Caitlin Fine: Endings and beginnings, August 9, 2011

NOAA Teacher at Sea
Caitlin Fine
Aboard University of Miami Ship R/V Walton Smith
August 2 – 7, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida and Gulf of Mexico
Date: August 9, 2011

Personal Log

The last days of the survey cruise followed a pattern similar to the first days. Everyone got into the schedule of working 12-hour shifts and everyone accepted their role and responsibilities as a member of the team.

We all (morning and night shifts) ate dinner together and often (if there were no stations to be sampled) sat together to play board games, such as Chinese checkers.

Maria and I in the "stateroom" we shared
The scientific team plays Chinese checkers

We also all watched the sunsets together — each one was spectacular!

Science team at sunset

On the night of August 6th, we were towing the Neuston net through an area that had so many jellyfish that we could not lift the net out of the water. We had to get another net to help lift the heavy load. We all took bets to see how many jellyfish we had caught. I bet 15 jellyfish, but I was way off — there were over 50 jellyfish in the net! There were so many, that as we were counting them, they began to slide off the deck and back into the water. I have a great video that I cannot wait to share with you in September!

Moon jellies sliding off the deck!
Science equipment in the truck

The ship arrived back in Miami on Sunday night around 7:30pm. It was amazing how quickly everyone unloaded the scientific equipment and started to go their separate ways. Because the NOAA building (Atlantic Oceanographic and Meterological Laboratory, AOML) is located right across the street from where the Walton Smith docks, we loaded all of the equipment into a truck and delivered it to the AOML building.

This was great because I got a quick tour of the labs where Lindsey, Nelson and others run the samples through elaborate tests and computer programs in order to better understand the composition of the ocean water.

Lindsey in one of the NOAA labs

In reflecting upon the entire experience, I feel extremely fortunate to have been granted the opportunity of a lifetime to participate in Teacher at Sea. I was able to help with all aspects of the scientific research from optics, to chemistry, to marine biology as well as help with equipment that is usually reserved for the ship’s crew, such as lowering the CTD or tow nets into the water.

There were many moments when I felt like some of my students who are struggling to learn either English or Spanish. There are a lot of scientific terms, terms used to describe the equipment (CTD and tow net parts), and basic boat terminology that I had not been exposed to previously. I am thankful that all of the members of the cruise were patient with my constant questions (even when I would ask the same thing 3 or 4 times!) and who tried to explain complex concepts to me at a level that I would understand and be able to take back to my students.

I am using the GER 1500 spectroradiometer

It makes me reflect again on everything I learned during my MEd classes in Multicultural/Multilingual Education — a good educator empowers students to ask questions, take risks, ask more questions, helps students access information at their level, is forever patient with students who are learning language at the same time that they are learning new concepts, provides plenty of hands-on experiments and experiences so students put into practice what they are learning about instead of just reading or writing about it.

A porthole on the R/V Walton Smith

As we sailed into Miami, a bottlenose dolphin greeted us – sailing between the two hulls of the catamaran and coming up often for air. It was so close, that I could almost touch it! Even though I was sad that the survey cruise was over, it was as though the dolphin was welcoming me home and on to the next phase of my Teacher at Sea adventure: I return to the classroom in September loaded with great memories, anecdotes, first hand-experiences, and a more complete knowledge of oceanography and related marine science careers to help empower my students so that they consider becoming future scientists and engineers. Thank you Teacher at Sea!

Survey cruise complete, returning to Miami

Caitlin Fine: Mississippi River Chasers! August 3, 2011

NOAA Teacher at Sea
Caitlin Fine
Onboard University of Miami Ship R/V Walton Smith
August 2 – 6, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: August 3, 2011

Weather Data from the Bridge

Time: 10:18pm
Air Temperature: 29.5°C
Water Temperature: 31.59°C
Wind Direction: North
Wind Speed: 3 knots
Seawave Height: calm
Visibility: good/unlimited
Clouds: Partially cloudy (cumulos and cirrus)
Barometer: 1011.0mb
Relative Humidity: 72%

Science and Technology Log

The oceanographic work on the boat can be divided into three categories: physical, chemical, and biological. In this log, I will explain a little bit about the part of the research related to the physics of light. Upcoming 5th graders – pay attention! We will be learning a lot about light in January/February and it all relates to this research project.

Brian and Maria are two PhD students who are working with the physical components. They are using several optical instruments: the SPECTRIX, the GER 1500, the Profiling Reflectance Radiometer (PRR), and the Profiling Ultraviolet Radiometer (PUV).

Bryan and Maria
Brian and Maria take optic measurements with the SPECTRIX and GER 1500

The SPECTRIX is a type of spectroradiometer that measures the light coming out of the water in order to understand what is in the water. For example, we can measure the amount of green light that is reflected and red and blue light that is absorbed in order to get an idea about the amount of chlorophyll in the water. This is important because chlorophyll is the biggest part of phytoplankton and phytoplankton are tiny plant-like algae that form the base of the food chain on Earth.

PUV
Brian lowers PRR into the water

The PRR and the PUV measure light at different depths to also understand what is in the water and at what depth you will find each thing in the water. The light becomes less bright the further down you go in the water. Most of light is between 0-200 meters of depth. The light that hits the water also becomes less bright based upon what is in the water. For example, you might find that chlorophyll live at 10 meters below the surface. It is important to understand at what depth each thing is in the water because that tells you where the life is within the ocean. Most of the ocean is pitch-black because it is so deep that light cannot penetrate it. Anything that lives below the light level has to be able to either swim up to get food, or survive on “extras” that fall below to them.

Personal Log

These few days have been very fun and action-packed! I arrived on the ship on Sunday afternoon and helped Nelson and the crew get organized and set-up the stations for the cruise. Several other people had also arrived early – two graduate students who are studying the optics of the water as part of their PhD program, one college student and one observer from the Dominican Republic who are like me – trying to learn about what NOAA does and how scientists conduct experiments related to oceanography.

On Monday morning, we gathered for a team meeting to discuss the mission of the cruise, introduce ourselves, and get an updated report on the status of the Mississippi River water. It turns out that the water is going in a bit of a different direction than previously projected, so we will be changing the cruise path of the ship in order to try to intersect it and collect water samples.

CTD
I am helping lower the CTD into the water

Monday we all learned how to use the CTD (a machine that we use to collect samples of water from different depths of the ocean) and other stations at the first several stops. It was a bit confusing at the beginning because there is so much to learn and so many things to keep in mind in order to stay safe! We then ate lunch (delicious!) and had a long 4-hour ride to the next section of stops. When we arrived, it was low tide (only 2 ft. of water in some places) so we could not do the sampling that we wanted to do. We continued on to the next section of stops (another 3 hour ride away!), watched a safety presentation and ate another delicious meal. By this time, it was time for the night shift to start working and for the day shift to go to bed. Since I am in the day shift, I was able to sleep while the night shift worked all night long.

Today I woke up, took a shower in the very small shower and ate breakfast just as we arrived at another section of stops. I immediately started working with the CTD and on the water chemistry sampling. We drove through some sea grass and the optics team was excited to take optical measurements of the sea grass because it has a very similar optical profile to oil. The satellites from space see either oil or sea grass and report it as being the same thing. So scientists are working to better differentiate between the two so that we can tell sea grass from oil on the satellite images. The images that Maria and Brian took today are maybe some of the first images to be recorded! Everyone on the ship is very excited!

Several hours later, we came to a part of the open ocean within the Florida Current near Key West where we believe water from the Mississippi River has reached. Nelson and the scientific team believe this because the salinity (the amount of dissolved salt) of the surface water is much lower than it normally is at this time of year in these waters. Normally the salinity is about 36-36.5 PSUs in the first 20 meters and today we found it at 35.7 PSUs in the first 20 meters. This may not seem like a big difference, but it is.

The water from the Mississippi River is fresh water and the water in the Florida Keys is salt water. There is always a bit of fresh water mixing with the salt water, but usually it is not enough to really cause a change in the salinity. This time, there is enough fresh water entering the ocean to really change the salinity. This change can have an impact on the animals and other organisms that live in the Florida Keys.

Additionally, the water from the Mississippi River contains a lot of nutrients – for example, fertilizers that run off from farms and lawns into gutters and streams and rivers – and those nutrients also impact the sea life and the water in the area. Nelson says that this type of activity (fresh water from the Mississippi River entering the Florida Current) occurs so infrequently (only about ever 6 years), scientists are interested in documenting it so they can be prepared for any changes in the marine biology of the area.

For all of these reasons and more, we took a lot of extra samples at this station. And it took almost 2 hours to process them!

In the evening, we stopped outside of Key West and the director of this program for NOAA, Michelle Wood, took a small boat into the harbor because she cannot be with us for the entire cruise.

Key West
Sunset over Key West - a beautiful way to end the day

She asked me if I’d like to go along with the small boat to see Key West, since I have never been there before, and of course I agreed! I got some great pictures of the R/V Walton Smith from the water and we saw a great sunset on the way back to the ship after dropping her off with Jimmy Buffet blasting from the tourist boats on their own sunset cruises.

We will be in the Mississippi River plume for most of tonight. Everyone is very excited and things are pretty crazy with the CTD sampling because we are doing extra special tests while we are in the Mississippi River plume. We might not get much sleep tonight. I will explain in my next blog all about the chemistry sampling that we are doing with the CTD instrument and why it is so important.

Did you know?

On a ship, they call the kitchen the “galley,” the bathroom is the “head,” and the bedrooms are called “staterooms.”

One interesting thing about the ship is that it does not have regular toilets. The ship has a special marine toilet system that functions with a vacuum and very thin pipes. If one of the vacuums on one of the toilets is not closed, none of the toilets work!

Animals seen today…

  • Zooplankton that live in the sargassum (a type of seaweed that usually floats on the water) –baby crab, baby shrimp, and other zooplankton. The sargassum is a great habitat for baby crab, baby shrimp, and baby sea turtles.
  • Baby flying fish
  • Two juvenile Triggerfish

    Triggerfish
    We caught a young triggerfish in our tow net