Should either the bow thruster, main engine, or steering fail, the dynamic position will not properly compensate.

Dynamic Positioning System (DPS) screen. This instrument helps hold the ship at a precise location.

Kelly, thanks for the interview as well as being a great role model for women!  Remember, girls, if you want it, go get it!

Deborah Campbell: May 21st, 2012

NOAA Teacher at Sea
Deborah Campbell
Onboard NOAA Ship Nancy Foster
May 14 – May 24, 2012

Mission:  Collecting Zebra Arc Shells and Multibeam Mapping
Geographical Area:  Gray’s Reef National Marine Sanctuary
Date: Monday, May 21, 2012

Teacher on land, Deborah Campbell, on Atlantic Beach near Mayport Navel Base in Florida.

Mission: Multibeam Mapping, Arc shell collections, Marine debris monitering, Fish telemetry, Acoustic receiver deployment/ maintenance

Weather Data from the Bridge: Monitoring Tropical Storm “Alberto”

Science and Technology Log

I am currently a “Teacher on Land”.  Tropical storm “Alberto” has forced our ship to dock in Florida.  I found out Saturday evening around 7:30 in the evening about the storm.  The CO (commanding officer) held a meeting in the mess deck (eating area) to inform all crew about the change in plans.  We were informed that we were heading to Florida to get away from the storm.  The plan would be to arrive in Florida at the Mayport Naval Base at 8:00 a.m. Sunday morning.  If the storm stayed on track as predicted we would leave Florida on Monday at 5:00 p.m.

A tropical storm causes high winds ranging from 33 – 73 miles per hour, and very high waves.  There is a weather buoy located by Gray’s Reef tracking weather conditions.  The Nancy Foster is docked at Mayport Naval Base near Jacksonville, Florida.  Another NOAA ship, Okeanos  Explorer, is docked behind us. Okeanos Explorer was headed north to Rhode Island which is their home base , when they had to turn around. What is really cool about Okeanos is that it has a giant soccer ball which is their satellite system.

CO Holly Jablonski on bridge of NOAA Ship Nancy Foster

NOAA Ship Okeanos Explorer

On the bridge of the ship, the CO (commanding officer), and her crew use the ship’s computers to monitor radar, weather, navigation, and water depth.  The ship is equipped with GPS (global positioning system).  GPS is a space-based satellite navigation system that provides location and time information.  In all weather, anywhere on or near the Earth, where there is an unobstructed line of sight to four or more GPS satellites, weather can be tracked.  The GPS system is maintained by the United States government, and can be accessed by anyone using a GPS receiver.

Personal Log

Deborah Campbell, Teacher At Sea standing on top of submarine from Brazil at Mayport Navel Base in Florida

The view of Mayport Naval Base is amazing.  This base is like a city having everything imaginable.  There is a bowling alley, a hotel, stores, restaurants, a beach, a gym, and much more.  Yesterday, we went outside the guarded gates to the beach area.  We ate at a nice restaurant.  I am now having trouble walking on land.  It feels like I am still on the ship.  Today, I walked outside the gates where the ships are to go get some pizza for lunch.  I had to show the armed Navy guards my I.D.  We walked quite a distance.  We stopped at the base exchange to buy some magazines and snacks.  On the way back, I stopped where the submarine Tikuna, from Brazil is docked.  I got to climb on top of the sub.  It was very cool.  Some of our crew from the Nancy Foster went down a very steep ladder into the sub.  We are expecting to resume activities at Gray’s Reef on Tuesday.  We are heading back around eight this evening.  Okeanos Explorer left at ten this morning, and they are reporting rough seas as they head back to Rhode Island.  The crew will continue to monitor weather conditions….

Bridge deck computer systems aboard NOAA Ship Nancy Foster.

LT Josh Slater entering submarine Tikuna

Obed Fulcar, July 21, 2010

NOAA Teacher at Sea Obed Fulcar
NOAA Ship Oscar Dyson
July 27, 2010 – August 8, 2010

Mission:Summer Pollock survey III
Geograpical Area:Bering Sea, Alaska
Date: July 21, 2010

Weather from the Bridge:
Time: 0345 pm
Latitude: 57.23 degrees North
Longitude:173.33 degrees West
Wind: 12 knots
Direction: 257 degrees West
Sea Temperature: 8.5 degrees C
Air Temperature: 8.85 degrees C
Barometric Pressure: 1020.0 mb
Skies: Partly Sunny

Science and Technology Log:

Buddy Gould
Buddy Gould

Yesterday, Tuesday July 20, we finally left Dutch harbor, once all the delayed scientific equipment arrived. I was later told that it included some new and sophisticated technology to track and measure fish underwater. We climbed up to the “flying bridge” at the very top of the ship to see the view of Dutch harbor behind us and the open ocean ahead. After that we came down to the bridge where Acting Executive Officer XO Sarah Duncan, Ensign Amber Payne, and Buddy Gould from the Deck Department gave us a tour of the bridge. They explained that the panels of navigational instruments used to sail the ship included Radar screens, to detect any vessels or ships in the proximity, one for long range, and another for short range, showing any ships close by. The screens show the many readings from instruments on board such as wind speed (in knots), Wind direction (in degrees), Latitude, Longitude, and Air Pressure (in millibars).

Navigational Instruments
Navigational Instruments

Next we received a demonstration in how to chart a course using the Electronic chart. I was surprised to understand the navigational terminology, (Iguess my Basic Sailing class is paying off), such as true wind, leeward, aft, forward, et…
I asked if they still used paper Nautical Charts and the answer was yes, they use them to plot the course of the ship using pen, ruler, and compass. I was surprised to know that even with all this technology even though the ship course and navigation is done completely electronically, they still rely on pen and paper charts as back up! On the bridge were also two scientists fro the US Fish and Wildlife service working on Seabird research, as part of the Bering Sea Integrated Ecosystem Project, a multidsciplinary study that is looking at how climate change is affecting the ecosystem of the Bering Sea. liz and Marty were both working from the bridge with binoculars, observing and counting all seabirds within 300 meters from the ship. armed with a laptop computer connected to the ship’s navigational system they were able to count and input the GPS location (latitude/longitude) of every sighting of a seabird, and plot a GIS graph in real time. I found this to be really cool! We saw seabirds found on the Bering sea such as Black-footed Albatross, Northern Fulmar, Tufted/Horned Puffin, Fork-tailed Storm Petrel, and Thick-bill Murre.

Personal Log:
Today is Day 4 of the mission and so far I have done pretty well in terms of motion sickness. A calm sea has been a great factor and has allowed me to get adjusted to life at sea. I am surprised to find myself at home in my my bunk bed, and haven’t had any difficulties sleeping at all, though I do miss my bed. The long schedule from 0400 to 1600 (4pm) full of activities has been of help keeping me busy. The food is great thanks to Floyd the master cook with a variety of international food and home baked pastries. I was also impressed by the international collaboration in this mission, with two Russian scientists on board conducting research on the fisheries of the Bering Sea since part of the transects or line passess done by the Oscar Dyson cover Russian territorial waters as well.
New Vocabulary Words;
Nautical charts, Radar, Latitude, Longitude, GPS (Global Positioning Satelite), Leeward (opposite to wind), Forward (front of ship), Aft (back of ship)

Animals seen today:
Black-footed Albatross, Northern Fulmar, Tufted/Horned Puffin, Fork-tail storm Petrel, Thick-bill Murre
Bitacora Marina #2: Ayer martes, 20 de Julio finalmente zarpamos hacia alta mar. Los oficiales del Oscar Dyson nos dieron un tour del puente explicandonos los sofisticados instrumentos de navegacion electronica como Radares, sonar acustico, y sistema global de ubicacion por satelite (GPS).A pesar de tanta tecnologia, todavia se grafica el curso de la nave usando Cartas Marinas, compas y lapiz!Tambien me presentaron a una pareja de biologos del Servicio de Pesca y Caza de los EEUU, haciendo un conteo de las aves marinas del Estrecho de Bering, graficando en tiempo real cada observacion en un ordenador laptop usando tecnologia GIS, o sistema de informacion geografica.

Wesley Struble, 14 July, 2010

NOAA Teacher at Sea
Wes Struble
Onboard NOAA Ship Ka’imimoana
July 8 – August 10, 2010

Mission: Tropical Ocean Atmosphere (TOA) cruise
Geographical area of cruise: Equatorial Pacific from 120ΕLongitude to 95Ε Longitude
Date: 14 July 2010

Weather Data from the Bridge

Cloud cover: 6/8 (75%) with stratocumulus clouds
Visibility: 10 nm (nautical miles)
Wind: bearing 330Ε at 14 knots
Atmospheric Pressure: 1012.0 millibars
Temperature: 24.6ΕC (76.3ΕF)
Wave height: 1 – 2 feet

Science and Technology Log
The last few days I have spent some time up on the bridge of the Ka’imimoana. Ensign Linh Nguyen, one of the NOAA Corps officers, showed me around and explained some of the equipment. They have three general types of equipment available on the bridge which I will categorize as: communication, propulsion, and navigation.

The bridge of the KA

The communications system first includes intra-ship lines. These are mostly carried out by an intercom type system. Each major area of the ship (including each stateroom) is connected to this intercom system by a phone that permits communication with any other part of the ship. The ship also has numerous hand-held radios available for use when one is not near a phone. In addition, the bridge has both inter-ship and ship-land communication capabilities. The KA (short for Ka’imimoana – Hawaiian for Ocean Seeker) also has access to the Iridium satellite platform for communication with land in addition to access to a satellite internet and internet VOIP system.

Autopilot and propulsion controls

There are two types of propulsion on the ship. First, there are four large diesel engines that power a generator. This generator produces the electrical power that runs each of the two electric motors that drives the screws (propellers) located at the stern (rear) of the vessel. While moving through the harbor all four diesel engines are running sending power to the generators. When the ship is out at sea only three of the diesel engines are used. The ship can operate with only two engines in service for power generation but under this configuration the ship will cruise at slower speeds. The KA has two screws: port (the left side of the ship if one is facing the bow or front of the ship) and starboard (the right side of the ship if one facing the bow). Each screw runs independent from the other with separate controls on the bridge. The conning officer (the officer who is in charge of the bridge at any given time) can change course by turning the rudder (the most common way) or by altering the speed (rpm) of one of the screws (without using the rudder). The KA also has a bow thruster (also powered by an electric motor) that is mounted in a tunnel through the forward part of the hull. This thruster permits the conning officer to move the forward part of the ship port or starboard without the main screws driving the ship forward. The bow thruster allows more subtle and precise motion that could be used for docking or perhaps helping keep the ship over a precise location while collecting data at those particular coordinates.

The bow thruster control

AIS screen

The fathometer

The captain of the KA, LCDR (Lieutenant Commander) Matthew Wingate, described the navigation system of the KA as modern but not state-of-the-art. The ship has many redundancies built into its guidance system. Two radar consoles, three compasses (two digital/electronic and one analog), an AIS (Automatic Identification System), paper charts, a fathometer (sonar) and of course, binoculars and the naked eyes of those on constant watch. The radar system is quite fascinating. It has an adjustable range with the ability to scan out to almost 100 nautical miles. The system plots the projected course of the ship and the predicted course of other ships within its range using vector analysis. This information is necessary to be able to prevent (well ahead of time) any possible collisions that might take place if the ships hold to their current courses. In addition, it is possible to set a radar alarm range of a particular radius around the ship. If any object comes within that range an alarm sounds to alert the pilot of the danger.

Radar screen

Radar tower

While I was on the bridge there were three other ships registering on the radar monitor each traveling in different directions. The two digital compasses are mounted side-by-side and their readings (and the difference between the readings) are projected at the navigation console. Above one’s head and not far from the digital compass readout is also a standard magnetic compass. The AIS (Automatic Identification System) is probably the most fascinating device I have seen on this ship. It is similar to radar readouts but provides much more information. First, one needs to understand that when ships are at sea they continuously send out a signal that provides identification information. The AIS receives this information and plots the locations and courses for these ships in addition to the location and course of the KA. All of this information is superimposed on a digital nautical chart that shows islands, shoals, exposed rocks, depth contours, and continental shorelines that can be adjusted for different scales. At the right margin of the AIS screen is listed navigation information such as the latitude and longitude of the ship, course bearing, ship speed in knots, and other pertinent data. Besides the course plotted on the AIS the conning officer also plots out the ship’s course on a paper chart and cross-checks it with the AIS. The fathometer shows the depth of the water under the ship and therefore the contours of the ocean bottom. This information can also be cross-checked with the charts and the AIS to make sure that they all agree. Last of all there is always someone on the bridge keeping watch on the instruments and the horizon verifying what is on the charts and monitors with what they see with their eyes through the binoculars.

Digital compasses

Personal Log

I have enjoyed walking about the ship during the day taking pictures and looking at the various types of equipment on the decks. I hope to describe these in later logs. I was on one of the lower weather decks this morning simply taking in the views of endless water in all directions. When the sun is out the water has a deep blue color with a very slight greenish tint. As the bow cuts through the water, waves and foam are pushed out creating a variety of tints of blues, greens, and white. It is beautiful indeed.
While I was watching, out popped a flying fish! It jumped out near the bow wave and glided about a foot off of the water for about 50 yards or more. When it would hit a wave crest it would boost itself with its tail and go a little farther. I stayed at that location for another half hour and watched many others, some small groups, and several large schools of 50 or more “fly” at one time. The longest “flight” was about 100 yards with the fish in the air maybe 5– 10 seconds. I would not have even thought to look for one of these fish. Like most children I had read about them and seen pictures of them when I was younger but never really thought that I would ever see one. What a great surprise.

Pacific Ocean and clouds
Pacific Ocean and clouds

Being from Idaho’s northern latitudes, the sun only gets approximately 67Ε above the horizon on the Vernal equinox. It has been interesting to have the sun literally directly overhead during a portion of the day. This, of course, produces few areas of shadow to get out of the sun’s harsh equatorial rays. When we left San Diego it was in the mid to lower 60’s but as we have worked or way south (about 200-250 miles per day) the temperature has been slowly rising. I am told that it will soon be very hot and humid so I should enjoy this mild weather while I can.

New Terms

I have learned a few new terms for parts of the ship that might be helpful for future logs. Deck – refers to any floor on the ship. I would refer to the floor of my stateroom as the deck. Bulkhead – this refers to any walls on the ship. I am required to keep the deck and bulkheads of my stateroom clean. Head – this refers to a bathroom on the ship. I have a head that I share with a crew member in the stateroom next to me and there is also a “public” head available on this same level. Aft – can mean in back of, behind, or toward the stern of the ship. Forward (sometimes simply fore) – can mean in front of, in front, or toward the bow of the ship.

Laura Rodriguez, May 27th, 2010

NOAA Teacher at Sea
Laura Rodriguez
Aboard NOAA Ship Oscar Dyson
May 24 – June 2, 2012

Mission: Fisheries Surveys
Geographical Area: Eastern Bering Sea
Date: May 27, 2010

Why is Ocean Science Important?

The Bridge of the Oscar Dyson

Me on the bridge
Me on the bridge

I’m starting to get into a routine on board the ship now. I wake up in time for breakfast at 7 AM. Then I read through your blog entries and catch up on emails. I head up to the bridge before my watch to check out the weather log and talk to the officer on watch. I get to the chemistry lab at 10:00 to start my watch. Lunch is at 11:00, so I may get one station in before lunch. Then we work straight until dinner at 5:00. The bridge tries to time the stations so we have at least 30 minutes to eat. On Monday, we had to eat in shifts because we came on the station right at 5:00. After dinner, we work until 10:00, then Ihit my bunk and its lights out.

Deck officers on the bridge
Deck officers on the bridge

The bridge of the Oscar Dyson is an amazing place. The deck officers rotate watches on the bridge. They are responsible for the safe piloting of the ship. All of the ship’s sensors and instruments can be accessed from the bridge. It is called an integrated bridge system. There are actually 4 bridge stations in the one large room. There is the main bridge consol as well as two wing bridges and an aft control station so that the officer on watch can control the ship from anywhere on the bridge. There is also an autopilot, although he always looks scared to death and about to scream. (see picture)

Auto Pilot
Auto Pilot

Some of the instruments include 2 radar screens, an electronic navigational chart as well as the traditional paper charts. There is an echo sounder to determine depth. The ship also has 2 GPS receivers to determine latitude and longitude and 2 gyro compasses to determine direction.

Radar on the bridge
Radar on the bridge

Pilot's view from the bridge
Pilot’s view from the bridge

The ship is also equipped with de-icers in the windows of the bridge. These heat the glass and keep them ice free.

De-icers on the window
De-icers on the window

Answers to your questions:

Jesse – The CO and the XO inspect the ship to make sure that it is stable. The CO must fill out a stability report before we leave dock. It details where the fuel and cargo are  located on board to make sure that the ship is balanced. The XO does a visual inspection of the ship before we leave to make sure that everything is secure.

Zach – The ship does a man overboard drill quarterly, that means once every three months. The last one was in March, so the next one is due in June. To do the drill, they throw a buoy overboard and then announce that it is a man over board drill. Everyone goes to their stations and the ship comes about and tries to get close enough to send a rescue swimmer to the buoy. If the ship cannot get close enough, they send the FRB (Fast Rescue Boat)

Ashley – Icebergs are not something that this ship would typically encounter. If there were an iceberg, it would show up on radar. The ship would then keep en extra lookout for it and also would give it a wide berth. What the ship typically encounters is flat or pack ice. This also shows up on radar so the ship knows when it’s coming.

Kellie – The ship ran aground in the Inside Passage in 2007.  The Inside Passage is in southeast Alaska down by Juneau. The propeller was damaged and had to be rebuilt.

Hannah M – To find crew for the ship, they use a pool of wage mariners. This is a listing of people who are qualified for the different jobs. Each type of job has different requirements and the people who would like to do that job need to have certain endorsements or qualifications to perform it. The ship has a permanent crew, but they hire people through what’s known as an augmentation pool to fill any temporary jobs. To apply for a job with NOAA is a lengthy process. It can take up to 6 months before a person is hired. They have to fill out an application, go through the interview process, get background checks, including a dental check, before they are eligible to be hired. The officers are part of the NOAA corps which has a different selection process.  Applicants for the NOAA corps must have a bachelor’s degree in a major course of study that relates to NOAA’s scientific or technological activities. They then apply to be a candidate for the NOAA corps. The candidates are selected for an intensive 4-5 month initial training program. They then have a 12-15 month obligation to serve on a NOAA ship. To learn more about the NOAA corps visit. http://www.noaacorps.noaa.gov/index.html

Kyle – The Oscar Dyson will make 11 research cruises this year. Since it was launched in 2005, that’s somewhere around  50 cruises so far.

Your questions to answer:

One of the most important jobs on a ship is to navigate the ship safely from one point to another. We now have very sophisticated technology to help us navigate, but people have been navigating ships for thousands of years. Research the history of navigation. Choose one civilization and describe how they navigated on the ocean.

As always, answer in complete sentences  and elaborate. Make sure you include the URL of the website where you found the information. Also, if you have any other questions for me please include.

John Schneider, July 18-20, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 18-20, 2009

Position
Shumagin Islands, in transit to Dutch Harbor

Weather Data from the Bridge 
Weather System:
(July 18th) Low system approaching from the South
(July 19th) Fog, gusty wind in the morning, clear afternoon, but getting windier; Wind: southwesterly at 4-6 kts; Sea State: 1-2 feet

Weather System:  Projected for the July 20-21 overnight
Barometer: falling rapidly (a warning sign of unsettled weather) Wind: sustained at 30-40 kts, gusting to 55 kts (This would qualify as a “gale”)
Sea State: Predicted wave height next 24-36 hrs – 18 feet!

Andy and lunch—a nice halibut!
Andy and lunch—a nice halibut!

Science and Technology Log 

On the 18th and 19th, the launches went out (including me on the 19th) to clean up some holidays and get more near-shore data.  When we got back on the 19th, we found out that a major low pressure system was building to the south and expected to be in our area within a day and a half.  A major low system can reach out a couple of hundred miles and the CO decided that we would leave the Shumagins about 18 hours earlier than originally planned.  I discussed this with him (he is remarkably approachable) and he reiterates to me what I had already believed: his responsibilities are in three priorities – 1. His crew.  2. His ship.  3. The mission. Our research in the Shumagins does not represent life-or-death, it represents the continuing quest for knowledge and the expansion of our understanding of the Earth.  I’m sure you’ve realized it already, but Captain Baird and his officers have earned my highest regard.

We are in the center of the radar screen and two other ships described below – with their courses projected from the boxes that represent them – are behind us. The green line is our track ahead.
We are in the center of the radar screen and two other ships described below – with their courses projected from the boxes that represent them – are behind us. The green line is our track ahead.

On board the Fairweather is a phenomenal array of electronics.  Our positioning equipment is able to determine our position with just a couple of meters and when we are on a course it can tell if the course error is as little as a decimeter! Operating in Alaska, where fog is a way of life, RADAR (Radio Direction And Ranging) is an absolute must, and we have redundant systems in the event one breaks down. Probably the coolest thing about the radar is the use of ARPA technology. ARPA (Automated Radar Plotting Aid) is a system that not only identifies other vessels on the water, but diagrams their projected course and speed vectors on the screen. It does this from as far as 64 miles away!

The filleted tail of the halibut and some crabs found in its stomach
The tail of the halibut and some crabs found in its stomach

By looking at the screen, you can see the lines of other ships relative to your own and navigate accordingly. Furthermore, the system includes ECDIS, which is an Electronic Chart Display and Information System that identifies other ships as to their name, size, destination, and cargo!  So when you see on the radar that you are in a situation where you will be passing near to another vessel, you can call them on the radio by name! This technology is essential, especially going through Unimak Pass.  Unimak Pass is about 15 miles wide and is a critical point in commercial shipping traffic between the Americas and Asia. As we were transiting Unimak Pass, We were passed by an 800 foot long container ship that was en route to Yokohama, Japan and going the other way was a 750 foot ship going to Panama.  This is a critical area due to what is called “Great Circle” navigation.  I’ll address this point when in Dutch Harbor next week.

Eat your hearts out!
Eat your hearts out!

Personal Log 

Last night, after the beach party, Andy Medina (who has been on board for almost 200 days this year) was fishing off the fantail and caught a nice halibut. The crew who hail from Alaska all have fishing permits and when the day is done, if we’re anchored they get to use their free time for fishing.  They even got a freezer to keep their filets in.  Earlier in the cruise, we actually had halibut tacos made with about the freshest Alaskan halibut you can find (less than 12 hours from catch to lunch!)  Of course, with me being a bio guy, I asked for two things: 1 – to keep and freeze the head (I For the last night of the leg before making port in Dutch Harbor  (home of the World’s Deadliest Catch boats) the stewards, Cathy Brandts, Joe Lefstein and Mike Smith really outdid themselves.  I sure hope you can read the menu board, but if you can’t, dinner was Grilled NY Strip Steak and Steamed Crab legs with Butter! 

We went through about 10 trays like this!!!
We went through about 10 trays like this!!!

After dinner, everybody secured as much equipment as possible in the labs, galley and cabins as possible in anticipation of the run ahead of the weather into Dutch Harbor.  We ran through the night and got to Unimak pass in the middle of the day on the 20th. About half way through the pass was an unusual announcement, “Attention on the Fairweather, there are a lot of whales feeding off to starboard!” It’s the only time whales were announced and it was worth the announcement.  For about 2 to 3 miles, we were surrounded by literally MILLIONS of seabirds and a score or more of whales.  Comments from everybody were that they had never seen anything like it. I kept thinking of the old Hitchcock film The Birds and the scenes in Moby Dick where Ahab says to “watch the birds.” We were all agog at the sight.

Fifteen minutes of this! Incredible!
Fifteen minutes of this! Incredible!

With the collective 200-300 years of at-sea experience, no one had ever seen anything like it. After 2.5 weeks that seems like 2.5 days, we approach Dutch Harbor and are secured to the pier by 1700 hours. Tonight we’ll head into town, but if not for the news in the next paragraph, this would be the worst time of the trip, however . . .

The Best news of the trip: I’ve requested and been approved to stay on board the Fairweather for the next leg! WOO-HOO!!!  It’s called FISHPAC and deals with integrating bottom characteristics to commercially viable fish populations!  I’m going to the Bering Sea!!!

Questions for You to Investigate 

  1. When did the Andrea Doria and Stockholm collide?  Where?  In what conditions?
  2. What was the D.E.W. Line in the Cold War?
  3. Why did the Japanese want bases in the Aleutians in WWII?
  4. Why did we pass a ship going from North America to Yokohama well over 1000 miles north of both ends of the trip?
  5. What are Great Circles?

Did You Know? 

That almost 10% of all commercial fishing catch in the United States comes through Unalaska and Dutch Harbor?

Approaching Dutch Harbor
Approaching Dutch Harbor

Jacquelyn Hams, August 3, 2006

NOAA Teacher at Sea
Jacquelyn Hams
Onboard NOAA Ship Rainier
July 24 – August 11, 2006

Mission: Hydrographic Survey
Geographical Area: Shumagin Islands, Alaska
Date: August 3, 2006

TAS Jacquelyn Hams viewing sonar images on a survey boat
TAS Jacquelyn Hams viewing sonar images on a survey boat

Weather
Partly cloudy
Visibility: 10 nm
Wind direction: 305
Wind speed: 8 knots
Sea Wave height: 0-1 ft.
Seawater temperature: 11.1 degrees C
Sea level pressure: 1002.2 mb
Temperature dry bulb: 14.4 degrees C
Temperature wet bulb: 11.1 degrees C

Science and Technology Log

The day begins with a Damage Control Meeting at 0830.  This is an all hands meeting for everyone aboard the ship. Safety is stressed aboard the RAINIER at all times.  All hands are shown equipment, patches, and fixes for damages resulting from water, electrical problems, and fire. We are also told where the equipment is stored.

A CTD (Conductivity, Temperature, and Depth) sensor
A CTD (Conductivity, Temperature, and Depth) sensor

After lunch I go out on one of the survey boats equipped with multibeam sonar for a hydrography survey. NOAA personnel on the boat are: ENS Jamie Wasser, Junior Officer, ENS Megan McGovern, Junior Officer, Carl Verplank, Seaman Surveyor, and Leslie Abramson, Able Seaman.  The goal of this leg of the cruise is to accurately chart the waters off Nagai Island, Alaska.  The boat I am on will survey the area of Northeast Bight.

In order to measure depth, the equation D=S*T is used.  The time it takes for the sound to bounce off the bottom and return is known.  In order to calculate the distance, the speed at which sound travels through the water must be known. To determine the speed at which sound travels through the water column, the RAINIER collects conductivity, temperature, and pressure data using a CTD sensor called a SEACAT. From these measurements depth and salinity can be derived.

View of radar screen at coxswain’s station on survey boat.
View of radar screen at coxswain’s station on survey boat.

This instrument is deployed into the water at least every four hours during multibeam acquisition. As sound travels through the water, it can be affected by differences in salinity, temperature, and pressure. Therefore, all soundings acquired by the CTD need to be corrected for these effects to accurately chart the survey area. The SEACAT is placed just below the water’s surface for two minutes to allow the sensor to obtain its initial readings. It is then lowered one meter per second through the water column until it reaches the seafloor. Then it is hoisted back to the surface. As the instrument runs through the water column, the sensor obtains conductivity, temperature, and pressure data. Once the SEACAT is aboard, it is connected to a computer.  The sensor data is downloaded using a special program. A survey technician or junior officer uses the program to analyze the data.

Leslie Abramson, Able Seaman and coxswain, steers the survey boat
Leslie Abramson, Able Seaman and coxswain, steers the survey boat

If the data looks reasonable, the launch or ship will begin or continue to acquire soundings. It is very important for the coxswain (person who is driving the boat) to steer the boat along the survey lines so that the final data will be accurate.  Leslie Abramson assists me while I attempt to steer the boat along the survey line. I find that it is easier to steer the RAINIER than a survey boat!

Personal Log 

I have been on the RAINIER for two weeks now, and have been observing how long the days are for the officers on board. After talking with ENS Olivia Hauser, RAINIER Junior Officer, certain things are now clear.  There are no other scientists aboard the RAINIER.  On other NOAA ships, scientists are hosted by the ship and plan and conduct the research operations. On the RAINIER, the officers are the hydrographers or scientists.  In addition to their regular duties, the officers have to plan survey lines, review them at the end of the day, and make plans for the next day.  In addition, they go out on the survey boats to view data acquisition. This makes for an incredibly long day and lots of responsibilities for the officers. I am impressed with their energy and dedication to the job. I had the opportunity to take the classic geology photographs shown below from the survey boat.

 Repeat display of Hy Pack navigation and chart at coxswain’s station
Repeat display of Hy Pack navigation and chart at coxswain’s station

A classic U-shaped glacial valley
A classic U-shaped glacial valley

Is this a cirque or a caldera?
Is this a cirque or a caldera?

Jacquelyn Hams, August 2, 2006

NOAA Teacher at Sea
Jacquelyn Hams
Onboard NOAA Ship Rainier
July 24 – August 11, 2006

Mission: Hydrographic Survey
Geographical Area: Shumagin Islands, Alaska
Date: August 2, 2006

TAS Jacquelyn Hams reads X-Band radar screen
TAS Jacquelyn Hams reads X-Band radar screen

Weather
Cloudy Visibility: 8 nm
Wind direction: 100
Wind speed: 7 knots
Seawater temperature: 10 degrees C
Sea level pressure: 1011.8 mb
Temperature dry bulb: 10.6 degrees C
Temperature wet bulb: 10.0 degrees C

Science and Technology Log

I went to the Pilot House this morning to continue working on my navigating underway skills and discovered that the cruise plan had changed and that the ship will anchor in Eagle Harbor tonight.  I am given the two course plot accordingly. According to the weather report, we will run into some bad weather on route to Eagle Harbor.

Radar screen
The rain is shown by the heavy dotted areas and the ship is anchored in the center.

Personal Log 

Here are some photographs of daily activities aboard the NOAA Ship RAINIER.

Survey boats in the Northeast Bight
Survey boats in the Northeast Bight

Shawn Gendron, Hydrographic Assistant Survey Technician, processing survey line data
Shawn Gendron, Hydrographic Assistant Survey Technician, processing survey line data

Jacquelyn Hams, August 1, 2006

NOAA Teacher at Sea
Jacquelyn Hams
Onboard NOAA Ship Rainier
July 24 – August 11, 2006

Mission: Hydrographic Survey
Geographical Area: Shumagin Islands, Alaska
Date: August 1, 2006

Weather
Clear Visibility: 10 nm
Wind direction: 200
Wind speed: 10 knots
Seawater temperature: 11.1 degrees C
Sea level pressure: 1011.4 mb
Temperature dry bulb: 13.3 degrees C
Temperature wet bulb: 11.1 degrees C

Science and Technology Log 

I continue practicing navigation underway using radar and dead reckoning.  Three of the fixes I checked fall right on the ship’s course. A few others fall within an acceptable error.  The swells were a little rough so I take a break from the radar screen and charts until the late afternoon.

The NOAA Ship RAINIER anchors in Northeast Bight, Nagai Island for the night.

In the pilot house on the NOAA Ship RAINIER, from left to right, ENS Olivia Hauser, RAINIER Junior Officer,  ENS Megan McGovern, RAINIER Junior Officer,  Umeko Foster in foreground Intern, and Jacquelyn Hams, TAS on far right.
In the pilot house, from left to right, ENS Olivia Hauser, Jr Officer, ENS Megan McGovern, Jr Officer, Umeko Foster, and Jacquelyn Hams

Jessica Schwarz, June 22, 2006

NOAA Teacher at Sea
Jessica Schwarz
Onboard NOAA Ship Rainier
June 19 – July 1, 2006

Mission: Hydrographic Survey
Geographical Area: Alaska
Date: June 22, 2006

Assistant Engineer Kelly Baughman at the center console in the engine room onboard the RAINIER.  Kelly fired up the engines to get the ship underway this morning!
Assistant Engineer Kelly Baughman at the center console in the engine room onboard the RAINIER. Kelly fired up the engines to get the ship underway this morning!

Science and Technology Log 

This morning the RAINIER changed locations from Kanga Bay to Hot Springs Bay. I had an opportunity to go down in the Central Engine Room Control (CERC) and see how the engines are fired up to get the ship moving again.  Kelly Baughman, the ship’s Third Assistant Engineer (3AE), took some time to explain what I was observing down there before she got the engines going. Being in the engine room was really cool.  I was completely surrounded by buttons to push and knobs to turn and although very tempting, I didn’t touch any of them. The RAINIER has two main engines to motor her, one on the port (left) side of the ship and one on the starboard (right) side of the ship.  There are two generators that put out a total of 400 kilowatts of electrical power to the ship.  An additional smaller emergency generator is also a part of the ship, but it puts out significantly less energy than the two main generators.

On the bridge, Vessel Assistant, Kelson Baird is logging the ships position from four points on the radar screen.  The position of the points is recorded every half hour to monitor the effectiveness of the anchor.
On the bridge, Vessel Assistant, Kelson Baird is logging the ship’s position from four points on the radar screen. The position of the points is recorded every half hour to monitor the effectiveness of the anchor.

Kelly also explained how the bow thruster works on the ship.  It basically looks like a fan and helps to maneuver the ship from the bow.  There are several other things that are monitored at the center console, but we weren’t able to get to all of them.  Kelly said tomorrow morning will be a better time to go over some of the other things in the engine room since we’ll be anchored in the bay. After visiting with Kelly, I had a nice afternoon talking with crew and soaking up ship life. I made my way up to the bridge where General Vessel Assistant (GVA) Kelson Baird was monitoring weather data. He was excellent at explaining all the different instruments used in collecting weather data onboard the ship. Every hour, on the hour, Kelson recorded weather information.  He started by logging the ship’s position (latitude/longitude).  Next he recorded an overall weather condition such as cloudy, rainy, drizzle etc. Today was cloudy and rainy. Kelson then stepped outside the bridge and looked to see what point of land was the furthest he could clearly see from the ship.  Once he found his point of land he came back inside the bridge and used the radar screen to determine a distance in nautical miles that point of land was from the ship.  This gave Kelson a visibility reading. Other information Kelson recorded was wind speed in knots, using the ship’s anemometer, as well as wind direction.  Wind direction (measuring from the direction the wind is coming from) can be measured using a gyrocompass, which is an electronic compass measuring to true north.

Dry bulb and wet bulb used to record air temperature from the RAINIER.
Dry bulb and wet bulb used to record air temperature from the RAINIER.

If the ship were underway he would have also had to record wave height, swell wave height, and sea wave height. Kelson said this would be done by a very scientific method called “eye balling it”…or as I like to say, EBI. Another measurement taken while at anchor was water temperature, which, by the way, was 49° F while I was in the bridge this afternoon.  Just as a quick side note: crew of the RAINIER surf in this water and are very excited to surf in the break off of Kodiak Island when we arrive in port.  I think they are crazy, but I’d love to watch them! The last weather measurements Kelson recorded were air temperature and atmospheric pressure. Two air temperature measurements are taken: one from what is called a wet bulb and one from a dry bulb.  Then he recorded sea level (atmospheric) pressure measured by a barometer.

Kelson went on to explain about “Big Weather”, which is an ongoing data collection project where weather information is sent every six hours via satellite to be used by NOAA’s National Weather Service.  Pretty amazing all the work that is being done on the RAINIER!

Personal Log 

I am seriously impressed by how well I am being fed on the ship.  Each meal I have several hot meal options to choose from and there is always a vegetarian option for those who do not eat meat.  The soup has been excellent!  There’s a full salad bar directly next to a freezer fully stocked with Haagen-Dazs ice cream!  I think that’s pretty good.  Coffee is available all day long as well which makes me very, very happy.  I won’t indulge on hydrographic survey days. We’ve already talked about that…

Calling All Middle Schoolers–We Need Help Answering a Few Questions! 

Third Assistant Engineer Kelly Baughman explained to me today that the ship can carry up to 16,800 gallons of freshwater. She went on to say that on average the ship’s crew uses anywhere between 1,500-2,000 gallons per day.

If the RAINIER were to be at sea for 21 days without coming into port to replenish its fresh water supply, how many days would it take for the ship to run out of fresh water?

How would the ship be able to produce more fresh water without having to go into port?

Susan Just, June 19, 2006

NOAA Teacher at Sea
Susan Just
Onboard NOAA Ship Oregon II
June 15 – 30, 2006

Mission: Summer Groundfish Survey
Geographical Area: Gulf of Mexico
Date: June 19, 2006

Science and Technology Log 

There is very little to report today. The only science being done aboard the OREGON II is the data compilation of Kim Johnson, the Chief Scientist. As far as technology goes, the main action was the efficient repair of the forward radar so we could get underway again.

Personal Log 

I know I should be focused on the mission but I have to admit that I have benefited from this down time. I’d been moving fast and furious since before school ended. Taking some time to read and rest has made a new woman of me. We expect to be on station in about 20 hours so my next watch will still be clear. I’ll get some interviews in, hopefully.

Question of the Day 

What do fisheries research interns do on watch when the boat is steady steaming?

Answer: They watch DVD movies and read books.

Susan Just, June 18, 2006

NOAA Teacher at Sea
Susan Just
Onboard NOAA Ship Oregon II
June 15 – 30, 2006

Mission: Summer Groundfish Survey
Geographical Area: Gulf of Mexico
Date: June 18, 2006

Weather Data from Bridge 
Visibility: 10 nautical miles (nm)
Wind direction: 124 ◦
Wind speed: 11.6
Sea wave height: 1-2
Swell wave height: 2-3
Seawater temperature: 27.9
Sea level pressure: 1014.4
Cloud cover: 5/8 Cumulus

Science and Technology Log 

There will be no fish caught today. The OREGON II is steaming to port in Galveston. One of the two radars has failed. The ship is required to have two functioning radars in the event that one should fail. Therefore, we must return to port and make repairs.

When the radar was lost, we were underway to the tip of Texas, off the coast of Brownsville, to begin surveying in preparation for the Gulf Coast shrimping season. We expect to make port this afternoon and get underway south again sometime Monday.

Personal Log 

I don’t mind having this time off from the fish. Part of my mission is to write lesson plans that correspond to the activities aboard. This will give me time to work on the plans.

Question of the Day 

What does the radar do?

The radar serves as a set of electronic “eyes.” It recognizes obstacles in the distance so that they can be avoided by making necessary course corrections.

Mavis Peterson, June 26, 2005

NOAA Teacher at Sea
Mavis Peterson
Onboard NOAA Ship Fairweather
June 21 – July 9, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: June 26, 2005

Weather Data 

Lat.:55 o7.2 N
Long.: 160 07.4W
Visibility:  1
Wind direction: 123
True wind speed: .9 knts
Swell wave height: 1
Sea water temperature: 9.15 C
Dry bulb 19.8
Wet bulb 9.0
sea level pressure: 1011.5
Cloud cover and type: cumulus overcast

Science and Technology Log 

I spent the morning in the radar (chart?) room listening and taking in what I could of a training session on putting the physically captured information into a program called Pydro. Obstructions like new rocks are marked as primary or secondary, or for example a ledge with a rock together may be marked as primary.  There seems to be a lot of room for discretion by the person entering the information.  There are many folders of information such as AWAIS, which means there is a shipwreck feature.  There is an entry called reports that allows information to be included in sentence form.  This information will not show up on the finished product but is helpful to the cartographer that is actually making the final map.  It may make his work more accurate.  Yesterday I talked about the dotted line that might be drawn in that shows an area that is not navigable–I think I called it an obstruction line, in reality it is called a foul line. I was also given a Julian calendar which means the days are numbered 1-365.

We are pulling anchor and getting underway.  We will be leaving Eagle harbor for Sandpoint, which I have not found that on the map.  We pulled anchor at 1:30.  It is quite a process and again it is necessary that the crew is communicating effectively with one another. The crew uses some sort of sign language as well as radio communication with the bridge. It is necessary the bridge knows what is going on because they may have to move the ship in order to keep the anchor in the correct position for retrieving it.  The anchor is pulled up by a large motor and stored in a side well of the ship.  There are actually two anchors on this ship; the size of the ship dictates how many anchors it has.  I thought maybe they used both of them when anchoring in deep water, but was assured that using both was not done very often because of the motion of the water and the possibility of “braiding” the anchor lines is very real and an immense problem.  If for some reason they would use both anchors, there is a way to do it that puts the ship and the two anchors in sort of a “V” pattern and this would help with the braiding problem.  As the chain of the anchor was rolled onto the ship it was hosed off.

Answer to yesterday’s question about what happens to this information:  The completed maps are used by any ocean going vessels.  Because shorelines and the ocean floors change constantly, and because new technology is constantly being developed, this is an ongoing process that needs to be continually updated.  Charting the coastal waters was first begun under the direction of President Thomas Jefferson and has continued on to today. The first use of the information is for commerce and right behind that is the fisheries industry.  The information is available on a web page.  Some of the specialized equipment actually comes from those other countries, especially the Nordic countries.  The davits come from England.

Personal Log 

As I visit with Crewmembers, I have found that there is a great deal of turnover in this profession. NOAA ship personnel are required to spend two years at sea, then three years in offices, in places like Seattle, then another rotation at sea.  Many wage mariners choose to quit after the first five years.  Being at sea means making many sacrifices.  The FAIRWEATHER goes out on “legs” of about 10-12 days and then comes in at one of several ports for a couple of days. They are on the water over 200 (220?) days a year.  During the off-season they go to school to learn to use new equipment, and/or work on repairs for the ship.

I dropped one of my cameras on the way to the laundry room and parts fell everywhere.  Hopefully I found all the pieces and will try putting it back together later.  The LCD is not readable so I will use the other camera a lot.  I did my laundry this evening and while waiting I did some reading.  Some of the crew visited Sandpoint by launch.  I chose not to go. The last launch that returned about 12:30 a.m. had some trouble when they went to dock at the FAIRWEATHER. According to stories this morning the adrenaline was running a little high for a few minutes, but they managed to get the launch in safely, and there was no imminent danger involved.

Mary Cook, December 18, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 18, 2004

Location: Latitude 22°16.32’S, Longitude 86°10.94’W
Time: 8:30 am

Weather Data from the Bridge
Air Temperature (Celsius) 19.46
Water Temperature (Celsius) 19.81
Relative Humidity (percent) 69.46
Air Pressure (millibars) 1016.99
Wind Direction (degrees) 123.54
Wind Speed (knots) 15.73
Wind Speed (meters/sec) 7.20
Sunrise 07:57
Sunset 21:27 (9:27 pm)

Question of the Day

What does a psychrometer measure?

Positive Quote of the Day

For where your treasure is, there will your heart be also. Jesus Christ

Science and Technology Log

Today Diane and I journeyed up to the bridge struggling against the strong winds and the lurching of the ship. We interviewed Ensign Silas Ayers and “Pirate” Jim Melton. Silas gave us instruction on ship safety and navigation. He said the two most important things in navigation are: don’t hit anything and don’t run aground. Silas showed us how they plot the ship’s course on a map/chart and all the navigational instrumentation. The RONALD H. BROWN has radar that ranges up to 96 miles but it is set for 24 miles at this time. The radar is used to detect other ships that might be in our path. He also showed us the autopilot computer and controls. They can set the coordinates and the ship will drive itself!!! Of course someone has to stay on the bridge at all times, because as everyone knows computers have glitches that could cause a malfunction. That could be a disaster. Something that I find fascinating is that this ship can hover in one place! It’s officially called dynamic auto positioning. They set all the thrusters at a specific setting and the ship stays in one place. He then explained the ship’s lights. The ship has a red light on the port side and a green light on the starboard side. These lights reveal our ship’s location to other ships and enable them to ascertain our heading by watching the movement of our lights.

There’s another series of light signals that communicate the ship’s condition. For example, when we hover to do a CTD cast, the ship displays a set of red/white/red lights that tell other ships we are unable to make quick maneuvers. There’s also a set of lights that means man overboard. Another cool thing on the bridge was the spinning window. Yep. I said spinning window. It wasn’t spinning today but it can spin. (I hope they weren’t pulling my leg.) The purpose of the spinning window is to reduce ice buildup on the glass.

“ Pirate” Jim Melton shared with us the lookout duties. He keeps a watch that scans the horizon constantly. Jim uses an alidade. An alidade is a telescopic instrument that has a special swiveling balance that can compensate when the ship rolls, pitches, or yaws.

I looked through the alidade and saw a line across my field of vision. Jim said that they use that line as a reference point and they can determine the size of the ocean swells. Everyone working on the bridge must also report the complete weather data to NOAA every hour.

Before we finished, I sat in the captain’s chair and scanned the horizon for whales and other ships at sea!

Late this afternoon, Diane and I continued working on the children’s book. Bruce Cowden, the illustrator, is producing artwork faster than we’re writing the story! So we’re feverishly trying to catch up. It’s fun writing with Diane. She has a bright mind and she has a genuine excitement for atmospheric and oceanic science.

Tonight at “6:00 Science on the Fantail”, we interviewed meteorologist Dan Wolfe of the Environmental Technologies Laboratory in Boulder, Colorado and Frank Bradley physicist/ meteorologist of Australia’s Commonwealth Scientific and Industrial Research Organization. They have been studying clouds, precipitation and humidity, as well as launching radiosondes (weather balloons) 4-6 times a day. Dan explained how the radiosondes work. The instrument package records temperature, pressure, and humidity as the helium-filled balloon ascends into the sky. The radiosondes have a GPS antenna that transmits its location and another transmitter that communicates the data being collected back to the computer in the lab. All of this information is compiled to help develop a “picture” of the atmosphere in this region which has never been thoroughly studied. This information can then be used in making models for more accurate weather prediction.

Frank Bradley shared with us his work which has been in collaboration with Dr. Bob Weller and Dr. Chris Fairall for the past 20 years. Frank showed us the somewhat “old fashioned” Assman psychrometer that he uses to take the wet bulb and dry bulb temperature readings several times a day. A psychrometer’s temperature readings can be used to determine relative humidity. Frank says that he uses this low-tech instrument because nothing can go wrong. This psychrometer’s readings are then used as a validation of the high tech instruments on board. Frank said that he has studied air-sea interaction, the interface of the ocean and the atmosphere, for many years and considers it a very important area for developing better models to predict the weather.

Personal Log

Wow! I really liked the bridge! It is cool. I don’t know why they wouldn’t let me drive the ship. I mean, come on, we’re out in the middle of the biggest ocean on Earth. What could I run into? And there’s no ground in sight. Actually, there’s nothing in sight. So I’d be satisfying the two most important rules of ship navigation and safety: don’t hit anything and don’t run aground. It seems though, that I remember something about needing a license to drive. I’m not sure.

While on the bridge, I saw that our planned course will take us right by the San Felix islands. It’ll be the first land I’ve seen since December 5! I wonder what that will feel like?

As we near the end of the cruise and it seems almost all the work is done, everyone is reading guidebooks about Valparaiso and planning some excursions. Even though I’m not ready to get off the ship, I am feeling a little excited about seeing a new place. I just love to go to new places and I’ve heard that Valparaiso is one of Chile’s most beautiful cities. Diane and I are deciding what to do during our two days there. One day we want to see the city and another day we want to drive toward the Andes Mountains and get glimpse of Aconcagua, the highest mountain in all of the Americas!

Yeah! Another adventure awaits!

Until tomorrow,

Mary

Jane Temoshok, October 16, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 16, 2001

Latitude: 20º S
Longitude: 85º W
Air Temp. 19.8º C
Sea Temp. 18.6º C
Sea Wave: 1 – 2 ft.
Swell Wave: 3 – 4 ft.
Visibility: 8 – 10 miles
Cloud cover: 6/8

Science Log

LIDAR – Brandi McCarty & Scott Sandberg, ETL

Light and sound. LIDAR and RADAR. Both of these are used by scientists to observe the world. RADAR uses radio waves and LIDAR uses light waves. In this case, Brandi and Scott, from ETL in Colorado, use light waves, rather than sound waves, to observe clouds. They have a fully equipped van that was placed on the deck of the BROWN back in Seattle. Their major interest is observing the water vapor and wind velocity below and within stratus clouds. The instruments measure from 300 meters off the surface of the ocean up to about 4000 meters in the atmosphere.

Clouds have different functions. Depending upon how far they are away from the surface and what they are made from, clouds can act as a barrier to heat energy from the sun or as a blanket to keep heat trapped below.

Think of being in a hot desert. You would probably put on a light cloth to keep the burning sun out and keep you cooler. When the temperature drops though, you would want that cloth to keep your body heat in and not let it escape. Clouds are a lot like that. Mother Nature does a good job of keeping the planet at the right temperature. Now scientists want to figure out how she does it.

Brandi and Scott are working to collect lots of data that other scientists will use to make weather predictions. You can imagine that all the data that the ETL groups pull together from this trip could provide atmospheric scientists with lots of information to keep them busy for a long time.

Travel Log

R&R on NOAA Ship BROWN

In the evenings many of the scientific members as well as crew members enjoy playing games or cards, reading, or doing needlepoint. However the primary form of entertainment on the BROWN is watching videos. There is a big screen TV in the lounge. Crew member Mike puts out a schedule for the week of the videos that will be shown each night so you can plan ahead. He has hundreds and hundreds to choose from! Crew member Dave opens the ship store for us to buy popcorn or candy. The profits made at the store help to purchase new videos.

Temoshok 10-16-01 tvlounge
Scientists and crew members relax in the BROWN’s TV lounge.

Question of the day: Why is it important for all the “portholes” (windows) on the ship to be covered during the night?

Keep in touch,
Jane

 

Jane Temoshok, October 11, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 11, 2001

Latitude: 4 ºS
Longitude: 95 ºW
Air Temp: 21.0 ºC
Sea Temp: 19.0 ºC
Sea Wave: 1 – 2 ft.
Swell Wave: 3 – 4 ft.
Visibility: 10 miles
Cloud cover: 8/8

Science Log

Clouds

Today I met with meteorologist Dr, Taneil Uttal from ETL (Environmental Technology Lab) in Boulder, Colorado. She is head of a group that has done cloud studies in the Arctic. On this trip one of the things Dr. Uttal wants to determine is how similar marine clouds are to Arctic clouds. To do this she and her associate Duane Hazen use radiometers and radar which are all packed into a trailer. The whole trailer is on the deck of the RON BROWN. Think of the trailer as a big package of instruments. Duane’s job is to keep the machinery running. In the photo you can see the radar antennae on top of the trailer. It is there to measure the electromagnetic radiation at a certain frequency.

Dr. Taneil Uttal from ETL (Environmental Technology Lab) in Boulder, Colorado.
Dr. Taneil Uttal from ETL (Environmental Technology Lab) in Boulder, Colorado.

Dr. Uttal's associate, Duane Hazen.
Dr. Uttal’s associate, Duane Hazen.

Dr. Uttal and Duane Hazen use radiometers and radar which are all packed into a trailer.
Dr. Uttal and Duane Hazen use radiometers and radar which are all packed into a trailer.

In the photo you can see the radar antennae on top of the trailer. It is there to measure the electromagnetic radiation at a certain frequency.
In the photo you can see the radar antennae on top of the trailer. It is there to measure the electromagnetic radiation at a certain frequency.

Here is how Dr. Uttal explains what’s going on:

What is a cloud?
________________

A cloud is gazillions of tiny water droplets or ice crystals floating together up in the sky. Some clouds make rain and snow. Some clouds do not. In EPIC we are looking at both kinds of clouds.

What is a Radiometer?
_____________________

Think of a pokemon which has a special power that no other pokemon has. There are many things in the world around us that are just like that. For instance tiny droplets of water floating in the air are beaming certain energies that only water droplets have. If we know what the water droplet energy is like (and we do!), we can measure it and find out how much water there is in a cloud. A radiometer is a special instrument that we have here on the RON BROWN for measuring the special energy of a water droplet so we always know how much water is in the clouds over the ship. The energy of a water droplet can be named by how fast it is. A water droplet has three energies, 20 GHz, 32 GHz and 90 GHz. A GHz is 1,000,000,000 cycles per second.

What is a radar?
_________________

A radar is different from a radiometer because instead of looking for natural energy from something like a water droplet, it beams out its own energy, bounces it off of things in the sky (like water droplets in a cloud), and measures the reflected energy. By looking at the reflected energy, the radar can tell you things about a cloud that are different then what the radiometer tells you. It can tell you about how high a cloud is, how big the droplets are, and how fast the droplets are falling. The radar energy is 35 GHz.

What do you get when you look up with a radar and a radiometer?
_______________________________________________________________

When you put the data from a radar and radiometer together, you can figure out even more things, like how many cloud droplets there are, where the water is located in the cloud, and get an even better guess of how big the droplets are.

What does all this information tell you?
________________________________________

Right now people do not know very much about how clouds reflect sunlight from the sun, reflect warmth that is coming up from the earth, and change things like the temperature on the surface where we live. These things will change depending all the cloud height, how much water it has, how big the droplets are, and how fast they are falling. In EPIC, we want to know which kinds of clouds might make the ocean warmer, and which might make the ocean colder. This can have a big effect on where fish and other ocean animals might want to live and what kind of weather happens over the ocean.

Dr. Uttal is a scientist on board but she is also a mother and wife back in Colorado. Taniel and her husband Rusty, have 2 children – Kalvin, 6th grader at Baseline Middle School and Miranda, a 4th grader at Flatirons Elementary School.

Travel Log

Today I spent time on “the bridge” of the ship. This is the area that controls all the functions of the ship. The captain and his officers are responsible for all that goes on, much like the principal of the school is in charge. The best view can be had from the bridge and there are video cameras that look out over all the decks. The highlight was seeing a pod of porpoises swimming nearby. So graceful! I’m going to keep my eye out for whales.

Question of the Day: What is the fastest creature living in the sea?

Keep in touch,
Jane

Jennifer Richards, September 12, 2001

NOAA Teacher at Sea
Jennifer Richards
Onboard NOAA Ship Ronald H. Brown
September 5 – October 6, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: September 12, 2001

Latitude: 9º 56.5 N
Longitude: 95º 2.5 W
Temperature: 31.2º C
Seas: Sea wave height: 2-3 feet
Swell wave height: 4-5 feet
Visibility: 10 miles
Cloud cover: 5/8
Water Temp: 29.3ºC

Research Objective for the day: Begin taking measurements with the Lidar (ETL), the MMP (UW), weather balloons (CSU), and the SPMR (UCSB). Every group on the ship is in full swing, and will continue their operations for the next 18 days.

Science Log

Today I met with part of the group from NOAA’s Environmental Technology Laboratory in Boulder, Colorado. There are three sets of instruments being used by this team, and today I will introduce you to the researchers associated with two of those groups- the lidar group and the kaband group.

Ms. Janet Intrieri, an Atmospheric Scientist, and Dr. Raul Alvarez, a Physicist, have been working long hours each day on the Mini MOPA Lidar. This is the most labor-intensive piece of equipment on the ship, requiring constant watch and intervention to keep it running properly. It is also probably the fanciest piece of equipment on the ship, using CO2 lasers and an intricate network of lenses and mirrors to measure wind velocity and water vapor in the atmosphere. The really cool thing about the lidar is that it can measure these things at various altitudes simultaneously, up to 6-8 kilometers in range. Without the lidar, scientists could measure a specific point in the atmosphere using planes, satellites, or weather balloons, but the lidar allows Ms. Intrieri and Dr. Alvarez to see everything in a horizontal column of the sky at the same time.

How does lidar work? Lidar (which stands for Light Detection and Ranging, similar to the term Radar as used for radio waves) is a remote sensing technique that allows measurements of atmospheric conditions using laser light. The typical lidar system emits a short pulse of laser light that travels through the atmosphere. As this pulse of light goes through the atmosphere, it can interact or scatter off of various components in that atmosphere. These components can include dust, clouds, water vapor, pollutants, and even the air molecules themselves. When the light scatters off of these things, a small part of that scattered light is going back toward the receiver part of the lidar which is usually composed of a telescope (to collect as much of this light as possible) and a detector that converts the light signals into electronic signals that can be input to a computer.

How the signals that are collected are processed depends on what atmospheric properties are being measured. For information on the total amount of light scattering due to dust and clouds, we can simply look at the strength of the return signal as a function of time (which is proportional to the distance that the pulse has traveled). To gather information about the amount of water vapor in the atmosphere, one technique is to transmit two laser pulses that are at different wavelengths. One of the wavelengths is selected so that it is not affected by the water vapor, while the other is selected so that it is partially absorbed by water vapor. (Each different chemical that we might try to measure has a different absorption of light that will determine which wavelengths and types of laser must be used.) Now, as the laser pulses go through the atmosphere and as the scattered light returns to the receiver, one of the signals is attenuated (reduced) more than the other because it is being absorbed by the water vapor. The amount of water vapor that must have been in the atmosphere to cause a particular amount of signal reduction can then be calculated.

Another thing that can be measured with lidar is the wind velocity. To do this, we rely on the Doppler Effect. This effect states that as the light scatters off of the particles in the atmosphere, the frequency of the light may be shifted if the particles are moving. If they are moving towards the lidar, the frequency will be shifted up while the frequency will be shifted down for particles moving away. Since the frequency of light is extremely high and the Doppler frequency shift is very small, we need to bring the signal (light) frequency down to a manageable level. We can do this by a process called mixing. In essence, the light signal is shone onto a detector along with a small sample of laser light that is at the same frequency as the original pulse that was sent into the atmosphere. When these two beams interfere with each other, the result is a signal on the detector that is the difference in the two light frequencies. At this point, this difference signal tells us the speed of the wind, but not the direction of the wind. A shift of a few megahertz (MHz)(depending on the laser wavelength) could be due to a wind either towards or away from the lidar at a meter per second (m/s). To resolve this uncertainty, the transmitted laser pulse is shifted by a fixed amount of 10 megahertz. Now, when the atmospheric light signal and the laser sample are mixed, the shift in frequency will be offset by the 10 MHz signal. (As an example, let’s suppose that the Doppler shift due to the wind is 2 MHz. Then, the first example without a 10 MHz offset will give you simply a resultant 2 MHz signal for either a +1 m/s or -1 m/s wind, while the 10 MHz offset makes the resultant 12 MHz for a wind toward the lidar and 8 MHz for a wind away from the lidar.)

An additional piece of equipment being used by ETL is the Ka-band radar, operated by Ms. Michelle Ryan. Ms. Ryan uses Ka-band radar to study the clouds- water droplet size, condensation, and the changes between liquid, gas, and solid water. She also uses radiometers to study liquid water and vapor in a column from the ship to the sky. Her equipment complements the lidar by providing information about what’s going on above the cloud base (the lidar focuses on everything between the ocean surface and the clouds).

Thank you very much to Dr. Alvarez for translating enormously complex physics into what you just read about how the lidar works. If you read it through a couple times, it really makes sense! And they say laser physics is complex.

Travel Log

People always wonder what the food is like on the ship. Well, there is lots of it, and it’s better than what you would expect. In fact, I’ve heard some of the scientists challenging each other to see who can gain the most weight on the trip- just an excuse to try a little of everything on the buffet line, and dessert twice. There’s always a salad bar, a couple meat entrees, a couple meatless entrees, and several vegetables. One night we even had crab legs and steak! We eat during designated meal times in the mess hall, and since there are more people on the ship than there are seats in the mess, they try to get you to “eat it and beat it.” The most dangerous part of the mess is the freezer stocked with Haagen Daas ice cream, but I am challenging myself to avoid it until the last night on the ship. There are three stewards on the ship that do all the cooking and kitchen stuff. They’re really nice and friendly.

Question of the day: How much money did the U.S. spend last year on scientific research? What percent of the total budget does it represent? (Please cite your source when you send your answer)

Photo Descriptions:Today’s photos – Since today’s science log focused on the Lidar operated by NOAA Environmental Technology Laboratory (ETL), that’s what is highlighted in today’s pictures. You’ll see the ETL lab on the ship- a large container that travelled via tractor-trailor, plane, and barge to get onto the ship. There are two “vans” like this on the ship, which is where this group of ETL scientists spends most of their time. Inside the van, you’ll see Ms. Intieri at the computer controls, Dr. Alvarez tweaking the lenses in the Lidar, and in another picture, Dr. Alvarez pouring liquid nitrogen into the Lidar to keep the optics cool. Finally, you’ll see Ms. Ryan standing next to the kaband radar (looks like a large drum in the photo).

Until tomorrow,
Jennifer

Jennifer Richards, September 10, 2001

NOAA Teacher at Sea
Jennifer Richards
Onboard NOAA Ship Ronald H. Brown
September 5 – October 6, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: September 10, 2001

Latitude: 13º 25.1 N
Longitude: 100º 58.4 W
Temperature: 26.1ºC
Seas: Sea wave height: 6-8 feet
Swell wave height:
Visibility: 0.5 – 1 mile
Cloud cover: 8/8
Water Temp: 29.6ºC

Science Log

A lot of the scientists got very little work done today because the cloud cover was interfering with their instruments. The radar group from Colorado State University was in good spirits because they had a real opportunity to test their equipment during stormy conditions. They are still working out some of the bugs so that when we reach international water, they will be able to work efficiently.

Travel Log

This was the first day in a week that I felt somewhat seasick. I would like to take this opportunity to thank the makers of Meclizine for making a darn good product. We are in the middle of a storm, as you can see from the higher waves and lower visibility reported above. It certainly could be worse- I mean, the waves are only 8 feet, but it’s still an adjustment for my body since the trip has been so nice up until now. I saw a satellite image of this part of the world and you can see a huge storm brewing. I encourage you to search the Internet for current weather images (try a Yahoo search of “NCAR RAP”) and find our latitude and longitude on the map. It looks pretty impressive. It could easily develop into a tropical storm, but hopefully not until it has passed us a little. So what does it feel like to be in a storm? Well, the boat is rocking a LOT, and I’ve been losing my balance all day. I went outside to take some pictures, and was drenched in the few minutes I was there. The deck has about an inch of water sloshing around. And there’s no view of the sunset on the deck after dinner tonight.

Question of the day: What are the two factors that are used when classifying a storm as a tropical depression, tropical storm, or hurricane?

Photo Descriptions: Today’s photos include 5 shots relating to the storm we are in. You’ll see several pictures of the bow of the ship and the low visibility. At all times, there is someone on the bridge on lookout for “objects” in the water (boats, buoys, etc.) During low visibility conditions this job is even more important, since the Captain would have very little time to react if something was spotted. Of course, there is always the radar system, but it doesn’t catch everything. Finally, a picture of the Doppler radar dome, taken prior to the storm. This Doppler radar provides crucial data about the weather conditions around the ship.

Until tomorrow,
Jennifer

Jennifer Richards, September 8, 2001

NOAA Teacher at Sea
Jennifer Richards
Onboard NOAA Ship Ronald H. Brown
September 5 – October 6, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: September 8, 2001

Latitude: 19º 57.1N
Longitude: 108º 21.4W
Temperature: 30.0ºC
Seas: Sea wave height: 2-3 feet
Swell wave height: 3-4 feet
Visibility: 10-12 miles
Cloud cover: 4/8
Water Temp: 29.4ºC

Science Log

Today I met with the radar scientists from Colorado State University (Ft. Collins, Colorado). These guys are meteorologists who are studying the internal structure of storms over tropical oceans. As radar scientists, they rely primarily on radar systems for obtaining data. They are using pretty sophisticated equipment and software for their research, and have been spending the last several days just getting everything set up.

Although all four members of this group – Dr. Rob Cifelli, Dr. Walt Peterson, Mr. Bob Bowie and Dr. Dennis Boccippio – are very nice guys with a great sense of humor, from my perspective, they are somewhat the villains on the ship. These guys are hoping we will encounter storms- lots of them- the bigger, the better. Have any of you seen the movie “The Perfect Storm?”

Here’s some background information that will help you understand the research this group is working on. Storms on land and storms on the ocean tend to be about the same size vertically, but the way they function internally is quite different. On land, storms can be generated over pretty short periods of time, and can run themselves out pretty quickly. A lot of people in the mid-west are familiar with the daily rain storms that hit during summer afternoons- suddenly coming out of nowhere, and then disappearing as fast as they arrived. This is because land is full of heat pockets. You could have rivers, farms, asphalt and concrete highways, homes, and forests, and they all heat and cool at different rates. The differences in the rate of heating cause pressure gradients, which can lead to volatile weather conditions.

The ocean does not contain heat pockets the way the land does, and therefore, the air above the ocean heats more slowly. Pressure gradients in the air above the ocean are not as steep, so when storms are generated over the ocean, they grow slowly over long periods of time, and can become quite large. Do you remember hearing in the news about hurricanes? The weathermen will track hurricanes for many days to see where it is moving and how large it is getting. This is an example of an ocean storm growing slowly to a very large size.

If we can understand how storms form and behave in a certain area, it will help us understand the climate in that area. If you want to learn about the climate of San Diego, California, for example, it’s not very hard. You can visit the library and find all sorts of documents about the climate and typical weather conditions. There have been weather stations in San Diego for at least a hundred years, and there is plenty of data that has been collected. There aren’t too many surprises.

But what do we really know about climate over the oceans? Not a whole lot. Storms heat the atmosphere and affect the climate. NASA and NASDA (the Japanese Space Agency) have a satellite called TRMM (Tropical Rainfall Measuring Mission) provides data about storms from very far away, but we don’t have oceans full of weather stations to show us exactly what’s going on at the surface and in the troposphere. Plus, TRMM can only measure what it sees from the sky- the tops of storms. You have to be on the ocean to see the rest of the storm. And since the satellite passes over each location on earth only twice a day, the data can be up to 12 hours old. When’s the last time you heard of a storm that hadn’t changed in 12 hours?

How do the atmosphere and the ocean interact? How are storms in the tropics different from storms in the mid-latitude regions? What impact does the tropical ocean water have on the air above it? What impact does it have on storms that form over it? That’s where this group from Colorado State University comes into the picture. The R/V RONALD H. BROWN is equipped with a Doppler Radar system that uses microwaves to echo off of condensed water, ice crystals, and hail. It can create 3D profiles of storms within 150 km of the ship. A satellite can only see the top of the storm, but the radar system on the ship can see the internal structure of it. And if we happen to be in the middle of a big storm, the radar can see everything going on around us for the duration of the storm (not just once every 12 hours, like the TRMM satellite). Unfortunately, hurricane Henrietta was too far away to effectively measure with the radar. These guys will also be launching weather balloons from the ship to gather additional atmospheric data in the sky above us.

What can the world hope to learn from the research being done by this group? Well, if we have a better understanding of how storms are behaving in the tropics, we will have a better understanding of the factors affecting ocean climate. Since events such as El Niño originate in the tropical area of the Pacific Ocean, this research may help us better understand what causes seasonal climate changes and El Niño and provide better forecasting of such events.

Travel Log: The air temperature is getting much warmer each day, and you can definitely tell we’re in the tropics. One of my students, Kalen, asked if I had seen any wildlife? Excellent question. I forgot to mention earlier that I saw a bunch of flying fish! They were really cool- almost looked like birds jumping out of the ocean, flying 10 or 20 feet, then diving back in. You could see them just about any time you looked for them during the last couple days. We also passed a huge school of at least a hundred porpoises, about a mile away. I’m hoping we’ll see some more a little closer so I can get some pictures for you.

Have you ever heard of sailors seeing a green flash at sunset? Captain Dreves announced last night that the conditions were good to see it, so I ran out on deck. After staring at the horizon a couple minutes I saw what looked like neon green flashes of lightening, only for a second. I waited and waited and finally the sun dipped below the horizon, but I’m not sure if I saw it. I’m not sure if what I saw was THE green flash, or if my eyes were getting strained from staring at the sunset too long. I told Captain Dreves “well, I guess I have 3 and a half more weeks to see it again” and he said “I was at sea 30 years before I saw my first one.” Oh, well.

Question of the day: What causes the green flash that sailors sometimes see at sunset?

Photo Descriptions: Today’s photos show some of the equipment that the group from the Colorado State University are using for their research. Dr. Rob Cifelli and Dr. Walt Peterson are working on the computer to establish the radar settings they will be using to collect data. Bob Bowie is standing at the radar station that controls the Doppler Radar unit on the ship. Dr. Dennis Boccippio inflates a weather balloon, which you see aloft in a separate picture. Finally, all four members of the CSU team pause for a picture.

Keep in touch,
Jennifer