Julia Harvey: That’s a Mooring: June 29th, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3rd 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 29th, 2016

 

Weather Data from the Bridge

(June 29th, 2016 at 12:00 pm)

Wind Speed: 12 knots

Temperature: 26.3 C

Humidity: 87.5%

Barometric Pressure: 1017.5 mb

 

Science and Technology Log

Approaching Weather
Approaching Weather

When an anchor is dropped, forces in the ocean will cause this massive object to drift as it falls.  Last year, after the anchor of mooring 12 was dropped, an acoustic message was sent to the release mechanism on the anchor to locate it.  This was repeated in three locations so that the location of the anchor could be triangulated much like how an earthquake epicenter is found.  This was repeated this year for mooring 13 so next year, they will know where it is.  From where we dropped the anchor to where it fell, was a horizontal distance of 3oo meters.  The ocean moved the 9300 pound anchor 300 meters.  What a force!

The next morning as the ship was in position, another acoustic message was sent that triggered the release of the glass floats from the anchor. Not surprisingly, the floats took nearly an hour to travel up the nearly 3 miles to the surface.

Float recovery
A small boat went to retrieve the mooring attached to the floats

Once the floats were located at the surface, a small boat was deployed to secure the end of the mooring to the Hi’ialakai. The glass floats were loaded onto the ship.  17 floats that had imploded when they were deployed last year.  Listen to imploding floats recorded by the hydrophone.  Implosion.

Selfie with an imploded float.
Selfie with an imploded float.

Next, came the lengthy retrieval of the line (3000+ meters). A capstan to apply force to the line was used as the research associates and team arranged the line in the shipping boxes. The colmega and nylon retrieval lasted about 3 hours.

Bringing up the colmega line.
Bringing up the colmega line and packing it for shipping.

Once the wire portion of the mooring was reached, sensors were removed as they rose and stored. Finally the mooring was released, leaving the buoy with about 40 meters of line with sensors attached and hanging below.

Navigating to buoy.
Navigating to buoy.

The NOAA officer on the bridge maneuvered the ship close enough to the buoy so that it could be secured to the ship and eventually lifted by the crane and placed on deck. This was followed by the retrieval of the last sensors.

Buoy onboard
Bringing the buoy on board.

 

 

 

 

 

 

 

 

 

The following day required cleaning sensors to remove biofoul.  And the buoy was dismantled for shipment back to Woods Hole Oceanographic Institution.

Kate scrubbing sensors to remove biofoul.
Kate scrubbing sensors to remove biofoul.

 

Dismantling the buoy.
Dismantling the buoy.

 

 

 

 

 

 

 

 

 

 

Mooring removal was accomplished in seas with 5-6 feet swells at times. From my vantage point, everything seemed to go well in the recovery process. This is not always the case. Imagine what would happen, if the buoy separated from the rest of the mooring before releasing the floats and the mooring is laying on the sea floor? What would happen if the float release was not triggered and you have a mooring attached to the 8000+ pound anchor?  There are plans for when these events occur.  In both cases, a cable with a hook (or many hooks) is snaked down to try and grab the mooring line and bring it to the surface.

Now that the mooring has been recovered, the science team continues to collect data from the CTD (conductivity/temperature/depth) casts.  By the end of tomorrow, the CTDs would have collected data for approximately 25 hours.  The data from the CTDs will enable the alignment of the two moorings.

CTD
CTD

The WHOTS (Woods Hole Oceanographic Institution Hawaii Ocean Time Series Site) mooring project is led by is led by two scientists from Woods Hole Oceanographic Institution;  Al Plueddeman and Robert Weller.  Both scientists have been involved with the project since 2004.  Plueddeman led this year’s operations and next year it will be Weller.  Plueddeman recorded detailed notes of the operation that helped me fill in some blanks in my notes.  He answered my questions.  I am thankful to have been included in this project and am grateful for this experience and excited to share with my students back in Eugene, Oregon.

Al Plueddeman
Al Plueddeman, Senior Scientist

The long term observations (air-sea fluxes) collected by the moorings at Station Aloha will be used to better understand climate variability.  WHOTS is funded by NOAA and NSF and is a joint venture with University of Hawaii.  I will definitely be including real time and archived data from WHOTS in Environmental Science.

Personal Log

I have really enjoyed having the opportunity to talk with the crew of the Hi’ialakai.  There were many pathways taken to get to this point of being aboard this ship.  I learned about schools and programs that I had never even heard about.  My students will learn from this adventure of mine, that there are programs that can lead them to successful oceanic careers.

Brian Kibler
Brian Kibler

I sailed with Brian Kibler in 2013 aboard the Oscar Dyson up in the Gulf of Alaska.  He completed a two year program at Seattle Maritime Academy where he became credentialed to be an Able Bodied Seaman.  After a year as an intern aboard the Oscar Dyson, he was hired.  A few years ago he transferred to the Hi’ialakai and has now been with NOAA for 5 years.  On board, he is responsible for rigging, watch and other tasks that arise.  Brian was one of the stars of the video I made called Sharks on Deck. Watch it here.

Tyler Matta
Tyler Matta, 3rd Engineer

Tyler Matta has been sailing with NOAA for nearly a year.  He sought a hands-on engineering program and enrolled at Cal Maritime (Forbes ranked the school high due to the 95% job placement) and earned a degree in maritime engineering and was licensed as an engineer.  After sailing to the South Pacific on a 500 ft ship, he was hooked.  He was hired by NOAA at a job fair as a 3rd engineer and soon will have enough sea days to move to 2nd engineer.

 

 

There are 6 NOAA Corps members on  the Hi’ialakai.  They all went through an approximately 5 month training program at the Coast Guard Academy in New London, CT.  To apply, a candidate should have a 4 year degree in a NOAA related field such as science, math or engineering.  Our commanding officer, Liz Kretovic, attended Massachusetts Maritime Academy and majored in marine safety and environmental protection.  Other officers graduated with degrees in marine science, marine biology, and environmental studies.

Nikki Chappelle, Bryan Stephan and Brian Kibler on the bridge.
Nikki Chappelle, Bryan Stephan and Brian Kibler on the bridge.
ENS Chappelle
NOAA Ensign Nicki Chappelle

Ensign (ENS) Nikki Chappelle is new to the NOAA Corps.  In fact, this is her first cruise aboard the Hi’ialakai and second with NOAA.  She is shadowing ENS Bryan Stephan for on the job training.  She spent most of her schooling just south of where I teach.  I am hoping that when she visits her family in Cottage Grove, Oregon that she might make a stop at my school to talk to my students.  She graduated from Oregon State University with degrees in zoology and communication.  In the past she was a wildfire fighter, a circus worker (caring for the elephants) and a diver at Sea World.

All of the officers have 2 four hour shifts a day on the bridge.  For example ENS Chappelle’s shifts are 8am to 12pm and 8pm to 12am.  The responsibilities of the officers include navigating the ship, recording meteorological information, overseeing safety.  Officers have other tasks to complete when not on the bridge such as correcting navigational maps or safety and damage control. ENS Stephan manages the store on board as a collateral assignment.  After officers finish training they are sent to sea for 2-3 years (usually 2) and then rotate to land for 3 years and then back to sea.  NOAA Officers see the world while at sea as they support ocean and atmospheric science research.

Frank Russo
ET Frank Russo

Electronics technician (ET) seem to be in short supply with NOAA.  There are lots of job opportunities.  According to Larry Wooten (from Newport’s Marine Operation Center of the Pacific), NOAA has hired 7 ETs since November.  Frank Russo III is sailing with NOAA for the first time as an ET.  But this is definitely not his first time at sea.  He spent 24 years in the navy, 10 at Military Sealift Command supporting naval assets and marines around the world.  His responsibilities on the Hi’ialakai include maintaining navigational equipment on the bridge, making sure the radio, radar and NAVTEX (for weather alerts) are functioning properly and maintaining the server so that the scientists have computer access.

I have met so many interesting people on the Hi’ialakai.  I appreciate everyone who took the time to chat with me about their careers or anything else.  I wish I had more time so that I could get to know more of the Hi’ialakai crew.  Thanks.  Special thanks to our XO Amanda Goeller and Senior Scientist Al Plueddeman for reviewing my blog posts.  And for letting me tag along.

 

Did You Know?

The buoy at the top of the mooring becomes a popular hang out for organisms in the area. As we approached mooring 12, there were several red-footed boobies standing their ground. There were also plenty of barnacles and other organisms that are planktonic in some stage of their lives. Fishing line is strung across the center of the buoy to discourage visitors but some still use the buoy as a rest stop. The accumulation of organism that can lead to corrosion and malfunction of the equipment is biofoul.

Boobies to be Evicted
Red-Footed Boobies
Biofoul prevention
Wires and line to prevent biofoul.

 One More Thing

South Eugene biology teacher Christina Drumm (who’s husband was  Ensign Chappelle’s high school math teacher) wanted to see pictures of the food.  So here it is.  Love and Happiness.

Lobster for Dinner
Lobster for Dinner

 

Last supper
Last supper on the Hi’ialakai

 

 

 

 

 

 

 

 

 

Colors of the sea
I love the colors of the sea.
Sea colors
Sea colors

Sue Oltman: Salinity and Seamount Sleuths, May 24, 2012

NOAA Teacher at Sea
Sue Oltman
Aboard R/V Melville
May 22 – June 6, 2012

Mission: STRATUS Mooring Maintenance
Geographical Area: Southeastern Pacific Ocean, off the coast of Chile and Ecuador
Date: May 24, 2012

Weather Data from the Bridge:
Air temperature: 18.3 C / 64.9 F
Humidity: 70.3%
Precipitation: 0
Barometric pressure: 1011 mB
Wind speed: 2.3 NNW
Sea temperature: 19.16 C

Personal Log

The weather has been terrific – clear, in the 60’s with a little wind, nice sailing with the current helping us along. We are in the trade winds region. The view from the bridge (Captain’s pilot house) is excellent.  Everyone is terrific and very patient in showing us the ropes. There’s plenty of time to get to know people.  I’m getting to practice my Spanish a bit with our 2 students from the University of Concepcion (Chile) and two more Spanish speakers, from Chile and Ecuador. The two others on watch with me are Seb Bigorre (WHOI) and Ursula Cifuentes, a grad student from Chile, so we speak some Spanish during the watches. Life on a ship is different, but some of the comforts of home are here, too. Thank goodness there is a laundry, otherwise I would have had to bring 3 weeks worth of clothes! The food has really been fantastic!

Mark serving up some great food
Mark is one of our friendly cooks who keeps everyone on the ship happy!
Mess deck
The mess deck is where we eat our meals, grab a snack, or sit to read or chat at off times.

The dinner tonight is carne asada (fajitas) and you can smell it cooking. Bob and Mark, our cooks, have also served us white bean chili, salads, cheeseburger sliders, roasted chicken, fish, pork roast and vegetables, seasoned hash browns, bacon and eggs, all kinds of fresh fruit, not to mention the desserts like blueberry cobbler and cinnamon rolls. 

With all this great food, I was thankful to find that the crew makes places on the ship to work out! Some do “laps” by walking the ship a few dozen times around. There is an exercise room with weights and bikes and more equipment can be found in other places around the ship.

Science and Technology Log

The Woods Hole UOP (Upper Ocean Processes group) and rest of the team is now in a rhythm of deploying probes and gathering data. Like super sleuths, we are tracking a cold, relatively fresh water mass which originates inValparaiso and moves northwest. This water mass lies under the warm, salty surface layer.  At 50 meters depth, there is a clear distinction in the water masses since we began deploying the UCTDs. Just like a detective matches fingerprints, we have a “fingerprint” of the cold, fresh water.  A seasonal thermocline has been identified! Nan Galbraith, a programmer from WHOI, is processing all of the numerical data into useful images.  The surface water layer (graph) has a temperature about 20º C and salinity > 35 ppt (parts per thousand). At 50 meters depth, the temperature abruptly drops to 17º C and falls to 7.5º C at 400 m which is the bottom depth we are testing; similarly the salinity drops to 34.1 ppt. Although we are traveling through water about 4,000 m deep, we are interested in tracking this water mass. I’m still having trouble remembering approximate Celsius to Fahrenheit conversions: here’s a link to help.

http://www.wbuf.noaa.gov/tempfc.htm

However, another factor has come into play which we must consider. We are nearing a tectonically active area – the Nazca Ridge, a fracture zone. There are many seamounts, some of which have not been previously mapped. Whoever is on watch must look at the ever-changing multi-beam sonar display to look for seamounts – we don’t want the instrument to slam into an underwater volcanic mountain! The closer we get to the Nazca Ridge, the higher the likelihood of seamounts.

Seamounts
We constantly monitor the multi beam sonar display for bathymetry and sea floor features. The red or yellow circular areas are seamounts.

All in all, we will cover about 2,268 miles until we reach the Galapagos, so the multibeam sonar is a critical piece of navigation equipment.

On the watches, as we deploy the UCTD probe, which looks like a 2 foot long bullet, weighing about 10 lbs., and good teamwork is the hallmark of a successful launch and recovery. Sometimes we are working in the dark with only the ship’s lights and a flashlight. I have learned how to make a splice in the line – the cord is only about 1 mm in diameter! This line and any splice must be strong enough to hold onto a 10 pound instrument being dragged though 400 m of water at 12 knots. Picture 3 people at 4 a.m. on a moving ship, using tiny instruments to sew a splice in a 1mm line, all while the line is attached to the winch. Like a surgical team, we are all focused and know what tool the splicer needs next. Sometimes quick thinking and a problem solving mindset is needed. There was a foam “bumper” that we had been attaching to the line to cover the probe when it got close to the boat. The probe is expensive and this was protection from it slamming into the steel fantail. When it was lost in the water, the team on watch used a nearby mop to protect the probe while reeling it in. On the next watch, Seb figured out a different solution.

Why does it smell like diapers in here?

Back in the lab a different bit of problem solving with the scientific method is going on! Often when buoys are recovered, they are fouled — covered with barnacles and all kinds of organisms, fishing line, etc. that get caught in them. Jeff Lord – mechanical whiz – has hypothesized that applying a better “anti-fouling” substance can keep these from affixing themselves to the equipment. He has liberally applied Desitin, a zinc oxide ointment, to the instruments. This is the same treatment for diaper rash on babies’ bottoms!  So therefore, the odor in the lab reminds us of diapers. It will be a year before we know if Jeff’s hypothesis is correct, because after the STRATUS 12 buoy is moored, it will be a year before it is recovered.  What do you think will happen?

Some of the science party was given a tour of the ships technical equipment behind the scenes. Bud Hale explained not only all of the monitors and ship terminology, but took us down into the equipment rooms where we encountered a gravimeter (measures gravity variations), modern gyros with optics and GPS (measures pitch, roll and heave).

Bud Hale
Bud is an expert on all things technical on the ship. He is more than happy to tell you how any of it works!

Tomorrow, we hope to see the desalination plant on the ship which gives us our fresh drinking water.

UCTD files
After each deployment of a UCTD, data is uploaded into the computer. I’m starting to get the hang of it!

Karen Matsumoto, April 27, 2010

NOAA Teacher at Sea: Karen Matsumoto
Onboard NOAA Ship Oscar Elton Sette
April 19 – May 4, 2010

NOAA Ship: Oscar Elton Sette
Mission: Transit/Acoustic Cetacean Survey
Geographical Area: North Pacific Ocean; transit from Guam to Oahu, Hawaii, including Wake Is.
Date: Friday, April 27, 2010

Science and Technology Log

In addition to the deployment of the acoustic sonobouys and monitoring of the towed hydrophone array, we also do “XBT” drops three times a day, at sunrise, noon, and sunset. The Expendable Bathythermograph (XBT) has been used by oceanographers for many years to obtain information on the temperature structure of the ocean. The XBTs deployed by the Sette research team measures temperature to a depth of 1000 meters.

The XBT is a probe which is dropped from a moving ship and measures the temperature as it falls through the water. Two thin copper wires transmit the temperature data to the ship where it is recorded for later analysis. The probe is designed to fall at a known rate, so that the depth of the probe can be inferred from the time since it was launched. By plotting temperature as a function of depth, the scientists can get a picture of the temperature profile of the water. It is amazing to think that over 1000 meters of thin copper wire is packed into that small tube! When I first launched an XBT, I was expecting to shoot it off like a rifle, but it actually just falls out of the unit by gravity. I was relieved that I didn’t experience “kick-back” from the probe unit when I pulled the lynch pin!

Chief Scientist Marie Hill preparing to launch the XBT unit.
XBT deployed and falling to a depth of 1000 feet.
Marie cutting the copper wire ending the connection to the probe and computer.

Bellow: Temperature and depth information is sent to the computer from the probe attached to the XBT unit by thin copper wires. The wires are cut when the unit reaches a depth of 1,000 meters, and the unit falls to the ocean floor. The researchers on the Sette use XBTs to obtain information on the temperature structure of the ocean, as seen on the computer screen at bellow.

We are continuing to conduct visual observations on the “Flying Bridge.” I had a chance to take a shift on the “Big Eyes” which are 25 x 150 magnification binoculars. The person at each of the Big Eye stations does a slow 90 degree sweep toward the bow and then back again, searching the ocean from horizon to ship to spot whales. I have a renewed appreciation for the skill it takes to use binoculars, especially one that weighs over 40 pounds! I had to use stacked rubber mats to be able to reach the Big Eyes at its lowest height setting, and even then it was a struggle to keep them steady every time we hit a wave! I think the Big Eyes were designed by the same people that made the huge Norwegian survival suits!

Karen on the “Big Eyes.”

Personal Log

The more I learn about sperm whales, the more I want to see one! I heard sperm whale clicks this morning, which was super exciting. John Henderson, a member of our science team sent me a cool website that shows an MRI of a juvenile sperm whale. I’ve included it below. Sperm whales are still on my wish list for whale sightings on this trip!

QuickTime™ and a decompressorare needed to see this picture.

MRI Image of a juvenile sperm whale. © 1999 Ted W. Cranford.
See website at: http://www.spermwhale.org/SpermWhale/spermwhaleorgV1.html

Question of the Day: How do sperm whales make their vocalizations? Sperm whale clicks are produced when air is passed between chambers in the animals’ nasal passages, making a sound that is reflected off the front of the skull and focused through the oil-filled nose. It has been suggested that powerful echolocation clicks made by sperm whales may stun their prey. Recent studies have shown that these sounds are among the loudest sounds made under water by animals (they can travel up to six miles despite being fairly high frequency).

Sperm whale clicks are heard most frequently when the animals are diving and foraging. These sounds may be echolocation (“sonar”) sounds used to find their prey, calls to coordinate movement between individuals, or both. Clicks are heard most frequently when the animals are in groups, while individual sperm whales are generally silent when alone. Most of the sounds that sperm whales make are clicks ranging from less than 100 Hz to 30 kHz

New Term/Phrase/Word of the Day: Expendable Bathythermograph or the XBT was developed in the 1960s by former The Sippican Corporation, today Lockheed Martin Sippican. Over 5 million XBT’s have been manufactured since its invention. The XBT is used by the Navy and oceanographic scientists to provide an ocean temperature versus depth profile. Some XBTs can be launched from aircraft or submarines, and have been used for anti-submarine warfare. How many XBTs do you think are on the bottom of the ocean?

Something to Think About:

“Thar she blows!” was the cry of the whaler!

Whale researchers can identify many whales by their “blows,” when the whale comes to the surface to breathe. Observers look for the direction and shape of the blow. For example, sperm whale blows are almost always directed at a low angle to the left, as their single nostril is located on the left side.

Grey whales, on the other hand, have two blowholes on the top of their head, and have very low heart-shaped or V-shaped blows, with the spray falling inwards. What do you think are you seeing when you see whale blows?

Animals Seen Today:

• Flying fish

Did you know?

Cetaceans evolved from land mammals in the even-toed ungulates group. The hippopotamus is most likely their closest living relative!

Picture of the Day

Abandon ship drill on the Sette!

Mary Cook, December 5, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 2-5, 2004

Personal Log

This afternoon we will board the NOAA Research Vessel RONALD H. BROWN and depart from Arica, Chile and steam westward for the Stratus buoy. I look forward to this adventure with great anticipation and a little trepidation. I’ve never been out to sea for three weeks and can’t help wondering how I will react to this challenging environment. I’ve already met several of the crew and scientists, all of whom have been very cordial and hospitable. I look forward to interviewing them, working with them and just getting to know these incredible people who’ve dedicated themselves to this research effort that will help us better understand the Earth’s systems and benefit mankind in so many ways.

As I reflect upon the last few days since we’ve arrived in Chile, I am overwhelmed by all the wonderful experiences that have been bestowed upon me. First of all, I must mention my mentor Dr. Diane Stanitski. She is a great teacher and a sincere encourager. She is patient yet exudes an energy that’s contagious. Diane has already gained my trust and I look forward to her continued mentoring. Another person with whom I have worked closely is Dr. John Kermond. Dr. Kermond’s the movie-maker. He makes documentaries for NOAA. He’s a very good coach for a novice like me, and a fine tour guide, too. Both he and Diane have put me at ease, modeled proper on-camera techniques and given me advice that’s helped me considerably. I like being their student because I’ve witnessed their expertise and I know they genuinely have a love for this work. What more could a student ask for?

Well, let me tell about some of the sights we’ve seen in the last couple of days while waiting for the cruise to begin. We’re staying at the Hotel Arica. It’s a resort situated right on the beach. I can hear the big waves crashing on the rocks and smell the salty air from my room. It’s a very comforting sensation. The first morning here as I walked along the beach and out on the rocks looking at the ocean, I couldn’t wipe the smile off my face! There’s just something about it that causes my spirit to soar. It’s so mysterious and grandly beautiful.

Then Diane and I went to the ship to participate in a tour for school children from the Escuela America. The mayor of Arica and the local television station were there, too. The kids were great, well-behaved and asked interesting questions! They were third graders and eighth graders. This tour is part of the education efforts of the NOAA.

After the tour, we went to the top of El Morro, a hill that looks like a giant mound of sand. It stands guard over Arica with a statue of an open-armed Jesus overlooking the city and the harbor. We shot a movie clip of Diane and me giving a brief history of Arica.

The next day we journeyed into the Atacama Desert and Andes mountains to have a look. But first we stopped to get water and food because we were going into such a remote area. Wow! The Atacama Desert is one of the driest places on the Earth. It’s a stark yet breathtaking sight to behold. Even though this is a desert there’s abundant evidence of water erosion where a multitude of rounded rocks have been carried into gullies.

As we were driving we suddenly began to see some interesting cacti. These were the Candelabro cacti which grow only between 2500-2800 meters elevation. They have a narrow life zone and are fragile for that reason alone. We were told by a local Chilean woman that they grow very slowly and only after about 30 years will the cactus begin to grow the branches at the top. Diane and I also collected a few rocks to take back to my classes.

As we continued along the main highway that connects Bolivia to the ocean, we stopped at Pueblo de Mallku. This is a village of six! Actually, it’s a homesteaded property of a very interesting family who are conducting the Center for Renewable Energy Resources in conjunction with the university in Arica. They live out in the middle of the desert in a nearly subsistence lifestyle with their closest neighbors being several miles away. They were eager to show us their setup which was quite amazing. They have a solar oven, solar water heater, and a high-tech electrical generator. They have built their dwelling from hand-mixed adobe and cactus logs. They home school their children who’ve compiled a book of local plants and animals along with traditional indigenous Chilean instructional songs on cultivation and medical uses of the plants. During our visit they served us tea with bread and jam. It was quite tasty. The tea was a concoction of leaves and boiling water that will help a body adjust to the extreme altitude.

After we said our goodbyes, we continued to ascend toward the Chungara Lake area. As we went higher and higher on the winding road, two snow-capped volcanoes came into view! I noticed the air started to get very chilly and it was windy. We saw llamas and alpacas grazing in the mountain meadows along the snow-melt streams from the mountaintops. These animals are curious critters! When we stopped for a photo op, they’d perk up their ears, take a long look at us, chew for awhile as though they were thinking about us, then move away occasionally looking back to see if we were looking back. We were fortunate to get to meet a pet alpaca named Cookie. Cookie likes to eat cookies. She was owned by some merchants who had a craft stand near the border stop. John dug out the last of the coconut cookies and shared them with Cookie. She was a true blue friend after that! Cookie’s fur is thick wool and can sell for a high dollar in the U.S.

At this point we were at about 14,000 feet elevation and I was really feeling it. I had a headache, dizziness, and my leg muscles were quivering from fatigue only after a short walk. I didn’t drink enough tea back at Pueblo de Mallku! So we got back in our trusty Puegot and descended to a village called Putre. Putre is a town that caters to tourists. They were happy to see us and very outgoing. Everyone we saw said “Hola” and waved with a smile. We went into a tiny grocery store and purchased supper. We had meat, egg, and olive stuffed empanadas followed by a delicious fig and coconut pastry.

We then took the long and winding road in total darkness back to Arica.

Now I am aboard the NOAA Ship RONALD H. BROWN and we’ve been sailing for six hours. No land in sight. We’ve had two meetings and a delicious supper in the galley. They have an interesting sign in the eating area that says, “Eat it and beat it” There aren’t enough chairs to seat all 45 people at once so when we finish eating we must get up and go elsewhere. It seems everyone has lots of work to do anyway.

Our first meeting was about ship rules and regulations with a focus on safety. We will have our surprise fire drill tomorrow at 2:15 pm promptly! Our science meeting was about the several scientific endeavors and the logistical problems to solve. Our chief scientist Dr. Bob Weller of Woods Hole Oceanographic Institution, encouraged us all to be helpful and considerate.

Some members of the Chilean Navy and Concepcion University are on board to deploy a tsunami detecting buoy which will get underway tomorrow afternoon. We will be deploying CTDs (conductivity, temperature, and depth sensors), and ARGO floats which go down 2000 meters then float to the surface measuring salinity and temperature. Once they break the surface then they send the information to a satellite. These floats then go back down and do it all over again. We’ll also be sending up radiosondes (weather-balloons) and tossing out drifting buoys which measure temperature, pressure, and ocean current pathways. Then the “biggie” is the Stratus 5 buoy! We’ll be out into the Pacific Ocean about 800 miles off the coast of Chile when we do this work which will take about six days. All this stuff is so cool I can’t believe I actually get to witness and participate in even a small way! I’m amazed. I’ll be giving you more information as the time comes so stay in touch and don’t forget to look at the pictures.

Mary

Susan Carty, March 15, 2001

NOAA Teacher at Sea
Susan Carty
Onboard NOAA Ship Ronald H. Brown
March 14 – April 20, 2001

Mission: Asian-Pacific Regional Aerosol Characterization Experiment (ACE-ASIA)
Geographical Area: Western Pacific
Date: March 15, 2001

We are off into the Pacific! Today and tomorrow we are in the trade winds, so the weather is beautiful! Seas are definitely rolling but it is really like an amusement park ride. Manageable! But, shortly we will be in the Westerlies where they say “batten down the hatches!”  Hope I have my sea legs by then.

Lots of activity on board.  Scientists getting their equipment in order. We had safety drills last night – “Man overboard” and “Abandon ship”. I received my protective gear for the abandon ship drill. Looks like an orange “Gumby “suit.  Lots of safety procedures to learn and respond to.  Ships are very dangerous places!

Sleeping was an interesting exercise. The ships anchor is not attached as securely as it might be. Therefore, we hear loud clinks and clanks during the night. The anti-roll tanks slosh water around particularly when the ship is rocking and rolling. Ear plugs were definitely a necessary piece of gear!

I will let you know what today’s experiments involve if there are any.

Talk to you soon
Susan