Marsha Lenz: The Octopus and the CTD, June 21, 2017

 

NOAA Teacher at Sea

Marsha Lenz

Aboard Oscar Dyson

June 8-28, 2017

 

Mission: MACE Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: June 21, 2017

 

Weather Data from the Bridge

Latitude: 54 38.9 N

Longitude: 161 39.2 W

Time: 0800

Visibility: 10 Nautical Miles

Wind Direction: 185

Wind Speed: 9 Knots

Sea Wave Height: 3-4 foot swell

Barometric Pressure: 1003.4 Millibars

Sea Water Temperature: 7.4°C

Air Temperature: 7.0°C

Science and Technology Log

Every morning when I come to start my shift, the scientists on the previous shift are in the middle of doing “DropCam’s.”   The DropCam is a camera that drops down to the ocean floor and takes pictures of what is going on down there. We have been getting some amazing pictures from the DropCam. The camera goes down about 150 meters (depending on the depth of the ocean floor). Sometimes, the ocean is very sandy and has very little (that we can see) activity going on. Other times, the video feed is full of fish and other marine life. We have seen so much diversity on the ocean floor.

This slideshow requires JavaScript.

Since being on the Oscar Dyson, we now have seen two octopuses on the boat (well, one was on the DropCam); one was in the juvenile stage and one in the adult stage of life. I’d like to take a moment to talk about how amazing an octopus is. First of all, let’s talk about how they can change color to match their surroundings. They use special pigment cells in their skin to change colors. They have the ability to even blend into patterned rocks and corrals. When we caught the baby octopus, we saw it change its color to white to blend into the white cup we were holding it in.

Screen Shot 2017-06-21 at 2.48.10 PM

An octopus can fit through spaces as small as the size of its beak (photo credit: factsandideas.com).

They are considered to be very intelligent animals. They have been known to be able to open jars, escape from enclosures, solve mazes, and squirt water at targets. They have the ability to squeeze through things that are as small as the size of their beaks. In aquariums, they have also been known to mimic (and actually learn from) other octopuses.

Even though they can get up to be 16 feet long and weigh up to 110 pounds, they only live to be about 4 years old. That is a very short lifespan. After the females lay their eggs (they lay about 100,00 eggs), they brood over them for many months. During this time, they often do not eat. She protects her eggs for 6-7 months, and then she dies shortly after they are born.

When they are looking over their eggs they do eat, they primarily eat shrimp, fish, clams, and lobsters. They have a beak-like mouth that they can use to puncture and tear fish. They have also been known to eat sharks and birds. During the first 3 months of their lives, they eat plankton. Plankton are small and microscopic organisms that drift or float in the sea. They consist of diatoms, protozoans, small crustaceans, and the eggs and larval stages of larger animals.

The CTD

After the last DropCam is retrieved, a CTD (Conductivity-Temperature-Depth) is usually deployed, which collects data from various depths of the oceans. The primary function of the CTD is to measure the conductivity and temperature of the water column at various depths. Conductivity is related to the salinity, or saltiness, of the water. Studying the salinity of the water is a very critical part of studying the ocean, which is made up of salt water. The conductivity, along the temperature and depth, provide scientists with profiles of various parts of the ocean.

This slideshow requires JavaScript.

The CTD is attached to a larger frame called a rosette.   This holds various water-sampling bottles and other sensors that measure the physical and chemical properties of the water at various depths. With this information, scientists can make inferences about changes that they may be seeing in the data and this can give them a better understanding about the oceans.  The data collected daily from the CTD is analyzed by Pacific Marine Environmental Laboratory at the end of the survey.

Personal Log

Things on the boat are definitely becoming more routine. We continue to work in 12-hour shifts (mine starting at 4 am). The days consist of getting up, having coffee and a bagel, coming down to the Chem Lab to relieve the night shift, where we take over doing DropCams.  After our DropCams, we get to watch the sunrise or other spectacular views.

This slideshow requires JavaScript.

We then will go up for breakfast at 7. I have really been enjoying having someone else (Lenette and Kimrie) not only make meals for me every day, but also do my dishes. What a luxury! After breakfast, we’ll “go fishing” and suit up to analyze the catch. (I’ll go into details about in the next blog) and then we’ll go have lunch. After lunch, we brainstorm the plans for the afternoon and take care of small projects. Before we know it, 4 pm rolls around and the next crew starts their shift.

IMG_2373

Chief Scientist, Darin Jones, shows me how to conduct a trawl.

I make it to dinner at 5, and then I slowly make my way back to the stateroom.  If it is  nice out, I will go up to the bridge to look for marine animals or walk around looking at the amazing landscape.  I find myself extremely tired around 7 and get ready for bed.  I am usually asleep by 8. It’s “good night” and sweet dreams for me!

2017-06-20-PHOTO-00000007

Despite the occasional wind, the views are breathtaking.

Did You Know?

 The oldest octopus fossil is from an animal that lived 296 million years ago — millions of years before the dinosaurs lived.

Question for my class:

 What is the name of this weather instrument?

19251093_10211620451204938_1276981242_n

This year we learned about various tools to help measure weather. I saw this on the bridge of the ship. It measures the speed and direction of the wind. Do you remember what it is called?

 answer:  A  ___ ___  M  ___ ___  E  ___ ___  R                                                                                      

Interview with Darin Jones

IMG_2395

Darin analyzes backscatter from a recent transect.

What role do you play on this survey?

I am the Field Party Chief which means that I am the member of the science party that is responsible for making sure as much of our original objective gets completed as possible and I also serve as the main contact between the officers that operate the ship and the science party when important decisions or changes in the plan occur.

What inspired you to pursue this as a career?

I was a contract observer for the National Marine Fisheries Service following college and dreamed about one day working directly for them.  I thought that would be an awesome career and I feel lucky to have had my dreams realized.

How long have you been working in this field?

I have been in my current position for 10 years but have been in the marine biology field for the last 25 years.

What sort of training/education did you receive?

I got my Undergraduate degree in Marine Biology and a Masters of Science in Fisheries Resources.  I was also an observer aboard commercial fishing vessels for 5 years which provided invaluable sea going experience and knowledge.

Are fisheries something that more people need to know about? Why?

I think fisheries and the health of the oceans is something that people should know more about because they are vital to life on land and important indicators of the status and health of our climate and planet. The oceans are the heart of the earth and drive many other processes.

 

What interests you most about the data collected on this survey?

The data that we collect is directly used to sustainably manage the pollock fishery so I am proud to contribute to that.  It’s neat to be able to track a fish population as it grows through the years and watch how many survive from one year to the next. We are also collecting interesting data on the percentage of certain rockfish species in different types of habitat that can be used to help determine the abundance of those species.

What is the most challenging part of your job?  The most rewarding?

The most challenging part of my job is being away from my family for long periods of time. Another challenging aspect is the time management of planning and executing the survey objectives in a finite amount of time. Plans have to be constantly monitored and adjusted depending on weather, equipment malfunction, and other unexpected circumstances. The most rewarding part of my job is knowing that I am contributing to the scientific knowledge that is helping to sustainably manage fisheries.

What words of advice do you have for my students if they want to pursue a career is biology or the sciences?

Math skills are a very important part of biology and the sciences so learn as much as you can.  Also getting experiences in fields that you are interested in is very important so volunteer with organizations that interest you and unexpected opportunities will open up.

 

 What is your favorite marine animal?

I think my favorite marine animal is the Pacific viperfish.  It is a creature from the deep and has very long teeth and looks very ferocious, however they only grow to a maximum of about a foot long, but I’ve only seen specimens that were about 2 inches long. It amazes me how creatures can survive in the dark depths and immense pressures of the deep ocean.

Screen Shot 2017-06-22 at 6.16.33 AM

The Pacific viperfish can be found 200-5,000 feet below the ocean surface. (photo credit: Earthguide & Scripps Institution of Oceanography)

Do you have anything else that you would like to add or share?

Do your homework and get all the extra credit that you can, kid!

 

 

Christopher Tait: Suburban Wilderness, March 27, 2017

 NOAA Teacher at Sea

Christopher Tait

Aboard NOAA Ship Reuben Lasker

March 21, 2017 to April 7, 2017

Mission: Spring Coastal Pelagic Species Survey

Geographic Area of Cruise: Pacific Ocean from San Diego, CA to San Francisco, CA

Date: March 27, 2017

Weather Data from the Bridge

Time 3:35 PDT,

Current Location: near San Nicolas Island, Latitude 33.3 N Longitude -119.2 W

Air Temperature 16.0 oC  (59.5 oF)

Water Temperature 14.9 oC  (58.6 oF)

Wind Speed 19 kts

Barometric pressure 1014.64 hPa

IMG_4674

San Nicolas Island from the Reuben Lasker

Science and Technology Log

Acoustic Trawl

There is a lot of advanced equipment that is used to do a survey of fish that spans the coast of California. The Reuben Lasker has been fitted with state of the art echo-sounders (Figure 1), which send out pulses of sound that bounce off objects and return to the ship in the form of backscatter.  Looking at the backscatter data you can create a profile of the water column and see a variety of organisms swimming beneath the ship.  The target species for the research is the Northern anchovy (Engraulis mordax) and Pacific sardine (Sardinops sagax).  The schools of fish are detected using a range of frequencies.  Looking at graphical representations of these data, or echograms, you can see the bottom as an area with strong echoes and, at times, you can see an area of high-intensity back scatter higher in the water column such as a school of fish or an aggregation of krill or plankton (figure 2).  This would be a school of fish, krill or other organisms.  The geographic location of the school is marked for a return by the ship at night for collection using a trawl.  To conduct a thorough survey, the ship travels back and forth between the coast and a predetermined distance out to sea across the predicted habitat of the target species (Figure 3.)  Scientists referred to this as “mowing the lawn.”

 Figure 1: Reuben Lasker Acoustic-Sampling Beams

Reuben Lasker Acoustic Sampling.png

©2014 Oceanography, Volume 27, number 4, Zwolinski et al.

Figure 2: An example echogram, showing the seabed and various sound scatterers in the water column.

Echogram

Figure 3 : Survey Map of the Spring Coastal Pelagic Species Survey 2017

California Sampling Map.png

Scientist Profile:

The Cruise Leader, Kevin Stierhoff, is a fisheries scientist who works for the Advanced Survey Technologies group at NOAA Southwest Fisheries Science Center (SWFSC) in San Diego, CA.  Not only has he been effectively managing this complex science expedition, he has gone out of his way to make me feel welcome and a part of this scientific endeavor.

 

How did you become a NOAA scientist?

I earned a B.S. in Biology, a Ph.D. in Marine Studies, and completed several postdoctoral research appointments prior to getting hired by NOAA. The work that my colleagues and I do at the SWFSC is very interdisciplinary, and the variety of educational and research experiences that I’ve had prepared me become a researcher at NOAA.

What do you like best about your career?

I consider myself lucky to have a job with a variety of duties. Not only do I spend time in the office analyzing data, but I also get to spend time at sea conducting survey and collecting data. When I’m not using acoustics to study pelagic fishes that migrate between Canada and Mexico, I use remotely operated vehicles (ROVs, or undersea robots) to survey endangered abalone that live on rocky reefs in the deep sea. When I’m not at sea, I’m analyzing the data that we collected at sea to communicate the results of our work.

What advice would you give to a student who would like to follow a similar career path?

Increasingly, a research career in marine biology requires a graduate degree to allow for maximal career advancement. If possible, take some time after undergrad to work in a job related to your career goals. This will allow you to focus your interests before choosing a graduate program, or perhaps discover that you don’t actually like that career path (better to find out sooner than later!) or that you don’t require a graduate degree to do the job that really interests you (which will save you lots of time and money). Most importantly, choose a job that you look forward to going to every day.

 

Personal Log

It is dark out, but as I look down from high atop the ship through an open window from the bridge, the lights of Long Beach reflect on the placid expanse of ocean and I come to a great moment of reflection.  One of the busiest ports in the world is just off in the distance and I am looking for marine mammals in this suburban wilderness.  Beside the glow of humanity, nature continues on.

IMG_4638.JPG

Long Beach, California

I have been mostly helping with analyzing organisms that came up in the trawl at night, so my work schedule has moved to a 6 pm to 6 am.  I am struck by how hardworking, dedicated, and driven all members of this expedition are.  The crew, scientists, and NOAA Corps collaborate to continuously run surveys 24 hours a day, 7 days a week.  I am enjoying working at night now even though it took me a few days to get use to all of the adjustments in my schedule.  I particularly enjoy doing the marine mammal watch from the bridge.  It gives you this aerial point of view of all the action the NOAA Corps expertly navigating the ship and coordinating operations, the deck crew masterfully deploying nets and equipment, and the scientists excitedly exploring the organisms we collect.

Catch of the Day!

Haliphron atlanticusThis strange creature is a gelatinous octopus, whose body resembles a jellyfish, but when you look close, you see eyes looking at you!

Octipus Gelatinous.png

Haliphron atlanticus

Boreal Clubhook Squid (Onychoteuthis borealijaponicus)

IMG_4630.JPG

Boreal Clubhook Squid (Onychoteuthis borealijaponicus)

Ocean Sunfish (Mola mola) is the strangest fish I have ever seen! It is one of the heaviest bony fish, surprisingly from a diet high in jellyfish and salps. We caught a small and large sunfish.

IMG_4607.JPG

TAS Chris Tait holds an Ocean Sunfish (Mola mola)

IMG_4576

Measuring the ocean sunfish…

IMG_4579

Slide to Freedom!

Pacific Saury (Cololabis saira): This fast looking fish hunts plankton at night near the surface.

img_4573.jpg

Pacific Saury (Cololabis saira)

Curlfin Turbot (Pleuronichthys decurrens): This juvenile flatfish rises to the water surface at night to hunt zooplankton.  Flatfish have an eye that migrates from one side of their body to the other as they develop.

IMG_4618.JPG

Curlfin Turbot (Pleuronichthys decurrens)

Andrea Schmuttermair, Underwater Adventures, July 17, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oscar Dyson
July 6 – 25, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 17, 2015

Weather Data from the Bridge:
Latitude: 58 02.3N
Longitude: 152 24.4W

Sky:  some clouds, clear

Visibility: 10nm
Wind direction: 261 degrees

Wind speed: 10 knots
Sea wave height: 2ft

Swell wave direction: 140 degrees

Swell wave height: 1ft

Sea water temp: 12.1C
Dry temperature: 16.2C

Science and Technology Log

In addition to the walleye pollock survey, there are also a few side projects taking place on the ship. One of the instruments we are trying out on this survey is the DropCam. With some upgrades from a previous version of the camera, this is the first time this camera has come on the pollock survey. It was initially created for a NOAA project studying deep sea corals. Now that the study is over, we are using it for a project funded by North Pacific Research Board. The goals of this project are two-fold: habitat classification and tracking fish densities in untrawlable versus trawlable areas.

My students would be excited to learn that this is very similar to the tool they designed with our underwater ROVs. The DropCam is made up of strobe lights and 2 cameras- one color and one black and white- contained in a steel frame. We’ve been deploying it twice each night in areas where we see the most fish on the echogram. The ship pauses when we get to a point we want to put the camera in, and the camera itself will drift with the current. The DropCam is attached to a cable on deck, and, with the help of the survey tech and deckhand, we lower it over the side of the ship and down into the water. Once it gets down to 35m, we make sure it connects with our computers here in the lab before sending it all the way down to the ocean floor. Once it is down on the ocean floor, it’s time to drive! While controlling the camera with a joystick in the lab, we let it explore the ocean floor for 15 minute increments before bringing it back up. I’ve had the opportunity to “drive” it a few times now, and I must admit it’s a lot of fun for a seemingly simple device. We’ve seen some neat things on camera, my favorite being the octopus that came into view. One night in particular was an active night, and we saw plenty of flatfish, rockfish, krill, shrimp, basket stars and even a skate.

Here are a couple of photos taken from our DropCam excursion.

A skate trying to escape the DropCam

A skate trying to escape the DropCam

An octopus that we saw on the DropCam

An octopus that we saw on the DropCam

Personal Log

We have hit some rougher weather the last couple days, and we went from have 2ft swells to 6 ft swells- it is a noticeable difference! Rumor has it they may get even bigger, especially as we head out into open water. We did alter our course a little bit so we could head into Marmot Bay where we would be somewhat protected from rough waters. It is quite interesting to walk around the ship in these swells. It feels like someone spun you around blindfolded 30 times and then sent you off walking. No matter how hard you try to walk straight, you inevitably run into the wall or stumble your way down the stairs. The good thing about this is that everyone is doing it, even those who have been on the boat longer, so we can all laugh at each other.

Two humpback whales breaching near our ship.

Two humpback whales breaching near our ship.

Because the weather changes just as quickly here in Alaska as it does in Colorado, the clouds lifted this evening and the sun finally came out. We had a great evening just off the coast of Afognak Island with sunshine, a beautiful sunset, and lots of whales! I stayed up on the bridge a good portion of the evening on lookout for blows from their spouts. Some were far off in the distance while a few were just 50 yards away! We were all out on deck when we saw not one, but two whales breeching before making a deeper dive.

longnoseskate1

Longnose skate

Our trawl today was a little sad as we caught a huge longnose skate. We didn’t notice him initially in our catch until he got stuck in all the pollock as we were lowering the fish down into the wet lab. We paused in our processing to try and get him out. He was about 90lbs with a wingspan of 1.5 meters, so he was difficult to lift out. It took 2 of our deck crew guys to pull him out, and then we got him back into the water as fast as we could. Hopefully he made it back in without too much trauma. While he was exciting to see, I felt bad for catching him in our net.

 

Meet a NOAA Corps Officer: ENS Justin Boeck

ENS Justin Boeck on the bridge

ENS Justin Boeck on the bridge

There are 5 NOAA Corps officers and a chief mate on board the Oscar Dyson for this leg of our survey: ENS Gilman, ENS Kaiser, ENS Boeck, LT Rhodes, LT Schweitzer, and Chief Mate Mackie. I have a lot of respect for the officers on our ship, as they have a great responsibility to make sure everything is running smoothly. They are one of the reasons I enjoy going up to the bridge every day. ENS Boeck picked me up from the airport when I first arrived in Kodiak, and gave me a short tour of the ship. He works each night during part of my shift, and it’s fun to come up on the bridge and chat with him and ENS Gilman. I had the opportunity to interview ENS Boeck, the newest officer on the Dyson, to learn a little more about the NOAA Corps and what they do on the ship.

Can you give me a little background on how you came to the NOAA Corps?

Before coming into the NOAA Corps, I received a Bachelor of Science degree in biology from the University of Wisconsin. After my undergraduate degree, I was in the Peace Corps in Senegal, West Africa for 3 years. I was an environmental advisor teaching classes to both students and teachers in addition to grant writing and funding. I lived in a village of 500 people, and taught 90 kids and 5 teachers. While I was there we built a wall to protect the garden from animals, helped village members increase their nutrition through micro-gardening, and ran seed bank projects and mosquito net distributions.

In 2015 I went into training with the Coast Guard, and also went through BOTC/OCS (Basic Officer Training Class/Officer Candidate School) at the U.S. Coast Guard Academy. There were 14 NOAA Corps officer candidates along with about 50 coast guard officer candidates, and we went through the same program with some of our academics varying slightly.

How long have you been in the NOAA Corps? One month, fresh out of BOTC (basic officer training class). I reported to the Oscar Dyson on June 4th.

Have you worked on other ships? If so, which one(s)? This is my first sea assignment. I’ll be at sea on the Dyson for 2 years, and will then move to a land assignment for 3 years.

What made you choose the NOAA Corps? I grew up near Lake Michigan and enjoy the water. I followed NOAA for job postings for a while, and I found out about the NOAA Corps through my last job working at a lab, so I contacted NOAA Corps officers to get more information about the NOAA Corps. I wanted to be on the water, drive a large ship, and get to SCUBA dive on a regular basis. I enjoy science and also working with my hands so this was a great way to be involved and be at the source of how fisheries data is being collected.

What’s the best part of your job? Driving the ship. The Oscar Dyson is the largest scale ship I’ve driven. It’s pretty amazing. I love being on the boat. The Oscar Dyson is considered the gold standard of the fleet, because it is a hardworking boat, running for 10 months of the year (most ships run for about 7 months out of the year) and a lot of underway time.

What is the most difficult part of your job? Getting used to the work and sleep schedule. We work 12 hours a day; 4 hour watch, 4 hours of collateral work, and then another 4 hour watch. We’re also short on deck so I spend some of my time helping out the deck crew. Because I’m new, I’m also learning the different duties around the ship. I need to know all the parts of the ship in order to become OOD (officer of the deck) qualified. I also need to have a specific amount of sea days, an interview with the commanding officer, and the trust of the commanding officer. Right now I’m learning more about the engineering on the ship.

What is something you wish more people knew about the NOAA Corps? With only 321 officers, it is still relatively unknown. We are aligning our training with the Coast Guard, which is creating more awareness and strengthening our relationship with the Coast Guard.

What advice would you give students who are interested in joining the NOAA Corps? Get boating experience and see if it’s something you’re into. Also having a solid understanding how a ship works. Get your experience early, and learn about weather, tide, swells, and ship processes. During BOTC, you get to fill out a request letter for what kind of ship you want to go on- fisheries, oceanographic, or hydrographic. Because my degree is in biology, I wanted to be on a fisheries boat, so I could get immediate experience in ship handling and still be involved with the fisheries data collection.

Did you know? The NOAA Corps is one of the 7 Uniformed Services, which include the US Army, US Navy, US Marine Corps, US Air Force, US Coast Guard,  US Public Health Service Commissioned Corps, and the NOAA Commissioned Officer Corps.

Where’s Wilson?

Or, rather, what sea creature is Wilson hanging out with in this picture? Write your answer in the comments below!

Where's Wilson?

Where’s Wilson?

Andi Webb: The Chance of a Lifetime: Oregon II: July 16, 2014

NOAA Teacher at Sea
Andi Webb
Aboard NOAA Ship Oregon II
July 11 – 19, 2014

Mission: SEAMAP Summer Groundfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: July 16, 2014
Science and Technology Log

Do you ever wonder sometimes how people are so generous with their time and talents? That’s how I feel onboard the Oregon II with a crew that is simply amazing at their work. The thing is, though, they make it seem like it’s not work to them. Oh, it’s hard work-that’s certain. But they all seem to enjoy it. There is passion for the ocean here, for the environment, for honing your craft. I feel certain I’m among some of the best scientists, NOAA Corps Officers, Deck Crew, Engineers-you name it. As if that weren’t enough, you can’t beat the food in the Galley! Who knew you could get French Silk Pie on a Groundfish Survey? Shhh….We’ll just keep that a secret!

Many people like to write about the scientific facts of NOAA in their blogs and there’s certainly nothing wrong with that. I mean, this is science in action, right? Me, however? I like to write about how people make me feel. The people of the Oregon II make me feel welcome. They make me feel happy I’m here. I asked one of the scientists today to please tell me, without worrying about political correctness, if the crew really enjoys the teachers being on board. She readily answered, “I love for teachers to be here. You’re all so excited to learn and that makes it fun for us!” How refreshing. As I write this, someone just knocked on my door and told me they put my clothes in the dryer for me. Really? Does it get much better than this? Teacher at Sea is about learning what scientists do but to me, it’s also about immersing yourself in the work and the friendship on board. As I work the noon to midnight shift each day and the trawls come in, we “haul back” together. Brittany, Michael, and Mark know so much and I learn more and more each day. I’m thankful for them. Kim is sharing items I can use in my classroom. They’ve included me in what they do, they’re teaching me, and I’m making friends. For that, I am thankful.

She's an amazing ship. Something I've heard on board is that she's "a good 'ole girl."

She’s an amazing ship. Something I’ve heard on board is that she’s “a good ‘ole girl.”

The beautiful blue ocean today~Blue skies and blue waters in the Gulf of Mexico.

The beautiful blue ocean today~Blue skies and blue waters in the Gulf of Mexico.

Brittany, Michael, and Mark share their wisdom with me as I learn about all the creatures of the sea. It's truly magnificent to see so many different types of animals.

Brittany, Michael, and Mark share their wisdom with me as I learn about all the creatures of the sea. It’s truly magnificent to see so many different types of animals.

It takes everyone working together to get the job done.

It takes everyone working together to get the job done.

There are beautiful creatures like this every day here.

There are beautiful creatures like this every day here.

Well, they have beautiful qualities, too!

Well, they have beautiful qualities, too!

This is the food chain in action!

This is the food chain in action!

Pretty cool!

Pretty cool!

Patty McGinnis: Women Scientists on the Ocean Starr, May 27, 2013

NOAA Teacher at Sea
Patty McGinnis
Aboard R/V Ocean Starr
May 20 – 29, 2013

Mission: Juvenile Rockfish Survey
Geographical Area of Cruise: Point Reyes, CA
Date: Monday, May 27, 2013

Weather Data from the Bridge
Latitude: 38 09.465 ° N
Longitude: 123 01.204 ° W
Air Temperature: 10.2 Celsius
Wind Speed: 17 knots
Wind Direction: North
Surface Water Temperature:  9.8 Celsius
Weather conditions: clear

Science and Technology Log

If you had asked me ahead of time to predict the percentage of males and females aboard the Ocean Starr, I would have surmised that males would make up the majority. While it is true that most of the crew is male, my scientist co-workers are primarily female.

Lyndsey

Lyndsey is dressed to go out on deck

Lyndsey Lefebvre is a fisheries biologist who works for the Groundfish Analysis Team. Her primary job is to study the age and growth of rockfish and flatfish species such as sanddabs to support fishery assessments. Lyndsey ages fish by removing their ear bones, or otoliths. Otoliths contain annual rings, much like a tree. The ear bones are prepared by breaking them in half and holding them over an open flame to darken them; the rings are tiny so a microscope is required to count the rings. Lyndsey explains that this work is important because studying the age structure of a population over time can yield insights into the population’s health. Fish populations that are heavily fished tend to be smaller and younger. Lyndsey is also concerned with reproductive biology such as when and how frequently fish spawn. She studies the blackgill rockfish, a long-lived fish that has internal fertilization. Females give birth to live young once a year, but Lyndsey is trying to determine if a female’s health or environmental conditions impact the numbers of young produced. In contrast, the Pacific sanddab releases eggs on a daily basis for up to six months of the year. Lyndsey says that although she enjoys field work, that about 90% of her work is microscope work done in the laboratory. She likes to listen to audio books or music to help pass the time. Lyndsey says that being a fisheries biologist is a great career. If you think you are interested in such a career, try volunteering doing any type of naturalist work and make as many contacts as you can.

Amber

Amber shows a squid jig

One of NOAA’s better kept secrets is the NOAA Corps. The Corps, which is run by the Department of Commerce, consists of approximately 340 commissioned officers who are involved in operating one of NOAA’s ships or piloting a NOAA plane. Amber Payne has been in the NOAA Corps since she graduated four years ago with a degree in marine biology from Eckerd College in St. Petersburg, Florida. Amber first became interested in working on marine vessels through her involvement with a Search and Rescue extracurricular club while in college. She considered entering the Coast Guard, but was drawn to the NOAA Corps because it requires a science background. Amber enjoys the many opportunities the Corps has provided, including training and traveling. She recently obtained a 1600 ton Mate’s License which will enable her to work for a private company if she ever decides to leave the Corps. Amber is currently on shore duty as operations officer at the Fisheries Ecology Division which is part of NOAA’s Southwest Fisheries Science Center. In addition to running the Small Boats Program, Amber helps out Lyndsey in the fisheries lab. Recently Amber took a freshly-caught Humboldt squid to an elementary school where she dissected it for the students. She’s pictured above holding a contraption known as a “squid jig” that is used to catch Humboldt squid. Amber’s words of wisdom: always carry a knife and a flashlight with you when on a boat!

Jamie Lee works the day shift so I don’t see much her except at meals. She smiles delightfully as she tells me that her interest in oceanography sprang from watching “Finding Nemo” as a child.

Jamie

Jamie at work in her floating lab

Jamie is currently a graduate student at San Francisco State University; she attended Stonybrook University in New York as an undergraduate. This is Jamie’s first time on a boat and she is unfazed by its ceaseless motion. Her role on this mission is to assess chlorophyll levels. Chlorophyll is used as an indicator of primary productivity, which dictates how much food is available for ocean organisms. Jamie takes the water samples collected by the CTD and pours the water through a filter to extract chlorophyll from all the phytoplankton in the sample. Jamie tells me that this work must be conducted in subdued light to prevent the chlorophyll from degrading and giving an incorrect reading. The filter paper, which contains the extracted chlorophyll, is then stored in a glass tube or folded in half and put in aluminum foil until it is ready to be read by a fluorometer back at the university lab. I asked Jamie why she is interested in studying phytoplankton, rather than fish or marine mammals. She explains that phytoplankton, although tiny, are the crucial element upon which all the ocean relies.

Kaia

Kaia sorts krill

Kaia Colestock is a volunteer who free-lances as a wildlife biologist. Kaia has been assisting Lyndsey in the fisheries lab with counting fish eggs present in adult sanddabs. This reproductive ecology study will help to determine if the sanddab fishery is doing well. Kaia earned her undergraduate degree in fisheries wildlife from Michigan State University and her masters in ecology from Utah State. Kaia has participated in a number of wildlife studies over the years, but her favorite is when she had an opportunity to fly aerial surveys for wading birds in the Everglades with supplementary surveys via airboats.  Kaia recommends her career to anyone who likes spending their time outdoors and says that perseverance, motivation, dedication, and being a good critical thinker are important qualities for someone who works as a wildlife biologist. She recommends acquiring special skills related to math, engineering, or physics. Places that hire wildlife biologists such as Kaia include federal agencies such as the U.S. Fish and Wildlife Service, state agencies, and non-profit agencies. This is Kaia’s first time on a ship and she is enjoying seeing seabirds during the day and watching how the CTD is deployed.

Brianna

Brianna preserves krill for future studies

Krill biologist Brianna Michaeud earned her undergraduate degree in marine biology from the University of California Santa Cruz. Brianna plans to pursue a master’s degree beginning this fall at Nova Southeastern University in Fort Lauderdale, Florida. Brianna enjoys working with krill because of krill’s vital function to the ocean’s food web. Brianna enjoys being on the ocean and seeing what is caught during the trawls. She works for the Long Marine Laboratories, which is affiliated with UCSC. All the data she is collecting will be shared with NOAA scientists. Brianna’s role on this trip is to collect and preserve samples of krill that are collected in both the bongo net and the trawl net. The bongo net is actually two nets that lie parallel to each other; they are designed to remove the effects of the bridles found on regular ring nets. For organisms as small as plankton, the pressure waves produced by the bridles, or connecting cables, can push them away from the net.  The bongo net is made up of a much smaller mesh than the trawl net, so it is capable of capturing the juvenile krill that tend to escape the trawl net. The entire haul from the bongo net is kept in a jar of preservative. Once back at the lab, Brianna will go through the jar to identify the various krill species and obtain a sex ratio for each species. Brianna also preserves 200 milliliters of krill from each of the trawls for later use. Once at the lab, she will count out 100 individuals of the dominant krill species and 50 individuals from the second most dominant.  She’ll then measure each individual, identify how many are gravid (contain eggs), and obtain a sex ratio. Brianna says that marine biology is a “great career” and recommends that students interested in this career take classes in statistics, biology, and chemistry. She also recommends volunteering in laboratories, assisting with beach clean-ups, and reading about oceanography.

sophie

Sophie scans the water and air for the presence of birds

The research conducted this week extends beyond the waters; biologist Sophie Webb is onboard to document sightings of seabirds and marine mammals. Sophie is one of only three scientists who work the day shift. One glance at Sophie informs you that her site is one where she is exposed to the elements. You’ll find Sophie on the uppermost level of the ship where she sits with her binoculars and a computer recording data all day. Her job is not for the timid; the wind blowing off the Pacific Ocean is cold and she has little company other than the wildlife she is documenting.  Sophie is no stranger to this type of work; she has conducted this research project seven or eight times previously and has also participated in several five month cruises in the Eastern Tropical Pacific (Hawaii,  Mexico and Central America). Currently Sophie is recording all birds seen in a 300-meter strip seen off one side of the ship. She records the species and basic behavior, such as whether the bird is flying, sitting, or feeding. The black-footed albatross is notorious for following the boat, necessitating Sophie to carefully observe so that the bird is not counted more than once. All the information Sophie collects is recorded into a computer program that is hooked into a GPS unit that updates several times a minute. Sophie shares with me that she is also an illustrator and has authored several children’s books such as Far from Shore, Chronicles of an Open Ocean Voyage and Looking for Seabirds. If you are interested in a career like Sophie’s, she recommends that students obtain advanced degrees in biology and volunteer as much as they can to obtain experience.

Personal Log

It has been amazing to see how quickly the night shift has formed into a team. Everyone works together when the trawl is pulled up to sort, identify, and record the information as efficiently as possible.  I find it interesting to see the variety of organisms we are obtaining in the trawls; tonight some of our catches mainly consisted mainly of shrimp and smelt.

Keith

Chief Scientist Keith Sakuma displays the results of a haul

shrimp and smelt

Shrimp and smelt

I also continue to be enthralled with the odd looking creatures that the trawls yield. Last night I saw an eel larva. Its body, almost impossibly thin, was gelatinous to the touch. A tiny eye and mouth were the only things that made it recognizable as an animal. When I held it up to the light its many bones became obvious. Even odder was the Phronima, a creature reported to have been the impetus behind the creature in the Alien movies. I also got to hold an octopus in my hand—I could feel the animal’s tiny suckers pulling on my skin. The octopus was returned to its home after the photo op.

eel larva

The bones are visible in this transparent eel larva

Phronima

This cool creature, Phronima, was the inspiration for the creature in the movie “Alien”

octopus

Check out this octopus

Did You Know?

That adult krill have the unique ability to actually shrink in size after a molt if food resources are scarce?

Kaitlin Baird: Did You Know? September 25, 2012

NOAA Teacher at Sea
Kaitlin Baird
Aboard NOAA Ship Henry B. Bigelow
September 4 – 20, 2012

Mission: Autumn Bottom Trawl Survey with NOAA’s Northeast Fisheries  Science Center
Geographical Area: Back in port! Newport Rhode Island
Date: September 21st
.

Location Data:
Latitude: 41’53.04
Longitude: 71’31.77

Weather Data:
Air Temperature: 13.8 (approx.57°F)
Wind Speed: 10.01 kts
Wind Direction:  North
Surface Water Temperature: 19.51 °C (approx. 67°F)
Weather conditions: overcast

Science and Technology Log:
I thought I would end my trip on the Henry B. Bigelow with some fun facts!
.
Did you know?
The Fisheries Scientific Computer System (FSCS) is able to prompt the data recorders with all actions needing to be performed for a particular species. It is coded with unique barcodes for every sample taken. Back in the laboratory all scientists receiving samples can receive all the information taken about the given organism by scanning this unique barcode!
.
barcoding for species caught on cruise for further analysis

Barcoding for species caught on cruise for further analysis

Did you know?
Science crew operating on the back deck are required to wear an Overboard Recovery Communications Apparatus (ORCA). This system if it is activated sends a signal by way of radio frequency to a receiver on the ship’s bridge. This system responds immediately to the ship receiver and has a direction finder to help locate the man overboard.

Me getting ready to head to the back deck with my positioning system around my neck

Me getting ready to head to the back deck with my ORCA around my neck

Personal Log:
It would take me hours to go through all of the amazing creatures we caught and surveyed on this trip, so I thought I would write some fast facts about some of my favorites! Enjoy!
.
Did you know?
The male spoon arm octopus has a modified arm that passes spermatophores into the oviducts of the female. Pretty neat stuff!
spoonarrm octopus

Spoon arm octopus

Did you know?
Stargazers, like this one, have an electric organ and are one of few marine bony fish species that are able to produce electricity.  This is known as Bioelectrogenesis. They also hide beneath the sand with just their eyes sticking out and ambush their prey!

Stargazer

Stargazer

Did you know?
This fish, the Atlantic midshipman, has bioluminescent bacteria that inhabit these jewel–like photophores that emit light! It also interestingly enough uses this function in fairly shallow waters!

midshipman photophores

Midshipman photophores

Did you know?
Sea spiders like this one have no respiratory organs. Since they are so small gasses diffuse in and out of their bodies, how cool is that!

sea spider

Sea spider

Did you know?
The flaming box crab, Calappa flammea, uses its scissor-like claws that act as a can opener. It has a special modified appendage to open hermit crabs like a can opener!

flaming box crab

Flaming box crab

Did you know?
A female Atlantic angel shark like this one can have up to 13 pups!

angel shark

Angel shark

Did you know?
Seahorses suck up their food through their long snout, and like the flounders I talked about at the beginning of the cruise, their eyes also move independently of each other!!

seahorse

Seahorse

Did you know?
Horseshoe crabs, like this one, have blue blood. Unlike the blood of mammals, they don’t have hemoglobin to carry oxygen, instead they have henocyanin. Because the henocyanin has copper in it, their blood is blue!

horseshoe crab

Horseshoe crab

Last but NOT least, Did you know?
According to the Guiness Book of World Records the American Lobster has been known to reach lengths over 3 ft (0.91 m) and weigh as much as 44 lb (20 kg) or more. This makes it the heaviest marine crustacean in the world! This one was pretty large!!

American Lobster

American Lobster

A big farewell to everyone on the Henry B. Bigelow! Thanks so much, i had a great time and learned a lot! Thanks for reading!

Andrea Schmuttermair: A Lesson in Chemistry, July 1, 2012

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oregon II
June 22 – July 3, 2012

Mission: Groundfish Survey
Geographical area of cruise: Gulf of Mexico
Date: July 1, 2012 

Ship  Data from the Bridge
Latitude: 2957.02N
Longitude: 8618.29W
Speed: 10 knots
Wind Speed: 9.65
Wind Direction: S/SE
Surface Water Salinity:35.31
Air Temperature: 28.2 C
Relative Humidity: 76%
Barometric Pressure: 1017 mb
Water Depth:  57.54 m

Science and Technology Log

water from CTD

Here I’m filling up the BOD jar with our salt water samples from the CTD cast.

Reminiscent of my days in high school chemistry, today I had the opportunity to work with our Chief Scientist, Brittany, on completing the daily titration. If you remember, getting readings on the dissolved oxygen in the water is an important part of this survey as we locate any hypoxic (less than 2 mg of oxygen per liter of water) zones or anoxic (no oxygen) zones. This is done with a computerized device on the CTD, but we want to make sure that our readings are accurate. Because “chemistry never lies”, this is how we ensure our readings are accurate.

With our CTD, we have the ability to collect water samples at various depths. We do not collect water samples at every CTD, but rather one or two a day during the daytime hours. We collect water from the bottom to see if there is any expansion of hypoxia.

orion meter

Using the Orion dissolved oxygen meter to measure the amount of dissolved oxygen in our sample.

When the CTD comes back up, we use an Orion dissolved oxygen meter, which is a handheld device, to get a dissolved oxygen reading from our samples. We put the probe on the end of the meter gently into the containers of water on the CTD to get our reading. We will use this number in conjunction with the information sent from the CTD to our dry lab to check against our titration results.

Once we have the reading with the probe, we are ready to take some samples for our titration. We then take the water samples in the cylinders, rinse out our 300 mL BOD (biological oxygen demand) glass bottles a few times with that water, and then fill the botttles up with the sea water from the bottom. These samples are brought back to our Chem Lab (short for chemistry, as I’m sure you figured out) where we will test the amount of dissolved oxygen.

adding manganese sulfate

Adding the manganese sulfate to our sample.

This is after I’ve added the manganese sulfate and iodide. Now we have to wait for it to settle.

We are using the Winkler method to find the amount of dissolved oxygen in our water samples. The first step in this process is to put 2mL of manganese sulfate into the bottle. After that, we also add 2 mL of azide- iodide. With those 2 chemicals added, we carefully replace the stopper and give the bottle a good shake. We then can wait about 10-15 minutes for the chemicals to settle at the bottom. Pipettes are used to add the liquids and allow us to be very precise in our measurements.

after settling 1

Here is our sample after it has settled.

After the particles have settled at the bottom, we add 2 mL of sulfuric acid (which can be a dangerous chemical if used inappropriately), replace the stopper, and shake the bottle again gently. The sulfuric acid “fixes” the solution. Finally we add 2 mL of starch to the solution, which is a blue indicator when we put it in but turns the solution a burnt orange color. Now we are ready to titrate!

adding to beaker

Our sample solution being poured into the beaker, ready for the titration. Inside the beaker is a magnetic stirrer.

finished titration

Now you can see the solution is clear in color, meaning our titration is finished. We are ready to determine the amount of dissolved oxygen.

Prepared beforehand was a burette filled with phenylarsine oxide, what we use to drip into the sample. We pour the sample into a beaker and place it on a magnetic plate. We’ve placed a magnetic stirrer in the beaker so it gently stirs the solution while we are titrating. We let the phenylarsine oxide slowly drip into the sample  until it turns clear. When it does this, we note the amount of phenylarsine oxide that we put in the sample (which is equivalent to the amount of oxygen in the water), and the number should match (or be very close) to the reading of dissolved oxygen that we received from the CTD and the Orion dissolved oxygen meter.

This process is quite simple yet yields important results and is just one of the ways scientists verify their data.

Bioluminscence

One other interesting thing happened the other night on one of our shifts. We had brought in a bongo tow and were looking into the codends to see what we got. When Alex began rinsing the sample with some salt water, the whole codend began to illuminate. Why did it illuminate? Bioluminescence.  Bioluminescence is essentially a chemical reaction that produces light. Many marine critters can produce bioluminescence, as seen below.

bioluminescence

Bioluminescence in our bongo tow.

Personal Log

One of the things I’ve probably enjoyed the most about my trip so far are the relationships I’ve formed with the people on board. As a teacher, one of my top priorities is to build and maintain relationships with my students, both past and present. That became a bit more of a challenge to me this past year as I took on a new position and began teaching 600 students rather than the 30 I was used to.

Alonzo

Our watch leader, Alonzo, waiting to weigh our next catch.

I’ve come to love working with the scientists on the night watch, as each of them brings something to the table. Our watch leader, Alonzo, has a wealth of knowledge that he gladly shares with each of us, pushing us to learn more and find the answer for ourselves. I’ve improved immensely on identifying the different fish, crabs and shrimp we find (thanks to Lindsey, who is my partner in crime for making up silly ways to remember these crazy Latin names for all our species). Where I came in knowing names of very few if any types of Gulf critters, I can now confidently identify 15-20 different species. I’m learning more about how to look for the subtle differences between different species, and Alonzo has been able to sit back and be that “guide on the side” while we work and input all of our data. His patient demeanor has allowed all of us to become more self-sufficient and to become more confident in the knowledge we have gained thus far on this trip.

Alex

Alex with a sharksucker

Alex, another one of the scientists on my watch, shows an endless enthusiasm for marine science. He shares in my excitement when a trawl comes up, and the both of us rush out there to watch the net come up, often guessing how big we think the catch is going to be. Will it fill one basket? Two? Six? It’s even more exciting when we get inside and lay it out on the conveyor belt and can really examine everything carefully. His wish finally came true today as we are now in the eastern part of the Gulf. Alex is studying lionfish (Pterois volitans) for his research, and of course has been hoping to catch some. Today we caught 4, along with a multitude of other unique critters that we have not seen yet. Alex’s enthusiasm and passion for science is something I hope my students can find, whether it be in marine science, biology, or meteorology- whatever it is they love is what I hope they pursue.

Lindsey

Lindsey and Alex, getting ready to work.

Lindsey and Renee are both graduate students. Rene wanted to gain some experience and came on the ship as a volunteer. What a better way to get a hands-on experience! Lindsey has joined us on this cruise because she is doing research on Sargassum communities. She has been able to collect quite a few Sargassum  samples to include in her research for her thesis. Lindsey, like Alex, is very passionate and excited about what she does. I’ve never seen someone more excited to pull up a net full of Sargassum (which I’m sure you remember is a type of seaweed) in order to sift through and find critters. She has a great eye, though, because she always manages to find even the tiniest of critters in her samples. Just yesterday she found a baby seahorse that couldn’t have been more than a few millimeters long! Outside I hear her giggle with glee- I know this is because she has found a Sargassum fish, which is her all-time favorite.

deck crew

Our night shift deck crew- Tim, Chuck and Reggie

Our night watch would not be complete without the deck crew, Tim, Reggie and Chuck, who are responsible for helping us lower the CTD, Neuston and bongo tows, and for the trawl net. Our work could not be done without them.

William, one of our engineers, took me down into the engine room the other day. First impressions- it was hot and noisy! It was neat to see all the different machines. The ship makes its own water using a reverse osmosis system, which takes water from the ocean and converts it into drinking water for us (this water is also used for showers and sinks on board). One interesting note is that the toilets actually use salt water rather than fresh water so that we conserve our fresh water.

reverse osmosis

Our reverse osmosis systems.

I cannot believe how fast this leg has gone and that we only have a few more shifts to go before we return to the Oregon II’s  home port of Pascagoula. As we’ve moved into the eastern waters of the Gulf, we have seen a lot of different types of critters. On average, our most recent trawls have been much more brightly colored. We are near some coral reefs too- in our trawls we have pulled up a bit of coral and sponge. The markings on some of the fish are very intriguing, and even fish we’ve seen before seem to be just a little brighter in color out here.

Due to the fact that we are finding very different critters, my list of favorites for today has greatly increased! Here are just a few:

scorpion fish

The mouth of a scorpion fish. We’ve caught a bunch of these since we hit the eastern Gulf.

sea horse

A baby seahorse we pulled out of our Neuston tow. He was hiding in the Sargassum.

red snapper

One of our biggest red snappers.

box crab

This is another type of bashful crab, also known as the flame-streaked box crab (Calappa flammea).

octopus

This octopus sure liked my hard hat!