Sue Cullumber: Testing the Water and More, June 19, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/19/2013
Geographical area of cruise: The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Latitude/longitude: 3853.256 N, 7356.669W
Temperature: 18.6ºC
Barometer: 1014.67 mb
Speed: 9.7 knots

CTDscreen

CTD reading on the computer. Blue is density, red is salinity, green is temperature and black indicates the depth.

Science and Technology Log:

Even before the plankton samples are brought onboard, scientists start recording many types of data when the equipment is launched. The bongos are fitted with an electronic CTD (conductivity, temperature and density) and as they are lowered into the ocean the temperature, density and salinity (salt content) are recorded on a computer. This helps scientists with habitat modeling and determining the causes for changes in the zooplankton communities. Each bongo net also has a flow-through meter which records how much water is moving through the net during the launch and can is used to estimate the number of plankton found in one cubic meter of water.

ZIplankton

Zooplankton (Z) and Icthyoplankton (I) samples.

The plankton collected from the two bongo nets are separated into two main samples that will be tested for zooplankton and icthyoplankton (fish larvae and eggs). These get stored in a glass jars with either ethanol or formalin to preserve them. The formalin samples are sent to a lab in Poland for counting and identification. Formalin is good for preserving the shape of the organism, makes for easy identification, and is not flammable, so it can be sent abroad.  However, formalin destroys the genetics (DNA) of the organisms, which is why ethanol is used with some of the samples and these are tested at the NOAA lab in Narragansett, Rhode Island.

sueplankton

Holding one of our zooplankton samples – photo by Paula Rychtar.

When the samples are returned from Poland, the icthyoplankton samples are used by scientists to determine changes in the abundance of the different fish species. Whereas, the zooplankton samples are often used in studies on climate change. Scientists have found from current and historic research (over a span of about 40 years) that there are changes in the distribution of different species and increases in temperature of the ocean water.

At the Rosette stations we take nutrient samples from the different water depths. They are testing for nitrates, phosphates and silicates. Nutrient samples are an important indicator of zooplankton productivity. These nutrients get used up quickly near the surface by phytoplankton during the process of photosynthesis (remember phytoplankton are at the base of the food chain and are producers). As the nutrients pass through the food chain (zooplankton eating phytoplankton and then on up the chain) they are returned to the deeper areas by the oxidation of the sinking organic matter. Therefore, as you go deeper into the ocean these nutrients tend to build up.  The Rosettes also have a CTD attached to record conductivity, temperature and density at the different depths.

Chris-DICtests

Scientist, Chris Taylor, completing the dissolved inorganic carbon test.

CO2test

The dissolved inorganic carbon test uses chemicals to stop any further biological processes and suspend the CO2 in “time”.

Another test that is conducted on the Rosettes is for the amount of dissolved inorganic carbon. This test is an indicator of the amount of carbon dioxide that the ocean uptakes from outside sources (such as cars, factories or other man-made sources). Scientists want to know how atmospheric carbon is affecting ocean chemistry  and marine ecosystems and changing the PH (acids and bases) of the ocean water. One thing they are interested in is how this may be affecting the formation of calcium in marine organisms such as clams, oysters, and coral.

New word: oxidation – the chemical combination of a substance with oxygen.

canal

Cape Cod canal.

Personal Log:

This week we headed back south and went through the Cape Cod canal outside of Plymouth, Massachusetts. I had to get up a little earlier to see it, but it was well worth it.  The area is beautiful and there were many small boats and people enjoying the great weather.

smallboat

Small boat bringing in a new group to the Gordon Gunter.

We also did a small boat transfer to bring five new people onboard, while three others left at the same time. It was hard to say goodbye, but it will be nice to get to know all the new faces.

dolphinsthree

Common Dolphins swimming next to the Gordon Gunter.

So now that we are heading south the weather is warming up. I have been told that we may start seeing Loggerhead turtles as the waters warm up – that would be so cool.  We had a visit by another group of Common Dolphins the other day. They were swimming along the side of the ship and then went up to the bow. They are just so fun to watch and photograph.

We have been seeing a lot of balloons (mylar and rubber) on the ocean surface. These are released into the air by people, often on cruise ships, and then land on the surface. Sea turtles, dolphins, whales and sea birds often mistake these for jelly fish and eat them.  They can choke on the balloons or get tangled in the string, frequently leading to death. Today, we actually saw more balloons than sea birds!!! A good rule is to never release balloons into the air no matter where you live!

balloon

A mylar balloon seen in the water by our ship.

Did you know?  A humpback whale will eat about 5000 pounds of krill in a day. While a blue whale eats about 8000 pounds of krill daily.

Question of the day?  If 1000 krill = 2 pounds, then together how many krill does a humpback and blue whale consume on a daily basis.

Blue Whale, Balaenoptera Musculus

Blue Whale, Balaenoptera Musculus

Frank Hubacz: The Final Leg, May 10, 2013

NOAA Teacher at Sea
Frank Hubacz
Aboard NOAA ship Oscar Dyson
April 29 – May 11, 2013

 

Mission: Pacific Marine Environmental Laboratory Mooring Deployment and Recovery

Geographical Area of Cruise: Gulf of Alaska and the Bering Sea

Date: May 10, 2013

Weather Data from the Bridge (0200):

W wind 10 kt. Chance of light snow.

Air Temperature 2.6C

Relative Humidity 82%

Barometer 1025.5 mb

Surface Water Temperature 4.30 C

Surface Water Salinity 32.91 PSU

Seas up to 3 ft

Science and Technology Log

As we continue to complete CTD sampling on our last full day at sea, the major change from previous days is that the depth of the Bering Sea has increased dramatically. For the past couple of days we have been riding along the 70 m depth line.  We are now casting down to 1,500 m with the ocean bottom currently at 2,298 m.

My previous blogs have focused on the instrumentation and sampling methods used on the cruise.  I would now like to introduce you to the members of the science team on board the Oscar Dyson for this cruise.

William (Bill) Floering, Chief Scientist

William (Bill) Floering, Chief Scientist, NOAA-PMEL

William (Bill) Floering, Chief Scientist, NOAA-PMEL

Education:  BS Biology, University of Washington; BS Wildlife Biology, Oregon State University.

Position/Affiliation: Chief Scientist on Cruise, Field Operations Specialist/ NOAA/PMEL/OERD (30+yrs)

Duties on cruise: Oversee the entire cruise operations, objectives, staffing, and mooring deployment.  He is constantly “on duty” and serves as liaison between ship personnel and the science team.

Data:  Data collected will be used to better understand the physical and biological properties of the ocean water in the Gulf of Alaska and the Bering Sea.  PMEL makes this data readily accessible to scientist of many disciplines to use.

Alphabetically Listed

Carol DeWitt

Carol DeWitt, PMEL
Carol DeWitt, NOAA/PMEL/FOCI

Education:  BS Biological Oceanography, Florida Institute of Technology

Position/Affiliation: Field Operations Specialist/PMEL/FOCI (25+yrs)

Duties on cruise: Ensures that all of  FOCI’s instruments are prepped, shipped to the Oscar Dyson prior to departure, and in working order once the cruise begins.  Join in with all other team members in helping to complete onboard operations.

Data:  Data collected will be used to better understand the physical and biological properties of the ocean water in the Gulf of Alaska and the Bering Sea.  PMEL makes this data readily accessible to scientist of many disciplines to use.

Scott McKeever

Scott McKeever, NOAA-PMEL

Scott McKeever, NOAA-PMEL

Education:  BS Atmospheric Science, University of Washington

Position/Affiliation: Research Scientist, Physical Oceanography Technician (2+ yrs)/ NOAA/PMEL/OERD

Duties on cruise: Mooring deployment and recovery along with CTD water sampling.  Join in with all other team members in helping to complete onboard operations.

Data:  Data collected will be used to better understand and monitor the physical properties of the ocean water in the Gulf of Alaska and the Bering Sea.

Kathy Mier

Kathy Mier, NOAA-AFSC

Kathy Mier, NOAA-AFSC

Education:  MS Statistics, University of Louisiana, Lafayette

Position/Affiliation: Statistician (19+ yrs)/ NOAA/Alaska Fisheries Science Center (AFSC)

Duties on cruise: Complete CTD water sampling as well as oversee Bongo tows and preservation of tow samples.  Join in with all other team members in helping to complete onboard operations.

Data:  Some of the data collected by her group will be analyzed by scientist in Poland.  Kathy offers her statistical expertise to researchers reviewing collected data. Once data is analyzed it will be used to better understand and monitor the physical properties of the ocean water in the Gulf of Alaska and the Bering Sea.

Dan Naber

Dan Naber

Dan Naber

Education:  BS Geology, University of Alaska, Fairbanks

Position/Affiliation: Research, Mooring Technician (5+ yrs)/ UAF Institute of Marine Science

Duties on cruise:  Prepare various monitoring instruments for deployment on moorings.  Water sampling for nutrients, dissolved inorganic carbon, and dissolved oxygen.  Join in with all other team members in helping to complete onboard operations.

Data:  Data collected will be used to better understand and monitor the physical properties, including monitoring ocean acidification, of the ocean water in the Gulf of Alaska and the Bering Sea. 

Peter Proctor  

Peter Proctor, Ph.D., University of Washington

Peter Proctor, Ph.D., University of Washington

Education:  Ph.D., Case Western Reserve University

Position/Affiliation: Research Scientist/ Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington (11+ yrs)

Duties on cruise: Oversee the operation and data collection of CTD casts.  Additionally, collect nutrient, salinity, DO samples from CTD drops. Join in with all other team members in helping to complete onboard operations.

Data:  Data collected will be used to better understand and monitor the physical properties of the ocean water in the Gulf of Alaska and the Bering Sea.  Data will also be used collaboratively in fisheries assessment within this geographical region.

Matthew Wilson

Matthew Wilson, NOAA-AFSC

Matthew Wilson, NOAA-AFSC

Education:  MS Fisheries, Oregon State University

Position/Affiliation: Fisheries Research Biologist (25+ yrs)/ NOAA/Alaska Fisheries Science Center (AFSC)

Duties on cruise:  Oversee Bongo tows and preservation of tow samples as well as ensure proper collection of chlorophyll samples.  Join in with all other team members in helping to complete onboard operations.

Data:  Chlorophyll samples will be used to standardize instrumentation used on board. Once data is analyzed it will be used to better understand and monitor the physical properties of the ocean water in the Gulf of Alaska and the Bering Sea. Matt’s research in helping to better understand Pollock fisheries will soon be published in the Journal of Marine Science.

If you are interested in pursuing a career in “marine science”, broadly defined, the collective advice from the science team is as follows: let your passion for studying the Ocean be your drive; experience this field firsthand through internships and volunteer opportunities aboard cruises; diversify your studies so that you have a broad background in several disciplines; through all of these experiences make certain that you truly do have a desire to pursue this field of science.

I would like to take this opportunity to thank Peter Proctor for his time, expertise, and willingness to share his knowledge of the ocean with me.  I also appreciated his patience in teaching me the techniques of CTD nutrient sampling, my “job” on the cruise. His humor and wit helped to make the downtime on our cruise enjoyable and always a learning experience.

Finally, I continue to be impressed with the leadership that Bill exhibits on board ship. His efforts ensured that valid “science” research was conducted during the cruise.  The data collected, once analyzed, will add to our knowledge base of the ocean waters of the Gulf of Alaska and the Bering Sea.  I would like to personally thank Bill for allowing me to have the opportunity to actively work alongside the science research team on this cruise.

Personal Log

In my “science and technology” log above I introduced you to the science crew.  In this section, I would like to introduce you to someone who works very hard to keep “everybody happy” on board ship.  Frank Ford is Chief Steward aboard the Oscar Dyson for this cruise. 

Frank Ford, Chief Steward

Frank Ford, Chief Steward

Frank is an experienced chef providing us with nutritional, well balanced, food 24 hours per day.  On a ship, meals are served at specific times but everyone works different shifts and therefore is not always able to be at a serving.  Therefore, Frank needs to ensure that all of our dietary needs are met regardless of our personal work schedule. As I have indicated in previous blogs, I never went hungry. There is always a wide range of fruit, yogurt, snacks, leftovers, etc. available.  Frank also closely monitors the temperament of the crew as we eat our meals in the galley, via his open kitchen, and is always there to chat with us.  Thanks Frank for your multiple and varied menu offerings! I know that my students would be very pleased to have Frank Ford as our head chef on campus.

Prepping the Prime Rib!

Prepping the Prime Rib!

Seasoning with a "special blend"

Seasoning with a “special blend”.  Notice the open kitchen!

My favorite meal aboard ship

My favorite meal aboard ship!

On this cruise I have had the opportunity to not only work with the science team but to also meet and work with members of the NOAA Officers Corp as well as the NOAA deck crew.  I have discovered that they come from a variety of backgrounds as well as from all over the United States. However, they all have in common a love for being on the open sea.  I am impressed with their candor, openness, and their professionalism.  I have made many new friends! Thank you for the opportunity to sail on your ship!

Since leaving Seward, Alaska on April 29th, we have steamed over 2,000 nautical miles (2,300 miles) and traversed from the Gulf of Alaska (North Pacific) into the Bering Sea.   This journey has truly been a rewarding and phenomenal educational opportunity for me.  I am truly honored to have had the opportunity to be a NOAA Teacher at Sea “student” and truly hope that other teachers, from across the United States, will continue to have this opportunity.  Recognizing and understanding the role that the “Ocean” plays in the overall health of our Planet is critical.  It is imperative that we provide our students with a robust education along with an understanding and appreciation for the discipline of Ocean science research. 

Did You Know?

Seniors, not to worry , I will be back on campus to attend your graduation!

Bill cleaning recovered mooring instruments

Bill still working!

Farewell Alaska!

Farewell Alaska!