Kathleen Gibson, Hammerheads on the Line, August 4, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Mission: Shark Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coast
Date:  Aug 4, 2015

Coordinates:
LAT   3323.870N
LONG    07736.658 W

Great Hammerhead Photo Credit: Ian Davenport
Great Hammerhead (Photo Credit: Ian Davenport)

Weather Data from the Bridge:
Wind speed (knots): 28
Sea Temp (deg C): 29.2
Air Temp (deg C):  24.2

Early this morning the night shift caught and cradled a great hammerhead shark (Sphyrna mokarran). This is a first for this cruise leg. I’m sure that just saying “Hammerhead” conjures an image of a shark with an unusual head projection (cephalofoil), but did you know that there are at least 8 distinct Hammerhead species?  Thus far in the cruise we have caught 4 scalloped hammerheads (Sphyrna lewini), one of which I was fortunate to tag.

Science and Technology Log

All eight species of hammerhead sharks have cephalofoils with differences noted in shape, size, and eye placement, to name a few. Research indicates that this structure acts as a hydrofoil or rudder, increasing the shark’s agility. In addition, the structure contains a high concentration of specialized electro sensory organs (Ampullae of Lorenzini) that help the shark detect electric signals of other organisms nearby.  The eye placement at each end of the cephalofoil allows hammerhead sharks to have essentially a panoramic view with only a slight movement of their head – quite handy when hunting or avoiding other predators.

 

Comparison of Scalloped and Great Hammerhead Sharks

Comparison of Scalloped and Great Hammerhead Sharks
Image Credit: NOAA Fisheries Shark Species

Great hammerhead sharks are highly migratory. They are found worldwide in tropical latitudes, and at various depths. There are no  geographically Distinct Population Segments (DPS) identified. The great hammerhead, as its name implies, is the largest of the group and average size estimates of mature individuals varies between 10-14 ft in length with a weight approximately 500 lb.; the largest recorded was 20 ft in length. The one we caught was ll ft. in length.

Great Hammerhead Photo Credit: Ian Davenport
Great Hammerhead
Photo Credit: Ian Davenport


Great Hammerhead
Great Hammerhead

As with most shark species, the numbers declined rapidly between 1975 and 1995 due to the fin fishing industry and focused sport fishing often fueled by fear and misinformation. One has to wonder what the average length was before that time.

Scalloped Hammerhead sharks are the most common hammerhead species. Their habitat overlaps that of the great hammerhead, though they are more often found in slightly shallower waters. In contrast to the great hammerhead, scalloped hammerheads are only semi-migratory, and scientists have identified Distinct Population Segments around the world.  This is important information when evaluating population size and determining which groups, if any, need regulatory protection.

Weighing a small Scalloped Hammerhead Photo Credit: Ken Wilkinson
Weighing a small scalloped hammerhead
Photo Credit: Ken Wilkinson

 

Scalloped Hammerhead on deck. Photo: Erica Nuss
Scalloped hammerhead on deck
Photo: Ian Davenport

The average life expectancy for both species is approximately 30 years.  Males tend to become sexually mature before females, at smaller weights; females mature between 7-10 years (sources vary). In my last log I discussed shark reproduction – Oviparous vs. Viviparous. (egg laying vs. live birth).  All hammerheads are viviparous placental sharks but reproductive patterns do differ. Great hammerheads bear young every two years, typically having 20-40 pups. A great hammerhead recently caught by a fisherman in Florida was found to be pregnant with 33 pups. Scalloped have slightly fewer pups in each brood, but can reproduce more frequently.

 

Career Spotlight – NOAA Corps

Setting and retrieving the Longline requires coordination between Deck Operations and the Bridge.  Up until now I’ve highlighted those on deck. Let’s learn a bit about two NOAA officers on the Bridge.

The NOAA Corps is one of the 7 Uniformed Services of the United States and all members are officers. The Corps’ charge is to support the scientific mission of NOAA, operating and navigating NOAA ships and airplanes.  Applicants for the Corps must have earned Bachelor’s degree and many have graduate degrees.  A science degree is not required but a significant number of science units must have been completed.  It’s not unusual for Corps recruits to have done post-baccalaureate studies to complete the required science coursework.  New recruits go through Basic Officer’s Training at the Coast Guard Academy in New London, Connecticut.

Lt. Lecia Salerno – Executive Officer (XO) – NOAA 

Lt. Lecia Salerno at the Helm
Lt. Lecia Salerno at the  helm or the Oregon II during Longline retrieval.

Lt. Salerno is a 10-year veteran of the NOAA Corps and has significant experience with ship operations.  She was recently assigned to the Oregon II as the XO. This is Lecia’s first assignment as an XO and she reports directly to Captain Dave Nelson. In addition to her Bridge responsibilities, she manages personnel issues, ship accounts and expenditures. During these first few weeks on her new ship, Lt. Salerno is on watch for split shifts – day and night – and is quickly becoming familiar with the nuances of the Oregon II.  This ship is the oldest (and much loved) ship in NOAA’s fleet, having been built in 1964, which can make it a challenge to pilot. It’s no small task to maneuver a 170-foot vessel up to a small highflyer and a float, and continue moving the ship along the Longline throughout retrieval.

Lecia has a strong academic background in science  and in the liberal arts and initially considered joining another branch of the military after college.  Her  assignments with  NOAA incorporate her varied interests and expertise, which she feels makes her job that much more rewarding.

Lt. Laura Dwyer on the Bridge of the Oregon II
Lt. Laura Dwyer on the Bridge of the Oregon II

Lt. Laura Dwyer- Junior Officer – NOAA Corps

Laura has always had a love for the ocean, but did not initially look in that direction for a career.  She first earned a degree in International Business from James Madison University.  Her interest in marine life took her back to the sea and she spent a number of years as a scuba diving instructor in the U.S. and Australia.  Laura returned to the U.S.  to take additional biology coursework.  During that time she more fully investigated the NOAA Corps, applied and was accepted.

Laura has been on the Oregon II for 1.5 years and loves her work.  When she is on shift she independently handles the ship during all operations and also acts as Navigator.  What she loves about the Corps is that the work merges science and technology, and there are many opportunities for her to grow professionally. In December Laura will be assigned to a shore duty unit that is developing Unmanned Underwater Vehicles (UUV).

Personal Log

Measuring a Sharpnose Photo: Kristin Hannan
Notice the white spots on the dorsal side of this atlantic sharpnose, characteristic of this species.
Photo: Kristin Hannan

It’s amazing to think that just over a week ago I held my first live shark.  We caught over  30 sharks at our first station and our inexperience showed.  At first even the small ones looked like all teeth and tail, and those teeth are not only sharp but carry some pretty nasty bacteria. It took all of us (new volunteers) forever to get the hooks out quickly without causing significant trauma to the shark–or ourselves.  A tail smack from this small-but-mighty tiger shark pictured below left me with a wedge-shaped bruise for a week!

Immature Male Tiger Shark. He's cute but he taught me a lesson with his tail.
Immature Male Tiger Shark.
He’s cute but he taught me a lesson with his tail.

Since then we have caught hundreds of sharks.  We’ve caught so many Atlantic Sharpnose that on occasion it seems mundane.  Then I catch myself and realize how amazing it is to be doing what I’m doing– holding a wild animal in my hands, freeing it from the circle hook (finally!), looking at the detailed pattern of its skin, and feeling it’s rough texture, measuring it and releasing it back into the sea.

Sandbar Shark on the Line
A beautiful sandbar shark on the line.

I’m pleased to be able to say that my day shift team has become much more confident and efficient.  Our mid-day haul yesterday numbered over 40 sharks, including a few large sharks that were cradled, and it went really smoothly.

Weighing in. Hook out - No Problem! Photo: Jim Nienow
An Atlantic Sharpnose weighing in at 2.1 kg.
Photo: Kristin Hannan

 

Out it Comes - No Problem Photo: Ian Davenport
Taking a closer look at an Atlantic Sharpnose shark.
Photo: Ian Davenport

At this point I’ve had a chance to work at most of the volunteer stations including baiting hooks, throwing off the high-flyer marker, numbering, gangions, throwing bait, data entry,  tagging shark, removing hooks, and measuring/ weighing.  A highlight of last night was getting to throw out the hook to pull in the high-flyer marker at the start of retrieval.  I’m not known for having the best throwing arm but it all worked out!

Ready to Throw Photo: Kristin Hannan
Ready to Throw
Photo: Kristin Hannan
Got it! Photo: Kristin Hannan
Right on Target!
Photo: Kristin Hannan

 

Question of the Day:  What is this?

Can you identify these?
Can you identify these?

NOAA SHARK FACTS: Bite off More that you can chew

For more on hammerheads: click

For my incoming  Marine Science students — Investigate two other hammerhead species. How are they distinguished from great hammerheads?

 

Kathleen Gibson, Wild Weather, August 2, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Photo taken from the highest point on the ship.
A Nurse Shark in the cradle
Photo taken from the highest point on the ship.

Mission: Shark Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coast
Date: Aug 2, 2015

Coordinates:
LAT   3428.300 N
LONG  07705.870 W 

Weather Data from the Bridge:
Wind speed (knots): 11.2
Sea Temp (deg C): 29.1
Air Temp (deg C):  25.7

Science and Technology Log: Shark Reproductive Strategies

Rough Seas and bad weather have delayed our sampling.  I’m getting use to walking sideways.

Bringing in gangions in the rain.
Bringing in gangions in the rain.

Today we reached the northernmost sampling station of our cruise, just off the North Carolina coast. The latest stations have been further off shore than those previous and we’ve caught fewer sharks. However, the sharks we have caught have been much larger. Our catch included Sandbar Sharks, Scalloped Hammerhead, Spinner, Nurse and Black Nose.

Sharks have a number of reproductive strategies ranging from egg laying to placental formation. Oviparous sharks produce and release egg cases made of a collagen (protein). The case surrounds the developing embryo and a large yolk with the vital nutrients required for shark development. This is called lecithotrophic (all nutrients from yolk). Oviparous sharks can take to 2 years to develop within the egg case.

Cat shark adult (Image courtesy of Ian Davenport)
Adult cat shark
(Image courtesy of Ian Davenport)
Cat Shark egg case. Photo Courtesy of Ian Davenport
Cat shark egg case. Photo Courtesy of Ian Davenport

Sharks that give birth to live young are considered Viviparous. Within this category there are two major types. Those that produce eggs with large yolks with all required nutrients, but remain in the uterus for gestation, are called yolk-sac vivipores (ovoviviparous, or aplacental viviparity). In some cases, offspring will consume other eggs (oophagy) in the uterus to gain additional nutrients. An advantage to this type of reproduction is that the young sharks are larger when they are born and have a higher survival rate.

Yolk-sac embryos (Image courtesy of Ian Davenport, Ph.D.)
Yolk-sac embryos (Image courtesy of Ian Davenport, Ph.D.) 

The last group, considered to be the most advanced, is the Placental Group. As with the other types, a yolk is produced that can initially provide some nutrients to the developing pup. However, in the uterus the yolk sac after it is depleted is modified into a placenta through which nutrients can pass from parent to offspring. While fewer offspring are produced at one time, they are typically more robust and have a higher survival rate. Most of the sharks we have caught on this cruise are placental vivipores.    

Placental Shark (Image courtesy of Ian Davenport)
Placental Shark
(Image courtesy of Ian Davenport)

Career Spotlight: Dr. Ian Davenport, Ph.D., Research Scientist

Dr. Ian Davenport, Ph.D., is a Developmental Biologist at Xavier University, New Orleans, and has been a volunteer on this cruise for 7 years.

Dr. Ian Davenport dissecting a female Sharpnose shark.
Dr. Ian Davenport dissecting a female Sharpnose shark.

Ian hails from Manchester, England, and his path to becoming a scientist was quite unusual. Similar to others on board, he always had an interest in Marine Science, and sharks in particular, but school was not a priority early on. He spent time travelling and learned a trade as well. He finally decided to return to school, but being accepted was a challenge. Fortunately Ian’s academic ability was recognized and he was accepted to the University of Newcastle upon Tyne where he studied Marine Biology, but a course in Developmental Biology particularly resonated. He went on to earn his Ph.D. in shark developmental biology at Clemson University.

Ian’s research focus is in evolution of “live bearing.”  As noted above, shark species employ a number of reproductive strategies. Placentals are considered to be the most advanced. Ian is studying the eggs of placental sharks and the structure of the cells that surround the egg. His research has revealed some interesting cell features that may aid in nutrient delivery to the developing embryo. If a female shark is caught during the cruise and does not survive, Ian collects the eggs for later study.

Career Spotlight: Chuck Godwin, Deck Crew and Environmental Compliance officer

Chuck has a B.A. in History and has also studied Wildlife Management. Chuck spent 10 years in the Coast Guard and left in 2000, but he was recalled to active service on two occasions – after 9/11 and after Hurricane Katrina. In addition to his work as part of the deck crew, where he is involved in all deck operations, Chuck is also the Environmental Compliance Officer. As such, he manages hazardous waste compliance.

Chuck Godwin hauling in the Longline.
Chuck Godwin hauling in the Longline.

It’s apparent that Chuck enjoys his work. He is all business when he needs to be, but has a knack for adding a note of levity when appropriate. He keeps me laughing, even when the fish aren’t biting. Chuck notes that as a member of the Coast Guard, part of his job was to enforce U.S. fisheries laws. With NOAA he plays an important role in establishing those regulations and this makes the work that much more rewarding.

Personal Log

The weather has been poor since yesterday. Lightning caused a five-hour delay in setting the longline in the night; the ship traversed back and forth over the sampling area waiting for the worst of the storm to pass. Sleeping was a challenge – I think some of us were airborne a few times. Thank goodness for the patch and a few saltine crackers. I took the video below in my bunk as I was nodding off to sleep.

Today’s rough seas and high winds prevented us from using the cradle to bring sharks up to deck height. Ken’s dual laser device, mentioned in my last blog post, was put to good use to estimate the size of the large sharks before they were released.

I need to give shout out to the ship’s cook Walter Coghlan and the second cook O.C. (Otha) Hill. The food has been great and plentiful. ( Homemade Mac n’ Cheese – need I say more?)  Walter takes special care to set aside a plate for us if we are on duty during mealtime. The ice cream sandwiches are much appreciated too.

In the kitchen with Walter.
In the kitchen with Walter.

New species seen since last posting: Sharksucker (a type of Remora, Echeneis naucrates), Blacktip (Carcharhinus limbatus) 

Trying to get a Remora to stick to my arm. What a strange feeling. (Photo: Kristin Hannan)
Trying to get a Remora to stick to my arm. What a strange feeling. (Photo: Kristin Hanna
The view from the Bridge
The view from the bridge.

  

Still working on the hooks. (Photo: Ken Wilkinson)
Still working on the hooks. (Photo: Ken Wilkinson)

Check out these interesting shark facts.

Jennifer Goldner: Sharks 101, August 18, 2011

NOAA Teacher at Sea
Jennifer Goldner
Aboard NOAA Ship Oregon II
(NOAA Ship Tracker)
August 11 — August 24, 2011

Mission: Shark Longline Survey
Geographical Area: Southern Atlantic/Gulf of Mexico
Date: August 18, 2011

Weather Data from the Bridge
Latitude: 26.05 N
Longitude: 84.05 W
Wind Speed: 5.20 kts
Surface Water Temperature: 30.30 C
Air Temperature: 31.20 C
Relative Humidity: 67.00%

Science and Technology Log

Living in the landlocked state of Oklahoma, I am unfamiliar with sharks.  Thus today, with the help of the scientists, I’m going to give some basics of sharks that I have learned this week.  Class title:  Shark 101.  Welcome to class!

Let me start by telling you the various sharks and amount of each we have caught this week in the Gulf of Mexico. We have caught 7 nurse sharks, 2 bull sharks, 4 sandbar sharks, 73 Atlantic sharpnose sharks, 15 blacknose sharks,  5 blacktip sharks, 5 smooth dogfish, 2 silky sharks, and 4 tiger sharks.  For those of you that took the poll, as you can see the correct answer for the type of shark we have caught the most of is the Atlantic sharpnose shark.   The sharks ranged in size from about 2 kilograms (Atlantic sharpnose shark) to 100 kilograms (tiger shark). Keep in mind a kilogram is 2.24 pounds. 

In addition to the sharks caught we have also caught yellowedge, red, and snowy grouper, blueline tilefish, spinycheek scorpionfish, sea stars, and a barracuda.

From the last post you now know that we soak 100 hooks at a time. Throughout the survey we have had as little as no sharks on the line in one location and up to 25 on the line in other locations.

Me holding a spinycheek scorpion fish
Me holding a spinycheek scorpionfish
Blueline tile fish
Blueline tilefish
Drew, Scientist, holding a barracuda
Drew, Scientist, holding a barracuda
yellowedge grouper
Yellowedge grouper

When a shark is brought on board, it is measured for total length, as well as fork length (where the caudal fin separates into the upper and lower lobes).  The sex of the shark is also recorded.  A male shark has claspers, whereas a female shark does not.  The shark’s weight is recorded.  Then the shark is tagged. Lastly, the shark is injected with OTC (Oxytetracycline) which can then be used to validate the shark’s age.  It should be noted that for larger sharks these measurements are done in the cradle.  For perspective, I had Mike, fisherman, lay in the cradle to show the size of it. Also on this trip, some of the scientists tried out a new laser device.  It shoots a 10 cm beam on the shark.  This is then used as a guide to let them know the total length.  Thus, the shark can actually be measured in the water by using this technique.

Do you see the 2 laser dots on the shark?  This 10 cm increment helps scientists estimate the length of the shark.

Mike, Fisherman, in the shark cradle- It is approximately 8 feet long.
Mike, Fisherman, in the shark cradle — It is approximately 8 feet long.
Shark diagram
Shark diagram
Mark Grace, Chief Scientist, weighs a shark
Mark Grace, Chief Scientist, weighs a shark
Male shark on the left (with claspers), female shark on the right (no claspers)
Male shark on the left (with claspers), female shark on the right (no claspers)
Mark Grace, Chief Scientist, and Adam, Scientist, measure a nurse shark in the cradle
Mark Grace, Chief Scientist, and Adam, Scientist, measure a nurse shark in the cradle
Mark Grace, Chief Scientist, assists me tagging an Atlantic sharpnose shark
Mark Grace, Chief Scientist, assists me tagging an Atlantic sharpnose shark
Tim, Lead Fisherman, holds the bull shark while I tag it!
Tim, Lead Fisherman, holds the bull shark while I tag it!
Giving antibiotics to an Atlantic sharpnose shark
Injecting OTC into an Atlantic sharpnose shark

Here are some things I learned about each of the sharks we caught.

1.  Nurse shark:   The dorsal fins are equal size.  They suck their food in and crush it.  Nurse sharks are very feisty.  See the attached video of Tim, Lead Fisherman and Trey, Scientist, holding a nurse shark while measurements are being taken.

The skin of nurse sharks is rough to touch.  Incidentally, all  types of  sharks’ skin is covered in dermal denticles (modified scales) which is what gives them that rough sandpaper type feeling.  If you rub your hand across the shark one way it will feel smooth, but the opposite way will feel coarse.

Dermal denticles, courtesy of Google images
Dermal denticles, courtesy of Google images
Cliff, Fisherman, getting a nurse shark set to measure
Cliff, Fisherman, getting a nurse shark set to measure

2.  Bull shark– These are one of the most aggressive sharks.  They have a high tolerance for low salinity.

Bianca, Scientist, taking a blood sample from a bull shark
Bianca, Scientist, taking a blood sample from a bull shark
bull shark
Bull shark
sandbar shark
Sandbar shark

3. Sandbar shark– These sharks are the most sought after species in the shark industry due to the large dorsal and pectoral fins.  The fins have large ceratotrichia that are among the most favored in the shark fin market.

4.  Atlantic sharpnose shark– The main identifying characteristic of this shark is white spots.

Atlantic sharpnose shark
Atlantic sharpnose shark

5.  Blacknose shark– Like the name portrays, this shark has black on its nose.  These sharks are called “baby lemons” in commercial fish industry because they can have a yellow hue to them.

blacknose shark
Blacknose shark
Me holding a blacknose shark
Me holding a blacknose shark

6.  Blacktip shark- An interesting fact about this shark is that even though it is named “blacktip,” it does not have a black tip on the anal finThe spinner shark, however, does have a black tip on its anal fin.

Jeff and Cliff getting a blacktip shark on board
Jeff and Cliff getting a blacktip shark on board
Tagging a blacktip shark
Tagging a blacktip shark

7. Smooth dogfish– Their teeth are flat because their diet consists of crustaceans, such as crabs and shrimp.

Travis, Scientist, weighing a smooth dogfish
Travis, Scientist, weighing a smooth dogfish

8. Tiger shark– Their teeth work like a can opener.  They are known for their stripes.

A large tiger shark got tangled in our line.  Notice the 2-3 foot sharpnose shark. The tiger shark is about 5 times larger!
A large tiger shark got tangled in our line. Notice the 2-3 foot sharpnose shark at the left. The tiger shark is about 5 times larger!
Me with a tiger shark
Me with a tiger shark
Daniel, Scientist, holding a tiger shark
Daniel, Scientist, holding a tiger shark

9.  Silky shark- Their skin is very smooth like silk.

Daniel, Scientist, holding a silky shark
Daniel, Scientist, holding a silky shark

Another thing I got to see was shark pups because one of the scientists on board, Bianca Prohaska, is studying the reproductive physiology of sharks, skates, and rays.  According to Bianca, there are 3 general modes of reproduction:

1.  oviparous–  Lays egg cases with a yolk (not live birth).  This includes some sharks and all skates.

2.  aplacental viviparous – Develops internally with only the yolk.  This includes rays and some sharks.  Rays also have a milky substance in addition to the yolk.  Some sharks are also oophagous, such as the salmon shark which is when the female provides unfertilized eggs to her growing pups for extra nutrition.  Other sharks, such as the sand tiger, have interuterine cannibalism (the pups eat each other until only 1 is left).

3. placental viviparous– Develop internally initially with a small amount of yolk, then get a placental attachment.  This includes some sharks.

Yet another thing that scientists look at is the content of the shark’s stomach. They do this to study the diet of the sharks.

Skate egg case, Courtesy of Google images
Example of oviparous- Skate egg case, Courtesy of Google images
Placental viviparous
Example of placental viviparous
Dogfish embryo, courtesy of Google images
Example of aplacental viviparous- Dogfish embryo, courtesy of Google images
Contents from the stomach of a smooth dogfish (flounder and squid)
Contents from the stomach of a smooth dogfish (flounder and squid)

Personal Log

Anyone who knows me realizes that I appreciate good food when I eat it.  Okay, on NOAA Ship Oregon II, I have not found just good food, I have found GREAT cuisine!   I am quite sure I have gained a few pounds, courtesy of our wonderful chefs, Walter and Paul.  They have spoiled us all week with shrimp, steak, prime rib, grilled chicken, homemade cinnamon rolls, turkey, dressing, mashed potatoes, and gravy, and the list goes on!   Just talking about it makes me hungry!

Walter is a Chef de Cuisine.  I want to share with you two of the wonderful things, and there are many more, he has prepared for us this week.  The first is called ceviche.  On our shift we caught some grouper.  Walter used these fish to make this wonderful dish.

Grouper used to make ceviche
Grouper used to make ceviche

In addition to the grouper, the ingredients he used were lemon juice, vinegar, onions, jalapeno, kosher salt, and pepper.  He mixed all the ingredients together.  The citric acid cooks the raw fish.  It has to be fresh fish in order to make it.  Instead of lemon juice, apple juice or orange juice can be substituted.  All I know is that since I arrived on NOAA Ship Oregon II, I heard from the entire crew about how great Walter’s ceviche was and it did not disappoint!

Walter, Chef de Cuisine, with his award winning ceviche
Walter, Chef de Cuisine, with his award winning ceviche
Walter's maccaroons
Walter’s macaroons

Another thing Walter is famous for on board NOAA Ship Oregon II are his macaroons.  These are NOT like ANY macaroons you have ever tasted.  These truly melt in your mouth.  Amazingly, he only has 4 ingredients in them: egg whites, powdered sugar, almond paste, and coconut flakes.  They are divine!!

On another note, I would like to give a shout out to my 5th grade students in Jay Upper Elementary School!  (I actually have not had the chance to meet them yet because I am here as a NOAA Teacher at Sea.  I would like to thank my former student, Samantha Morrison, who is substituting for me.  She is doing an outstanding job!!)

Dolphin swimming alongside the ship
Dolphin swimming alongside the ship

Jay 5th Grade:  I cannot wait to meet you!  Thank you for your questions!  We will have lots of discussions when I return about life at sea.  Several of you asked if I have been seasick.  Fortunately, I have not.  Also, you asked if I got to scuba dive.  Only the dive crew can scuba dive.  We are not allowed to have a swim call (go swimming) either.  As you can see, there is plenty to do on board!  Also, you may have noticed that I tried to include some pictures of me tagging some sharks.  Lastly, this dolphin picture was requested by you, too.  Dolphins LOVE to play in the ship’s wake so we see them every day.

Enjoy the view!

I LOVE the scenery out here!  I thought I’d share some of it with you today.

I thought these clouds looked like dragons. What do they look like to you?
I thought these clouds looked like dragons. What do they look like to you?
The vertical development of clouds out here is amazing!
The vertical development of clouds out here is amazing!
Starboard side at sunset
Starboard side at sunset
Sunset from the stern
Sunset from the stern
Sunset in the Gulf of Mexico aboard NOAA Ship Oregon II
Sunset in the Gulf of Mexico aboard NOAA Ship Oregon II
Sunset, port side
Sunset, port side