Laura Grimm: What Makes the Great Lakes So Great?, August 3, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: August 3, 2022

Weather Data from my home office in Dalton, Ohio

Latitude: 40 45.5’ N

Longitude: 081 41.5’ W

Sky Conditions: Partly Cloudy

Visibility: 10+ miles

Wind Speed: 9 mph with gusts up to 23 mph

Wind Direction: SW

Air Temperature: 87 F (31 C)

Heat Index: 92 F (33 C)

Relative Humidity: 57%

Science and Technology Log

What is under all that water? 

Have you ever wondered what the seabed (lakebed) made of?  This information is important for several reasons: knowing where to anchor, pipeline &/or structure construction, habitat, dredging, etc.  Information about the sediments can be found on navigational charts.  Periodically, hydrographers need to take bottom samples to update these charts.  To do this, they bring the ship to a halt and drop a spring-loaded sampler to the seafloor.  The sampler snaps shut, capturing a sample of the bottom substrate.  The sediments that are brought aboard are analyzed according to grain size which range from clay (< 0.002 mm) to stones (4.0 mm and larger).

  • a spring-loaded trap attached to a rope, resting on deck
  • two scientists wearing hard hats and life vests prepare to lower the bottom sampler. one is holding on to the rope attached to the sampler, while the other directs the sampler with a pole or a hook
  • Laura, wearing a hard hat and life vest, pulls on the rope attached to the bottom sampler (strung over a pulley)
  • On the top of the chart is a ruler measuring 0-100 millimeters. 0-4 mm is classified as "granules," 4-8 mm as "small pebbles," 8-16 mm as "medium pebbles," 16-32 mm as "large pebbles," 32-64 mm as "very large pebbles," and 64-100 mm as "small cobbles." An inset box notes that 128-256 mm is classified as "large cobbles" and anything larger than 256 mm are "boulders." In the lower part of the chart, there are nine boxes with photos of grains of different sizes, topped by a scale ranging from 0-2000 micrometers. At the low end of the range, 0-125 micrometers is classified as "very fine sand," 125-250 micrometers as "fine sand," 250-500 micrometers as "coarse sand," 1000-2000 micrometers as "very coarse sand." and inset box notes that 3.9-62 micrometers is classified as "silt."
  • Bottom Sample Sediment Classification Tables. Sediment Size Classification, with Grain Size in millimeters: Clay - < 0.002 mm. Silt - 0.002-0.0625 mm. Sand (fine) - 0.00625-0.25 mm. Sand (medium) - 0.25-0.5 mm. Sand (coarse) - 0.5-2.0 mm. Gravel- 2.0-4.0 mm. Pebbles-4.0-64.0 mm. Cobble-64.0-256.0 mm. Boulder- >256.0 mm. Stone - 4.0-256.0+

What is it called to drive a ship?  The action of driving a ship is probably most often called piloting the ship. You may also hear people use the words steer, navigate, guide, maneuver, control, direct, captain, or shepherd.  Whatever you want to call it – I was super excited to pilot the ship.  I was also a bit nervous because it is so big!  Maneuvering a 208’ vessel seemed a bit daunting.

I first got some excellent tutoring by Helmsman AB Kinnett and Conning Officer ENS Brostowski.  All I needed to do was to make a 180ᵒ turn.  How difficult could it be?  I needed to take the ship out of the navigation system (commonly called, Nav Nav), go from autopilot to manual steering, follow the Conning Officer’s rudder directions, do some fine tuning, switch from manual steering to autopilot, and turn on the Nav Nav system.  Easy shmeezy! 

My legs were shaking just a bit.  I guess I did okay.  Someone did call up from the plot room and ask, “Just who is driving the ship?”  Haha.  They calmed down once they learned it was just “the teacher”. 

  • Laura, wearing a Teacher at Sea hat, stands at the helm of NOAA Ship Thomas Jefferson. To her right is AB Kinnett. To her left is ENS Brostowski pointing at a screen.
  • Laura at the helm (now we can see the wheel.) AB Kinnett and ENS Brostowski look on.
  • Laura stands at the helm (the wheel is out view.) ENS Brostowski, standing behind her with arms folded, issues instructoins.
  • Laura, at the helm (wheel visible), looks upward and reaches for something (out of frame) with her right hand. AB Kinnett stands in the background but looks directly at the camera.
  • screenshot of a navigation screen that displays the recent track of NOAA Ship Thomas Jefferson as lines on a nautical map

Parallel Parking

We came into the Port of Cleveland on July 22.  The crew did a super job of parking!  (I am sure “parking” is not the correct term.)  They used the windlass and ropes to secure the ship to the port (on the starboard side) and then put the gangway in place.  Don’t forget to take out the garbage!

  • view of Cleveland over the bow of NOAA Ship Thomas Jefferson
  • the interior of the ship is mostly dark in this photo, but we can see the lighthouse through the circle of porthole.
  • view of the stadium from the water
  • view over the bow of NOAA Ship Thomas Jefferson. three crewmembers, wearing hard hats and life vests, prepare to throw ropes over the rail as the ship pulls up alongside a dock. tall buildings of downtown Cleveland are visible in the background.
  • three crewmembers, wearing hard hats and life jackets, operate the windlass on the bow deck of NOAA Ship Thomas Jefferson.
  • a crane swings the gangway (a ramp with railings) over the side of the ship, ready to lower it into place.
  • crane lowers the gangway into place; crewmembers wearing hard hats and life jackets pull on ropes to help maneavuer it
  • gangway, still attached to crane, in place, connecting the deck of NOAA Ship Thomas Jefferson to the dock.
  • crane lifts a set of six steps, with railings, in the air. a davit of NOAA Ship Thomas Jefferson is visible in the background.
  • the steps lead up from the deck to the top of the gangway, which then ramps down to the dock. the fast rescue boat (stowed on board) is visible in the background.
  • crane lifting a crate filled with blue and black trash bags
Laura, wearing a Teacher at Sea hat, and four crewmembers, wearing hard hats, pose for a photo on the dock, in front of stacks of large coils of metal wiring
On dry land after 19 days!  This crew was amazing!  From left to right: 1AE Perry, ENS Castillo, TAS Grimm, BGL Bayliss, AB Thompson. 

Personal Log

In late April 2022, I was informed by the NOAA Teacher at Sea office that I would sail aboard NOAA Ship Thomas Jefferson on a hydrographic survey of Lake Erie in July.  Truthfully, I didn’t know what hydrography entailed – but I was familiar with Lake Erie.

I grew up only 20 miles from the Port of Cleveland.  As a child, my family spent a week each summer on Middle Bass Island where I learned to swim and fish for walleye and perch.  I was a sun-kissed, towheaded child that liked to catch frogs and talk with insects.  My daughter and I vacationed on Kelleys Island for many summers.  I even took an oceanography class on Gibraltar Island.  I was very excited to learn more about the Lake of my childhood.

  • a satellite map of the Great Lakes, with each lake labeled. no other political features are labeled.
  • a political map of the Great Lakes showing the lakes and the surrounding states and provinces. A dashed white line through Lakes Superior, Huron, Erie, and Ontario marks the division between U.S. and Canadian waters.
  • a political map of the Great Lakes, with the outline of the Great Lakes' watershed superimposed.
  • shapes and positions of Great Lakes superimposed on satellite map of Central Europe. Lake Superior reaches west to the Netherlands, and Lake Ontario east of Budapest.
  • shapes of the 25 largest lakes, to scale, all arranged near one another for comparison.

So, why are the Great Lakes so Great? 

The following video will help you get an idea of why these lakes are so significant.  See if you can answer the following questions while watching the video.

  1. How many lakes make up the Great Lakes?
  2. Why is the word “HOMES” a good way to remember the names of the lakes?
  3. How many states border the Great Lakes?
  4. What country is north of the Great Lakes?
  5. Geologically speaking, how did the Great Lakes come to be?
  6. How much of the world’s fresh surface water is in the Great Lakes?
  7. Which lake is the deepest, coldest, and contains ½ of the water in the Great Lakes system?
  8. Which two lakes are “technically” one lake?  Why?
  9. Which lake has the longest shoreline?
  10. Which lake is the warmest and shallowest?
  11. How does water get from Lake Erie to Lake Ontario?
  12. How does water that starts in Lake Superior finally get to the Atlantic Ocean?
  13. List three reasons why the Great Lakes are so great!
  14. List a few things that are causing problems for the Great Lakes.
  15. What effect is climate change having on the Great Lakes?
  16. How are people and governments trying to protect this GREAT resource?
What is so great about the Great Lakes?

When I travel, I like to read books that have a connection to my experience.  While on Thomas Jefferson, I read The Death and Life of the Great Lakes by Dan Egan.  It outlines the vast resources provided by the Great Lakes.   Not only do they hold 20% of the world’s supply of surface fresh water, they also provide food, transportation, and recreation to tens of millions of Americans and Canadians.   The Great Lakes are so very lifegiving, however, they are in trouble.  They are under threat as never before.  They need our help. 

In his book, Egan describes how invasive species – like the sea lamprey, zebra and quagga mussels – have colonized the lakes, issues associated with these invasions, and what has been done to mediate and prevent the arrival of future invasive species.  He also discusses the massive biological “dead” zones caused by outbreaks of toxic algal blooms.  Lake Erie Harmful Algal Bloom (HAB) Forecasts are a regular part of the NOAA weather forecast for the western basin of Lake Erie.  Human-made climate change, dredging of shipping channels, and threats to siphon off Great Lakes water to be used beyond the watershed boundaries all pose threats to this incredible resource.  He ends the book with what was being done in 2017 (publication date) to “chart a course toward integrity, stability and balance” of the Great Lakes.

All in all, it was a pretty depressing book.  It caused me to reflect, however, on what I can do as an educator to bring this knowledge to my students.  Even more importantly, how can I have students experience and eventually love the lakes and all they represent?  How can I get them to become familiar with and care for the nature in their backyard?  My work is cut out for me.

“We cannot protect something we do not love, we cannot love what we do not know, and we cannot know what we do not see. Or hear. Or sense.”

— Richard Louv

The week before leaving on my “Grand NOAA Adventure”, I was nervous and started to doubt my own abilities and why I had applied to Teacher at Sea in the first place.  Was I cut out to be a successful Teacher at Sea?  Did I have the knowledge, skills, and fortitude to thrive at sea?  What happens if my technology crashes?  What if I am seasick for 19 days? 

Four things happened to help me move forward. 

  1. My husband – my chief cheerleader – gave me many doses of encouragement.  If he believed I could do it – I knew I could.
  2. I came across a saying on a tea bag (of all places) that gave me great strength, “Personal growth lies within the unknown; courage permits you to explore this space.”  This experience would take courage.  I am courageous.
  3. My daughter reminded me of a poem by Mary Oliver.  The last lines of which, “What are you going to do with your one wild, precious life?”  That’s right!  You only go around once.  Take the bull by the horns – so to speak.  Jump on and hold tight.  Life is short, and the world is wide.
  4. NOAA and NOAA’s Teacher at Sea Program believed in me enough to provide me with this awesome opportunity.  They have seen many a teacher come and go.  They believed I had what it took to be successful.  I chose to believe them. 

NOAA TAS stresses the 3 Fs: Flexibility, Following Orders, and Fortitude.  These are words to live by. 

  • Flexibility = Everything doesn’t always turn out as planned.  Be flexible.  Those who are not flexible, break. 
  • Following Orders = On a ship, this is essential.  In life, rules are made for a reason.  Follow them.  If you believe that the rules are unjust, work to change them.
  • Fortitude = Have courage.  Be strong – physically and in your convictions.  Be tenacious and believe in yourself.

I wish to thank NOAA TAS program and all the people who live and work aboard NOAA Ship Thomas Jefferson.  Thank you for the long conversations and my seemingly endless questioning.  My curiosity is insatiable.  Thank you for checking my blog for accuracy – it needed to be “ship shape”!  Thank you for brainstorming with me inventions that could be created to make hydrographic technology easier if there were no budgetary restrictions.  Thank you for opening my eyes to a world of science, technology, and research that I previously did not know existed.  Thank you for teaching me what it meant to be part of the crew. 

This experience has taught me many things about science and technology, career possibilities, what it is like to live on a ship, relationships and work culture, and the power of reflection.  I learned so much more than is represented in my blog posts.  I am looking forward to sharing my experience with my students and the community. 

All my best to my new friends.  May you continue to have fair winds and following seas.

Sincerely,

Laura Grimm

Dalton STEAM & NOAA Teacher at Sea

a bandanda with a pen or marker drawing of NOAA Ship Thomas Jefferson in the center. underneath reads "NOAA Ship Thomas Jefferson Teacher at Sea 2022." surrounding the illustration are handwritten messages from the crew in different colors of ink.
Hand-made bandana signed by the crew of Thomas Jefferson

For the Little Dawgs . . .

Q: Where is Dewey?  Hint: He was getting ready to come home.

  • Dewey the beanie monkey sits on top of a life preserver mounted on NOAA Ship Thomas Jefferson's rail.
  • Dewey the beanie monkey sits on top of a life preserver mounted on NOAA Ship Thomas Jefferson's rail. Setting sun visible in the background.
  • Dewey the beanie monkey peaks out of a black backpack.
  • Dewey the beanie monkey peaks out of a black backpack on the desk in Laura's stateroom. Her Teacher at Sea hat is on the desk next to the backpack.
  • Dewey the beanie monkey sits next to a whiteboard displaying a drawing of a