Susan Brown: Probing for Parasites, September 5, 2017

 NOAA Teacher at Sea

Susan Brown

Aboard NOAA Ship Oregon II

September 3 – 15, 2017

 

Mission: Snapper/Longline Shark Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 5, 2017

 

Weather Data from the Bridge (get data from bridge)

Latitude: 29 degree 36.0 N
Longitude: 86 degree 10.1 W
Sea wave height: < 1
Wind Speed: 7 kts
Wind Direction: 185
Visibility: 10 nm
Air Temperature:
Barometric Pressure: 1016.3
Sky: BKN

Science and Technology Log

The Oregon II has two sets of crew – the ship’s crew headed by Captain Dave Nelson and the science crew headed by Lisa Jones. Captain Dave and Lisa work closely together making decisions that impact the survey. The ship’s crew keeps us afloat, fed and ultimately determines where we go based on weather. The science crew, well you guessed it, is focused on the science and collected data at predetermined sampling sites.

This post will look at some of the science happening on board. On board are four NOAA scientists as well as other volunteers and researchers that are helping with this survey. NOAA’s focus on this survey is all about sharks and snapper. We are collecting data on what we haul up from the longlines as well as abiotic factors including temperature, depth of line, dissolved oxygen, and salinity of the water. The data is entered into a computer and becomes part of a larger data set.

IMG_5865

NOAA parasitologists Carlos and Brett

Two researchers on board working as volunteers are Brett Warren and Carlos Ruiz. They are parasitologists meaning they study parasites that sharks and other organisms carry. A parasite is an organism that lives off other organisms (a host) in order to survive. They are finding all sorts of worms and copepods embedded in the nose, gills and hearts of fish and sharks. These two spend much of their time using microscopes to look at tissue samples collected.

IMG_5953

Brett looking for parasites

In speaking with Brett, the life cycle of parasite can be simple or complex. The simple direct life cycle is when the parasite spends its entire life on the host organism. A complex indirect life cycle for a parasite is when the parasite reproduce, the young hatch and swim to an intermediary host, usually a snail, mollusk or polychaete. This is where it gets really cool, according to Brett. It’s the intermediate host where the parasites asexually reproduce by cloning themselves. Next, the parasite leaves the intermediate host and swim to their final host and the process starts all over again. From a parasite perspective, you can see how difficult it would be for an indirect life cycle to be completed, because all the conditions need to be right. Brett is studying flatworms that have complex lifecycles and Carlos is studying copepods that have direct life cycles.

IMG_6106

Can you guess what this is? Answer in the comments and first right answer gets a prize!

Their main focus on this survey is to discover new species of parasites and understand the host- parasite relationship.

 

Personal Log

The past few days have been slow with only a few stations a shift. We have hauled up some sharks, eels and even a sharksucker fish. One station had nothing on the 100 hooks set! Talk about getting skunked. As we move west I am hoping we get to see more sharks as well as more variety. Other wildlife spotted include dolphins, jellyfish and birds.

IMG_6130

Finding the length of a sharpnose shark

IMG_5851

size of hooks we are using

Did You Know?

Just because it’s a parasite doesn’t mean it harms the host. Some just live off of another organism without harming it.

 

Question of the day:

What are the two types of life cycles a parasite can have? (hint: read the blog)

Karen Grady: Observations and Data Collection Today Leads to Knowledge In The Future, April 25, 2017

NOAA Teacher at Sea

Karen Grady

Aboard NOAA Ship Oregon II

April 5 – April 20, 2017

Mission: Experimental Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 25, 2017

 

Weather Data:

I am back settled into the crazy weather that is spring in Arkansas. Supposed to be 90 degrees today and then storms tomorrow.

Science and Technology Log

The second leg of the Oregon II’s experimental longline survey is now complete.  The ship and all the crew are safely back in the harbor.  Fourteen days at sea allows for a lot of data to be gathered by the science crew.

Now, an obvious question would be what do they do with all the data and the samples that  were collected? The largest thing from this experimental survey is looking at catch data and the different bait types that were used to see if there were differences in the species caught/numbers caught etc. They are also able to look at species compositions during a different time frame than the annual survey and different depth ranges with the much deeper sets. Fin clips were taken from certain species of sharks. Each fin clip can be tied to a specific shark that was also tagged.  If anyone ever wanted or needed to they could trace that fin clip back to the specific shark, the latitude and longitude of where it was taken, and the conditions found in the water column on that day.  Everything the scientists do is geared towards collecting data and providing as many details as possible for the big picture.

Occasionally sharks are captured and do not survive, but even these instances provide an opportunity to sample things like vertebrae for ageing studies or to look at reproductive stages. Science is always at work.  With the ultrasound machine on board we were able to use it on a couple of the sharpnose sharks and determine if they were pregnant .

 

ultrasound

Ultrasounding female Sharp Nose sharks to see how may pups they were carrying.

 

Parasites… did you know sharks and fish can have parasites on them? Yes, they do and we caught a few on this leg. Sharks or fish caught with parasites were sampled to pass along to other researchers to use for identification purposes. Kristin showed me evidence of a skin parasite on several of the small sharks. It looked like an Etch-A-Sketch drawing.

etchisketch 2

This shark had whole mural on the underside from the parasites

etchisketch 1

Shark underside marred by parasite infection

Red snapper were also sampled at times on the survey to look deeper into their life history  and ecology. Muscle tissue was collected to look at ecotoxicity within the fish (what it has been exposed to throughout out its lifetime); along with otoliths to estimate age. We are using muscle tissue to examine carbon, nitrogen, and sulfur. Each element looks into where that fish lives within the food web. For instance, carbon can help provide information about the basal primary producers, nitrogen can help to estimate the trophic level of the fish within the ecosystem, and sulfur can try to determine if the fish feeds on benthic or pelagic organisms. Otoliths are the ear bones of the fish. There are three different types of ear bones; however, sagittal ear bones (the largest of the three) will be sectioned through the core and read like a tree. Each ring is presumed to represent one year of growth.

 

red snapper1

Red Snapper caught and used for sample collection

paul red snapper

Paul Felts removing a hook

redsnapper head

Sometimes someone bigger swims by while a fish is on the hook

Personal Log

Now that I am home and settled I still had a few things to share. One it was great to get home to my family, but as I was warned by the science crew it does take a couple of days to adjust to the usual schedule.  It did feel good to go for a jog around town instead of having to face the Jacob’s Ladder again!

 

Everyone asks me if I had a good time, if it was scary, if we caught any sharks. I just don’t think there are words to express what an amazing experience this was for me.  Of course, seeing the sharks up close was just beyond words, but it was also being made a part of a working science team that are working year-round to monitor the health of the ocean and the species that live there. For me this was a two-week section of my life where I got to live on the ocean and catch sharks while learning a little about the data the science crew collects and how they use it.  The science crew will all be back out on the ocean on different legs over the next few months.

I confess I am not super hi tech, so I am not proficient with a Gopro so I probably missed out on making the best films. However, I did get some excellent photos and some good photos of some impressive sharks.  Thanks to technology I will be able to create slide shows to my K-12 students so they can see the experience through my eyes.  I am looking forward to showing these slide shows to my students. My elementary students were so excited to have me back that they made me feel like a celebrity.  I was gone a little over two weeks and to my younger students it seemed forever.  Many of the teachers shared some of my trip with the students so they would know where I was and what I was doing.

I am settled back into my regular schedule at school. One awesome thing about my job is that I deal with students from kindergarten through seniors.   I started back with my elementary students yesterday.  Let me just say that young people can make you feel like a Rockstar when you have been gone for 15 days.  I knocked on a classroom door and could hear the students yelling “ she’s here! Mrs. Grady is here!” and then there were the hugs. Young kids are so genuine and they have an excitement and love of learning.  I have to get busy on my power point to share with them.  They wanted a list of sharks we caught, how big they were, etc.  I am getting exactly what I hoped, the students want to understand what I did on the ship, why we did these things and what did I actually learn.

For my last blog, I have decided to share some of my favorite photos from my time on the Oregon II.

This slideshow requires JavaScript.

Nikki Durkan: Parasites Abound, June 29, 2015

NOAA Teacher at Sea
Nikki Durkan
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Midwater Assessment Conservation Survey
Geographical area of cruise: Gulf of Alaska
Date: Monday, June 29, 2015

Weather Data from the Bridge:
Wind speed (knots): 8.25
Sea Temp (deg C): 10.59
Air Temp (deg C):  10

Science and Technology Log:

Parasites – some lurk inside our bodies without us knowing and some could even have an influence on our personalities. One of my favorite Radio Lab episodes describes research conducted on this subject. National Geographic Magazine also published a feature article I found quite interesting – Zombie Parasites that Mind Control Their Hosts.  In addition to capturing our interest because of their sci-fi-like existence, parasites may also be utilized to study ecological interactions.  Parasites a fish picks up throughout its life can indicate information about where the fish has traveled – these co-dependent organisms serve as biological tags that scientists can then interpret.

Nematodes on Pollock Liver - most of the Pollock we caught have had these in their guts.

Nematodes on Pollock Liver – most of the Pollock we caught have had these in their guts.

Parasites often require several hosts to complete their lifecycles and one nematode that can infect Pollock (and humans incidentally) is Anisakiasis.  While I love sushi, raw fish can pose serious risk to our health.  “Sushi-grade” labels, similar to the ubiquitous “natural” labels, do not meet any standardized specifications. However, the FDA does set freezing requirements for the sale of raw fish that commonly possess parasites…so enjoy your sushi 🙂

The pathobiologists at the Alaska Fisheries Science Center are currently investigating the impacts certain parasites may have on Pollock. While many species of parasites have been recognized, we still have a lot to learn about their impact on populations and ecosystems. Scientists are attempting to identify those that are likely to influence the booms and busts that can occur within the Pollock populations. More specifically, their current research centers around a microsporidian (pleistophora sp.) that lives within the muscle tissue of Pollock and may impact the fishes ability to swim and breed. (AFSC Pathobiology)

Microsporidian (pleistophora sp.) marked with asterisk Photo Credit: NOAA

These critters are found in most Pollock catches as well - they are sometimes called sea lice.

These critters are found in most Pollock catches as well – they are also called sea lice.

Sometimes ships pick up parasites too! The introduction of invasive species to fragile ecosystems is one of the leading causes of extinction and ballast water is the number one reason for the distribution of aquatic nuisance species. The Great Lakes region serves as a warning about the devastation ballast water can inflict on an ecosystem. Ships can transport ballast water from one region to another and then release the ballast water (along with numerous non-native organisms). No longer encumbered by natural predators or other environmental pressures that help to keep populations in check, the invasive species can flourish, often at the expense of the native species. NOAA has implemented strict guidelines for the release of ballast water to limit the spread of invasive species.  The Oscar Dyson also uses a lot of oil to keep all the working parts of our engine room functioning, but some of this oil drips off and collects in the bilge water. This oily bilge water is then separated and the oil is used in our trash incinerator (all garbage with the exception of food scraps is burned in the incinerator).  Thanks to our Chief Marine Engineer, Alan Bennett, for taking me and Vinny on a tour of the ship.

Thanks, Allan!

Thanks, Allan!

Personal Log:

Fortunately, after three weeks of being splattered with all parts of a Pollock you can think of and eating my fair share of fish, I am currently free of fish parasites…to my knowledge! Our wonderful chefs, Arnold Dones and Adam Staiger, have been cooking healthy, varied meals for 32 people over the course of three weeks – this is no small feat!  The soups are my favorite and have inspired me to make more when I return home. I know from camping experiences with my students and living at a boarding school campus, that food is directly connected to morale.  Last night, the chefs spoiled everyone with steak and crab legs!

Chef Adam Staiger is full of smiles!

Chef Adam Staiger is always full of smiles!