Tiffany Risch, August 5, 2008

NOAA Teacher at Sea
Tiffany Risch
Onboard NOAA Ship Delaware II 
July 28 – August 8, 2008

Mission: Clam and Quahog Survey
Geographical Area: South of Long Island, NY
Date: August 5, 2008

Tiffany uses a measuring board to obtain quahog lengths.
Tiffany uses a measuring board to obtain quahog lengths.

Weather Data from the Bridge 

  • Partly to mostly cloudy, with patchy a.m. fog
  • Surface winds: West-Northwest 10-15 knots
  • Waves: Swells 3-5 feet
  • Water temperature:  16o Celsius
  • Visibility:  7 nautical miles

Science and Technology Log 

We’ve almost completed the entire research cruise here on the DELAWARE II. With a few more stations to cover, it is amazing how so many clams can be processed in only a week and a half at sea. Here on the DELAWARE II, scientists use digital recording devices such as scales and measuring boards to obtain accurate records. They also use computer programs that are specialized for the research being done.

When a tow is completed and the catch sorted, each surf clam or quahog goes through a series of measurements.  Each bushel of clams is massed, and then each one is digitally measured.  With sometimes over 2,000 clams to process, this technique is helpful because we can complete a station in as little as 30 minutes.  The computer program used for this purpose asks the measurer to select the species, and then it automatically records whatever the clam measures width wise on the measuring board.

There are only about twelve stations left to go before we arrive in Woods Hole, Massachusetts.  Most stations turn up a moderate number of surf clams and quahogs.  Tonight, we ended up hitting an area that contained a lot of rocks.  All of them must be cleared from the dredge by the crew before the next tow can be performed.  This sometimes can take as long as an hour, depending on what is collected.  Scientists then sometimes question whether there could be surf clams and quahogs in this specific area, so they’ll prepare to do a set-up. A set-up involves towing the region five times with intervals of 200 yards separating each tow. This allows scientists to examine what exactly could be=2 0in a specific area, and if it was just chance that allowed so many rocks to be brought up in one specific tow. Also in the future, this clam survey will be done by commercial vessels; therefore a calibration needs to be done using the current dredge versus a commercial one.  Set-ups help with this process.

Something else found in a recent tow: Scallops!
Something else found in a recent tow: Scallops!

Personal Log 

I am very happy that I had this experience as a Teacher At Sea. In the past two weeks, I have gained a wealth of knowledge regarding surf clams and quahogs, bur also what life at sea is like, and who the people are that conduct research to hopefully understand more about populations dynamics.  I also have not been as tired before as I have been on this trip! Getting used to a time change by working through the night, and conducting so m any tows in a twelve hour period leaves your body fatigued.  At 1:00pm when I’m finished with lunch, all I can think about is sleep.

When tows are brought to the surface, a neat variety of other things are often brought up as well.  I have significantly contributed to my seashell collection by finding lots of different whelk, scallop, and snail shells, along with some sand dollars.  I also kept a surf clam and a quahog shell as a reminder of my trip.  Because each shell has its matching other half, they are each known as a clapper. I can’t wait to share all of my interesting stories, pictures, and experiences with my students back in Coventry, Rhode Island when I return.  I could only hope that people who truly have an interest in science could experience something like this one day!

Tiffany Risch, August 2, 2008

NOAA Teacher at Sea
Tiffany Risch
Onboard NOAA Ship Delaware II 
July 28 – August 8, 2008

Mission: Clam and Quahog Survey
Geographical Area: South of Long Island, NY
Date: August 2, 2008

Weather Data from the Bridge 

  • Mostly cloudy with isolated showers
  • Surface winds: 5 to 10 knots
  • Waves: Swells 2-4 feet
  • Water temperature:  23o Celsius
  • Visibility:  7 nautical miles
The dredge being brought back up onto the ship after being deployed
The dredge being brought back up onto the ship after being deployed

Science and Technology Log 

As I began my shift, I noticed on the map hanging in the dry lab that we are working our way towards an area southeast of Nantucket called Georges Bank.  Georges Bank is a shallow rise underwater where a variety of sea life can be found. Before long, we were called to the deck for our first station of the morning.  We set the dredge, hauled it back, sorted the catch, measured and recorded data, and moved on to the next station. Recording data and sorting are two of my favorite things to do, especially when it involves shucking the clams for the meat to be measured!  My watch seemed to be on a record pace, as we managed to complete seven hauls all before breakfast at 5:00am.  This process happens around the clock on the DELAWARE II, maximizing the amount of data we collect while at sea for two weeks.  

Later in the day, the winch that is used to haul the dredge back from the water suffered a power problem.  I and the person controlling the dredge noticed this right away, as one of my jobs is to switch the power on to the pump that the dredge uses.  I alerted my watch chief, and also the chief scientist for this cruise who quickly began to assess the situation.  Over the next hour or so, things became very busy on the back deck as the captain, engineers, and scientists tried to solve the problem.  They did manage to get the power back to the winch again, which enabled the dredge to be brought back onboard the ship. The amount of talent exhibited by so many people on this ship continues to amaze me.  They always have answers for everything, and Plan B for any situation is always on their minds!

Collecting and sorting the variety of marine life that we find. Here, TAS Risch holds up some sea stars.
Collecting and sorting the variety of marine life that we find. Here, TAS Risch holds up some sea stars.

Personal Log 

Today was a really exciting day of sorting, as my watch found a variety of different organisms.  I actually saw a live scallop clapping in the bucket after it was hauled up!  Other interesting creatures included a Little Skate (Raja erinacea), which is a fish made of cartilage and is closely related to rays and sharks, a sea robin, sea squirts, hermit crabs, some sea stars, and even a few flounders. One of the more unusual characters that we encountered onboard was called a Yellow boring sponge, otherwise known as a Sulfur sponge or “Monkey Dung”. We take measurements of all of these things and quickly return them to their home in the ocean. Very early this morning, around 1:00am I visited the bridge, or the area where the captain controls and steers the ship from, to see what everything looks like at night. Crew member Claire Surrey was on the bridge tonight, making sure the ship stayed on its course.  The area was very quiet and dimly lit by the various monitors that broadcast

information back to the officer in charge.  The ocean was pitch black, and I could only see faint lights of a few other ships bobbing up and down in the waves very far away.  What a cool experience to see the ocean at night, with a starry sky, and know that all types of instruments are guiding my voyage through the sea!

New Words/Terms Learned 

Min-logs:  sense temperature, depth, and pressure underwater on the dredge, and are brought back to the surface and recorded via computer.

Starboard: the right side of a ship

Port: the left side of the ship

Tiffany Risch, July 30, 2008

NOAA Teacher at Sea
Tiffany Risch
Onboard NOAA Ship Delaware II 
July 28 – August 8, 2008

Mission: Clam and Quahog Survey
Geographical Area: South of Long Island, NY
Date: July 30, 2008

Weather Data from the Bridge 

  • Hazy in the morning with less than 6 miles visibility
  • Calm seas with little cloud cover
  • Wind speed = 5 knots
  • Waves = Wind drives waves < 1 foot
  • Water temperature:  23o Celsius
Tiffany uses a measuring board to obtain quahog lengths.
Tiffany uses a measuring board to obtain quahog lengths.

Science and Technology Log 

Today started with an early morning shift, working from 12:00 am to 12:00 pm.  As my watch took over, the DELAWARE II began steaming towards the first station of the day to conduct a survey of the surf clam and quahog size and abundance inhabiting this specific area. In order to complete a survey of the area, a dredge is used to capture any surf clams or quahogs that are pushed out of the bottom sediment.  On the top of the dredge are hoses that push pressurized water onto the bottom to loosen up any bivalves.  A bivalve is an organism that has shells consisting of two halves, such as in a clam or a scallop. The dredge is towed behind the DELAWARE II for five minutes at a speed of 1.5 nautical miles per hour.  Attached to the dredge are sensors which transmit dredge performance information back to scientists in the dry lab to record and analyze.  The accuracy of the survey depends greatly on the credibility of the sensor data, and therefore, scientists must monitor variability of the dredge.  After the dredge is brought back to the surface, the load must be sorted, measured, and then discarded.

After listening to a presentation by Larry Jacobson, I learned a lot of new facts about both Atlantic sufclams (Spissula solidissima) and Ocean quahogs. Surf clams live only about 15 years, grow very fast, and can inhabit ocean waters stretching from Cape Hatteras in North Carolina to Newfoundland.  These bivalves are found in waters less than 50 meters of water. Ocean quahogs on the other hand can live for greater than 100 years, are very slow growing, and are found in ocean waters between 50 and 100 meters deep from Cape Hatteras, around the North Atlantic to the Mediterranean.

Giving power to the hydraulic pump.
Giving power to the hydraulic pump.

Scientists on this cruise are also interested in studying other aspects of the clam populations, such as a condition called Paralytic Shellfish Poisoning. Because bivalves are filter feeders, they eat by filtering food out of the waters around them.  Sometimes, algae can contaminate clams using a toxin that is harmful to humans.  When this happens and humans eat the shellfish, they themselves can become quite sick.  Samples of clam meats are being taken during this research cruise to be studied back at a lab and determine what exactly is happening in regards to Paralytic Shellfish Poisoning.

Personal Log 

Today has been quite interesting, as I moved through the many stations that are involved with conducting this survey. I was trained on how to measure clams in the wet lab, how to apply the power to the dredge in the dry lab, and even how to shuck a clam to retrieve the meat which is also measured.  I was also quite amazed regarding how efficient everyone is on the ship, as we all have a job to do, and it all gets done before we arrive at the next station.

One of my highlights today was overcoming my sea sickness and finally getting my sea legs!  Everyone is so supportive, from the officers, to the scientists, and to the volunteers who are all so nice and helpful. I’m looking forward to my next eight days at sea and learning more about the research being conducted.

Laurie Degenhart, July 23, 2008

NOAA Teacher at Sea
Laurie Degenhart
Onboard NOAA Ship Delaware II 
July 14-25, 2008

Mission: Clam Survey
Geographical Area: North Atlantic
Date: July 23, 2008

Weather Data from the Bridge 
Winds at 170° at 23 knots
Sea temperature: 18.9° C
Air temp 22.6° C
Swells: 1
Atmosphere: Clear

Laurie and some fellow crewmembers are covered with clay and mud after climbing in the dredge
Laurie and some fellow crewmembers are covered with clay and mud after climbing in the dredge

Science and Technology Log 

The last two days have been less hectic.  The scientists have had to make several repairs.  The sensors on the dredge were having problems recording data.  Sean Lucey, Chris Pickett, and TK Arbusto, as well as other scientists have spent several hours replacing sensors and making sure that the sensors were logging accurate data.  In order for the survey to be reliable the scientists at sea and in the lab decided that the ship needed to return to previously tested sites to  insure that the sampling techniques had not changed with the changes in the sensor.

We have sampled both Quahogs and Surf Clams today.  It seems that some locations are dominated by the Quahogs, while others are mainly Surf Clams. The weather has been hot and humid.  So far in the trip, the Delaware II has been able to avoid the storms farther to the south. Tonight however, the winds are starting to pick up. We may see rain! Today I climbed up in the dredge compartment when it was full of clay.  Even though I knew that the dredge was very safe, I still worried that I might fall into the ocean.  The clay was very dense with rocks. Sean Lucey, chief scientist, used a high pressure hose to loosen the majority of the mud, but it was still a big slippery muddy job.  John, the Chief Bosun, told me that a full load of mud weighs almost 9000 pounds!  There were very few clams in the load.

Personal Log 

This shift has been very busy. The tows have been pretty much back to back.  All the people on my shift have formed a great team.  Though the work is hard we seem to be able to make it fun….

I continue to be impressed with the NOAA officers and scientists.  The scientists have to have knowledge of oceanography, marine biology and statistics in order to execute accurate sampling.  Another area of expertise is in trouble shooting all the scientific equipment… after all there is no running to the hardware store for spare parts. Today when the sensors broke the scientists, mechanical engineers, and the bosun had to work together to correct the problem.

Both the NOAA officers and the scientists have to be able to cope with volunteers (me included) that have no knowledge of life at sea. Each new crewmember has learn to fit in…I’m sure that this tries the patience of the seasoned crew.  Being aware of all the ins and outs of life at sea is quite a learning process. For example, I went to the bridge after dark… it seemed to be pitch black…. actually the Executive Officer was “on watch”  having the lights out made it easier for him to see both the ocean and the electronic equipment that he had  to use in order to safely captain the ship.

One of my goals for the trip is to put together a collection of photographs that depicts all the aspects of life aboard the Delaware II.  So far I have over 300 photographs.  The crew seems quite pleased…many members ask if I can take more pictures.

During this voyage I have learned a great deal about how a ship runs.  I am very pleased to have had the opportunity to work aboard the Delaware.  I will create a DVD with the images and video clips that I have gathered. I want to share my experience with students, teachers, and student teachers. NOAA offers great resources for educators and a vast selection of careers for those who wish to live a life that is rewarding and exciting.

Laurie Degenhart, July 20, 2008

NOAA Teacher at Sea
Laurie Degenhart
Onboard NOAA Ship Delaware II 
July 14-25, 2008

Mission: Clam Survey
Geographical Area: North Atlantic
Date: July 20, 2008

Weather Data from the Bridge 
Winds at 200° at 23 knots
Sea temperature: 24.2° C
Air temp 24.6° C
Swells: 0
Atmosphere: Clear

Science and Technology Log 

Scientists and volunteers sort dredge materials.
Scientists and volunteers sort dredge materials.

We are now into day 7 of our clam survey.  Everyone on the ship pulls together as a team to make each tow a success.  Each location for a dredge site is called a station.  The NOAA crew in charge of the ship must not only be at exactly the correct longitude and latitude, but the depth of the water, the speed of the tow, and the condition of the sea (waves and swells) must also be considered. There are three separate places on the ship where these decisions are made.  The bridge controls the location of the ship and notes the conditions of the sea.  The chief bosun controls the dredge towing. He manages the cables, depth, and length of the tow. The scientist in the lab choose the exact location of the tow and the depth.  The scientists use sensors attached to the dredge to log data about the tow. The bosun reels the cable back to the ship and onto the platform.  After the tow has been made the deck hands secure the dredge compartment where the catch is.

The scientific crew then measures and counts the clams.  A scientist from the FDA, Stacey Etheridge, has the science crew shuck a certain number of clams.  She then homogenizes them in a food processor to take back to the laboratory to test for possible toxins.  The NOAA scientists collect data on the different types of clams as well as the size and weight.  They are also trying to determine the age of the clam given the rings on the shell. In addition to the scientist on the Delaware II, there is an entire NOAA crew.  There are engineers, ship’s officers, and fishermen.  Everyone has specific assignments.  The NOAA officers are at sea approximately 244 days a year.  The NOAA careers website here.

Personal Log 

The scientists must have many skills in order to keep the study going.  Not only do they have to know about the clams, but also how to fix problems with the computer program and its sensors, as well as the mechanical operation of the dredge equipment.

The weather at sea has been very hot and humid.  The hours are long. We do approximately 10 tows on a twelve-hour shift.  Think about this… each tow gathers around 4 thousand pounds of material off the ocean floor.  That makes 40,000 pounds.  There are 7 people on our shift. That means each of us sorts and moves around 5700 pounds in a shift…. that’s as much as a small car!  I guess I can have dessert with lunch today.  The work is enjoyable.

Tina and I have shucked over 500 clams.  We ROCK, or should I say CLAM, at shelling Quahogs.  The Captain told me that we may feel the effects of tropical storm, Cristobol.  I sure hope I don’t get seasick.  I learned a new skill…swabbing the deck.  It is amazing the range of tasks each crewmember has to have to keep the ship running smoothly.

Our Chief Scientist, Sean Lucey, oversees all of the roles of the scientists and volunteers.  It’s a big job and he sets the tone for the rest of us.  Everyone is positive and willing to do whatever is needed. Jakub, the Watch Chief, oversees the general operation of sorting and measuring the clams.  Both Sean and Jakub are great at teaching me the ropes so that I can do my best.  One time as I was on my way to my “station” Sean remarked,  “I know you’ll be ready.”  I thought that was great, sometimes I get anxious about doing the exact right thing at the right time.

I am starting to think about the lesson plans that I am going to write.  I want to make a simulation of a clam survey for elementary students using Oreo Cookies to gather data.  Sean is going to give me data from the trip to use in my lesson plans.  One of my goals for my presentations is to go to various Vocational Classes to talk about all the facets of NOAA as a career path. I also want to develop a presentation about the roles of a scientist, showing the different aspects of the skills that they have.

Once again the meals have been great.  I was told that the Stewards, John and Walter, have a reputation for providing the best food of all the NOAA ships.  Sure seems right to me!  We have had great meals. One night we had Sea Bass, another night we had lamb chops.  There is always an abundance of vegetables and fruit. Then there is dessert… apple pie!

Laurie Degenhart, July 15, 2008

NOAA Teacher at Sea
Laurie Degenhart
Onboard NOAA Ship Delaware II 
July 14-25, 2008

Mission: Clam Survey
Geographical Area: North Atlantic
Date: July 15, 2008

Weather Data from the Bridge 
Winds at 200° at 7 knots
Sea temperature: 20.7° C
Air temp 24.4° C
Swells: 160 4’ 12 sec.
Atmosphere: Clear

Science and Technology Log (Monday, July 14 – Thursday, July 17) 

NOAA Teacher at Sea, Laurie Degenhart, gets ready to set sail on the DELAWARE II.
NOAA Teacher at Sea, Laurie Degenhart, gets ready to set sail on the DELAWARE II.

We set sail midday on Tuesday, July 15, 2008. Monday was spent with repairs. We heard a presentation by Dr.Larry Jacobson, the head of the Clam Survey Project.  He explained that there was a general shift in the populations of Surf Clams and Ocean Quahogs.

This study is collecting data for his team to use in determining the changes and possible causes of the change.  NOAA and the clam fishing industry enjoy a good relationship, working handin-hand to protect the clam population and promote clam fishing. We were taken to the NOAA storeroom and outfitted with our “foul weather gear.” We wear the gear on board to sort and shuck clams. We each were issued boots, yellow bib overalls, and an orange rain slicker….I look quite dashing.

Laurie dons a survival suit during a ship safety briefing.
Laurie dons a survival suit during a ship safety briefing.

Chief scientist, Sean Lucey, gave us a general description of the work that we would be doing.  Sean stressed how important accuracy is in all the facets of the Clam Survey.  There are several assignments.  Each person is assigned a shift.  My shift is from Noon until midnight.  That’s 12 hours! We are not to return to our room until our shift is over, because the other women I share the room are on the opposite shift and will be sleeping. I am on a team with Jakub Kircun, as the Watch Chief.  He is very patient and kind, even when I make a mistake.  There are seven people on our team: four NOAA scientists, one graduate student who is studying plankton, one volunteer, and me, the Teacher at Sea.

General Description of a Clam Dredge 

The back of the Delaware II has a large metal dredge (it looks like a giant square shifter-See photo.) The cage is lowered to the sea floor at pre-determined random locations and dragged by a special cable called a hauser for exactly 5 minutes.  Then the dredge is hauled back to the boat and its contents are dumped on a platform.  We all sort through the dredged material sorting out clams and other sea life, throwing the rest back out to sea. The clams are measured, weighed, and some meat specimens are taken for examination.  Computers record a vast array of information for the scientists.  Sean Lucey (Chief Scientist) is always making decisions where we go and provides the lab and other scientists information about the catch.  The team does around 10 or so tows in a twelve hour shift.

First Assignment 

I was assigned by, Jakub Kircun, Watch Chief, to record information about the tow a using computerized data collection system called SCS (Scientific Computer Systems). I go into a room on the bridge and listen to the deck department communicating with the bridge and I record when the dredge is on the bottom, towing, and back on deck.  The information is tracked in SCS with button pushers. I also log information about wave height, swell direction, and swell height, which I receive from the officer on watch.  I also need to record depth, time, and speed of the boat during a dredge tow. This provides accurate data for the scientists back on land to analyze. As soon as that part of my job is finished, I come down stairs to help sort and shuck the clams..

The clam dredge aboard the DELAWARE II
The clam dredge aboard the DELAWARE II

Personal Log 

Holy Cow, a 12 hour shift….from noon until mid-night!  I was worried, but the shift seems to fly by. There is always something that needs to be done.  I was assigned by Jakub Kircun, Watch Chief, to record the sensors for the dredge itself.  What a responsibility!!! Talk about pressure.  Sean, Chief Scientist, has been really great. His sense of humor has helped ease my stress.  I never realized how much computers are used aboard a ship to monitor experimental data.  Not to mention the general running of the ship….. There are 31 computers in all. For each tow which Sean and Jakub call a station, I do the recording for the dredge then come down stairs…put on my boots and bib overalls and head out to sort the clams with the others on my team.  It’s a big job…good thing I am used to working in the woods of Wyoming… otherwise, I don’t think I could keep up!!!

Laurie sorts clam on the fantail of the ship.
Laurie sorts clam on the fantail of the ship.

After we sort the clams, Tina, a graduate student from University of Connecticut, and I measure and weigh the clams using a special computerized machine called a Limnoterra Fish Measuring Board. Tina and I are becoming great clam shuckers. We need to weigh the clams both with and without the shell. Joe, the other volunteer, also helps weigh and shuck the clams.  Sometimes they are sweet smelling… but sometimes not!  They look nothing like Howard Johnson’s Clam Strips!

I have started a shell collection to bring back to my school.  I will be working with the Science Coordinator to design science experiments that use data from our trip.  The Chief Scientist, Sean Lucey, is working with me to develop lesson plans that use the data being collected. Just learning to find my way around the ship has been a challenge.  I’ve learned to find the galley…. great food. Walt and John, the ship’s stewards, are fantastic chefs.  Today we had crab cakes with lemon sauce, vegetables, and peach cobbler with whipped cream for dessert.  I am telling myself that as much physical work as I am doing I can eat what I want….that’s my story and I am sticking to it!

All the crew has been welcoming and accepting.  Richie and Adam, NOAA crewmembers, take care of securing the dredge. It looks like a dangerous job to me!  They both have a great sense of humor.