Anna Levy: Fish Rules, July 17, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10-20, 2017

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 17, 2017

Weather Data from the Bridge

Warm weather and blue skies are making it easy to spend a lot of time out on deck, looking for wildlife! In addition to the lazy seagulls who keep hitching a ride on the ship’s trawling gear, we continue to spot dolphins, flying fish, and even a shark feeding frenzy!

Lazy sea gulls hitch a ride on our trawling gear
Latitude: 28 24.13 N
Longitude: 83 57.32 W
Air temp: 27.7 C
Water temp: 31.3 C
Wind direction: light and variable
Wind speed: light and variable
Wave height: 0.3 meter
Sky: 50% cloud cover, no rain


Science and Technology Log

The organisms in each catch provide a snap shot of the marine life in one location in one moment in time. It’s interesting to see what we catch, but there are not many scientific conclusions that we can draw based on what we see in just 10 days. However, this survey has been completed twice per year (once in the summer and once in the fall) for over 35 years. It is looking at trends, or changes and patterns over time, that allows scientists to draw conclusions about the health and ecology of the Gulf of Mexico.

One of the major practical applications of this research is to prevent overfishing, the removal of too many individuals from a population causing that population to become unstable. Continued overfishing can lead to the extinction of a species because it leaves too few mature individuals to reproduce and replace those that are removed.

Cod Graph
Graph Created by Boston Globe

One famous example of overfishing and its consequences occurred in the late 1980’s off the Atlantic coast of Canada. Cod was a major food source and commercial industry in the provinces of Newfoundland and Labrodor. However, unregulated overfishing depleted the cod population and, between 1988 and 1992 the cod population crashed, losing more than 99% of its biomass – they were essentially gone. This destroyed the industry, putting over 40,000 people out of work. In 1992, the government finally imposed a complete ban on cod fishing in hopes that the cod population could still recover. The fishing ban is still in place today, though just last year, Canadian scientists released a report stating that there are some signs of hope!

When NOAA scientists notice overfishing occurring in US waters, they can recommend that protective regulations, or rules, are put in place to limit or even stop fishing in an area until the species has had a chance to recover.

Here are a few examples of the types of regulations that have been created in the Gulf of Mexico in response to the data from the Groundfish Survey.

Texas Shrimping Closure

To prevent overfishing of shrimp in the western Gulf of Mexico, NOAA and the Texas Department of Wildlife collaborated to implement an annual closure of state and federal waters off the coast of Texas to shrimping. This is called the “Texas Closure.”

The Texas closure runs each year from about May 15 to July 15, though the exact dates vary depending on the health of the shrimp population that year. This break allows the shrimp time to mature to an age at which they can reproduce, and to migrate out to deeper waters, which is where females spawn. It also allows the shrimp to grow to a size that is more commercially valuable.

A shrimp we caught off the coast of Florida.

We saw quite a few shrimp in our recent catches. Because this species is being more intensively monitored, we collected more detailed data about the individuals we caught, including the length, mass, and sex of a sample of least 200 individual shrimp (instead of a the smaller sample size of 20 that we used for most other species.)

In addition to sending out an annual notice to fisherman of the dates of the Texas Closure, NOAA also makes all of the shrimp survey data available. This can help fishermen to target the best fishing locations and work efficiently. For example, this is a plot showing the amount of brown shrimp found at various locations, created using this year’s survey data.

Shrimp Map
Plot Created By NOAA

Red Snapper Regulation

Another species that is currently under regulation is the red snapper, which has been a popular seafood in the US since the 1840s. As fishing technology improved and recreational fishing expanded in the 1950’s, the number of red snapper captured each year increased dramatically. The shrimp industry was also expanding rapidly at this time, and juvenile red snapper were often accidentally caught and killed in shrimp trawls. As a result of these three pressures, the red snapper population began to decline dramatically.

Red Snapper SP
Graph created by NOAA

By 1990, the spawning potential, or the number of eggs produced by the population each year, was only 2% of what it would have been naturally, without any fishing. This was far below the target spawning potential level of 26% that is necessary to sustain the species.


Several types of regulations were implemented to protect the snapper. These included:

  • Limiting the number of commercial and recreational fishing licenses issued each year
  • Restricting the size and number of fish that a fisherman could collect on a fishing trip
  • Reducing the amount of time each year that fishermen could fish for red snapper
  • Regulating the type of fishing gear that could be used
  • Requiring commercial shrimp fishermen to install devices on their trawls to reduce the by-catch of juvenile red snapper
  • Requiring fishermen to avoid areas where red snapper spawn

Survey results in the last 5 years show that these regulations are working and that the red snapper population is growing. This is good news. However, the red snapper is not out of the woods yet. It is important to understand that, as a species with a long life span (they can live over 50 years!), it will take time for the population to regain

Red Snapper Productivity
Graphic created by NOAA

its normal age structure. Currently, the majority of red snapper found in the Gulf are less than 10 years old. These fish are still juveniles capable of producing only a fraction of the offspring a fully mature individual would produce. It is important to continue to closely monitor and regulate the fishing of snapper until both the number and age of individuals has been restored to a sustainable level.

We were fortunate to catch members of three different species of red snapper during my leg of the survey. I did notice that most of them were relatively small – less than 10 inches – which is consistent with the concern that the population is still disproportionately young.

As with the shrimp, we collected more detailed information about these individuals. We also removed the stomachs of a sample of snappers. As I discussed in my last blog (“What Tummies Tell Us”), scientists back on land will examine the contents of their stomachs as part of a diet study to better understand what snapper are eating. Because the invasive lionfish has a competitive relationship with red snapper, meaning that it eats many of the same foods that red snapper eat, fisheries biologists are concerned that red snapper may be forced to settle for alternative and/or reduced food sources and that this could also slow their recovery.

A typical red snapper from our catch. Note that each mark on the ruler is one centimeter.
Red snapper from one catch.


Hypoxia Watch

Getting ready to deploy the CTD sensors.

In addition to collecting data about the fish and other organisms we find, remember that we also use a group of instruments called a CTD to collect information about the quality of the water at each survey station. (For more about CTDs, please see my previous blog “First Day of Fishing.”)

One of the measurements the CTD takes is the amount of oxygen that is dissolved in the water. This is important because, just like you and me, fish need to take in oxygen to survive. (The difference is that you and I use our lungs to remove oxygen from the air, whereas fish use gills to remove oxygen from the water!) When dissolved oxygen concentrations in the water drop below 2 mg/L, a condition called hypoxia, most marine organisms cannot survive.

When waters become hypoxic, organisms that are able to migrate (like some fishes) will leave the area. Organisms that cannot migrate (like corals or crabs) will die from lack of oxygen. This creates large areas of ocean, called dead zones, that are devoid of typical marine life. Often anaerobic microorganisms, some of which are toxic to humans, will then grow out of control in these areas. Not only is this stressful for the marine populations, it hampers regular fishing activities, and can even pose a threat to human health.

The Gulf of Mexico is home to the largest hypoxic zone in US waters. Nitrogen-rich fertilizers and animal waste from farming activities throughoAnnual Hypoxic Zone Graphut the Midwest United States all collect in the Mississippi River, which drains into the Gulf. Though nitrogen is a nutrient that organisms need in order to grow and be healthy, excess nitrogen causes an imbalance in the normal nitrogen cycle, and stimulates high levels of algae plant growth called an algal bloom. Once the algae use up the excess nitrogen, they begin to die. This causes the population of decomposers like fungi and bacteria to spike. Like most animals, these decomposers consume oxygen. Because there are more decomposers than usual, they begin to use up oxygen faster than it can be replenished.

This hypoxic zone is largest in the summer, when farming activities are at their peak. In the winter, there is less farming, and therefore less nitrogen. As the hypoxic water continues to mix with normal ocean water, the levels of oxygen begin to return to normal. (When there are tropical storms or hurricanes in the Gulf, this mixing effect is more significant, helping to reduce the impact of the hypoxia. This is often the primary cause of low-hypoxia years like 2000.) Unfortunately, the average size of the annual dead zone remains at nearly 15,000 square kilometers, three times the goal of 5,000 square kilometers.

The data collected from this year’s Groundfish Survey was used to create this map of hypoxic areas. How might this map be different if tropical storm Cindy had not occurred this summer?

This Years Hypoxic Zone
A plot of dissolved oxygen levels created from this year’s survey data.

The data we collect on the Groundfish survey is combined with data gathered during other NOAA missions and by other organizations, like NASA (the National Aeronautics and Space Administration) and USGS (the United States Geologic Survey). By collaborating and sharing data, scientists are able to develop a more complete and detailed understanding of hypoxia levels.

In response to the levels of hypoxia seen in the data, the federal Environmental Protection Agency (EPA) has required Midwestern states to develop and implement plans that will allow them to make greater progress in reducing the nutrient pollution that flows into the Mississippi. Specifically, the EPA wants states to do things like:

  • Identify areas of land that have the largest impact on pollution in the Mississippi
  • Set caps on how much nitrogen and other nutrients can be used in these areas
  • Develop new agricultural practices and technologies that will reduce the amount of these pollutants that are used or that will flow into the water
  • Ensure that the permitting process that states use to grant permission to use potential pollutants is effective at limiting pollutants to reasonable levels
  • Develop a plan for monitoring how much nutrient pollution is being released into waters

These EPA regulations were only recently implemented, so it is still unclear what, if any, impact they will have on the hypoxic zone in the Gulf. It will be interesting to keep an eye on the data from the Groundfish survey in coming years to help answer that question!

In the mean time, though, things still seem to be moving in the wrong direction. In fact, NOAA just announced that this summer’s dead zone is the largest ever recorded.

Photo credit: Goddard SVS, NASA

Personal Log

Getting a PhD in your chosen field of science is an awesome accomplishment and is necessary if your goal is to design and carry out your own research projects. However, I’ve noticed that the PhD is often presented to students as the only path into a career in science. I think this is unfortunate, since this often discourages students who know they do not want to pursue a graduate degree from entering the field.

I’ve noticed that most of the scientists I’ve met while on board the Oregon II and in the NOAA lab at Pascagoula do not hold PhDs, but are still deeply involved in field work, lab work, and data analysis every day.

I asked Andre DeBose, a senior NOAA fishery biologist and the Field Party Chief for this mission, if he feels a PhD is necessary for those interested in fishery biology. Andre agreed that a graduate degree is not necessary, but he cautioned that it is a very competitive field and that education is one way to set yourself apart – “if you have the opportunity to get an advanced degree, take the opportunity.”

However, he continued, “the MOST important thing you can do is take the opportunity to do internships, volunteering, and fellowships. Those open a lot of doors for you in the world of biology.” Andre himself holds a bachelors degree in biology, but it was his years of experience working in aquaculture and as a contractor with NOAA that were most helpful in paving the way to the permanent position he holds today. “When I graduated from college, I took a low-paying job in aquaculture, just to start learning everything I could about fish. When contract [or short-term] positions became available at the NOAA lab, I applied and tried to make myself as useful as possible. It took time and I had to be really persistent – I would literally call the lab all the time and asked if they had anything they needed help with – but when a full time position finally became available, everyone knew who I was and knew that I had the right skills for the job.”

Now, Andre tries to help others navigate the tricky career path into marine biology. In addition to his responsibilities as a biologist, he is also the Outreach and Education Coordinator for the NOAA lab, which allows him to mentors all of interns (and Teachers at Sea like me!) and to talk with students at schools in the community.

If you’re interested in pursuing a career in marine biology, it’s never to early to start looking for some of those volunteer opportunities! There are lots of scientists out there like Andre who are excited to share their knowledge and experience.

The Day-Shift Science Team as we head back in to port.  From left to right:  TAS Anna Levy, NOAA Summer Intern Jessica Pantone, NOAA Biologist & Field Party Chief Andre DeBose, NOAA Fellow Dedi Vernetti Duarte, NOAA Volunteer Elijah Ramsey.

Did You Know?

In the Gulf of Mexico, each state has the authority to regulate the waters that are within about 9 miles of the coast. (This includes making rules about fishing.) Beyond that, the federal government, with the help of federal agencies like NOAA, make the rules!


Questions to Consider:

Research:  This article discussed the political side of the Snapper situation. Research other news articles about this issue to ensure that you have a balanced perspective.

Reflect: To what extent do you believe this issue should be governed by science? To what extent do you believe this issue should be governed by politics?

Take action: Propose some specific ways that fisherman, scientists, and policy-makers could work together to address issues like the overfishing of red snapper fairly and effectively.

Review: Examine the graph showing the size of the hypoxic zone in the Gulf each summer. There are unusually small zones in 1988 and 2000. How do you explain this?

Research: Two other reoccurring hypoxic zones in the US are found in Chesapeake Bay and Lake Erie. What is the cause of each of these zones?





Spencer Cody: Sea of Life, June 4, 2014

NOAA Teacher at Sea

Spencer Cody

Aboard NOAA Ship Pisces

May 27 – June 11, 2014

Geographical Area of Cruise:  Gulf of Mexico
Mission:  SEAMAP Reef Fish Survey
Date:  June 4, 2014

Observational Data:

Latitude:  27˚ 51.464 N
Longitude:  93˚ 17.745 W
Air Temp: 27.1˚C (80.8˚F)
Water Temp: 24.5˚C (76.1˚F)
Ocean Depth:  141.5 m (464 ft.)
Relative Humidity:  81%
Wind Speed:  14.8 kts (17.0 mph)
Barometer:  1,012.3 hPa (1,012.3 mbar)

Science and Technology Log:

The degree to which the Gulf of Mexico is rich in sea life is truly stunning.  The Gulf produces more fish, shrimp, and shellfish than the waters of New England, the Chesapeake, mid- and south-Atlantic combined; consequently, the SEAMAP survey area includes a wide variety of sea life with great abundance.  A lot is riding on our ability to understand and manage the Gulf of Mexico.  According to a 2010 National Marine Fisheries Service report, the five U.S. Gulf states harvested 1.3 billion pounds of commercial shellfish and fish.  In that same year, the Gulf produced 82% of the U.S. shrimp harvest, and 59% of the U.S. oyster harvest, and over a billion pounds of fish.  Maintaining the Gulf as a productive fishery for years into the future is essential to the U.S. economy and its food production.  So, what is going on with reef fish in the Gulf?  In general, many commercially valuable species in the Gulf are showing signs of strain due to over harvesting and various environmental factors.  However, compared to waters in some parts of the neighboring Caribbean that have had commercially valuable reef fish devastated by lax regulation and enforcement, some parts of the Gulf appear relatively pristine.

This is a picture of me taking measurements of one of our target commercial fish species.  Credit Adam Pollack for the photo.
This is a picture of me taking measurements of one of our target commercial fish species. Credit Adam Pollack for the photo.

One area of concern is our red snapper stocks.  It can be a difficult population to maintain since major swings in reproduction occur from year to year.  This can give both recreational and commercial fishermen a false sense that a population is doing well; however, with red snappers one thirty-year-old female lays more eggs than 30 one-year-old females.  Therefore, it is in our best interests to ensure some older fish survive for reproduction. This same trend can be applied to other commercial fish in the Gulf further complicating management efforts.

The populations of both red snapper and vermillion snapper are showing signs of recovery since setting harvesting restrictions. Red snapper still has a ways to go to get to the targeted sustainable population.  Currently, the red snapper population is only 13% of the target population level while the vermillion snapper is now at 92% of its target population.  Both populations are well below levels documented early in the 20th century. We see a similar problem with some of the grouper in the Gulf.

Species such as the gag grouper and red grouper have faced similar declines due to overfishing, and both have shown signs of recovery while the gag grouper is still under a population rebuilding plan.  While the bandit reels are targeting fish stocks that often have commercial or recreational value, the camera array reveals the context to the rest of the story about the habitat that is up to several hundred feet below our feet.

Just as freshwater fish back home are often attracted to some sort of structure, reef fish exhibit the same tendencies.  Survey areas where we catch few, if any, fish using the bandit reels often appear as barren, flat muddy or sandy bottoms.  This stands in stark contrast with the rich communities that congregate around structure.

Areas in the Gulf that have structure often have a remarkable array of fish and an even wider ranging variety in invertebrates.  So far on this cruise, we have viewed dozens of species of fish representing groups as diverse as snapper, grouper, sharks, eels, triggerfish, pufferfish, anglefish, damselfish, jacks, porgies, and tilefish.

The invertebrate diversity at these sites spans many phyla including sea fans, sea sponges, crabs, brittle stars, sea lilies, shrimp, tunicates, and various types of algae.  One may wonder why structure is found in these places.  In many cases these communities thrive on ancient coral reefs.  These reefs are no longer living themselves since the 150 to 300 feet we often find them in is too deep for the colonial animals that make up coral to have symbiotic algae living with them.  There is simply not enough light at that depth for the types of algae normally associated with coral to carry out photosynthesis.  Then how did corals get to such depths in the first place?  Twelve thousand years ago large ice sheets existed across much of the northern hemisphere.  These continental glaciers locked up approximately 100 feet of ocean sea level into ice at the peak of glaciation.  Therefore, many of our survey sections are directly over where the Gulf coast once was in very recent geological time.  Once the global climate warmed, the glacial ice sheets collapsed and filled the ocean basins to their present day sea levels leaving the existing coral reefs in near darkness.

Personal Log:

In addition to all of the sea life that I have seen directly relating to the survey, I have seen numerous species as a result of incidental catches or just from casual observations from the ship.  The Gulf is home to more than a dozen shark species.  A hammerhead and possibly a bull shark were spotted from the Pisces during the cruise.  Several unidentified sharks were attracted to the mackerel that we were using for bait on our bandit reels and the fish that we were reeling in on our lines.  Trying to reel in your catch and pull off ten hooks from your line before the sharks get a hold of it really adds a whole new element of excitement to fishing that I had never had to deal with before.  Other sea life that I have seen include barracuda, a wahoo, a bottlenose dolphin, Atlantic spotted dolphins, large mats of brown algae called Sargassum, and the many living things that live among the Sargassum, which I will talk more about in future posts.

Did You Know?

Fish stocks throughout the ocean are threatened by over-harvesting and environmental issues.  You can learn more about the status of key marine species and issues relating to our seafood supply at the NOAA site.

Elizabeth Nyman: The Science Continues, May 31, 2013

NOAA Teacher at Sea
Elizabeth Nyman
Aboard NOAA Ship Pisces
May 28 – June 7, 2013

Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: May 31, 2013

Weather Data:
Surface Water Temperature: 24.55 degrees Celsius
Air Temperature: 25 degrees Celsius
Barometric Pressure: 1016.3 mb

Science and Technology Log

Work continues here on NOAA Ship Pisces. By the end of today, we’ll have sent the camera array down to 35 spots and caught at least 45 fish with the bandit reels. I’ve personally gotten to see some of the camera footage, as well as help the scientific crew with their analysis of the fish we caught.

Here’s a screen capture of some video taken yesterday from the Florida Middle Ground. The big fish on the left is a red grouper, the fellow poking his head up with the crazy eye is a spotted moray eel, and the yellow fish not far above him are reef butterfly fish. Note that “crazy eye” is not a scientific term. (Picture courtesy of NOAA.)

This work goes on for the entirety of daylight hours, beginning with our arrival at the first location sometime between 7 to 7:45 a.m., and not ending until around 6:30 to 7 p.m. It’s a long day, with 8-10 drops of the camera array and 4 different attempts to catch fish with the bandit reels. But the Pisces doesn’t sleep just because the sun goes down. When most of the ship goes to bed, the crew continues scientific work by driving the ship around in circles. The circles are actually well-plotted lines, and the route is chosen to allow the ship’s ME70, a multi-beam sounding unit, to map the sea floor.

Here’s an example of the routes we do at night. It will take all night to do one of these three blocks pictured here. (Picture courtesy of NOAA.)

Every possible moment of time is devoted to gathering as much data as possible, whether it’s fisheries data from the camera array and the bandit reels, or the mapping data that goes on at night. It’s expensive and time consuming to send a ship out here, 60-80 nautical miles off the west coast of Florida, and so everyone has to work hard while we’re out at sea. I have nothing but admiration for the entire crew of the Pisces, from the officers to the scientific crew to the deck crew, stewards, and ship’s engineers, because they all are always hard at work making NOAA’s scientific mission possible. But you might be wondering, what’s the point of all this? Why are we out here taking pictures and video of fish, and catching them to take back to the lab for testing?

This voyage is part of the SEAMAP Reef Fish Survey, which has been going on for over 20 years. The point is to gather information on the abundance of certain species of fish, which is why we need to see how many there are down there, through the cameras, and what their size, age, and fertility look like. This crew is based out of Pascagoula, MS, and that’s where the video taken of the fish is analyzed. They determine how many fish are present, and can actually measure the size of the fish by taking pictures with stereo cameras and using parallax, the difference in position from one camera to the next. They combine this data with the information that the Panama City lab generates from the ear bones and the sex organs, as well as any relevant external data from fishery observers and the like, to create a full a picture as possible about the overall health of the fish population.

Looking at numbers
Ariane Frappier, graduate student volunteer, examines NOAA reef fishery data from the Dry Tortugas for her thesis.

Cool. I like gathering data, and I definitely think that more knowledge of our fish and oceans is better than less. But we aren’t looking at fish out here just to look at fish, as awesome as that would be. This survey has a purpose. Data collected here is used by the SEDAR program, which stands for Southeast Data, Assessment, and Review. SEDAR will examine a particular species and analyze all the data collected about that species, before holding a series of workshops open to the public about that fish. At the end of the process, a series of experts will recommend how much fishing should be allowed for that population, in order to properly manage the fishery and prevent overfishing.

Personal Log

What we don’t get to record in our data, but is still pretty awesome, is the ability to view wildlife from the boat. I don’t mean the stuff we catch, though that’s pretty cool too, but the creatures that we just get to observe.

Me and Shark
Okay, some of the stuff we catch is really cool. This is me with a silky shark.

So far, I’ve seen loggerhead sea turtles, just kind of relaxing and swimming not too far from our boat. I also got to see a pod of Atlantic spotted dolphins – I saw several of them, but the way they were swimming around in the waves, it’s hard to be precisely sure how many. I missed seeing at least two other dolphins – the seas have been kind of choppy, and so they disappear from view pretty quickly.

Atlantic Spotted Dolphins
Atlantic Spotted Dolphins swimming very near the Pisces.

Then, pretty much right as I was writing this up, I got to see a leatherback sea turtle who surfaced for air pretty close to our boat. I didn’t get a picture, since you pretty much have to have the camera in hand for these things, they happen so quickly.

Sea turtle
So here’s a picture from NOAA for you. The zoom on my camera’s not that good anyway. (Picture courtesy of NOAA.)

Did You Know?

The leatherback sea turtle is an Appendix I creature under CITES, the Convention on International Trade of Endangered Species of Wild Flora and Fauna. Appendix I creatures are those at risk of extinction, and international trade in these species or any part of these species is forbidden.

Sherie Gee: Preparing for Life at Sea, May 30, 2013

NOAA Teacher at Sea
Sherie Gee
Aboard R/V Hugh R. Sharp
June 26 – July 7, 2013

Mission:  Sea Scallop Survey
Geographical area of cruise:  Northwest Atlantic Ocean
Date:  May 30, 2013

Personal Log:

Hello, my name is Sherie Gee and I live in the big Lone Star State of Texas. I teach AP Environmental Science and Aquatic Science at John Paul Stevens High School in San Antonio, home of the Alamo and the Spurs. I have been teaching for 31 years and I am still thirsty for new knowledge and experiences to share with the students which is one of the reasons I am so excited to be a NOAA Teacher at Sea. I will get to be a “scientist” for two weeks collecting specimens, data, and using scientific equipment and technology that I plan to incorporate into the classroom.

I am also excited to be on this spectacular voyage because I feel very passionate about the ocean and all of its inhabitants. The ocean is a free-access resource which means it belongs to everyone on Earth so it needs to be taken care of. Overfishing, overharvesting and ocean pollution are global issues that I feel strongly about and feel that there has to be new ocean ethics. Teachers are in the best position to bring about ocean awareness to the students and the public. I feel very fortunate to be given this opportunity by NOAA to be part of an ocean conservation program. One of my favorite quotes is from Rachel Carson: “The more clearly we can focus our attention on the wonders and realities of the universe, the less taste we shall have for destruction.” I truly believe this because in order for people to care for our Earth and environment and not destroy it, they have to understand it and appreciate it first.

For two weeks I will be collecting the Atlantic sea scallop to determine the distribution and abundance of these animals. This survey is conducted in order to assess these scallop populations in certain areas of the Atlantic Ocean and determine if they have been overharvested and need to be closed to commercial fishermen for a period of time. I am very relieved to know that there are such programs around the world that focus on ocean fisheries and sustainability. I will be describing this survey of the Atlantic sea scallop in greater detail in my blogs.

Atlantic Sea Scallop
Atlantic Sea Scallop
Courtesy of

This will definitely be an exciting ocean experience for me. I live three hours away from the nearest ocean (The Gulf of Mexico) and have always managed to venture to an ocean each year. Every year I take my students to the Gulf of Mexico on the University of Texas research vessel (The Katy) to conduct plankton tows, water chemistry, mud grabs and bottom trawls.  I love to see the students get so excited every time they bring up the otter trawl and watch the various fish and invertebrates spill out of the nets.

UT Marine Science Research Vessel, The Katy
UT Marine Science Research Vessel, The Katy
Student sorting through the otter trawl on the Katy
Student sorting through the otter trawl on the Katy

I know I will be just like the kids when they bring up the trawls from dredging. People who know me say I am a “fish freak”. Fish are my favorite animals because of their high biodiversity and unique adaptations that they possess. I am a scuba diver and so I get to see all kinds of fish and other marine life in their natural habitat. I am always looking for new fish that I haven’t seen before. The top two items on my “Bucket List” are to cage dive with the great white shark (my favorite fish) and to swim with the whale shark. I recently swam with whale sharks in the Sea of Cortez and would like to do that again in the Caribbean with adult whale sharks.

Juvenile 15 foot whale shark in the Sea of Cortez Photo by Britt Coleman
Juvenile 15 foot whale shark in the Sea of Cortez

Needless to say, I can’t wait to start sorting through all of the various ocean dwellers and discover all the many species of fish and invertebrates that I have never seen before. I hope you will share my enthusiasm and follow me through this magnificent journey through the North Atlantic Ocean and witness the menagerie of marine life while aboard the Research Vessel Hugh /R. Sharp.

R/V Hugh R. Sharp
R/V Hugh R. Sharp

Sherie Gee holding an Olive Ridley hatchling at the Tortugueros Las Playitas A.C. in Todos Santos, Mexico Photo by Britt Coleman
Sherie Gee holding an Olive Ridley hatchling at the Tortugueros Las Playitas A.C. in Todos Santos, Mexico
Photo by Britt Coleman

Elizabeth Nyman: Introduction, May 21, 2013

NOAA Teacher at Sea
Elizabeth Nyman
Assigned to NOAA Ship Pisces
May 28 – June 7, 2013

Mission: Reef Fish Survey
Geographical Area of Cruise: Florida
Date: May 21, 2013

Elizabeth Nyman
Me, with a map of Reykjavik, Iceland

Hi everyone! My name is Elizabeth Nyman, and I just finished my first year as an assistant professor of political science at the University of Louisiana at Lafayette. UL Lafayette is a public university with about 16,000 students, located in a region with twin claims to fame: a center for Acadiana/Cajun culture (and food!) and the heart of the Louisiana offshore oil industry. Ocean resources are very important to southwestern Louisiana, both living and mineral. My students and their families live near or in some cases on the water; their favorite places to vacation are the beaches on Florida’s panhandle.

I have been teaching undergraduates since 2007, mostly courses on international relations and comparative politics. All professors have to have their own areas of arcane specialization, and mine is international maritime law and conflict. I do research and teach about maritime piracy, island tourism and sustainable development, and international maritime treaties like the Safety of Life at Sea, written to protect future ship passengers after the sinking of the Titanic.

I tell people I have the best career in the world, and when they hear more about what I do, most people agree. I got my Ph.D. in political science from Florida State University, in Tallahassee, FL, about two hours drive from where I grew up in Jacksonville, FL. The first week of graduate school, I was supposed to find a topic for my First Year Paper, a sort of mini-thesis designed to throw us into the world of high level research. I sat through hours of my professors talking about what they did, and doodled in the margins of my notebook. One doodle said “international conflicts over oceans?” and that became the topic of my paper.

(See, I was paying attention! Honest!)

For my dissertation, I received a grant to study an international fishery dispute between the Caribbean island states of Barbados and Trinidad and Tobago. It wasn’t much money, but I was a grad student and thus very, very skilled at living on nothing. And I wanted to spend as much time in the Caribbean as possible. Other students were talking about their plans for dissertation research, visiting archives in major cities or traveling to presidential libraries. And strangely enough, people who had always wondered why anyone would care about international ocean politics suddenly wished they’d chosen that as a topic.

Dover Beach, Barbados
The fact that this was two blocks away from where I stayed had nothing to do with their change of opinion, I’m sure. 🙂

But make no mistake, ocean politics are serious business. I don’t need to convince my students of that – they know the economics behind offshore drilling, as well as what happens when things go wrong. They know how much the region known for its seafood depends on shrimp and other fisheries. The resources of the ocean are big business, and sustain livelihoods across the state and across America.

Thing is, fish don’t stay in one place, and today’s American fishing vessels compete with others around the world to catch fish as they dart in and out of national waters. Fish that are unfortunately running out, according to the FAO– about 30% of the world’s marine fish are being overfished, meaning that more are being caught than are being born to replace them. Another 57% are being caught at capacity, or about as many are caught as are born to replace them.

Fish, fish, everywhere...for now. (Picture courtesy of National Geographic)
Fish, fish, everywhere…for now. (Picture courtesy of National Geographic)

Now, I’m no biologist, and one of the things that has always been a mystery to me is how we know what we know about fish populations. We know that close to 90% of the world’s fish are being caught at or above capacity – but how do we know what “capacity” is? How do we know if a population is in decline?

I applied for the Teacher at Sea program because I wanted to be able to answer questions like this. My students are intelligent and curious, and I usually get asked about the science behind the policies at least once a semester. I talk to them about NOAA and the work they do, but I wanted the opportunity to experience it for myself. It’s one thing to read about research, and another thing to understand it by taking part in it. I am excited that I get the chance to have this experience, and will be able to better bridge the gap between understanding the science and understanding the policies.

I am fortunate enough to be assigned to the Pisces, a ship involved in fisheries research off the coast of my home state of Florida. The Atlantic and the Gulf are my waters, in a sense, where I have lived and worked for almost my entire life, and these are our fish. They belong to all of us, those who live on the coast and those who only come for a visit. I can’t wait to learn more about them, to finally fill in the scientific gaps in my knowledge.

Pisces, here I come!

NOAA Ship Pisces (picture courtesy of NOAA)
NOAA Ship Pisces (picture courtesy of NOAA)

Marian Wagner: My Final Words and Hurricane Irene’s in Charge, August 23, 2011

NOAA Teacher at Sea
Marian Wagner
Aboard R/V Savannah
August 16 — 26, 2011

Mission: Reef Fish Survey
Geographical Area: Atlantic Ocean (Off the Georgia and Florida Coasts)
Date: Tuesday, August 23, 2011

A Fine Bunch to Live with at Sea: Front: Katie Rowe (Scientist), Sarah Goldman (Scientist Watch Chief, Night), Stephen Long (Scientist), Warren Mitchell (Lead Scientist). Middle: Marian Wagner (Teacher-at-Sea), Shelly Falk (Scientist), Christina Schobernd (Scientist, Video). Back: John Bichy (Marine Technician), Richard Huguley (Engineer), Harry Carter (2nd Mate), Raymond Sweatte (Captain), Michael Richter (1st Mate), David Berrane (Scientist Watch Chief, Day), Mike Burton (Scientist). Missing: Joel Formby (Master of the Galley)

Weather Data from the Bridge (the wheelhouse, where the controls of the ship are)

E-NE Wind at 10 knots  (This means wind is travelling 10 nautical miles per hour,
1.15 statute miles = 1 nautical mile)

Sea depth where we traveled today ranged from 33 meters to 74 meters

Seas 2-4 feet (measure of the height of the back of the waves, lower the number = calmer seas and steadier boat)

Science and Technology Log

IRENE: On Tuesday evening, we discussed the impact of Hurricane Irene on our cruise plans, and scientists and crew needed to make a decision about when we should return to dock. Originally, the plan was to return in the morning on Friday, August 26, but due to projections of Irene, they predicted that the seas would be too rough for us to lay traps beyond Wednesday (8/24).  When the seas are too rough, the traps bounce around and cameras do not pick up a steady, reliable picture.  When seas get to be 6-7 feet+ on a boat the size of the R/V Savannah (92 feet long), it also makes our work (and life) on the boat very difficult. Additionally, with Irene’s landfall projected in North Carolina, where half of the scientists live, they would need to get home in time to secure their homes and potentially evacuate.  Not in the case of Irene, but if a hurricane was expected to hit Savannah/Skidaway, where the boat moors, the ship’s crew would need to prepare for a hurricane-mooring.  To do this, they would run the ship up the Savannah River and put on a navy anchor that weighs 3,000 pounds.  Even with the use of the electric crane, it’s not an easy task to pull a 3,000 pound anchor onboard.  This would not be done unless a direct hit to the area was expected.  It has been done once before to the Savannah in the 10 years of her existence.  The forecast did not project Savannah to be affected by Irene, so we did not need to prepare for a hurricane mooring.

After difficult deliberation on Tuesday night about hurricane Irene’s potential Category (see how hurricanes are ranked here), and considering the success of the research accomplished on the trip already, scientists decided the most practical and reasonable decision was to dock Tuesday night, unpack Wednesday morning, and allow North Carolina scientists to return to their homes by Wednesday night.  (From reports I received post-Irene, there was landfall of the hurricane eye over their houses, but the storm weakened between Wednesday night and Saturday and was Category 1 when it came ashore.  None of them sustained significant loss.  Many downed trees and three days without power, but no floods or structure damage. Phew!)

NOAA’s National Weather Service is the sole official voice of the U.S. government for issuing warnings during life-threatening weather situations.  Follow Seattle’s “Weather Story” at NOAA’s National Weather Service.


Here on my final blog entry, I want to finish the story of our research process.  Here’s the story I’ve told so far, in outline form:

  1. research begins with baiting fish traps and attaching cameras, and we stand-by on deck
  2. when we arrive at a research location with reef fish habitat (as observed via depth sounder and GPS), we drop the trap to the bottom and it sits for 90 minutes; buoys float above each trap so we can find and retrieve them near where traps were deployed, we run the Conductivity, Temperature, and Depth Profiler (CTD) to get information about abiotic conditions at each sampling site. The CTD takes vertical water column profiles, measuring: Pressure, Temperature, Conductivity/Salinity, Chlorophyll fluorometer, Color dissolved organic matter fluorometer (CDOM), Photosynthetic Active Radiation (PAR), Backscatter, Dissolved oxygen, and Transmissometer -10 and 25 cm path lengths
  3. after 90 minutes have passed, we return to the traps and pick them up, and secure the fish caught
  4. we identify each fish, measure length, weight, and frequency (how many fish were      caught), and then keep the fish that our research is targeting
  5. in the wet lab, we dissect target fish, removing parts of fish that are sent back to the lab for further research

AT THIS POINT, WE ARE DONE with our research with the bodies of the fish, but we have 99% OF THE FISH’S BODY LEFT! What should we do?

I was very impressed with the compassionate and humane action the scientists do with the fish after research.  Scientific research guidelines don’t dictate what a research study should do with edible fish flesh. We could have just discarded fish back into the ocean. However, scientists see an opportunity to provide food to people in need of  nutritional support in our communities, and they coordinated with a regional food bank in Savannah to do just that. Despite the work and time it takes to process the fish for donation, it did not seem to be considered a burden at all by any of the scientists.

I am perfecting my fillet!
Fresh fish fillets ready for food bank distribution

To process the fish for donation, we cut fish into fillets, wrap the fillets in butcher paper, and freeze them onboard the ship.

When we reached land, Warren
contacted the regional food bank, who came out to the dock with a refrigerated truck to pick up fish.  Within a few days the fish was distributed through charitable organizations in the region to people who were most in need.

These scientists are not just natural scientists but social scientists too! (just as I fancy myself!)

Personal Log

Captain Raymond Sweatte and First Mate Michael Richter

Interview with Raymond Sweatte, captain of R/V Savannah

Marian: What  makes a good crew?

Raymond: A crew that sees things that need to be done and does them because they know it all goes smoother when they do.


M: Have you ever run into or had a close call running into another ship?

Raymond: No, but the closest I came was when I was passing under the bridge at the Skidaway when a barge was coming through at the same time. Because it was easier for me to maneuver, I pulled over to side to let the barge use the majority of the channel. But the barge stayed on my side of the channel and was coming right at me. My boat was leaning upon the bank so there was no where for me to go.  I got him on the horn and asked, “What’s going on?”  He pulled over right away. He was new and very apologetic. 

M: Have you ever been in a terrible storm before?

Raymond: A few times we’ve had 15-16 foot seas coming back from the Gulf. When you have a north wind at 35 knots [strong wind coming from the North] and north-going current opposing the wind, the seas get very rough. Waves were coming up over the ship. [picture Marian’s eyes VERY wide at this point in the conversation] When seas are really rough, you get lifted up out of bed and down again. I remember trying to sleep one night in rough seas when my head kept hitting against the wall, so I turned around so my feet were up hitting against the wall.

M: What were things like before radar, satellite, and so many electronic navigation tools
you use today?

Raymond: Things were not as accurate. Communication was on a single sideband, navigation was with Loran-C, though VHF radio was somewhat the same as now.  To follow ships and determine their speed we had radar on dash but we had to use an eye cup we looked into to correlate with the radar, and then go over to the chart to plot them.  Then, we did it again six minutes later and multiplied by 10 to find their speed.  Now we have an automatic identification system [we can click on a ship on the radar] that tells us where they are, who they are, where they came from, where they are going, and what they are doing.  

M: What are the right-of-ways when vessels are crossing paths; who moves when two vessels are in course to collide?

Raymond: [On ships, aircraft and piloted spacecraft] a red light is on the left or port side of the craft and a green is on the right or starboard side. When two vessels have crossing paths, each will see a red or green light. If you’re looking at another vessel’s port side you see red, and it’s his right-of-way. If you are on their starboard side, you see the green light, and the right is yours.

Also, right-of-way rules give priority to vessels with the most difficulty maneuvering. The ranks in right-of-way, starting with the highest are:

1)Not under command

2)Restricted in ability to maneuver

3)Constrained by draft (stay away from shallower water to avoid running aground)




7)Sea Plane

Remember this mnemonic: New Reels Catch Fish So Purchase Some.

M: Who’s easier to talk to, a Navy Sub Captain or a Coast Guard Helicopter Pilot?

Raymond: I don’t have a problem talking with any of them. Coast Guard generally would call you first. Navy sub pilots I’ve found to be very cordial. They have changed their course when we had traps out.

M: What message would you say to students interested in being a captain?

Raymond: All kids have to follow their own heart. If they like water and this environment, they should follow their heart and become a captain.

Thank you Captain Raymond! It was a genuine pleasure to talk to you and experience life at sea under your command and with such a stellar crew. It is no wonder you are revered by everyone you work with.  Read more about Captain Raymond Sweatte in the Savannah Morning News!

The powerful significance of this trip for me was that I did not just study a science lesson from a book or lab, but I was essentially given a chance to live a different life, that of a fisheries field biologist.  I did not dabble in the work; it was a full explosion into the curiosities, reasonings, and daily routines of working with live fish and fish guts while sharing friendship, humor and stories with scientists and crew aboard a boat that was a small bounded island of rich human culture within a vast ocean of life and scientific questions waiting to be answered.  I loved it.  If only I didn’t love teaching more…I could definitely live that life.  Thanks NOAA, thanks NC SEFIS folks, thanks SC DNR folks, and thanks Skidaway Institute of Oceanography folks.  You are all in my heart and in my classroom!


Flying fish!

At night especially, when looking out at the seascape, I noticed flying, bug-looking specimens scurrying out of and into the ocean’s surface.  WHAT WERE THEY?! I wondered. So I asked and learned they were FLYING FISH! A few of them flew right up on the vessel’s work deck.  Their wings are modifications of the pectoral fins.  They are so fascinating and their coloring was greenish/blue iridescence, a stunningly beautiful color!


“The Gulf and South Atlantic red snapper populations are currently at very low levels (overfished), and both red snapper populations are being harvested at too high a rate (overfishing).” See more where this quote came from at Fish Watch: US Seafood Facts.

It was clear to me how significant the concern for the red snapper population was when I learned that funding for this fisheries survey was drastically increased following the recent determination that red snapper were overfished and overfishing was occurring.  Fisheries managers, field biologists and members of the general public all want to see the red snapper population improve.  This cruise provided scientific data that will be useful when the status of the U.S. South Atlantic red snapper population is assessed again.

The lionfish's spines are so poisonous the only way to hold them is placing fingers in their mouths.

History of measuring speed in NAUTICAL MILES:

Wonder how a vessel’s speed was measured hundreds of years ago? Log Lines, knotted ropes with a log tied to one end and knots every nautical mile and one-tenth of a nautical mile, were tossed off the end of the ship while the knotted rope unraveled behind it. When the sand on a minute sand glass ran out, the rope was reeled back in and the knots counted to determine ship’s speed in knots-per-minute.


In its native waters of the Indian and Pacific Oceans, the lionfish population is not a problem. There it has natural predators and natural parasites to keep it from overpopulating, yet it can survive well enough to maintain a healthy sustainable population. However, in the Caribbean waters and along the Eastern Coast of the United States, the lionfish has recently been introduced, and the effects are alarming. “Lionfish have the potential to become the most disastrous marine invasion in history by drastically reducing the abundance of coral reef fishes and leaving behind a devastated ecosystem.”  See more where this quote came from at NOAA’s research on invasive lionfish here. In the U.S. south Atlantic, they consume large quantities of reef fish and have no natural predators or parasites. Their population is thriving in large numbers, and it is devastating other fish species.  Mark Hixon, Oregon State University zoology professor, co-authored a study in 2008 with Mark Albins that showed “a lionfish can kill three-quarters of a reef’s fish population in just five weeks.” Read NPR story here. This is a cool way to view an environmental problem: see this animated map of the lionfish invasion! Red Snapper

Heather Haberman: Science and Life at Sea, July 16, 2011 (post #5)

  • NOAA Teacher at Sea
    Heather Haberman

    Onboard NOAA Ship Oregon II
    July 5 — 17, 2011

Mission:  Groundfish Survey
Geographical Location:  Northern Gulf of Mexico
Date:  Saturday, July 16, 2011

Weather Data from  NOAA Ship Tracker
Air Temperature: 28.5 C   (83 F)
Water Temperature: 27.2 C  (81 F)
Relative Humidity: 82%
Wind Speed: 9.58 knots

Preface:  Scroll down the page if you would like to read my blog in chronological order.  If you have any questions leave them for me at the end of the post.

Science and Technology Log

Question of the day:  When I view your travels aboard the Oregon II on NOAA’s Ship Tracker website it looks as though you go as far as the continental shelf and then turn back towards the shore again.  Why don’t you go into the deep water?

Our groundfish survey course.

Answer:  If you were studying animals in the rainforest you would want to make sure to stay in that specific area.  You wouldn’t want to include Arctic animals in your report which are from a completely different biome.  The same goes for ocean life.  As depth, temperature, and amount of light change in the ocean so do the habitats and the animals that live in them.  On this groundfish survey we are focusing on offshore species that live in “shallow” waters up to 60 fathoms (361 feet).  If we were to go out into the deep water then our reports wouldn’t be as accurate.

Topic of the Day:  Science

What is science?  Can you come up with a good definition?  Difficult isn’t it.  There are many definitions that refer to science as the study of the natural world, systematic knowledge, etc. but something that’s often left out of the definition is that it can be used to make predictions.

We have all been conducting scientific experiments since we were old enough to formulate questions about our environment: “Will this ball bounce?”,  “Can I get it to bounce higher?”,  “Will ball #1 bounce higher than ball #2?”  The knowledge we have collected from these experiments allow us to make accurate predictions.  “I think ball #2 would be better for playing tennis than ball #1.”  Now keep in mind, the more we know about a subject, the better our predictions will be.

The more information we have the better our predictions become. Image:

Did you know that the ocean covers over 70% of the Earth’s surface but more than 95% of it remains unexplored.  This means we have a lot to learn if we want to accurately predict the relationships between the ocean, the atmosphere and the living things on our planet. To address these gaps in our knowledge, thousands of people working for the government, universities and private industries, are trying to collect the information we need to make the most accurate predictions possible.  Perhaps by expanding our knowledge we will be better equipped to formulate some solutions to the problems we have created in the seas such as  pollution (particularly plastics), climate change and overfishing.  These issues are drastically changing oceanic ecosystems which in turn affect the life on our planet.

The beautiful Pacific Ocean. Image: Universe Today
A new venture into deep ocean exploration. Image: ZD Net

One thing that sets science apart from other arenas is that is it based on verifiable evidence.  We are not talking about video footage of bigfoot or pictures of UFO’s here, we are talking about evidence that is easily confirmed by further examination or research.  I don’t think many people consider all of the expertise that goes into collecting this kind of scientific data–it’s not just scientists.

Not all evidence is verifiable.

Onboard the Oregon II there are engineers that make sure the ship and all its parts are functional, skilled fishermen that operate the cranes and trawling equipment, officers from the NOAA Corps that navigate and assist the captain in commanding the ship, cooks that feed a hungry crew and the scientists.  Conducting scientific research is a team effort that requires a variety of skilled personnel.

NOAA Corps member Ensign Brian Adornado with a nautical chart that's used for navigating our ships course.

Too often people underestimate the amount of time and labor that actually goes into collecting the information we have about our planet and its inhabitants.  In fact, many people dismiss scientific evidence as unimportant and trivial when in actuality it is based on the most technologically advanced methods that are available.  Scientific data, and conclusions derived from the data, are peer-reviewed (looked at by others in the field) before it is published or presented to the general public.

This is why it is so important to take heed to the reports about the changes taking place in the ocean’s waters. Without the data from NASA’s satellites in the sky,  NOAA’s ships on the sea and other sources too numerous to mention, we wouldn’t know the extent of the damage that’s being done to the ocean.

Chlorophyll concentrations in the ocean. Image: NASA satellite SeaWIFS

NOAA’s Teacher at Sea program has clearly demonstrated how good science is done.  I experienced first hand the importance of random sampling, scientific classification of organisms, repeating trials to ensure the accuracy of results, team work, safety, publishing data for the public to review and always having backup equipment.  I’m looking forward to sharing these experiences with my students.  Thank you NOAA!

Personal log:

My time aboard the Oregon II is coming to an end.  We have finished up our last stations and cleaned up the workrooms.  Now its back to Pascagoula, Mississippi.  It has been a wonderful experience!  For those of you that are wondering what I did each day on the ship it was pretty routine.

9:00 AM : Go to the galley for some juice and coffee.  Hot breakfast ends at 8:00 AM but they always have cereal and fresh fruit to eat.  In the galley there are two tables that each seat six people.  At the end of each table is a small TV so we can watch the news, our anything else that happens to be on DirectTV.

This is a picture of my room. I have the bottom bunk and my roommate sleeps on the top. The curtains are very nice for privacy since we work different shifts.
There is a bathroom (head) that my roommate and I share with our two neighbors. Each room has its own entry door to the bathroom.
This is the galley where all of our meals are served. It's also stocked with lots of yummy snacks and drinks!

9:30 AM:  After some coffee, juice and conversation I head upstairs to the lounge so I can check my e-mail and work on my blog.  The lounge has some comfortable seats, a big TV, lots of 8mm movies, two computers for the fishermen, and an internet cord for laptops.  Usually David, the ornithologist (bird scientist), is here working when I arrive so we usually chat for a while.

This is the lounge.

11:00 AM:  Lunch time!  everyday the chefs make amazing food for us to eat.  They’ve served bbq ribs, prime rib, turkey, quail, crab cakes, shrimp, mahi-mahi, ham, crab legs, pork loin, steaks and lots of other amazing side dishes and desserts.  Both chefs are retired from the Navy where they were also cooks.

12:00 noon: Head to the dry lab to start my shift.  At the start of every shift Brittany, our team leader, writes down all of the stations we will be going to as well as how many miles it takes to get there.

This is the "dry lab" where we spend our time waiting for the next trawl or plankton station. In this room there are computers dedicated to navigation, depth imagery and fisheries data.

5:00 PM:  Supper time!  Back to the galley for some more excellent food!

12:00 midnight:  Night crew comes in to relieve us from our 12 hour shift.  I quietly enter my room so I don’t wake up my roommate and hit the shower.  Then it’s to the rack (my bunk bed) with some ear plugs to block out the sounds of the engine.  The slow rocking of the waves makes a person fall asleep quickly after a long day at work.

Kathleen Harrison: Fish Stick, Anyone? July 15, 2011

NOAA Teacher at Sea
Kathleen Harrison
Aboard NOAA Ship  Oscar Dyson
July 4 — 22, 2011

Location:  Gulf of Alaska
Mission:  Walleye Pollock Survey
Date: July 15, 2011

Weather Data from the Bridge
True Wind Speed:  34 knots, True Wind Direction:  284.43
Sea Temperature:  10.02° C, Air Temperature:  11.34° C
Air Pressure:  1014.97 mb
Latitude:  56.12° N, Longitude:  152.51° W
Sunny, Clear, Windy, 10 foot swells
Ship speed:  10 knots, Ship heading:  60°

Science and Technology Log

The Walleye Pollock is an important economic species for the state of Alaska.  It is the fish used in fish sticks, fish patties, and other processed fish products.  Every year, 1 million tons of Pollock  are processed in Alaska, making it the largest fishery in the United States by volume.  The gear used to catch Pollock is a mid-water trawl, which does not harm the ocean floor, and hauls are mostly Pollock, so there is very little bycatch.

table full of pollock
A sample of pollock that the Oscar Dyson caught for scientific study. A "drop" in a very large "ocean" of pollock industry.

Although Pollock fishermen would like to make as much money as they can, they have to follow fishing regulations, called quotas, that are set each year by the North Pacific Fishery Management Council (NPFMC).  The quotas tell the fishermen how many tons of pollock they can catch and sell, as well as the fish size, location, and season.  The NOAA scientists on board NOAA Ship Oscar Dyson have an important role to play in helping the NPFMC determine what the quotas are, based on the biomass they calculate.

The quotas are set in order to prevent overfishing.  Pollock reproduce and grow quickly, which makes them a little easier to manage.  When fishing is uncontrolled, the number of fish becomes too low, and the population can’t sustain itself.  Imagine being the lone human in the United States, and you are trying to find another human, located in Europe, only you don’t know if he is there, and all you have is your voice for communication, and your feet for traveling.  This is what happens when fish numbers are very low– it is hard for them to find each other.

There are many situations where uncontrolled fishing has cost the fishermen their livelihood. For example, in the early 1900s, the Peruvian Anchovy was big business in the Southeast Pacific Ocean.  Over 100 canneries were built, and hundreds of people  were employed.

anchovy catch graph
This graph shows how the Peruvian Anchovy catch rose to record heights in 1970, then collapsed in 1972. This could have been prevented by effective fishery management.

Scientists warned the fishermen in the 1960s that if they didn’t slow down, the anchovies would soon be gone.  The industry was slow to catch on, and the anchovy industry crashed in 1972.  The canneries closed, and many people lost their jobs.  This was an important lesson to commercial fishermen everywhere.

The Walleye Pollock (Theragra chalchogramm) is a handsome fish, about 2 feet long, and greyish – brown.  Most fishermen consider him the “dog” food of fish, since he pales in comparison to the mighty (and tasty) salmon.  Nonetheless, Pollock are plentiful, easy to catch, and thousands of children the world over love their fish sticks.

Besides calculating biomass, there are 2 other studies going on with the Pollock and other fish in the catch.  Scientists back at the Alaska Fisheries Science Center (AFSC) in Seattle are interested in how old the fish are, and this can be determined by examining the otoliths.

2 pollock otoliths
Here are 2 otoliths from a pollock. The one on the left shows the convex surface, the other shows the concave surface.

These are 2 bones in the head of a fish that help with hearing, as well as balance.  Fish otoliths are enlarged each year with a new layer of calcium carbonate and gelatinous matrix, called annuli, and counting the annuli tells the scientists the age of the fish.  Not only that, with sophisticated chemical techniques, migration pathways can be determined.  Amazing, right?  The otoliths are removed from the fish, and placed in a vial with preservative.  The scientists in Seattle eagerly await the return of the Oscar Dyson, so that they can examine the new set of otoliths.  By keeping track of the age of the fish, the scientists can see if the population has a healthy distribution of different ages, and are reproducing at a sustainable rate.

Another ongoing study concerning the Pollock, and any other species of fish that are caught during the Pollock Survey, deals with what the fish eat.

stomach being put into a bag for later study
A pollock stomach is put into a fabric bag, which will be placed in preservative. Scientists at the Alaska Fisheries Science Center will study the contents to determine what the fish had for lunch.

Stomachs are removed from a random group of fish, and placed into fabric bags with an ID tag.  These are placed into preservative, and taken to Seattle.  There, scientists will examine the stomach contents, and determine what the fish had for lunch.

Personal Log  

I learned about fishing boundaries, or territorial seas, today.  In the United States, there is a 12-mile boundary from the shore marked on nautical charts.  Inside this boundary, the state determines what the rules about fishing are.  How many of each species can be kept, what months of the year fishing can occur, and what size fish has to be thrown back.   Foreign ships are allowed innocent passage through the territorial seas, but they are not allowed to fish or look for resources.  Outside of that is the Economic Exclusion Zone (EEZ) which is 200 miles off shore.  The EEZ exists world-wide, with the understanding among all international ships, that permits are required for traveling or fishing through an EEZ that does not belong to the ship’s native country.

Everyone was tired at the end of the day, just walking across the deck requires a lot more energy when there are 10-foot swells.  Check out this video for the rolling and pitching of the ship today.

Obed Fulcar, July 28, 2010

NOAA Teacher at Sea Obed Fulcar
NOAA Ship Oscar Dyson
July 27, 2010 – August 8, 2010

Mission:Summer Pollock survey III
Geograpical Area:Bering Sea, Alaska
Date: August 7, 2010

Weather from the Bridge:

Time:04:42 am
Latitude:61.04 North
Longitude:178.06 West
Wind Speed:10.74 knots
Wind Direction:50 degrees North
Sea Temperature:8.99 C (48.02 F)
Air Temperature:8.2 C (46.76 F)
Barometric Pressure: 1010.1 millibars
Cloudy Skies


Me with a pollock
Me with a pollock

Friday, July 23: The Walleye Pollock survey has been conducted since 1979, every summer by MACE (Midwater Assessment and Conservation Engineering) part of the Alaska Fisheries Science center (AFSC). The sea was quite calm compared to the last days, giving us a break from sea sickness. The other day I missed the trawl, but I will not today. As soon as we saw the fish in the Acoustic sonar screens I knew it was trawling time, so I ran up to the bridge to witness the whole thing. The started deploying an Aleutian Wind Trawler or AWT net that was attached to a giant winch with huge ropes and chains. The long net had a front orange section with smaller openings compared to the back. I was invited to come to deck by deckhand Buddy Gould. He is a veteran New england fisherman from Rhode Island, now living in Florida.

Buddy Gould
Buddy Gould

I asked permission from Commanding Officer CO Mike Hashlyck , and went on deck wearing a PFD, and a hard hat. After trawling the net behind the ship for what felt like an eternity, it was finally hauled back, the catch of Pollock was then spilled into a box leading to the wet labfor slicing and dicing. I went inside an put on rain boots, a plastic jacket and a jumpsuit, plus elbow high plastic glove and got down to slice and measure Pollock. While sorting out the fish we found a Pacific Flounder and a Rock sole fish, both flat bottom fish. For the next several days while conducting the survey, I kept dissecting the content of the stomachs of everal fish to find out what they have been eating. I learned that the main diet of Pollock was made up of animal plankton called Euphasiids, also known as krill. 


These small organisms are arthropods or segmented invertebr ates (without internal skeleton), and just like shrimps, and crabs, their bodies are covered by an exoskeletonor shell, with paired antennae, pincers, and legs. They were present in the stomach of all the specimens in a pink color mass. There was one large maturity level 4/5 Pollock that when I opened its stomach, a large Northen Pacific shrimp came out of it. Then in later catches I observed that all the stomachs were very dark-blue looking. When I opened the stomach of one fish there was a dark purple mass of another arthropod called Pelagic amphipods, or sea fleas. Amphipods swim drifting in the water column and are larger than euphasiids or krill, wich instead formed massive swarms swimming at great depths by day but heading to suface by night. I was able to witness this pattern when once the echogram from the acoustic radar showed a swarm of krill drifting from the surface to the bottom as the sun was rising.

Pelagic amphipods
Pelagic amphipods

Animal Species observed:

Arrowtooth Flounder (Atheresthes stomias), Northern Rock Sole fish (Lepidopsetta polyxystra), Northern Pacifi Shrimp

VOCABULARY: Amphipods, Arthropods, Ecograms, Euphasiids, Exoskeleton, Invertebrates, Krill


I realized that this tiny organism (the krill) is crucial for the survival not only of many animals in the ocean, but ultimately of us humans. We have historically harvested the rich waters of the Bering Sea for food, and most recently as a source of cheap protein to feed cattle and even pets. Disasters such as the recent massive oil spill from the tracgic explosion of the Deep Horizon oil platform, own by giant multinational BP, and the Exxon Valdez oil spill in Alaska during the 80’s are examples of how fragile the marine ecosystem is. But the number one threat to ocean fisheries is actually overfishing exploitation of the ocean resources. I heard stories about the foreign fleets that come to Russian waters and overfish with impunity, while at the same time processing, canning, and packing all their catch aboard their ships, taking it all back to their countries, without sharing any jobs opportunities with the local communities. Historically local fishing fleets have fished sustainably, bringing back to local ports the catch, allowing canneries, and fish markets to also benefit from it. We have to spread the word about this injustice and begin to question our own habits, to see what can we change in our consumption that will have a positive impact in this urgent matter.

“Echando la Red en Alta Mar” El mareo de ayer no me permitio participar en la pesca del Pollock, pero no hoy! Tan pronto me entere, subi al puente para observar lo todo. Mi buen amigo del personal de cubierta, Buddy Gould pescador de Rhode Island radicado en la Florida, me invito a bajar a cubierta. Despues de ahbe asegurado permiso del Oficial Comandante Mike Holshyck, baje a la cubierta con chaleco flotador y casco de seguridad a cuestas. La anaranjada Red de Arrastre fue lanzada al mar por unos gigantescos rollos de cables y cadenas pesadas. Luego de lo que parecio una eternidad, la red fue traida a bordo y la pesca fue depositada en una rampa en la cubierta por una grua pesada. Yo fui adentro rapidamente y me vesti con guantes, poncho, pantalones, y botas de plastico y me puse las manos a la obra: a picar los pescados! Durante el proceso note que los estomagos de los pescados cambiaron de color rosado a color purpura. El contenido de los estomagos incluia un plankton-animal llamado Euphasiid o Krill, un artropodo (invertebrados parecidos al camaron y el cangrejo), asi como otro llamadoAmphipods, los cuales constituyen la dieta primaria de especies de peces como el Pollock, y el Salmon, asi como de las ballenas jorobadas. El krill no solo es primordial para estas especies marinas sino para la raza humana, que depende de las reservas alimenticias del Estrecho de Bering como gran fuente de proteina. Es lamentable que este fragil recurso natural no sea celosamente cuidado, cuando vemos como el desastre del derrame de la Plataforma Petrolera Deep Horizon en el Golfo de Mexico, y en los 80’s del Exxon Valdez en Alaska, puede facilmente hacer desaparecer la pesqueria. Pero el enemigo numero uno de este recurso natural es realmente la pesca desmedida por parte de flotas pequeras extranjeras que viene a las aguas del Estrecho de Bering, pescando indiscriminadamente. Estos barcos no solo pescan, si no que procesan y empaquetan todo a bordo sin dejar si quiera oportunidad a las comunidades locales de participar del beneficio sostenido. Tenemos que hacer eco de esta injusticia y autoanalizar nuestros habitos a fin de ver que podemos cambiar para poder hacer un impacto positivo.

Duane Sanders, June 12, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 12, 2009

Weather Data from the Bridge 
Wind: Speed 15.4 KTS, Direction 171.8 degrees
Barometer: 1008 millibars
Air temperature: 16.56 0C
Seas: 3-5 ft.

Science and Technology Log 

It is the end of my watch and I am ready for a break.
It is the end of my watch and I am ready for a break.

The routine of dredging for scallops 24 hours a day continues.  Since the goal of this survey is to get a good understanding of the entire ecosystem where scallops might live, we take samples from areas closed to commercial scalloping as well as from open areas. Every catch is a little different in the numbers and types of organisms we find.  There is a huge difference in scallop counts between areas that have been open for a time and those areas that have been closed. I can understand clearly the importance of checking this ecosystem on a regular basis. Open areas can become overfished and need time to recoup their losses and should be closed for a period of time.

In terms of dollar value the scallop industry is the most valuable fishery in New England. It would be decimated from overfishing without proper management based on sound, scientifically obtained data.

Personal Log 

I have adapted to standing watch at night and sleeping during the day. This experience has helped me to more fully appreciate the finer things in life: sunrise, good food and sleep. Also, I am proud to report that, thanks to some of my fellow ‘watchmates’ I am now ‘BlueTooth competent.’ They showed me how to use Bluetooth on my computer while we were winding down after our watch.

Lollie Garay, May 11, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 11, 2009

Look at the scallops!
Look at the scallops!

Weather Data from the Bridge  
Stationary front persists
Temperature: 53˚F
Winds 10-20 KT
Seas 4-6 Ft.

Science and Technology Log 

The new day brings overcast skies and a very aggressive science agenda. When I walked out on deck at the beginning of my shift I noticed everyone was bundled up, and it didn’t take long to figure out why. I also noticed many baskets of scallops-everywhere! Yesterday we were working in an Open area where commercial fishing is allowed, and the number of scallops we brought up in the dredge was very small. We even had one catch with no scallops! Why is this?

Is it overfishing, predation, larval transport lack of success, or just not a good area for scallops?

Gear is always ready to "jump into"!
Gear is always ready to “jump into”!

Today we were working in a Closed area and the number of scallops I saw was amazing. As the day progressed we continued to get large numbers in the catch and a variety of sizes. This area is very productive, the result of being allowed time to reproduce and grow.  As we move northward now, I was told that the number of scallops will grow even more. As promised, the work today was intense. We moved quickly between stations which meant that we had to process the catch and cleanup before the other station. (Sampling is done at pre-determined sites called stations.) The science team has a limited number of days for this survey, so the pace will most likely stay the same. We are at station 55/560 this evening!

Personal Log 

I think I have settled into the routine of doing a scallop survey. The timing between dredges varies, but I can anticipate when I have to put on my gear and be ready to go. The gear I speak of includes rubber coveralls, life jacket, rubber boots and gloves. They are always “at the ready” next to the lab door, along with cameras! After my first station at the sorting table I fully understood why we have to wear these cumbersome outfits. When we are finished sorting we have sand, mud, and stuff all over us! When the work for each station is complete, we hose off everything including ourselves! The evenings get really cool out here, so I have a light jacket to wear under my gear. This morning when I retrieved it from the lab I couldn’t decide whether to wash it or burn it!

What is this unusual fish? A smiling Skate
What is this unusual fish? A smiling Skate

Sometimes when the stations are very close to each other I stay in my gear and sit on deck to work on my journals or, just sit. Gazing out to the sea, I can understand the sense of responsibility these researchers have for insuring the sustainability of the seas. The ability to hold some of these marine specimens right out of the ocean brings meaning to this work.

Animals Seen Today 

Horseshoe Crabs, Sand dollars, Sand cucumbers, Sea Mouse, and Sea Urchin.

Question of the Day 

What color are Sand Dollars when they are alive?

Lisha Lander Hylton, July 5, 2008

NOAA Teacher at Sea
Lisha Lander Hylton
Onboard NOAA Ship Delaware II
June 30 – July 11, 2008

Mission: Surfclam and Quahog Survey
Geographical area of cruise: Northeastern U.S.
Date: July 5, 2008

Weather Data from the Bridge 

Today’s weather e-mail: 








V/r, Command Duty Officer Naval Maritime Forecast Center Norfolk


Ship tracker
Ship tracker
Lisha holding sea specimens retrieved from clam dredge
Lisha holding sea specimens retrieved from clam dredge

Science and Technology Log 

Ship Tracker 

NOAA has a Web site that can show you the path of each of its ships in near real time.  Below is the track of the DELAWARE II from June 30 – July 5, 2008. The red line shows exactly where the DELAWARE has gone. If you’d like to track the DELAWARE or any other NOAA ships yourself, then go to this Website.

Clam Surveys 

On the DELAWARE II our team is in the process of conducting a clam survey. This particular fishery survey is on clams. After dredging, collecting, sorting, counting, measuring and weighing (clam with shell and shucked clam meat only) – the data obtained is recorded and entered into computers filed under the specific station number that was dredged. All data is then sent to a central data base. The compiled data can then be compared to past surveys.  If the actual meat weight, size, quantity or quality of clams collected has reduced in comparison to past surveys, this could be an indication that some factor is influencing the reduction. Possible influencing factor: Clams are being over-fished.

However, clam fisheries are a very important part of the economy, especially in the northeastern part of the United States. Many people depend on clam fishing for a living. As long as clams are not over-fished, the balance between economy and ecology can remain stable.  Not only could this affect the clam population, but other marine life in this particular ecosystem could be affected as well because in an ecosystem ~ all living and nonliving things in the environment must interact and work together for the ecosystem to be productive. This is why it is vital that NOAA scientists continue to survey and keep track of the productivity in our ocean environments for future generations.

Lisha in the clam dredge towing out the dark, clay sediment.
Lisha in the clam dredge towing out the dark, clay sediment.

We document and record the data on all marine life that is pulled out from the dredge. These species are important documentation in clam surveys because in an ecosystem, all living organisms (and non-living things) depend on each other, interacting to produce food chains and food webs. Early this morning, we entered 2 separate stations, just a few miles apart. These 2 stations were loaded with a huge quantity of very healthy, large sized, heavy meat clams.  Vic noticed that not only did these 2 stations contain lots of large, healthy clams but that there was a lot of clean, sand sediment with very little other types of sediment. Sediment is defined as organic matter or mineral deposited by ice, air, or water. Sediment can be mud, clay, rock, gravel, shell fragments, silt, sand, pebbles or dead organic material (called detrius). The various sediments are sometimes mixed and are found in various textures, consistency and colors. Unlike these 2 sandy stations, the 69 stations we had already dredged all contained various other types of sediment.  Above and to the right are some pictures of a prior station that contained sediment of dark, hard clay.  

Lisha, Mark Harris and Richard Raynes in the clam dredge towing out the remains of the mud sediment.
Lisha, Mark Harris and Richard Raynes in the clam dredge towing out the remains of the mud sediment.

Vic instructed the crew at this point that we needed to get a sediment sample from the two nearby stations that we were fixing to dredge. I was asked to retrieve it with the aid of Jimbo Pontz and Lino Luis who operated the bottom grab (a device used to lower down into the ocean operated by an electric cable, for the purpose of retrieving sediment.)  First, Vic instructed me to “GEAR UP”; safety gear is a major priority on all NOAA ships.  I was given a safety harness to put on, along with a life jacket, and a hard helmet.

Then, the bottom grabber was lowered into the water and it collected the samples, towed back up by Lino Luis and emptied by Jimbo Pontz. I collected 2 cups of the sand sediment at both locations, prior to the dredge being hauled back up to the deck.  Note how clean and “new” the sand sediment looks. It is not mixed with a lot of other sediments. Sure enough, we again collected a huge load of healthy, large size, weighty meat clams covered in the same sediment seen in the picture above.  

Big Question of the Day 

Lisha “gearing up” in safety equipment
Lisha “gearing up” in safety equipment

Science Researchers have concluded that over the past century, sea level is rising at increasing rates, (possibly linked to Global Warming). Global warming is defined as the observed increase in the earth’s air and oceans in recent decades due to greenhouse gases and the theory that this temperature rising will continue to increase.

The rising of sea level causes an “environmental change”.  Some environmental changes on Earth occur almost instantly, due to Natural Disasters (like a hurricane or other massive storm events). Scientists that study environmental changes due to past storm events are called Paleotempostologists.  Other environmental changes can take decades, centuries, or thousands of years (like the rising of sea level). These environmental changes often cause new sediment to be deposited on top of older sediment. The adult, large, healthy, meaty-weight surf clams found today in the location where we sampled medium to coarse-grained sand were retrieved at stations offshore in cold and deep water; (the depth recorded by Jakub Kircun – Seagoing Technician as 70 feet). Could it be that environmental changes on the ocean floor are taking place due to the rise of sea level?  Could the medium to coarse-grained sand sediment sampled today possibly be a new layer of sediment due to rising sea levels causing a relocation of some marine species (like surf clams)? 

Lisha collecting the sediment sample that was hauled in by the bottom grab.
Lisha collecting the sediment sample that was hauled in by the bottom grab.

Abundance of surf clams in New York Harbor in June 1995, from this Web site.

Surf clams utilize an unusual behavior in response to stress: they leap from the sediment surface in order to relocate. Surf clams have been observed using this avoidance behavior in response to crowding and the presence of predators. Surf clams are mostly oceanic in distribution, preferring turbulent waters at the edge of the breaker zone. They can be found in some estuarine areas, but their distribution is limited by salinity (Fay et al. 1983). In New York/New Jersey Harbor, surf clams are found predominantly in the area where the harbor opens into the Atlantic Ocean. Juvenile clams prefer medium to fine, low organic sands averaging 9 to 25 meters in depth. Adults prefer medium- to coarse-grained sand and gravel, burying themselves just below the sediment surface. They are often found at evenly distributed positions relative to one another, with spacing interval negatively correlated to density. Additionally, adults often remain in their juvenile burrows unless they are displaced by storm events (Fay et al. 1983).  Predation by crabs, gastropods, and bottom-feeding fish have been observed to limit development of beds in nearshore areas colonized by larval surf clams, relocating to colder, deeper water.”

The Bottom Grab
The Bottom Grab

New Term/Word/Phrase: Ecosystem: an environment where living and non-living things interact and work together. Bottom Grab: A device used to lower onto the ocean floor for the purpose of gathering sediment.

Something to Think About: Are surf clams relocating?

Animals Seen Today 

Asterial boreal, Lady crab, Eel, Moonsnail, Shark eye northern snail, Stargazer fish, Whelk, and Sea cucumber.


Lisha Lander Hylton, July 2, 2008

NOAA Teacher at Sea
Lisha Lander Hylton
Onboard NOAA Ship Delaware II
June 30 – July 11, 2008

Mission: Surfclam and Quahog Survey
Geographical area of cruise: Northeastern U.S.
Date: July 2, 2008

Weather Data from the Bridge 
Coastal Waters From Sandy Hook To Manasquan Inlet Nj Out 20 Nm
* 930 Pm Edt Wed Jul 2 2008*
* Overnight*
Sw Winds 10 To 15 Kt With Gusts Up To 20 Kt.
Seas 2 To  4 Ft.

The Clam Dredge
The Clam Dredge

Science and Technology Log 

This information is general on working stations. My objective is to follow up on following daily logs into more specifics on how each station is operated and maintained. The crew is now learning more technicalities on entering data into the computer system as we continue to pull out quahogs and surfclams. The two species look a lot alike; a surfclam is more elongated in width where a quahog is rounder with a definite hooked shape at the top that connects the two shells. A quahog is also heavier in weight than a surfclam. After hauling in loads at frequent stops, heading north at pre-determined stations, the crew sorts through miscellaneous sediments to separate the clams. Surfclams are put in one basket, quahogs in another. If they are broken but the 2 valves are still intact, these go into 2 more baskets. Any living marine life goes into a bucket. We have documented the various sediments at each haul since this may prove to be a factor in the quantity and size of the clams. So far, the various sediments include rocks, pebbles, sand and shells, a dark oozy mud and grey clay. 

Kira Lopez in the lab
Kira Lopez in the lab

Once separated, we break up into teams and work at different stations entering the data into station computers that input the information into one database. Stations we have worked include: measuring the length, weighing the clams in the shell, shucking the clams and then weighing the meat only, determining the age, identifying other live marine organisms. Entering data for weight involves turning on the weight machine with a prod. Once this is done, Vic records the station # we are working at into all computerized machines. Input into the weight machine involves the following steps:

  • Key in the names of crew members working the station
  • Identify the clam
  • Specify living or broken
  • Measure the clam
  • Weigh the clam in the shell
  • Shuck the clam and enter the meat weight
  • Add any specific notes
  • Go to next clam until all clams are recorded
  • All data goes into a central data-base.

Questions of the Day 

  • How long does a surfclam usually live? A surfclam can live up to 15 years.
  • How long does a quahog live? A  qhahog can live up to 100 years.
A shot of the lab with the ocean in the background
A shot of the lab with the ocean in the background

New Term/Word/Phrase: Bivalve (A Mollusk) 

Something to Think About 

  • Why are there more surfclams and quahogs at different stations or locations?
  • Why do some stations or locations have older surfclams and quahogs?

Challenge Yourself: I would like to learn to operate a station and be able to teach someone else to do it.

Did You Know? 
A surfclam has 2 abductor muscles.

Animals Seen Today 
Starfish Sea Squirts Rock Crab Sea Biscuit Sea Worm

Lisha on Delaware II
Lisha on Delaware II

Lisha Lander Hylton, June 30, 2008

NOAA Teacher at Sea
Lisha Lander Hylton
Onboard NOAA Ship Delaware II
June 30 – July 11, 2008

Mission: Surfclam and Quahog Survey
Geographical area of cruise: Northeastern U.S.
Date: June 30, 2008

Weather Data from the Bridge 

Each day, the ship receives an e-mail about the weather.  Following is the e-mail the ship received for today’s weather: 

Subject: WEAX/NOAAS DELAWARE II// From:  “CDO.NMFC_N.002.fct” <> Date: Tue, 01 Jul 2008 12:57:31 -0400 To:,

CC: “Maritime.CDO” <>









V/R, Command Duty OfficerNaval Maritime Forecast Center Norfolk

Web Page:


NOAA Ship DELAWARE II at its port in Woods Hole, MA
NOAA Ship Delaware II in Woods Hole, MA

Science and Technology Log 


The mission of my trip with NOAA is to provide me (a teacher of third grade students) an extraordinary opportunity to take part in genuine-world experiences being conducted by NOAA in order for me to achieve a clearer insight into pour ocean planet and a superior understanding of NOAA-related careers. With the comprehension that I obtain, I will be able to make lesson plans created on my field study for my students, giving them insight as to how much power they have on their lives and this world we live in. I will be able to generate lesson plans allowing my students to play a part in maritime activities as we study together, to value the work and expertise that is required to sustain oceanic and atmospheric research. The students’ enthusiasm, inquisitiveness and yearning to learn will only heighten with the hands-on, motivational activities that I gain from my research with this NOAA team. The educational experience that I gain from NOAA will certainly provide for an exceptional setting for knowledge and instruction.

Why Does NOAA Conduct Clam Surveys? 

DELAWARE II’s Cooperative Ship Weather Observing Program Certificate
DELAWARE II’s Cooperative Ship Weather Observing Program Certificate

Clams are a very important part of economy and ecology along the eastern United States Coast. NOAA is keeping track (surveying) of clams for the purpose of conserving clams to stabilize fishery industries without wiping out the clam population completely. Clams play a very important part in marine ecosystems; therefore these surveys are helping to maintain stability in the economy and ecology of United States. Today was our second day at sea. Our ship departed from Woods Hole, Massachusetts yesterday at 3:30 p.m. So that new crewmembers could learn their jobs and responsibilities from our Chief Scientist (Vic Nordahl), we participated in a “practice” dredge.

On Monday, June 30th – the crew onboard The Delaware II undertook our first clam survey (Station 1). I was on the 12:01 a.m. night crew. I was put in charge of operating the power switch for the clam dredge. The dredge operator (Lino Luis; THE LEAD FISHERMAN) would radio me when the dredge was set into the water, radio me again when he was preparing to dredge “hauling” and then radio me “GIVE ME POWER”. At this point, I would check the DEII device, which read the meters of the surface voltage, which detects the power for the speed of the ship. This machine needs to read between 2.5 and 3.0 knots. Wearing a rubber glove and standing on a rubber mat, I immediately turned the switch on the SURF CLAM CONTROL to “ON”. This supplied the dredge with approximately 900 amps (A-C AMPERES) and a voltage of approximately 450 volts. As soon as I turned on the switch, I would radio back to Lino “THE POWER IS ON!” He would radio me back when it was time to turn off the power switch (after the dredger was off the bottom). He would signal to me “Turn the power off”. I would turn the switch to off and radio him back “POWER OFF”.

NOAA Teacher at Sea, Lisha Hylton (center), stands in front of the DELAWARE II with some fellow ship mates.
NOAA Teacher at Sea, Lisha Hylton (center), stands in front of the DELAWARE II with some fellow ship mates.

Personal Log 

Once the clam dredger was hauled onboard the back deck of the ship and the dredger was secured and inspected by Vic Nordahl (Chief Science Researcher), the clam load was released. Wearing protective clothing and hardhats, the crew began to sort the variety of marine animals. Richard Raynes (Gear Specialist) and I were involved in this task. Large buckets were used for this purpose. Broken quahogs were separated from undamaged quahogs. Surfclams went into another bucket. Other living sea creatures like sand dollars, stingrays and sea scallops along with shell fragments and sediment were put into a separate bucket and immediately released back into the ocean. I worked closely with Vic Nordahl and Francine Stroman (Biological Technician) watching, learning and participating in sorting the load and recording data for Station 1 Clam Survey. The clams were weighed and counted (this data imported into a computer system). The second step was measuring the length of the clams on a LIMNOTERRA (a measuring board) and importing this data into the computer system as well. I assisted in the sorting, weighing, counting and measuring. Once the data was stored, the clams were released back into the ocean.

The dredge on the DELAWARE II is big enough for people to stand under and lie on!
The dredge on the DELAWARE II is big enough for people to stand under and lie on!

There are 3 legs to this research survey. I am on the 1st leg. Some general conclusions will be obtained at the end of the 1st leg from the data we collect. Vic Nordahl (our chief scientist) is going to explain these general conclusions to our team; however, more conclusive evidence of the clam survey will be evident after the 2nd and 3rd leg has been completed. On my last log, I plan to show evidence of some of the general conclusions our team has made.

Question of the Day 

How much does the clam dredge weigh?

Answer: 9,500 pounds

New Terms/Words/Phrases: 

  1. Clam Dredge
  2. DEII Device
  3. Ocean Quahog
  4. Surfclam
  5. Limnoterra Measure Board
TAS Hylton holds up some interesting specimens that the dredge brought up!
TAS Hylton holds up some interesting specimens that the dredge brought up!

Something to Think About: How can we conserve and preserve fisheries along the eastern United States coast?

Challenge Yourself: I would like to pursue a career with NOAA in researching and surveying fisheries along the eastern coast of the United States.

Did You Know That?  

The abundance of clams is declining because of 2 factors:

  1. Climate change
  2. Fishermen are taking more clams than the clam population can reproduce.

Animals Seen Today

Ocean Quahogs (Mollusca), Surfclams (Mollusca), Sand Dollars (Echinoderm), Annelida Polychaeta, Atlantic Sting Ray (Skate), Sea Scallops (Mollusca), and Sea Mouse (AnnelidaPolychaeta).

Tara Treichel, April 27, 2008

NOAA Teacher at Sea
Tara Treichel
Onboard NOAA Ship Nancy Foster
April 15-27, 2008

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: April 27, 2008

Weather data from the bridge 
Visibility: 10 n.m.
Wind: 11 knots
Waves: 1-2 feet
Ocean swells: 3-4 feet
Sea temperature: 23.0
Air temperature: 23.0

At 120 feet, the water has absorbed red, yellow and green wavelengths of light, muting the brilliant colors of these Lionfish and other reef organisms (the Lionfish in the foreground is partially illuminated by the video camera)
At 120 feet, the water has absorbed red, yellow and green wavelengths of light, muting the brilliant colors of these Lionfish and other reef organisms (the Lionfish in the foreground is partially illuminated by the video camera)

Science and Technology Log 

I wanted to explain a little more about the purpose of the Lionfish study. The technical name of the study is Assessment of Lionfish Ecosystem and Fisheries Impacts. The Principal Investigator/Chief Scientist is Paula Whitfield, who works out of the NOAA Lab in Beaufort, North Carolina. Several years ago, Paula had heard reports of Lionfish seen off the coast of North Carolina. A recreational diver, Paula visited these sites to see for herself; what began as a casual observation turned into the guiding question for a complex Lionfish ecosystem study that is now in its seventh year. As I understand, the guiding questions framing the study are:

  1. Initially the scientists needed to understand, to what extent Lionfish have invaded the coastal waters of the eastern US. Under this broad question fall many sub-questions: Are they successfully reproducing? How large is their population? Are they expanding their geographic range, and is their population growing? Finally, what biological and physical factors may limit their survival (i.e. what environmental conditions do they need to survive)?
  2. After the initial research results revealed a widespread and well-established presence of Lionfish, researchers refined their objectives to better understand the fisheries and ecosystem impact of Lionfish. This is a very broad question and includes many sub-questions such as: What species are they eating? Is the number of “conspicuous fish” species (large and easy to see and count) decreasing in areas where Lionfish are present? Are the number of “cryptic fish” species (small typically prey species that hide within the habitat) decreasing in areas where Lionfish are present?
  3. The scientists also seek to better understand how Lionfish impacts may be further complicated by other variables such as overfishing and climate change. Examining this question requires looking at many other aspects of the marine ecosystem as indicators of ecological health. Sub-questions are: How are the physical and chemical ocean parameters changing over time (e.g. sea temperature, ocean currents, chemical composition)? How are algal populations changing over time? How are invertebrate and soft-bottom communities changing over time?

Initial results of the study were eye-opening. Everywhere the research team went, they found Lionfish. From 20042007, the data across the sampling sites showed an increase in population of well over 300%. Considering that these fish have no known predators, and females release 30,000 eggs at a time, it is not hard to imagine the severe impact that these fish could potentially have on the marine food web and ecosystem. In addition, Lionfish are tropical reef fish, which require warm water to survive and reproduce. As climate change occurs, it is conceivable that Lionfish could expand their range in response to rising sea temperatures or a shift in Gulf Stream currents.

Paula Whitfield (right), Chief Scientist of the study, and I enjoy the sunshine.
Paula Whitfield (right), Chief Scientist of the study, and I enjoy the sunshine.

Chris Monsour, June 15, 2007

NOAA Teacher at Sea
Chris Monsour
Onboard NOAA Ship Oscar Elton Sette
June 12 – July 12, 2007

Mission: Lobster Survey
Geographical Area: Northwestern Hawaiian Islands
Date: June 15, 2007

Frigate bird

Science and Technology Log 

Yesterday we entered The Papahānaumokuākea Marine National Monument (formerly the Northwestern Hawaiian Islands Marine National Monument). I found from talking to the crew it is the largest Marine Protected Area in the world. The new native Hawaiian name, Papahānaumokuākea reflects Hawaiian traditions relating to the birth of the Islands. Papahanaumoku is the goddess who birthed the islands.

I spent most of today on the observation deck above the bridge looking for birds and waiting for French Frigate Shoals to appear on the horizon.  A part of our mission was to deliver supplies to Fish and Wildlife personal on Tern Island, which is part of the shoal. Tern Island was formed into a runway to serve as a refueling stop for planes enroute to Midway during World War II. Some of the buildings remain and could be seen with a pair of binoculars.

This image of La Pérouse Pinnacle was taken by Teacher at Sea Chris Monsour as OSCAR ELTON SETTE approached the French Frigate Shoals to deliver supplies.
This image of La Pérouse Pinnacle was taken by Teacher at Sea Chris Monsour as OSCAR ELTON SETTE approached the French Frigate Shoals to deliver supplies.

I found through some investigating that French Frigate Shoals is an open atoll consisting of a large, crescent-shaped reef surrounding numerous small, sandy islets. The first object that stands out as soon as one reaches the shoal is the steep-sided pinnacle that sticks up out of the water. It is the first land I have seen in 3 days so it may not seem like much, but it was a welcome sight. The pinnacle is named “La Pérouse Pinnacle” after Compte de La Pérouse, who visited the atoll in 1786. As I did some research on the shoals I found that in the moonlight the pinnacle so resembled a full-rigged sailing ship that it lured more than one vessel to her doom on the shoals.

On deck we were preparing the tables and traps for tomorrow as we will set traps tomorrow at 1700 (or at 5:00 p.m.)  I asked Garrett who has been on this trip 5 times if I could get bait duty first. This consists of taking a Mackerel and making three cuts so that the muscle is exposed to attract the lobsters and any other organism that may venture into the trap. We will then collect the traps at 0800 Sunday morning.  We have set up an assembly line on the side of the ship, which consists of several tables end to end.  As a trap comes up, the cracker will open up the trap and take out the organisms that made it in and the old bait. The trap is then rebaited and sent toward the back of the ship.  The organisms that were collected will be placed in a bucket and sent to the wet lab to be measured and processed.  All of the lobsters that are collected will be returned after data such as carapace length are recorded.  The lobsters are not just tossed off the side of the boat, but are placed in a special cage and dropped to the bottom.  This prevents any predators from eating the lobster before they make it back to the bottom.

Personal Log 

The days have been going by pretty quickly.  I am ready to do some work though.  The major event of the past two days has been the meals and watching movies.  The food is excellent so I m sure my plan of losing weight on the trip will not come to be.  The good part now is that I have the chance to get to know the people I’m living with a lot better.  My roommate Mike is a student at the University in Hawaii and knows a great deal about sharks and I learned quite a bit about the behavior of the shark and especially about some of the sharks we may see.  I am learning to tie knots that will not come undone when we have large waves and I got to put on my survival suit for the first time during the abandon ship drill. I hope to have a picture to share of that.

It has become a common sight for Teacher at Sea Chris Monsour to see in the skies large, black birds, hovering lazily in place.  This is the frigatebird. The name “frigatebird” calls to mind the sails of ships and, indeed, frigatebirds sail gracefully in the air currents overhead. Their wingspan is some 7.5 feet and their deeply forked scissor-like tails afford them ultimate maneuverability. Their other common name, however, the “man-o’-war” bird, reflects the way in which they use their flying and maneuvering skill. Frigatebirds are pirates who harass incoming birds until the victim is so upset that it disgorges its catch. The frigatebird then drops with amazing speed and plucks the bolus out of the water, or even catches it before it hits.

Animals Seen Today 

Terns, Frigate birds, Shearwaters, and Dolphins.

Question of the Day 

During World War II what impact might the battles (Midway) that were fought near these islands have had on the ecosystem? Could there still be impact today?

Aloha… Chris

Chris Monsour, June 13, 2007

NOAA Teacher at Sea
Chris Monsour
Onboard NOAA Ship Oscar Elton Sette
June 12 – July 12, 2007

Mission: Lobster Survey
Geographical Area: Northwestern Hawaiian Islands
Date: June 13, 2007

Science and Technology Log 

I have been in Hawaii for three days already to acclimate myself to the time change, learn about the job ahead of me, and to get to know the crew.  There are 11 members of the scientific crew including myself, all of us with a background in biology formally or informally.  Our adventure over the next 30 days will be to visit some of the islands that make up the Hawaiian Archipelago to see how the populations of two species of lobster have changed in the past year. The Northwestern Hawaiian Islands (NWHI) are an uninhabited archipelago that extends 1200 miles across the Central Pacific Ocean.  The area supports many marine species including lobsters, bottomfish, and monk seals.  The two species of lobster that we will be studying are the slipper lobster and the spiny lobster. Both species of lobster were fished for about 15 years in the waters of the NWHI Six years ago the lobster fishery was closed and data suggests that the populations have not recovered appreciably.  The areas where the lobsters will be collected are Maro Reef and Necker Island. One of the interesting facts that I learned from the chief scientist is that the lobsters were not separated when they were collected; they were grouped together as lobster, even though there are major anatomical differences between the two. The data suggests that the slipper lobster population has done better in terms of increased population. I will be doing various jobs over the next four weeks such as baiting the traps, measuring the carapace of the lobsters, and collecting samples for DNA/ genetic research that one of the grad students is working on.  Essentially, he will be doing a population genetics study. I have not asked what type of information he is looking for and should do that tomorrow.

Another area that we others in the group will be studying is the bottomfish fishery.  Bottomfish are fish that are found at deeper depths and include pink snapper, flower snapper, red snapper, and the Hawaiian snapper. I am not sure how the bottomfish sampling will occur because there is a limit on the number of bottomfish that can be taken because the NWHI was declared a Marine National Monument in June of 2006.  With this status new restrictions have now been placed on what can and cannot be done within the Monument.  Another question I need to find the answer to is, “What is the difference between a monument and a sanctuary?”

Personal Log 

I have spent most of the day getting use to the rocking of the boat and settling into my stateroom, which I am very happy with and should be quite comfortable for the next 30 days. If the beginning of the trip is any prelude to the rest, it will be an amazing experience. I am looking forward to getting to know the rest of the scientific crew and learning from them, just as I hope they learn from me.

Animals Seen Today 

Terns, Shearwaters, and Hawaiian Spinner Dolphins.

Question of the Day 

What type of interactions might be occurring between the spiny and slipper lobster that could explain the differences in their populations?  Is one a generalist/specialist?

Aloha… Chris

A rainbow is seen over Pearl Harbor as the OSCAR ELTON SETTE sets sail for its 30 day mission to survey the lobster population of the NWHI.
A rainbow is seen over Pearl Harbor as the OSCAR ELTON SETTE sets sail for its 30 day mission to survey the lobster population of the NWHI.