Heather O’Connell: Using a Sextant, Distilling Glacial Water and Kayaking to Icebergs, June 18, 2018

NOAA Teacher at Sea

Heather O’Connell

NOAA Ship Rainier

June 7 – 22, 2018

Mission: Hydrographic Survey

Geographic Area of Cruise: Seattle, Washington to Southeast, Alaska

Date: 6/18/18

Weather Data from the Bridge

Latitude and Longitude: 57°55’ N, 133 °33’ W, Sky Condition: Broken, Visibility: 10+ nautical miles, Wind Speed: 10 knots, Sea Level Pressure: 1023.5 millibars, Sea Water Temperature: 3.9°C, Air Temperature: Dry bulb: 15.0°C, Wet bulb: 12.0°C

Science and Technology Log

Using a Sextant

Greg Gahlinger, H.S.S.T., hydrographic senior survey technician, shared his knowledge of using a horizon sextant. He traveled to Hawaii from San Diego and back using this technology when he was in the navy. Utilizing his Cassens and Plath horizon sextant when there was an atypically sunny day in Tracy Arm allowed me to experience this celestial navigation tool. While the sextant is easy to use, the calculations for placement can be more involved.

A sextant is used for celestial navigation by finding the angle of a celestial body above the horizon. Originally, the graduated mark only measured sixty degrees, thus the derivation of the name. The angle between two points is determined with the help of two mirrors. One mirror is half silvered which allows light to pass through and this is the one used to focus on the horizon. The other mirror attached to the movable arm reflects the light of the object, such as the sun, and can be moved so that the light reflects off of the first mirror. A representation of the object, or sun, superimposed on the horizon is seen and the angle between the two objects is recorded. Angles can be measured to the nearest ten seconds using the Vernier adjustment and it is this precision that makes the sextant such a useful tool.  One degree is divided into sixty minutes or sixty nautical miles. Each degree is divided into sixty seconds.

Horizon Sextant

Horizon Sextant

To use a horizon sextant, you hold onto the arm piece and look for the reflection of the sun from the mirror and through a horizon reflection onto the scope or the eyepiece. There are several different filters that make it safe to view the reflection of the sun. After you adjust the index, the rotating part on the bottom of the sextant, you align the reflection of the disk of the sun onto the horizon. If there is no actual horizon, as was the case when we were in the fjord, then you can align the image of the sun onto a false horizon. Once the reflected sun is sitting on the horizon, you can swing the frame back and forth until the sun lies tangent to the horizon. From here, record the angular measurement and use a table to determine your position of latitude. If you have an accurate time, you can also determine longitude using another set of charts.

Taking a sight of the sun at local apparent noon with a Sextant

Taking a sight of the sun at local apparent noon with a Sextant

Salt Water Distillation

While in transit to our survey location, First Assistant Engineer Mike Riley shared the engine room with me. There is a control panel for all of the different components of the ship along with the electrical circuit board. Amongst all of the parts that contribute to making the ship function, I was interested in the two evaporators.

The two evaporators change saltwater into potable water in a desalination process. These two stage evaporators are filled with seawater that comes into the vessel via suction into sea chests. If the ship is going at full speed, 12.4 knots, which varies depending on currents and tides, the distillers will make about 500 gallons of freshwater an hour, or 3,000 gallons a day. Engine heat is used to boil the sea water for the evaporation. The water goes through a booster heater to make it even hotter before coming into the tanks. The distilled water comes from the tank next to the current generator in use.

Two Stage Evaporator

Two Stage Evaporator

The two stage distillers have a demister screen in the middle. There are about twenty metal plates with grooves between them located on both hemispheres of the spheroid shaped distiller. The plates are sealed and the metal groove space, or gaskets, between them is open. Jacket water, a mixture of coolant, or propylene glycol, and water, that is already at about one hundred and seventy degrees comes in and fills the metal plates. The jacket water is heated from the exhaust from the generator. It is further heated from going through a vacuum and turns into steam. Salt water from the salt chest comes into the space between the metal plates over the grooves.

Metal plates and gasket inside of evaporator

Metal plates and gasket inside of evaporator

The porous demister screen keeps salt water droplets from going above and the brine water collects at the bottom and goes out the ejector pump. Once the steam from the lower part of the tank heats the water and it enters the upper part of the tank, the water is cleansed and condenses on the plates. From here it goes to a tank where it is heated before being stored in another tank and then being allocated to the appropriate area. This water is used to cool the engine, flush the toilets and provided distilled drinking water while in transit.

So, currently, all on Rainier are consuming filtered artesian drinking water and showering in distilled glacier water. Ship Rainier has been consistently surpassing all expectations.

Sources

http://www.pbs.org/wgbh/nova/shackleton/navigate/escapeworks.html

https://oceanservice.noaa.gov/education/kits/geodesy/geo03_figure.html

Personal Log

After dinner I decided to tag along with Able Seaman, or A.B., Dorian Curry, to kayak up close to some icebergs. Leaving the safety of the ship  docked by Point Asley, we headed towards Wood Spit Island. After about twenty minutes of paddling, I saw three distinctive spouts followed by some black dorsal fins surfacing to the northeast towards Sumdum Glacier. Orca whales were off in the distance. Soon these orca whales appeared closer and they were now about two hundred yards away. While the whales made the majestic sound of blowing bubbles in the water, I feared that they would approach the kayak. Putting the boats together in the hopes that these massive mammals would not think of us as prey seemed to be the logical thing to do.  It appeared that there was a mother and two juvenile killer whales.

Video Credit: Dorian Curry

This incredible opportunity to be so close to these creatures along with the terrifying reality that they may mistake me for a seal, proved to be an invigorating experience. The whales dove under and then once again appeared behind at a distance that was slightly too close for comfort in a kayak. At this point, I thought paddling away from these carnivorous predators would be the best approach. I paddled towards the smaller island south of Harbor Island and Round Islet, the place where the base station was set up just a few days earlier. After docking on the island shortly, I was grateful to be on shore post such a stimulating and intimidating experience.

Blue Iceberg

Blue Iceberg

Walking the kayaks over the beach and watching the channel where the Endicott Arm and Tracy Arm channels converged, proved to be a good strategy before paddling onward. A strong, circular current resulted from the two channels merging but was relatively safe due to the fact that it was ebb tide. After paddling strongly for a few minutes, smooth waters followed and I approached one of the most spectacular blue icebergs I have ever seen. The definition from all of the layers of different snowfalls that created this still existing piece of ice was truly amazing. Observing it from different angles overwhelmed me with the brilliance of this natural phenomenon. Next, I found myself paddling towards an iceberg with an eagle perched on it towards Sumdum Glacier.  Again, the different vantage points displayed various concentric circles and patterns of frozen ice accumulating over thousands of years. With only about an hour before sunset, the return journey to Rainier began and choosing to go to the west of Harbor Island to avoid the difficult channel of the now incoming tide made the return safe.

Iceberg

Iceberg

After almost four hours of paddling over a distance of about 8.4 nautical miles, or 9.6 miles, I found it difficult to use my upper body strength to ascend the ladder. Thanks to Airlie Pickett I safely stepped onto the Rainier and began to process this magnificent adventure that I had just embarked upon.

Did You Know?

Wind direction can be calculated by using a wind plotting board calculator. This dial allows you to rotate until the line matches up with the coarse bearing, then mark the wind speed on the clear dial with a grease marker, and then match this up with the angular measurement of the wind and mark this. Then, line up your two marks on a vertical line and this will provide the true wind direction.

Lacee Sherman: Teacher Counting Krill June 16, 2018

NOAA Teacher at Sea

Lacee Sherman

Aboard NOAA Ship Oscar Dyson

June 6, 2018 – June 28, 2018

Mission: Eastern Bering Sea Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date:  June 16, 2018

 

Scientists on deck

Fisheries Biologist Sarah Stienessen, Chief Scientist Denise McKelvey, TAS Lacee Sherman, and Fisheries Biologist Nate Lauffenburger on the Hero Deck of NOAA Ship Oscar Dyson in front of a few volcanoes.

 

Weather Data from the Bridge at 18:30 on 6/17/18:

Latitude: 57° 09.7 N

Longitude: 166° 26.4 W

Sea Wave Height: 3-5 ft

Wind Speed: 10 knots

Wind Direction: 345°

Visibility: 8 knots

Air Temperature: 7.2° C

Water Temperature: 7.8° C

Barometric Pressure:  996.8 mb

Sky:  Grey and slightly foggy

More scientists on deck

TAS Lacee Sherman with Fisheries Biologists Matthew Philips and Nate Lauffenburger on deck of NOAA Ship Oscar Dyson in front of nearby Volcanoes

Science and Technology Log

In the fish lab, after the haul is sorted out, a sample of each species are randomly selected to undergo additional measurements and data collection.  One of the primary pieces of information needed is the lengths for about 300 pollock per haul.  The length of the pollock is important because larger fish have larger internal organs.  The internal organ that matters most to this survey is the size of the swim bladder since this is what give us the echo that can be picked up by our acoustic transducers.

According to the NOAA Ocean Service, “If fish relied solely on constant swimming to maintain their current water depth, they would waste a lot of energy. Many fish instead rely on their swim bladder, a dorsally located gas-filled organ, to control their stability and buoyancy in the water column. The swim bladder also functions as a resonating chamber that can produce and receive sound, a quality that comes in handy for scientists locating fish with sonar technology.”

To process a trawl sample, the pollock are put into baskets and weighed. One basket is selected at random to obtain the lengths and weights of individual fish. 30-35 Fish are selected for otolith samples (ear bones) that can be used to age the fish.  These fish are also inspected to look for the sex of the fish and their maturity stages.  There are 5 different maturity stages for pollock:  immature, developing, pre-spawning, spawning, and spent.  Since the fish already needs to be cut open for this process, we will sometimes look at the stomach contents of the fish as well to see what they are eating.  Based off of stomach contents, one of the main food sources for pollock in the Bering Sea this summer are euphausiids, or krill.

Flow meter

Flow Meter used on the Methot Net. This is a calibrated instrument and we use the number of spins to measure the volume of water going through the net. This is an important tool for determining the catch per unit effort.

In addition to trawl samples, we also are taking samples of Euphausiids with a special tool called a Methot net. Four Methot samples will be taken on each leg of this research survey.  A Methot net includes a sturdy metal frame of a set circumference with a net attached to the back. The net is a very fine mesh (small holes), so that the small euphausiids don’t escape.  A flow meter is attached that measures the volume of water that is going through the net.

Methot Net on deck

A photo of the methot net on deck of the NOAA Ship Oscar Dyson

The euphausiids are a very important component of the marine food web in the Bering Sea.  Euphausiids eat very small phytoplankton and zooplankton, so they are omnivores.  Pollock eat the euphausiids, and then the pollock are eaten by marine animals such as seals, orcas, large cod, and even larger pollock.  Humans also eat pollock, often in the form of imitation crab meat and the fish filet sandwiches from fast food chains.

Euphausiids being counted

Euphausiids being separated into groups of 10 so that they can be counted. This only represents a small sample of what was brought in with the Methot. There were 1,110 in total counted.

Once the Methot net has come back on the ship at the end of the haul, a scoop (sub-sample) of them is taken and counted.  Fish larvae and anything else that is not euphausiids is taken out and counted separately and then we go to work counting to get a total number of euphausiids from our sample.  In our small sub-sample of .052 kg, our count was 1,110 euphausiids.  Based off of the total haul weight of 2.12 kg, we are able to estimate the total number of euphausiids for this haul to be 45,251.  This number is calculated based off the total number and weight of our sub-sample, compared to the total weight of the Methot haul.

Personal Log

I finally saw Orcas!!  All of the running around on the ship was worth it!  We always seem to be heading in opposite directions so I have seen mostly just dorsal fins, but I’ll take it!  One morning I finally saw them from a closer distance and was able to see the white patch near the eye.  I feel like I will be remembered by everyone on the ship as the “crazy whale-obsessed teacher,” but I can live with that.

First Orca

The dorsal fin of an Orca spotted from NOAA Ship Oscar Dyson

One of the side experiments happening on the ship looks at the survival rate of fish caught on traditional fishing lines versus fish caught in trawl nets.  One pollock had been caught and all of us on the ship decided the name should be Jackson Pollock.  Jackson survived for a few days, but didn’t last past 6/15/18.  The next day six new fish were put into the tank after a trawl catch, and after 24 hours, only two were still alive.

 

NOAA Careers and Unexpected Learning Opportunities

I have been trying to talk to everyone on the ship about how they first got interested in this type of work and exactly what their role is for day to day operations.  There are so many different career options that can allow you to live on ships and be involved with scientific research.

The past few days I have spent time trying to learn as much as I can about everything related to the ship.  I spent time speaking with Commanding Officer (CO) Michael Levine and Ensign (ENS) Sony Vang about their ship and land assignments and the requirements of the NOAA Corps.  ENS Vanessa Oquendo showed me how some of the ship’s controls work.  They are regularly focused on navigation (on a paper chart and electronically), and communication with other ships about positioning, weather, and the speed and direction of the ship.  There is a lot to consider and to maintain 24/7.

Easy button and emergency affirmation

A few of my favorite buttons on the ship.

Getting the nets in and out of the water is a very complicated process and involves many different ropes, chains and weights.  I noticed this really cool type of knot that seemed to undo itself, so I asked one of the Deck Crew members, Jay Michelsen to teach me some cool ship knots.  I learned how to make:  bowline knots, flying bowline knots, cow hitch knots, daisy chains, double daisy chains, and a way to finally wrap up headphones so that they won’t tangle themselves.

Matthew Phillips and Scientist Mike Levine taught me how to fillet a fish which will be useful since I enjoy cooking so much! I will no longer be intimidated to buy fish whole.  We got some practice on a spare cod that we caught and a few rockfish.

One of the licensed engineers, Becca Joubert, gave me a tour of the engine room and I was able to see the engines, winches, rudder, water filtration systems, and the repair shop.  I didn’t realize that fuel was held in different tanks, but it works best that way because of safety and because it helps to distribute the weight all around the ship better.

 

 

Did You Know?

The NOAA Ship Oscar Dyson was named after a commercial fisherman named Oscar Dyson.   There is a smaller boat on board named the Peggy Dyson after his wife, who would broadcast the weather forecast twice a day every day to local ships as well as personal announcements and important sports scores.

Things to Think About:

Dolphins and Orcas eat a variety of fish, squid, and sometimes other marine mammals, while large whales such as blue whales and humpbacks mostly rely on krill as their main food source. Why would such large marine mammals feed primarily on tiny krill?

Since there is a relationship between pollock and euphausiids, as the number of pollock grows, what is a reasonable prediction about the number of euphausiids?

 

 

Andrea Schmuttermair: Engineering Extravaganza! July 21, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oscar Dyson
July 6 – 25, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 21, 2015

Weather Data from the Bridge:
Latitude: 57 09.0N
Longitude: 151 16.5W

Sky:  broken clouds

Visibility: 10nm
Wind Direction: 245 degrees

Wind Speed: 24 knots
Sea wave height: 3ft

Swell wave: 5-7 ft

Sea water temp: 11.3 C
Dry temperature: 11.1 C

Science and Technology Log

Aside from our survey, there is a lot of other science taking place on the ship. In fact, science is all around us. The officers on the bridge are using science when they use weather patterns and sea swells to calculate the best course of navigation for the ship. The survey technicians are using science when they collect water samples each day and test the salinity of the water. The engineers are using science when they are monitoring the ballast of the ship. Science is happening in places we don’t always take the time to look.

Today we look at a different realm of science, the engineering world. I recently had the opportunity to tour the brains of the ship with two of our engineers on board. I not only learned about the construction of the ship, but I also learned about the various components that help the ship run. The Oscar Dyson was constructed as one of NOAA’s first noise-reduced fisheries vessels. Data have been collected over the years that show fish avoid loud vessels by diving down deeper or moving out of the way of the noise. There was concern that this avoidance behavior would affect the survey results; thus the creation of acoustic quieting technology for research vessels. Another interesting part of the ship’s construction is the retractable centerboard, which allow the transducers to be lowered down below the ship and away from the hull in order to reduce noise and gather higher quality sound data for the surveys.

This slideshow requires JavaScript.

It turns out 2 of our engineers are from San Diego, the place I lived for my first 21 years of life. Nick even graduated from Westview High School, the rival of my high school, Mt. Carmel (albeit 10 years after me). The engineers are responsible for making sure everything is working on the ship. They, along with the rest of the engineering team, have to anticipate and troubleshoot problems, and be ready to fix something at a moment’s notice.

In addition to taking me on a tour around the innards of the ship, Nick and Rob also sat down for an interview about marine engineering.

Interview with the Engineers: Rob Ball and Nick Cuellar

Nick, Rob, and....Wilson!

Nick, Rob, and….Wilson!

What is your educational/working background?

Nick: I played soccer throughout high school and was recruited during my senior year by the US Merchant Marine Academy. I went to school there, played soccer, and received a BS degree in marine engineering. I spent 1 of my 4 years at sea doing hands-on training. I was also commissioned into the US Navy as a reservist.

Rob: I’m what they call a hawespiper in the merchant marine world- I started at the bottom and worked my way up. I started at Scripps Institute of Oceanography in 1988 and worked my way up ranks from oiler to engineer. I received my captain’s license, and ran sport fishing boats because I wanted to know boats from top to bottom. I went to professional college for refrigeration, and my main forte is refrigeration and air conditioning, I know I’ll never be out of work. I’m a first engineer now, and am going to go for my chief’s license.

How long have you been working on the Oscar Dyson?

Nick: I came on in August of 2014.

Rob: I just came on board in April of 2015

What are your main responsibilities as an engineer on board?

Nick: As a second engineer, I give fuel reports and transfer fuel to maintain stability of the ship. We have saltwater tanks for ballast, which changes as we burn fuel, and I help monitor this. I check the electricity, lights, fuel, water, and AC and make sure everything’s running. I fix anything that’s breaking.

Rob: As a first engineer, I am the supervisor of engine room and am responsible for how everything is operating. I get updates on the fuel status, and communicate with CO of the ship if changes need to be made. I also look at when the oil/filter needs to be changed. My position is more supervisory, and I oversee responsibilities and delegate tasks. I handle the plant and the people.

What is your favorite part of the job?

Nick: Travel; getting work experience, marine life

Rob: Money and travel; getting to see things in ocean that most people would only see on National Geographic

What is most challenging about your job?

Nick: The different personalities you have to work with

Rob: I agree with Nick. Our life exists in 204ft. I am able to take frustrations and put it into things I enjoy, such as working out, reading, or playing guitar.

What is something unique to being an engineer on a ship as opposed to an engineer on land?

Nick: You have to have knowledge of every square inch of the ship; the two things I think about are: are we sinking and are the lights on.

Rob: You have to keep things going when you have big seas, and you have to have the knowledge and ability to handle problems and stay on your feet (literally). You have everyone’s lives in your hands- you have to be on all the time.

What would tell students who are looking at careers in engineering?

Nick: Don’t give up and keep on fighting. Don’t let hardships get in the way. If it makes you happy, keep doing it. And know your math!

Rob: it’s a limitless field; you can build anything, and fix anything. If someone else made it, you’ll have the ability to figure out what they did. You get to break stuff and fix it.

What is your favorite marine animal?

Nick: Humpback whale

Rob: Orca and Great white shark

Rob, Nick and I

Rob, Nick and I

Thanks gentlemen for the interview!

 

Personal Log

This baby humpback whale was having a blast breaching over and over again.

This baby humpback whale was having a blast breaching over and over again.

The ringing of the phone woke me up from the gentle rolling of the ship. I had told the officers and scientists to wake me up if there was anything cool happening, and an excited ENS Gilman spoke into the receiver claiming there were hundreds (ok, maybe hundreds was a bit of an exaggeration) of whales breaching and swimming around the ship. Throwing on a sweatshirt and grabbing my camera, I raced up to the bridge to get a view of this. I had low expectations, as it seemed that every time we got the call that there were whales around, they left as soon as we got up there. This time, however, I was not disappointed. It was a whale extravaganza! Humpback whales, fin whales, orcas, there were so many whales it was hard to decide where to point my camera or binoculars. Like one of those fountains that spurt up water intermittently through different holes, the whales were blowing all around us. I was up on the bridge for over an hour, never tiring to see which one would spout next, or show us a fluke before it dove down deep, only to resurface somewhere else 15 minutes later. It was truly a treat to be able to watch them, and the weather couldn’t have been better. My favorite shot was of a baby humpback breeching – we had been tracking him for a while, his blow noticeably smaller than the adults around him. He looked as if he was just playing around in the water, enjoying himself without a worry in the world. I had been hoping to see Alaska wildlife on this trip, and am thrilled my wish was granted.

The bathroom in our staterooms

The bathroom in our staterooms

stateroomI had a question about our living accommodations on the ship, and I must admit they aren’t too shabby. I share a room with another one of the scientists, and she works the opposite shift. This works out nicely as we can each have our own time in the room, and can sleep uninterrupted. We have bunks, or racks as many refer to them, and I am sleeping on the top bunk. We have a bathroom with a shower in our room, and it’s nice not to have to share those amenities. The walls are pretty thin, and the ship can be loud when operations are going, making earplugs or headphones helpful.

Kaitlin Baird: Did You Know? September 25, 2012

NOAA Teacher at Sea
Kaitlin Baird
Aboard NOAA Ship Henry B. Bigelow
September 4 – 20, 2012

Mission: Autumn Bottom Trawl Survey with NOAA’s Northeast Fisheries  Science Center
Geographical Area: Back in port! Newport Rhode Island
Date: September 21st
.

Location Data:
Latitude: 41’53.04
Longitude: 71’31.77

Weather Data:
Air Temperature: 13.8 (approx.57°F)
Wind Speed: 10.01 kts
Wind Direction:  North
Surface Water Temperature: 19.51 °C (approx. 67°F)
Weather conditions: overcast

Science and Technology Log:
I thought I would end my trip on the Henry B. Bigelow with some fun facts!
.
Did you know?
The Fisheries Scientific Computer System (FSCS) is able to prompt the data recorders with all actions needing to be performed for a particular species. It is coded with unique barcodes for every sample taken. Back in the laboratory all scientists receiving samples can receive all the information taken about the given organism by scanning this unique barcode!
.
barcoding for species caught on cruise for further analysis

Barcoding for species caught on cruise for further analysis

Did you know?
Science crew operating on the back deck are required to wear an Overboard Recovery Communications Apparatus (ORCA). This system if it is activated sends a signal by way of radio frequency to a receiver on the ship’s bridge. This system responds immediately to the ship receiver and has a direction finder to help locate the man overboard.

Me getting ready to head to the back deck with my positioning system around my neck

Me getting ready to head to the back deck with my ORCA around my neck

Personal Log:
It would take me hours to go through all of the amazing creatures we caught and surveyed on this trip, so I thought I would write some fast facts about some of my favorites! Enjoy!
.
Did you know?
The male spoon arm octopus has a modified arm that passes spermatophores into the oviducts of the female. Pretty neat stuff!
spoonarrm octopus

Spoon arm octopus

Did you know?
Stargazers, like this one, have an electric organ and are one of few marine bony fish species that are able to produce electricity.  This is known as Bioelectrogenesis. They also hide beneath the sand with just their eyes sticking out and ambush their prey!

Stargazer

Stargazer

Did you know?
This fish, the Atlantic midshipman, has bioluminescent bacteria that inhabit these jewel–like photophores that emit light! It also interestingly enough uses this function in fairly shallow waters!

midshipman photophores

Midshipman photophores

Did you know?
Sea spiders like this one have no respiratory organs. Since they are so small gasses diffuse in and out of their bodies, how cool is that!

sea spider

Sea spider

Did you know?
The flaming box crab, Calappa flammea, uses its scissor-like claws that act as a can opener. It has a special modified appendage to open hermit crabs like a can opener!

flaming box crab

Flaming box crab

Did you know?
A female Atlantic angel shark like this one can have up to 13 pups!

angel shark

Angel shark

Did you know?
Seahorses suck up their food through their long snout, and like the flounders I talked about at the beginning of the cruise, their eyes also move independently of each other!!

seahorse

Seahorse

Did you know?
Horseshoe crabs, like this one, have blue blood. Unlike the blood of mammals, they don’t have hemoglobin to carry oxygen, instead they have henocyanin. Because the henocyanin has copper in it, their blood is blue!

horseshoe crab

Horseshoe crab

Last but NOT least, Did you know?
According to the Guiness Book of World Records the American Lobster has been known to reach lengths over 3 ft (0.91 m) and weigh as much as 44 lb (20 kg) or more. This makes it the heaviest marine crustacean in the world! This one was pretty large!!

American Lobster

American Lobster

A big farewell to everyone on the Henry B. Bigelow! Thanks so much, i had a great time and learned a lot! Thanks for reading!

Donna Knutson, September 15, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission:  Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 15, 2010

KILLER WHALES!

I am holding a tuna that Mills caught.

 

Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone, called the “EEZ”,aound Hawaii.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.
Also part of the mission is to collect data such as conductivity for measuring salinity, temperature, depth, chlorophyll abundance. Aquatic bird sightings will also be documented.

Science and Technology:

Killer Whales coming up for air.

Latitude: 27○ 40.6’ N
Longitude: 175○ 48.7’ W  
Clouds:  3/8 Cu, Ci
Visibility:  10 N.M.
Wind:  12 Knots
Wave height:  1-2 ft.
Water Temperature: 27.5○ C
Air Temperature:  27.0○ C
Sea Level Pressure:  1021.2 mb
Orca is another name for Killer Whale.  They are some of the best known cetaceans.  Killer whales are the largest members of dolphin family.
Killer Whales are easily recognized by their huge dorsal fin that is located in the middle of their backs.  The male’s dorsal fin is usually between three and six feet high.  Orcas have unique flippers that are large broad and rounded.  Their bodies have a black and white color pattern.
The male Killer Whale can reach thirty feet long and weigh at least twelve thousand pounds.  The females are smaller in size reaching only twenty-six feet long and weigh eight thousand four hundred pounds.  The females may outlive the males by twenty to thirty years, living between eighty to ninety years.
 Killer Whales are not limited to any particular region.  Depending on the prey they prefer, Killer Whales can be found in cold or warm climates.  Orcas have a varied diet which may consist of fish, squid, large baleen whales, sperm whales, sea turtles, seals, sharks, rays, deer and moose.  Pods tend to specialize in a particular food and follow it.  Killer Whales tend to use cooperative hunting groups for large prey.
Orcas form matrilineal groups sometimes containing four generations.  All females help with calf rearing.  The females are more social and may be associated with more than one pod, but males are usually by themselves.  One group near British Columbia contained approximately sixty whales.
Killer Whales are not endangered, but numbers are declining in Washington and British Columbia.  The reasons for the decrease in whale numbers is not known, but possible factors may include chemical or noise pollution or a decrease in the food supply.
Personal Log:

In the middle is a mother with her calf.

I was just leaving the bridge after the XO (executive officer) asked me if I would like to join her and Doctor Tran to Midway tomorrow.  I knew we were stopping to pick up Jason, a Monk Seal Biologist who needed a boat ride from Midway to Kure Island, but I heard no one was going ashore.  So when she asked, I was totally thrilled and extremely excited to get my feet wet and of course said yes!
As I was leaving the bridge I decided to check out what was doing on the flying bridge.  When I got up there, everyone was on goggles or the big eyes, so I asked Aly what was going on.  She said someone saw a “black fish”, meaning something was seen, but not identified, and she offered me the big eyes she was looking through.  I looked maybe for five seconds and said, “I see it”!  This is very rare for me to see something so quickly!  I’m thinking, “I just saw a KILLER WHALE!!” but no one was excited or talking about it.  So now I begin to doubt myself, “That was a Killer Whale right?”

Three adults and a calf.

In the middle of my self -doubt, Adam comes running up the ladder screaming, “KILLER WHALE!!”  Drat why didn’t I say anything!  There wasn’t only one, but five killer whales!  One was a mother with her small calf! Wow what amazing animals! I couldn’t stop staring, and I wasn’t the only one.  There was a “full house” on deck again with everyone oooing and ahing.
Orcas aren’t typically seen in this area, but then again this is a survey ship, and this area hasn’t been surveyed in a very long time.
When the small boat was launched to try and tag one of the adult whales with a tracking device, they dove never to be seen again.  These animals are just too smart.  What an extraordinary experience!
Tomorrow I will have another adventure!  An adventure few people have taken.  I am going to Midway.  Midway Atoll is now a National Wildlife Refuge and also holds the Battle of Midway National Memorial.  I’m off to see a glimpse of our nation’s past and a birding and seal paradise!

Orca by itseft.

Maggie Prevenas, April 20, 2007

NOAA Teacher at Sea
Maggie Prevenas
Onboard US Coast Guard Ship Healy
April 20 – May 15, 2007

Mission: Bering Sea Ecosystem Survey
Geographic Region: Alaska
Date: April 20, 2007

Species Profiles

Bearded Seal: Scientific name: Erignathus barbatus

For the past few days, we have been seeing bearded seals. Bearded seals are extremely important to the Alaskan Native population that live along the Bering Sea. They use their skins for watertight boats, and their meat for food. They are solitary, love to hang out by themselves and are bottom feeders. Many times their heads appear reddish brown, stained from the benthic muck.

Alaskan Natives carve beautiful animals from walrus ivory. This carving is located on the  second floor of the Anchorage Airport.

Alaskan Natives carve beautiful animals from walrus ivory. This carving is located on the second floor of the Anchorage Airport.

Where do bearded seals live?
Bearded seals live in areas of the Atlantic, Pacific, and Arctic Oceans that freeze and form ice during the winter.

How many bearded seals are there?
There is no accurate population count at this time, but it is estimated that there are probably over 500,000 bearded seals worldwide.

Bearded seals often have reddish heads from grubbing for  their food in the bottom sediment. Photo by Gavin Brady.

Bearded seals often have reddish heads from grubbing for their food in the bottom sediment.

How can I identify bearded seals?
A bearded seals most distinguishing feature is the beard of white whiskers they use to find food on the sea floor. Adult bearded seals are gray to brown, pups silver-gray, and do not have spots or other identifying markings. They do have small heads and flippers for the size of their bodies. The average length of adult bearded seals is 6.5 to 7 feet. They can weigh as much as 700 pounds, but the average weight is 400 to 500 pounds.

What do bearded seals eat?
Bearded seals are mainly bottom feeders that eat shrimps, crabs, clams and whelks. They will prey on fish such as cod and sculpin when they get a chance.

How do bearded seals have their young?
The bearded seal pups are born on the ice from the middle of March to the early May. Pups are weaned in approximately 3 weeks, and during those three weeks they gain a lot of weight. Their mothers then leave them to fend for themselves. The bearded seal pups learn to swim and dive within the first week of life. The pups then live a solitary life-like the rest of the bearded seals.

How long do bearded seals live? How do they die?
The life span of bearded seals is believed to be up to 31 years. The main predator of the bearded seal are the polar bear. Sharks, and walrus have been known to feed on pups, and humans also hunt bearded seals for subsistence.

Bearded seal pups usually stay on the ice. The mother seal will dive into the water but hangs around the pup.

Bearded seal pups usually stay on the ice. The mother seal will dive into the water but hangs around the pup.

Do you know what is really cool about bearded seals?
Bearded seals will ram their heads through thin ice to produce breathing holes!

Bearded seals lay on the edge of the ice looking downward into the water. They can then get away if a predator approaches!

The bearded seal gets its name from the white whiskers on its face! The whiskers are very sensitive and are used to find food on the ocean bottom!

Within a week of birth pups are capable of diving to a depth of 200 feet!

The bearded seals can be easily recognized because the body looks too big for the size of its head and front flippers!

Orca: The Killer Whale

The pilot from the helicopter gave us a heads up. Two killer whales headed our way. The announcement resounded through the ship via the pipes (announcement system). For some people on board ship, this was their first glimpse of the orca. Keep on reading if you are interested in learning more about the whale called Killer.

We saw a pod of killer whales all eating heartily. What was on their menu for dinner? Take a guess.

We saw a pod of killer whales all eating heartily. What was on their menu for dinner? Take a guess.

Killer whales are social animals that live in stable family-related groups.  Killer whales display a high level of care for their offspring.  In addition to the mothers, various pod members (mainly adolescent females) perform most of the care for the calves.  As with most mammals, killer whales are very protective of their young.

Different killer whale pods “sound” different.  Each pod has their own dialect of sounds.  They can easily recognize their own pod from several miles away based on the differences in calls.

Killer whales are often compared to wolves because both species are top predators, maintain complex social relationships, and hunt cooperatively.

To some, killer whales look exactly alike however they can be distinguished from one another by the shape and size of their dorsal fins, the distinctive grayish-white saddle patches behind their dorsal fins, as well as distinctive scars, nicks and marks on their dorsal fins.

What are killer whales like?
Though killer whales, also called orcas, are considered whales by most people, they are actually members of the Delphinidae (dolphin) family. Killer whales are excellent hunters that a wide range of prey, including fish, seals, and big whales such as blue whales. Despite their hunting of other animals, free-ranging killer whales have never been reported killing a human being.

Where do killer whales live?
Killer whales can be found in all oceans but they seem to prefer coastal waters and cooler regions.  Killer whales occur in family groups called pods.  Three types of pods have been described:

* Resident pods: remain stable over time     * Transient pods:  dynamic in structure (are constantly changing)     * Offshore pods:  Are seen only in outer coast waters and not much else is known of them.

Killer whale pods are based on the lineage of the mother (mothers, daughters, and sons form groups); the whales live and travel with their mothers even after they are full-grown, forming strongly matriarchal whale societies.

How many killer whales are there?
There are no official killer whale worldwide population estimates.  There are minimum counts in local areas.  For example, approximately 1000 whales have been individually identified in Alaskan waters through photographs. Killer whales are at the top of the food chain and are not considered endangered.

How can I identify a killer whale?
Killer whales are extremely distinctive with jet-black bodies and white patches usually over the eyes, under the jaw, on the belly, and extending onto their sides.   Female killer whales can grow up to 26 feet (7.9 meters) with a 3 foot dorsal fin while males are larger than the females growing up to 28 feet (8.5 meters) with a 6 foot (1.3 meters) dorsal fin. Killer whales have 48 to 52 teeth that are large and conical shaped as well as slightly curved back and inward.

How well do killer whales see or hear?
Killer whales have well-developed, acute senses.  They can hear a vast range of sounds and possess skin that is sensitive to touch.  Killer whales have excellent vision in and out of water.  It is not known whether or not they may have some sort of sense of taste.

What do killer whales eat?
The killer whale diet consists of fish, squid, seals, sea lions, penguins, dolphins, porpoises and large whales like the blue whale.  Some killer whales have been known to slide on to beaches in order to capture a good meal.   Resident pods (pods that primarily reside in one area) prefer fish whereas transient pods (pods that travel over a relatively wide area) appear to target other marine mammals as prey.

Killer whales are very successful hunters due to their cooperative hunting, where all animals within the pod  participate.  This coordination is apparently developed and learned within pods.

How do killer whales have their young?
Killer whale males reach breeding age when they are around 22 feet (6.7 meters) long while females can breed when they are about 16 feet (4.9 meters) long. Killer whales breed all year around and calves are born about 8 feet (2.4 meters) long after a 17 month gestation period. Female killer whales usually give birth every 3 to 10 years.

How long do killer whales live? How do they die?
Killer whales have no natural predators (they are the top predators of the oceans) and can live to about 50-80 years old. Killer whales have been hunted by humans but not with enthusiasm as it takes 21 killer whales to produce the same amount of oil as 1 sperm whale.

Ribbon Seals: Phoca fasciata

I saw my first ribbon seal today! These beautiful creature are the most highly vulnerable critter that live up in the Arctic. Why? They never touch land. They spend their entire lives on ice flows, even give birth there. What will happen to them if there is less and less ice? Think about it.

Where do ribbon seals live?

Ribbon seals range northward from Bristol Bay in the Bering Sea into the Chukchi, Okhotsk and western Beaufort Seas.

This walrus tusk caving is a perfect minature of the beautiful animals know as ribbon seals.

This walrus tusk caving is a perfect miniature of the beautiful animals know as ribbon seals.

How many ribbon seals are there? In the mid-70s, the estimate of the world’s population of ribbon seals was thought to be 240,000, but there is no accurate estimate at this time.

How can I identify a ribbon seal? Ribbon seals are very distinctive. Males are dark brown to black with four ribbons of white. Females are lighter with less distinctive stripes. The stripes are located around the front shoulders, the neck and the rear section. Young seals are gray and will acquire the distinctive ribbons by the age of four. Ribbon seals have large eyes and small teeth.

Ribbon seals are generally easy to catch because they do not fear humans.

Ribbon seals are generally easy to catch because they do not fear humans.

What do ribbon seals eat? Ribbon seals feed mainly on groundfish and shrimp, along with some crustaceans.

How do ribbon seals have their young? Ribbon seal pups are born on the ice in the spring. They are white at birth and become silver gray in 3 to 6 weeks. They are weaned in about at month and then spend time learning to move on ice and to dive.

How long do ribbon seals live? How do they die? The life span of ribbon seals is believed to be up to 25 years.

The main predators of the ribbon seal are the killer whale, sharks and humans. There seems to be little interaction between commercial fishing and the ribbon seal.

Do you know what is really cool about ribbon seals? Ribbon seals have an internal air sack, over their ribs on the right side of their body. They are the only seals with this air sack! We do not know what it is used for!!

Ribbon seals move on the ice differently than other Arctic seals, they move one fore flipper at a time at a time, while other seals pull with both their front flippers to move forward! For short distances, they can move on the ice as fast as a man can run!!

Ribbon seals hang out where humans are not. They love to spend time out in the Bering Sea. The ice flow is their home.

Ribbon seals hang out where humans are not. They love to spend time out in the Bering Sea. The ice flow is their home.

Why do we know so little about ribbon seals? Ribbon seals are hard to study because of the amount of time they spend floating on pack ice and in open water, away from land. Luckily, this also makes it harder for predators to prey on them. At birth the pups are pure white. We know that ribbon seals stay close to the pack ice, but after most of the pack ice has melted, the ribbon seals are believed to be in the open sea.