Staci DeSchryver: When They Go Low, We Go High (Pilot Whales, that Is!): A view of Cetaceans using Drone Technology July 17, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard: Oscar Elton Sette

Cruise Dates: July 6 – Aug 2

Mission:  HICEAS Cetacean Study

Geographic Area:  Northeast of Kauai, headed toward Northwestern Hawaiian Islands (NWHI)

Location:  24 deg 41.9 min N, 170 deg 51.2 min W

Date:  July 17, 2017

Weather Data from the Bridge:

Visibility:  10 Nmi

Scattered Clouds

Wind:  11 kts at 90 deg

Pressure: 1018.2mb

Wave height: 1-3 m

Swell at 50 deg, 2-3 ft

Air Temp: 29 degrees

Wet Bulb Temp: 25 degrees

Dewpoint: 28 degrees

 

Science Log

Technology definitely finds its way into every corner of life, and cetacean studies are certainly no exception.   One of the most recent additions to the Cetacean team’s repertoire of technology is a fleet of UAS, or unmanned aerial systems.  (UAS is a fancy term for a drone, in this case a hexacopter.  Yes, we are definitely using drones on this mission.  This seriously cannot get much cooler.)  HICEAS 2017 is utilizing these UAS systems to capture overhead photos of cetaceans in the water as they surface.  And the best part of all of this?  I was selected to be a part of team UAS!  

 

The UAS can only fly under certain atmospheric conditions.  It can’t be too windy and the seas can’t be too rough.  We had the chance to practice flying the hexacopters on one of the few days we were off the Kona coast of the Big Island, where the wind and seas are typically calmer.  Dr. Amanda Bradford is leading the HICEAS 2017 drone operations.  She is involved in securing air clearance that might be required for a hexacopter flight, as well as all of the operations that take place in preparation for deployment – of which there are many. The UAS is launched preferentially from a small boat, although it can be launched from the ship.  So, in order to do boat-based UAS operations, we must first launch a boat off of the side of the ship.  There are four people involved in the small boat UAS operations – the UAS pilot, the UAS ground station operator (Dr. Bradford and scientist Kym Yano alternate these positions), a coxswain to drive the small boat (NOAA crewmember Mills Dunlap) and a visual observer/data keeper (me!)  for each flight the hexacopter makes.

We all load up our gear and equipment onto the small boat, along with the coxswain and one team member, from the side of the ship.  The ship then lowers the boat to the water, the remaining teams members embark, and we are released to move toward the animals we are trying to photograph.  I don’t have any photographs of us loading on to the ship because the operation is technical and requires focus, so taking photos during that time isn’t the best idea.  I will say that the whole process is really exciting, and once I got the hang of getting on and off the ship, pretty seamless.

 

Our first trip out was just to practice the procedure of getting into the small boat, flying the UAS on some test flights, and returning back to the ship.  The goal was to eventually fly the hexacopter over a group of cetaceans and use the camera docked on the hexacopter to take photogrammetric measurements of the size and condition  of the animals.

Launching a hexacopter from a boat is quite different from launching one on land.  Imagine what would happen if the battery died before you brought it back to the boat!  This is why numerous ground tests and calibrations took place before ever bringing this equipment out over water.  The batteries on the hexacopter are good, but as a security measure, the hexacopter must be brought back well before the batteries die out, otherwise we have a hexacopter in the water, and probably a lot emails from higher ups to answer as a result.  Each time the hexacopter flies and returns back to the small boat, the battery is changed out as a precaution.  Each battery is noted and an initial voltage is taken on the battery before liftoff.  The flights we made lasted around10 minutes.  As soon as the battery voltage hits a certain low level, the pilot brings the hexacopter back toward the boat to be caught.  My job as the note taker was to watch the battery voltage as the hexacopter comes back to the small boat and record the lowest voltage to keep track of battery performance.

 

The UAS has two parts, one for each scientist – the pilot (who directs the hexacopter over the animals), and a ground station operator.  This person watches a computer-like screen from the boat that has two parts – a dashboard with information like altitude, time spent in flight, battery voltage, distance, and GPS coverage.  The bottom portion of the ground station shows a monitor that is linked to the camera on the hexacopter in real time.

The pilot has remote control of the hexacopter and the camera, and the ground station operator is responsible for telling the pilot when to snap a photo (only she can see from the monitor when the animals are in view), watching the battery voltage, and the hand launching and landing of the drone.  As the hexacopter is in flight, it is the coxswain’s and my responsibility to watch for obstacles like other boats, animals, or other obstructions that might interfere with the work or our safety.

 

To start a flight, the hexacopter is hooked up to a battery and the camera settings (things like shutter speed, ISO, and F-stop for the photographers out there) are selected. 

The ground station operator stands up while holding the hexacopter over her head.  The pilot then begins the takeoff procedures.  Once the drone is ready to fly, the ground station operator lets go of the drone and begins monitoring the ground station.  One important criterion that must be met is that the animals must never come within 75 overhead feet of the drone.  This is so that the drone doesn’t interfere with the animals or cause them to change their behavior.  Just imagine how difficult it is to find an animal in a camera frame being held by a drone and flown by someone else while looking on a monitor to take a photo from a minimum of 75 feet from sea level!  But Amanda and Kym accomplished this task multiple times during the course of our flights, and got some great snapshots to show for it.

 

On the first day of UAS testing, we took two trips out – one in the morning, and one in the afternoon.  On our morning trip, Kym and Amanda took 5 practice flights, launching and catching the hexacopter and changing between piloting and ground station monitoring.  In the afternoon, we were just getting ready to pack up and head back to the ship when out of the corner of my eye I saw a series of splashes at the ocean surface.  Team.  I had a sighting of spinner dolphins!   I barely stuttered out the words, “Oh my God, guys!  There are dolphin friends right over there!!!!”  (Side note:  this is probably not how you announce a sighting in a professional marine mammal observer scenario, but I was just too excited to spit anything else out.  I mean, they were Right. There.  And right when we needed some mammals to practice on, too!)  They were headed right past the boat, and we were in a prime position to capture some photos of them.  We launched the hexacopter and had our first trial run of aerial cetacean photography.  

OLYMPUS DIGITAL CAMERA

 

On the second day, we had a pilot whale sighting, and the call came over the radio to launch the small boat.  Things move really fast on a sighting when there is a small boat launch.  One minute I was up on the flying bridge trying to get some snapshots, and the next I was grabbing my camera and my hard hat and making a speedy break for the boat launch.  We spent a good portion of the morning working the pilot whale group, taking photos of the whales using the hexacopter system.  We were lucky in that these whales were very cooperative with us.  Many species of whales are not good candidates for hexacopter operations because they tend to be skittish and will move away from the noise of a small boat (or a large one for that matter).  These little fellas seemed to be willing participants, as if they knew what we were trying to accomplish would be good for them as a species.  They put on quite a show of logging (just hanging out at the surface), spyhopping, and swimming in tight subgroups for us to get some pretty incredible overhead photographs.  I also had the chance to take some great snapshots of dorsal fins up close, as well.

These side-long photos of dorsal fins help the scientific team to identify individuals.  There were times when the whales were less than twenty yards from the boat, not because we went to them, but because they were interested in us.  Or they were interested in swimming in our general direction because they were following a delicious fish, and I’d be happy with either, but I’d like to think they wanted to know what exactly we were up to.

OLYMPUS DIGITAL CAMERA

 

 

While photographing the whales a couple of interesting “other” things happened.  I had a brief reminder that I was definitely not at the top of the food chain when Mills pointed out the presence of two whitetip sharks skimming beneath the surface of the water.  Apparently these sharks know that pilot whales can find delicious fish and sort of hang out around pilot whale groups hoping to capitalize.  I wondered if this was maybe my spirit animal as I am following a group of scientists and capitalizing on their great adventures in the Pacific Ocean, as well.

Another “other” thing that happened was some impromptu outreach.  While working on the small boat, other boats approached the whales hoping to get some up close snapshots and hang out with them for a bit, as well.  Two were commercial operations that appeared to be taking tour groups either snorkeling or whale watching, and one was just a boat of vacationers out enjoying the day.  The scientific team took the opportunity to approach these boats, introduce us, and explain what we were doing over the whale groups.  They also took the opportunity to answer questions and mention the HICEAS 2017 mission to spread the word about our study.  It was a unique opportunity in that fieldwork, apart from internet connections, is done in relative isolation in this particular setting.  Real-time outreach is difficult to accomplish in a face-to-face environment.  In this case, the team made friendly contacts with approximately 45 people right out on the water.  Congenial smiles and waves were passed between the passengers on the boats and the scientific team, and I even saw a few cell phones taking pictures of us.  Imagine the potential impact of one school-aged child seeing us working with the whales on the small boats and thinking, “I want to do that for a career someday.”  What a cool thing to be a part of.

OLYMPUS DIGITAL CAMERA

 

 

Personal Log

Over the last couple of days, the ship was near the coast of the Big Island, Hawai’i.  One morning, we approached on the Hilo side, which is where Mauna Loa is spewing forth her new basaltic earth.  It treks down the side of the volcano, red-hot and caustic, only to be tempered immediately as soon as it strikes the anesthetic waters of the Pacific.  Having never seen real lava before, I was hoping to capitalize on the big eyes and catch a glimpse of it as it splashed into the ocean’s cool recesses, forming solid rock and real estate on the side of the mountain.  Unfortunately, I failed to account for the laws of thermodynamics – forgetting that hot things make water evaporate and re-condense into steam.  I suppose I was just romanticizing the idea that I could possibly see this phenomenon from an angle that not many get to see it from – miles out on the Pacific Ocean. And the truth is, I did, just not in the way I had imagined.   I did get to see large plumes of steam extending up from the shoreline as the lava met its inevitable demise.  While I didn’t get to see actual real lava, there was definitely hard evidence that it was there, hidden underneath the plumes of white-hot condensation.  I took a few photos that turned out horribly, so you’ll just have to take my word for it that I almost sort of saw lava.  (I know, I know.  Cool story, bro.)  If you can’t believe that fish tale, surely you won’t believe what I’m about to tell you next – I didn’t see the lava – but I heard it.

Starting in the wee hours of the morning, the acoustics team deployed the array only to find an unidentified noise – a loud, sharp, almost cracking or popping noise.  They tried to localize the noise only to find out that it was coming from the shores of the big island.  Sure enough, when they figured it out, the acoustics lab was a popular place to be wearing headphones.  The snapping and cracking they were hearing was the lava cooling and cracking just beneath the ocean surface on the lava bench.  So, I didn’t see the lava, but I heard it solidifying and contracting on the acoustics system.  How cool is that?

 

Ship Quiz:

Why do the head stalls (AKA bathroom stalls) lock on both sides of the door?

  1.       So that you can lock your friends in the bathroom as a mean prank
  2.      Extra protection from pirates
  3.       To give yourself one extra step to complete to get to the toilet when you really gotta go
  4.      To keep the doors from slamming with the natural movement of the ship

If you said “D”, you are correct!  The bathrooms lock on both sides because if left to their own devices, they would swing and bang open and shut with the constant motions of the ship.  So, when you use the bathroom, you have to lock it back when you finish.  Now you know!

 

 

Taylor Parker, April 22, 2009

NOAA Teacher at Sea
Taylor Parker
Onboard NOAA Ship Oscar Elton Sette
April 19-29, 2009 

Mission: Hawaii Bottom fish Survey
Geographical Area: South side of Oahu
Date: April 22, 2009 – Earth Day!

Happy Earth Day!

Happy Earth Day!

Weather Data: 
Winds: 1-3 knots variable.
1-2 ft swells.
Water temp: 24 C.
Air temp: 80 F.
Voggy.

Science and Technology Log

This morning I awoke with a cup of tea and this beautiful sunrise coming over the big island. There is something auspicious about a morning like this and our day turned out truly favorable. At 6am we started our safety meeting with the regular GAR survey. The GAR survey is a standard safety check before deploying small boats. It stands for Green, Amber and Red and those are the colors associated with the number that represents the amount of danger with the operation. Apparently we were green because the crew prepared the boats. The larger boat dropped into the water with Chief Scientist Ryan Nichols leading the bottom-fishing. I jumped in the smaller boat with scientist Don Kobayashi to do CTD surveys. CTD’s stand for Conductivity, Temperature and depth. Depth and temperature are pretty self-explanatory but conductivity is the measurement of electrical current that is found in the water. This conductivity is proportional to the amount of salt in the water and it increases with a rise in temperature. Therefore, you can figure out the salinity by analyzing the temperature and conductivity. Don is working on measuring the unique circumstances that occur when two or more ocean currents come together and create calm waters known as slicks.

Me holding the handheld CTD

Me holding the handheld CTD

Lighter plankton collect within the slicks along with debris. It is curious to note whether the calm waters draw the weaker fish or whether they search the slicks out on their own. Not much is known about these converging points of down-welling and Don is trying to find out what makes them special.The weapon of choice for his study is an instrument that is about 5 pounds and about a foot and a half long. For our original drop we set a buoy down in the middle of the slick with a drogue, a sea anchor that works by means of an underwater parachute. We then dropped the CDT 5 times on each side of the buoy at 10 meter intervals, which expanded outside of the slick. This level of specificity allows for accurate readings of what is occurring just below the surface. The way the slicks start to appear and just as quickly disappear or even elongate is mysterious.  The final page of this log has the results from one of the CTD drops with an explanation.

Larvae found while dip-netting

Larvae found while dip-netting

After measuring the physical characteristics of the slicks we started dip-netting them, chasing the plankton and debris. Don sat on the bow and I leaned over the port side cruising along at about 1-2 knots trying to find bubbles, debris or any sign of life like a glimmer from the side of a fish or a Pilot Whale (I’ll get to those soon). We caught a few things; well, actually Don caught almost everything while the baby fish evaded me diligently. We collected our, or rather, Don’s haul and kept in a bucket for safe keeping. We caught a big red light bulb with Goose-neck barnacles on it, but more importantly, fish hiding underneath it. The light bulb brought in most of our haul but we did find some other larvae hanging out under a bunch of bubbles.

The Drogue

The Drogue

After dip-netting for a while we found the other boat and helped them bottomfish. We grabbed one of their reels and spent the remaining two hours of our trip trying to catch fish. Where I wasn’t successful with the larvae, I made up in catching a Yellowbarbel Goatfish (Parupeneus chyrsonemus). Unfortunately for us, yet fortunately for him, this colourful bearded fish was not a target species. We let him go safe and sound with only an odd abduction story to tell his friends.

Personal Log 

Our haul from the slick. The light bulb has life underneath, I swear.

Our haul from the slick. The light bulb has life underneath, I swear.

Today I learned a lot about slicks, conductivity and goatfish. The amount of stuff that congregates in the slicks is fascinating and it was wonderful being on the hunt with my net for hours. Even better though was being out on the crystal clear, calm waters off of Kona. There was hardly a breeze, the water was nice and warm and all I wanted to do was jump in. Right when I was thinking about ditching my boat and going for a swim, a 4-5 foot Oceanic White-Tip Shark (Carcharhinus longimanus) swam under us. I was told not to pet it. I have never seen a shark with the reputation as ferocious as this one so close. The ends of his dorsal and pectoral fins were shining white in the clear Hawaiian water and he looked formidable yet tranquil.

Goatfish

Goatfish

While we were dropping the CTD, a call came over the radio from the Sette informing us that Pilot whales (Globicephala macrorhynchos) were in the vicinity. We paid it no mind as a sighting like that would most likely pass without our noticing it. Sure enough, within half an hour a pod of about 8 whales were heading directly for us. The whales were cruising around us showing us their giant domed heads and curved dorsal fins. When they got within about 10 yards of the boat they all disappeared and didn’t reappear until they were well beyond our position. But for a while, we were schooling with Pilot whales.

On our way back to the boat we were flagged down by Ensign Norris, Lieutenant Little and CO Lopez from the Fly Bridge. They needed photos of the Sette with the large NOAA logo while underway. Well, here is one of the shots and if you look closely you can see all three up there.

The Whitetip is in the lower left hand corner with a Pilot Whale in the upper right

The Whitetip is in the lower left hand corner with a Pilot Whale in the upper right

Pilot Whale

Pilot Whale

The Oscar Elton Sette with three officers

The Oscar Elton Sette with three officers

Here are some of the data from the handheld CTD dropped in the slicks. As you can see the area surveyed within the slick has higher temperatures deeper and more heterogeneity. This is opposed to just outside the slick where it is colder with little variation.

Here are some of the data from the handheld CTD dropped in the slicks. As you can see the area surveyed within the slick has higher temperatures deeper and more heterogeneity. This is opposed to just outside the slick where it is colder with little variation.

Lisbeth Uribe, August 5, 2008

NOAA Teacher at Sea
Lisbeth Uribe
Onboard NOAA Ship Delaware II
July 28 – August 8, 2008

Mission: Surfclam and quahog survey
Geographical Area: Southern New England and Georges Bank
Date: August 5, 2008

Chief Scientist Vic Nordahl, Chief Boatswain Jon Forgione and Chief Engineer Patrick Murphy discussing the best way to reattach the pump power cable to the dredge.

Chief Scientist Vic Nordahl, Chief Boatswain Jon Forgione and Chief Engineer Patrick Murphy discussing the best way to reattach the pump power cable to the dredge.

Ship Log 

In the last 48 hours the engineers, crew and scientists have had to re-attach the power cable to the dredge (see photograph), fix the cracked face plate of the pump, replace the blade and blade assembly, change the pipe nozzles that direct the flow of water into the cage, and work on the dredge survey sensor package (SSP). Dredging is hard on the equipment, so some mechanical problems are to be expected. The main concern is for lost time and running out of critical spare parts.  So far we have had great success with making the repairs quickly and safely.

Science and Technology Log 

Collecting Tow Event and Sensor Information for the Clam Survey 
Over the weekend I was moved up to the bridge during the towing of the dredge. I was responsible for logging the events of each tow and recording information about the ship and weather in a computerized system called SCS (Scientific Computer System). I listened carefully to the radio as the lab, bridge (captain) and crane operator worked together to maneuver the dredge off the deck and into the water, turn on the pumps, tow the dredge on the seafloor bottom, haul the dredge up, turn off the pump and bring the clam-filled dredge back on deck. It is important that each step of the tow is carefully timed and recorded in order to check that the tows are as identical as possible.  The recording of the events is then matched to the sensor data that is collected during dredge deployment. As soon as the dredge is on deck I come downstairs to help clean out the cage and sort and shuck the clams.   

Lisbeth is working on the bridge logging the events of each tow into the computer system.

Lisbeth is working on the bridge logging the events of each tow into the computer system.

My next job assignment was to initialize and attach to both the inside and outside of the dredge the two mini-logger sensors before each tow. Once the dredge was back on deck I removed both mini-loggers and downloaded the sensor data into the computers. Both sensors collect pressure and temperature readings every 10 seconds during each tow. Other sensors are held in the Survey Sensor Package (SSP), a unit that communicates with onboard computers wirelessly.  Housed on the dredge, the SSP collects information about the dredge tilt, roll, both manifold and ambient pressure & temperature and power voltage every second. The manifold holds the six-inch pipe nozzles that direct the jets of water into the dredge.  Ideally the same pump pressure is provided at all depths of dredge operation. In addition to the clam survey, NOAA scientists are collecting other specimens and data during this cruise.

Two small black tubes (~3 inches long), called miniloggers, are attached to the dredge. The miniloggers measure the manifold (inside) and ambient (outside) pressure and temperature during the tow.

Two small black tubes (~3 inches long), called miniloggers, are attached to the dredge. The miniloggers measure the manifold (inside) and ambient (outside) pressure and temperature during the tow.

NOAA Plankton Diversity Study 
FDA and University of Maryland Student Intern Ben Broder-Oldasch is collecting plankton from daily tows.  The plankton tows take place at noon, when single-celled plants called phytoplankton are higher in the water column. Plankton rise and fall according to the light. Plankton is collected in a long funnel-shaped net towed slowly by the ship for 5 minutes at a depth of 20 meters. Information is collected from a flow meter suspended within the center of the top of the net to get a sense of how much water flowed through the net during the tow. Plankton is caught in the net and then falls into the collecting jar at the bottom of the net.  In the most recent tow, the bottle was filled with a large mass of clear jellied organisms called salps. Ben then filters the sample to sort the plankton by size. The samples will be brought back to the lab for study under the microscope to get a sense of plankton species diversity on the Georges Bank.

An easy way to collect plankton at home or school is to make a net out of one leg of a pair of nylons. Attach the larger end of the leg to a circular loop made from a metal clothes hanger.  Cut a small hole at the toe of the nylon and attach a plastic jar to the nylon by wrapping a rubber band tightly around the nylon and neck of the jar.  Drag the net through water and then view your sample under a microscope as soon as possible.

Biological Toxin Studies 

NOAA Scientist Amy Nau hauls the plankton net out of the water using the A-frame. (Upper insert: flow meter; lower insert: plankton in the collection bottle after the tow).

NOAA Scientist Amy Nau hauls the plankton net out of the water using the A-frame. (Upper insert: flow meter; lower insert: plankton in the collection bottle after the tow).

Scientists from NOAA and the Food & Drug Administration (FDA) are working together to monitor clams for biological toxins. Clams and other bi-valves such as oysters and mussels, feed on phytoplankton. Some species of phytoplankton make biological toxins that, when ingested, are stored in the clam’s neck, gills, digestive systems, muscles and gonadal tissues.  If non-aquatic animals consume the contaminated clams, the stored toxin can be very harmful, even fatal.  The toxin affects the gastrointestinal and neurological systems. The rate at which the toxins leave the clams, also known as depuration rate, varies depending on the toxin type, level of contamination, time of year, species, and age of the bivalve. Unfortunately, freezing or cooking shellfish has no effect on the toxicity of the clam. The scientists on the Delaware II are collecting and testing specimens for the two biological toxins that cause Amnesia Shellfish Poisoning (ASP) and Paralytic Shellfish Poisoning (PSP).

NOAA Amnesia Shellfish Poisoning (ASP) Study 
A group of naturally occurring diatoms, called Pseudo-nitzschia, manufacture a biological toxin called Domoic Acid (DA) that causes Amnesia Shellfish Poisoning (ASP) in humans.  Diatoms, among the most common organisms found in the ocean, are single-celled plankton that usually float and drift near the ocean surface. NOAA scientist Amy Nau collects samples of ocean water from the surface each day at noon. By taking water samples and counting the numbers of plankton cells, in particular the Pseudo-nitzschia diatoms, scientists can better determine if a “bloom” (period of rapid growth of algae) is in progress. She filters the sample to separate the cells, places the filter paper in a test tube with water, adds a fixative to the tube and sets it aside for further study in her lab in Beaufort, NC. 

Scientist Amy Nau filters seawater for ASP causing dinoflagellates.

Scientist Amy Nau filters seawater for ASP causing dinoflagellates.

FDA Paralytic Shellfish Poisoning (PSP) Study 
Scientists aboard the Delaware II are also collecting meat samples from clams for an FDA study on the toxin that causes paralytic shellfish poisoning. When clams ingest the naturally occurring dinoflagellate called Alexandrium catenella, they accumulate the toxin in their internal organs. When ingested by humans, the toxin blocks sodium channels and causes paralysis. In the lab, testing for the toxin causing PSP is a lengthy process that involves injecting a mouse with extracts from shellfish tissue.  If the mouse dies, scientists know the toxin is present. The FDA is testing the accuracy of a new quick test for the toxin called the Jellet Test Kit. After measuring and weighing a dozen clams from each station on the Georges Bank, Ben and Amy remove and freeze the meat (internal organs and flesh) from the clams to save for further testing by scientists back on land. At the same time, they also puree a portion of the sample and test it using the Jellet strips for a quicker positive or negative PSP result.

Personal Log 

Pilot whales sighted off the bow!

Pilot whales sighted off the bow!

The problems that we have experienced with regard to the dredge over the past few days are an important reminder of the need for the scientists and crew to not only be well prepared but also flexible when engaged in fieldwork. All manner of events, including poor weather and mechanical difficulties, can and do delay the gathering of data. The Chief Scientist, Vic Nordahl, is constantly checking for inconsistencies or unusual patterns, particularly from the dredge sensor readings, that might need to be addressed in order to ensure that the survey data is consistent and accurate. The time required to repair the dredge meant I was able to do a load of laundry. Dredging is very dirty work! Good thing I am using old shirts and shorts. I also caught up on a few emails using the onboard computers. Though the Internet service can be slow at times it is such a luxury to be able to stay in touch with friends and family on land. I still have two very special experiences that I wish to share before ending my log.

Late in the evening a couple of days ago, as we steamed toward our next tow station, I was invited to peer over the bow. The turbulence in the water was causing a dinoflagellate called Noctiluca to sparkle and glow with a greenish-blue light in the ocean spray.  The ability of Noctiluca and a few other species of plankton and some deep-sea fish to emit light is called bioluminesense. A few days later we had the great fortune to see five pilot whales about 100 meters away, gliding together, their black dorsal fins slicing through the water, occasional plumes of air bursting upward through their blowholes (nostrils located on the tops of their heads).

Answers to the previous log’s questions: 

1. What is the depth and name of the deepest part of the ocean? The Mariana Trench in the Pacific Ocean is 10,852 meters deep, (deeper than Mount Everest is tall – 8,850 meters).  Speaking of tall mountains, the tallest mountain in the world is not Mount Everest, but the volcano Mauna Kea (Hawaii).  It reaches 4,200 meters above sea level, but its base on the sea floor is 5,800 meters below sea level.  Its total height (above base) is therefore 10, 000 meters!

2.What is the longest-lived animal on record? In 2007, an ocean quahog was dredged off the Icelandic coast.  By drilling through and counting the growth rings on its shell, scientists determined it was between 405 and 410 years old. Unfortunately it did not survive the examination, so we do not know how much longer it would have lived if left undisturbed. This ancient clam was slightly less than 6 inches in width.

Mary Cook, December 7, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 7, 2004

Location: Latitude 19°41.54 S, Longitude 74°55.66 W
Time: 10:00 am

Weather Data from the Bridge
Wind Direction 156.10
Relative Humidity (percent) 70.98
Temperature (Celsius) 19.07
Barometric Pressure (Millibars) 1014.09
Wind Speed (Knots) 12.46
Wind Speed (Meters/sec) 6.51
Cloud type: Stratus at 2950 feet

Question of Day

What is a muster station?

Personal Log

It’s another great start for this seafaring teacher! A pod of about 12 pilot whales are hovering around the ship. They’re black with a crescent-shaped dorsal fin that breaks the water surface like a shark’s fin. It looks like they are about 10 feet long and I can hear a swoosh as a spray of water shoots up into the air when they exhale. As I was standing on the deck scanning the ocean for the whales, the cool breeze in my face, I was thinking how blessed I am to be here and my heart swells with gratitude for the grandness of it all. I just love to look out over the horizon where the sky meets the water and I wonder what other magnificent creatures are lurking below!

Today, I will be working a small part of the CTD deployment in conjunction with the Chilean Armada (Navy) team. CTD stands for conductivity, temperature, and depth. The CTD array contains a series of canisters that are opened at various depths to collect water for gas and nutrient sampling. As the data are collected and displayed, they will locate the ocean’s thermocline in this area. The depth of the thermocline can be used as a component to better understand El Nino which can affect worldwide climate changes. My job as part of the CTD deployment is to be the English speaking person on the radio to relay information to the winch operator as the CTD rosette is being lowered into the water and then brought back on the ship. We had an extensive meeting with all people involved and ran a practice deployment to make sure responsibilities and communications were clearly understood. Everything must run smoothly like clockwork or expensive equipment could get damaged or even worse someone could get injured. A lot of prior research time, effort, and money have gone into these projects and it would be a shame to botch a deployment.

Frank Bradley and I just successfully launched another radiosonde (weather balloon). After we launched it, we went back into the computer room to check the data being transmitted. Dan Wolfe explained that according to the data the thick, overcast stratus cloud layer was thinning. Shortly thereafter, the sun popped out and it was a gorgeous, bright sunshiny day!

Jeff Lord helped me get our drifter buoy out of storage and I placed the stickers of the Southerner man and all the 8th graders’ signatures on it. Southside School is the first school to ever adopt a drifting buoy. We are excited to be one of the first schools involved in the “Adopt a Drifter” program.

At 6:30 this evening, Diane and I will conduct “Science on the Fantail” with Alvaro Vera, leader of the Chilean Armada group that deployed the tsunami warning buoy. I will report on his interview tomorrow. I have watch duty from 20:00-24:00. During nighttime watches, I may have to go outside in the DARK. It’s really, really dark out here, too! All the ship’s outside lights are turned off. Anyway, if they deploy buoys at night I have to go out and help do whatever they need. While working on the deck at night everyone must attach a strobe beacon to themselves so if they fall overboard someone will be able to see them in the dark ocean waters. “Hey, who’s afraid of the dark?”

Until tomorrow, I’m signing off.

Mary

Jane Temoshok, October 12, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 12, 2001

Latitude: 7 ºS
Longitude: 95 ºW
Air Temp: 21.2 ºC
Sea Temp: 21.1ºC
Sea Wave: 3 -4 ft.
Swell Wave: 3 – 5 ft.
Visibility: 8 miles
Cloud cover: 8/8

Science Log

ARGO

An ARGO Float is a small (about 3 feet in length) black tubular shaped instrument that measures temperature and salinity in the water. It’s interesting particularly because it is so simple. The middle part of the instrument, called a bladder, is made of a thick rubber material that can inflated like a balloon. It has a pump inside that inflates or deflates the bladder which changes its volume while keeping the mass the same. A deflated state has an increased density which makes the ARGO sink to a depth of 900 meters below the surface. There it drifts for 10 days collecting data. Then the bladder is inflated so the ARGO rises to the surface and transmits its data to a satellite. When the transmission is complete, it deflates again and begins the whole process anew. This will go on for four years! As part of an international project Dr. Weller, our Chief Scientist, and a group of scientists hope to have 3000 of these in the water all over the world collecting data. We will be deploying a total of 6 at the points marked on the photo. The one you see in the photo was deployed at 2.5 ºS.

Temoshok 10-12-01 argo

An ARGO Float is a small (about 3 feet in length) black tubular shaped instrument that measures temperature and salinity in the water.

Temoshok 10-12-01 argomap

Map of ARGO float deployments. We will be deploying a total of 6 floats at the points marked on the photo.

Temoshok 10-12-01 argoplan

The ARGO float deployment plan.

Temoshok 10-12-01 wellerargo

Dr. Weller, our Chief Scientist, holds an ARGO float.

Temoshok 10-12-01 wellerargo2

This ARGO float was deployed at 2.5 ºS.

Travel Log

Pilot Whales – My first sighting of whales. So beautiful and graceful. Not good for picture taking though because they blend in so well with the ocean. The weather is fine with a high cloud cover and light winds and no rain.

The crew says this is the calmest water they’ve been in all year! Lucky me!

Question of the day: What would happen to an ordinary styrofoam cup at at depth of 900 m.?

Keep in touch,
Jane