Dave Grant, November 16, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 16, 2008

Weather Data from the Bridge 
Sunrise: 10:16 UTC Sunset: 23:16 UTC
Wind: AM Slight; PM Slight
Seas: 4’
Precipitation: 0.0
Pressure: 1015

Science and Technology Log 

Flotsam and Jetsam “Never bring anything onto a boat that you can’t afford to lose.” (Nancy Church – Cape Cod Museum of Natural History)

Except for the anchor, there are very few items that go overboard intentionally on a ship. A hat blown off your head by the wind becomes flotsam, but something deliberately discarded is jetsamARGO  is the international program that deploys and monitors a global network of autonomous floats that monitor ocean conditions (“Taking the pulse of the oceans.”). The buoys are deployed from a variety of vessels and one of the main advantages is that a vessel does not have to slow down or stop to launch them. Because of this, a vessel dedicated to research is not required, and commercial and even cruise ships have participated in this world-ocean study.

Drifter currents
Drifter currents

Drifters have been distributed since 1999 and continuously monitor temperature, salinity and currents. They will provide a global network spread out on a 3º by 3º ocean grid (180-miles by 180miles). Data transmitted automatically to satellites is broadcast to the Global Drifter Program and available continuously to researchers.

Stickers on the drifter buoy
Stickers on the drifter buoy

Teachers and students also are involved through the Adopt-a-Drifter Program and we deployed drifters marked with decals from two schools partnered through it: Universite Nancy (France) and Grandview Elementary School – Grades K, 1, 2, 3, 4, 5. Drifters actively transmit data for over a year, but like anything in the sea, can become the home for bio-fouling organisms that can interfere with their operation. We deployed several of them. The simplest are blue-andwhite basket ball-sized floats with a drogue (a large sock-like bag) that acts as a sea anchor or drift sock so that the movement of the drifter is by current, not wind. Once in the water, the packing materials dissolve, the drogue sinks to about 15 meters, and the currents, satellites, scientists and students do the rest. All researchers have to do to explore the oceans is log-on to the drifter website with a computer.  

“After the sea-ship, after the whistling winds… Toward that whirling current, laughing and buoyant, with curves… (After the Sea-Ship – Walt Whitman)

Dave holding the drifter buoy
Dave holding the drifter buoy

Other larger drifters are shipped in sturdy but degradable cardboard cartons. These too are launched off the stern and the shipping boxes rapidly fall apart after the water dissolves the glue. They are rather mysterious since we did not actually see what they look like, but I’ve seen others in the repair shop at WHOI (Woods Hole Oceanographic Institution). They are tube-shaped and designed to automatically sink to as deep as 1000-meters, and then rise periodically to broadcast their data. What a wonderful journey they will have to share with the world when they start reporting their data in dark and stormy seas and on sunny days. Falling away astern of us, floating high and looking coffin-like, I was reminded of Queequeg’s casket and some of the most memorable lines from Moby Dick:  “These are times of dreamy solitude, when beholding the tranquil beauty and brilliancy of the ocean’s skin; one forgets the tiger heart that pants beneath it…”

Drifter array
Drifter array

Screen shot 2013-04-19 at 9.23.30 PM

Personal Log 

Drifter in the water on its way!
Drifter in the water on its way!

We have had a great string of days. I have settled into an interesting work routine with  helpful and interesting scientists and crew. Weather balloons and sondes are released every four hours and the readouts from their fights are very informative. Along with the evening lectures, the week has been like a short semester on meteorology. Hourly water sampling has gone well too, and we are learning more about these peculiar eddies of warm and cold water each day.

My roommate (RW) is very nice and accommodating, and since we work different hours and find the best way to relax is with headphones and a book, the room does not seem crowded at all. There are a few items I am glad I brought, and I suggest they be added to the TAS list: coveralls, ski cap, knee pads and eye drops. The coveralls are great for cool mornings on deck and to quickly pull on for the weekly “abandon ship” drills, since you are required to report to your muster station in long pants and sleeves, and with a hat. My light-weight volleyball knee-pads are good if I have to kneel on the metal deck for a while to take pictures. And eye drops are a relief since we do get wind almost every day, and some very bright days since we are headed into the Austral Summer, and the sun’s position is moving south every day.

Crew holding the Argos drifter
Crew holding the Argos drifter

I have been checking my Almanac, and perhaps as early as tomorrow, our course will cross paths with the sun’s southern movement, and it will be directly overhead at Noon. This can only occur at locations in the “Tropics” (Between the Tropic of Cancer and Tropic of Capricorn) and I have heard sailors refer to it as a “Lahaina Noon.” This term comes from the old sailing days when whalers made port stops at Lahaina on Maui. When it occurs there, fence posts, and for that matter, people, do not cast a shadow. Hopefully the clouds will clear around midday and we will be able to see the phenomenon.

“Thus drifting afar to the dim-vaulted caves Where life and it ventures are laid, The dreamers who gaze while we battle the waves May see us in sunshine and shade.” (Sun and Shadow by Oliver Wendell Holmes – 1857) 

Dave Grant, November 13, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 13, 2008

Gooseneck barnacles and Grapsid crab
Gooseneck barnacles and Grapsid crab

Weather Data from the Bridge 
Wind: AM Calm; PM 5kts
Seas: 5’
Precipitation: 0.0
Pressure: 1016

Science and Technology Log 

Big whirls have little whirls That feed on their velocity, And little whirls have lesser whirls And so on to viscosity. (L.F. Richardson)

This little imitation of Jonathon Swift’s ditty helps illustrate the parallels between the atmosphere and ocean. Just as in the atmosphere, but much slower because of the increased density, turbulence in the water is expressed by meandering currents, and vortices. Good examples of this are observable when an oar is dipped into the water to push a boat, or a spoon is drawn across a bowl of soup. One of the mysteries of the SEP (South East Pacific) region is the presence of large oceanic vortices (Eddies), the mechanisms that generate them, and the length of time they persist as identifiable entities slowly spinning in the surrounding waters.

Dave holding the UTCD
Dave holding the UTCD

In a number of coastal areas fishermen and oceanographers have discovered that some important fish species can be found associated with these so-called mesoscale water structures, like upwelling areas, meandering currents and eddies. Such links are fairly well known and heavily exploited in the vicinity of the boundary currents off eastern North America (Gulf Stream), California (California Current) and Japan (Kuroshio Current); for tuna, swordfish, sardines and anchovies. The coast of Peru and Chile is swept by the northward flowing Humboldt (Peru-Chile) Current and the area is famous for the upwelling that brings deep,  cold, nutrient-rich water to the surface (and every 5-7 years when it doesn’t, El Nino conditions). Exposed to sunlight, phytoplankton utilize the nutrients to form the base of the world’s largest industrial fishery for fish meal and oil. The area also supports a large commercial tuna fishery.

UCTD Data
UCTD Data

Poorly understood is the role of eddies that spin off the major current; vortices averaging about 50-Km (30-miles) wide (i.e. mesoscale). These may be either cold or warm water eddies that may last offshore for months, and move as discrete masses to the west. In general these vortices have more energy that the surrounding waters, circulate faster; and are important because they transport heat, masses of water and nutrients to less productive regions towards the mid-ocean. The eddies also transport marine life and the mechanisms for this are also poorly understood, however the outcome is not. Moored buoys out here collect and support masses of fouling organisms like goose-neck barnacles that must be cleaned off periodically, along with other routine maintenance of the batteries and recording instruments. Servicing these buoys is also part of the mission of the Ron Brown.

Chasing “Eddy”

CTD Data
CTD Data

Tracking these “cyclones in the sea” requires interpreting daily satellite images that measure water temperature and by data collected by the UCTD (Underway Conductivity Temperature Depth) probe. This is a torpedo-shaped device cast off the stern of the Brown while we are underway. It rapidly sinks to several hundred meters. Then, like a big, expensive ($15,000.) fishing lure, it is retrieved with an electric motor that winds back over 600 meters of line. The whole process takes about 20-minutes (including the 2minute plunge of the UCTD).

The information acquired is phenomenal, and if collected any other way, would involve stopping the ship and repeatedly lowering Niskin or Nansen bottles; and adding weeks or months to a cruise schedule. Once back onboard the ship, the data is downloaded and plotted to give us a continuous picture of the upper layers of the ocean along our sailing route. All of this hourly data allows the tracing of water currents. The procedure is not without trials and tribulations. Lines can tangle or break, and there is always the possibility that the probe will bump into something – or something will bump into it down in the deep, dark ocean. However, any data retrieved is invaluable to our studies, and each cast produces a wealth of information.

Teeth marks on a UCTD
Teeth marks on a UCTD

Personal Log 

Today’s weather is fabulous. Most mornings are heavily overcast, but we are still close enough to the coast to enjoy breaks in the clouds. So, everyone is taking their breaks in folding chairs on the foredeck at “Steel Beach” since we are never certain when we’ll again have a sunny moment, or how long it will last.

After lunch there was a bit of excitement; we saw other mariners. In the old days of sailing, ships passing each other at sea would often stop to exchange greetings, information and mail. This practice was known as gamming. We sighted our first ship of the cruise; a cargo carrier heading north and piled high with shipping containers. It was too far off for gamming or even waving (The scientists who are sampling air want to keep their instruments free of exhaust from any nearby sources)  so it would have been out of the question anyway. The bridge gave it a wide berth; so wide that even with binoculars I could not be certain of the ship’s flag, name or registry, other than oversize lettering on containers that spelled JUDPER. Presumably it was carrying agricultural goods from southern Chile or manufactured goods and minerals from the central part of the country. Chile is a major exporter of copper; and the smelters, factories and vehicles in this upscale corner of South America (And the sulfur and particulate matter they spew into the sky) are a interesting land signatures for the atmospheric scientists and their delicate instruments. So the only gamming today is in the narrow passageways throughout the Brown. There is no wasted space on a ship, so in many areas there is “barely enough room to swing a cat.” (The cat being the cat-o-nine-tails once used to flog sailors. “The cat is out of the bag” when someone is to be punished.*)

Group watching a ship on the horizon
Group watching a ship on the horizon

I am still not certain what the proper ship’s etiquette is in passageways and stairways, but I am quick to relinquish the right-of-way to anyone who is carrying something, looks like they are in a hurry or on a mission, or in uniform (obviously) or kitchen staff in particular. Because the ship is always rocking, I’ve found that I tend to lean against the right wall while moving about. By lightly supporting myself leaning with a hand, elbow or shoulder (depending on the how significant the ship is rolling, pitching or yawing) I slide along the wall, and probably look like a clumsy puppy scampering down the hall, but it works…except for a few bruises here and there. Often I come face-to-face with the same shipmates repetitively during the day. (How many times a day can you say “Hello” to someone?) Everyone is polite and considerate, especially when moving about the ship, and in spite of repeatedly passing the same people many times every day. So generally, since everyone is busy for most of their shift, when meeting in the hallways, you resort to awkward routines like: muttered Hey, Hi, Yo or What’s-up; tipping your hat or a dumb half-salute; or a nod…or if from New England, what is known as the reverse nod.

*Flogging: There was a science to this horrible practice, not only with the number of lashes imposed, but what they were administered with: a colt (a single whip) or a cat (They varied in size from “king size” to “boy’s cats”).

Although the U.S. admirals reported that “it would be utterly impossible to have an efficient Navy without this form of punishment” Congress abolished flogging on July 17, 1862. And the last official British Navy flogging was in 1882 – although the captain’s authority remained on the books until 1949. (To politely paraphrase Winston Churchill, the British Navy was bound together by…*#@#&!, rum and the lash.)

One Final Note 

We discovered stowaways onboard…two cattle egrets. Egrets are wading birds that feed in shallow ponds and marshy areas; and the cattle egret regularly feed along roadsides and upland fields where cattle or tractors stir up insects. Even when threatened, they tend to fly only short distances, so it is odd to see them so far from land. However, in the 1950’s a small flock of these African birds crossed the South Atlantic to Brazil and establish a breeding colony. I remember spotting them for the first time on the Mexican border near Yuma in the 1970’s and today they have managed to thrive and spread all the way across the warmer half of North America.

Of ships sailing the seas, each with its special flag or ship-signal, 
Of unnamed heroes in the ships – of waves spreading and spreading  
As far as the eye can reach, 
Of dashing spray, and the winds piping and blowing, 
And out of these a chant for the sailors of all nations… 
(Song for All Seas, All Ships – Walt Whitman)

Stowaways – cattle egrets
Stowaways – cattle egrets

Dave Grant, November 12, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 10, 2008

Weather Data from the Bridge 
Sunrise: 07:12 Sunset: 20:11
Wind: S-SW 8-10 Kts
Seas: S-SW 8-10’
Precipitation: 0.0
Temperature: 18º-C
Pressure: 1015 Mb

Science and Technology Log 

“Send them our latitude and longitude.”
Admiral William Halsey, 1944 (Response to an intercepted Japanese radio message: “Where is the American fleet?)

A Twin Otter plane flying over
A Twin Otter plane flying over

Now that we are out of sight of land and the ocean is featureless except for the waves, so pinpoint navigation becomes crucial. Using the most modern navigation tool – GPS (Global Positioning Satellite system) our navigation officer has put us precisely where we need be to await over-flights from aircraft sampling the atmosphere above us. We are not just near our sampling station – not a mile, a minute, a knot, or a league – we are within a hairsbreadth* of it. We will be here for the day taking water and air measurements, while waiting for the only things we’ll see flying over the Pacific besides birds and balloons; our last connection to the land for several weeks.

“Thanks for the memories.”

The CTD Rosette
The CTD Rosette

The ocean water we test has a memory for the weather and climate conditions today and over the last several months and years. The “code” we need to understand these secrets is hidden in the temperature and salinity of the water, and the keys to unlock them are a number of devices that sink, float and drift. Over the next few weeks we will use all these techniques to see what stories the water has to share. My first introduction to this remote sampling and sensing was a long-necked beverage bottle with a weight, retrieval line, and a cork that could be popped with a string. (And of course, duct tape to hold it all together.) Using it in the local pond and discovering that there were indeed differences between the surface and bottom temperatures was enough to pique my curiosity to move on to bigger things in college. This involved more sophisticated devices, typically named after the oceanographers that perfected them: Secchi, Nansen, Eckmann, Peterson and Niskin. All students of science and oceanography should study these pioneers and their struggles and achievements, but perhaps the foremost is Fridtjof Nansen (1861-1930)…arctic explorer, distinguished scientist and Nobel Laureate.

A storm petrel
A storm petrel

The Nansen bottle has been a standard water collection device since 1910 and when lowered by a strong line, can be signaled to close with a weighted “messenger” sent down the line to “fire” off a release mechanism that closes off a tube of water from any depth. The only limitation is the length of your line. Then that water can be brought to the surface for analysis of its physical features, nutrients and even contaminants washed into the sea or wafted from land. In 1966 Shale Niskin perfected a version of the bottle that today we will lower with eleven others on a circular frame called a rosette. These Niskin bottles can be signaled automatically to capture water at preprogrammed depths as the CTD device on the bottom of the frame records data. The CTD (Conductivity, Temperature, Depth) is one of today’s most important oceanographic tools. It is mounted on the rosette with the Niskin bottles and records the temperature and salinity of the layers of water, which allows oceanographers to trace the origins of the currents. The Brown has enough cable to lower it to 6,000 meters, but here in the Peru Basin, we are limited to less than 4,000 (Still deep enough to swallow any mountain east of the Mississippi, and most of the ones in the west.)

Data from the CTD cast
Data from the CTD cast

The crew does an amazing job holding the Brown on station, and can literally turn on a dime since the ship has fore and aft thrusters. When the seas are high and it is choppy, they maneuver into position by making a slow (right) turn to starboard (Where the rosette is deployed) so it is in the lee of the wind and much calmer. The turning creates a “pond” of flat water that also attracts seabirds, so I try to have my camera ready at all times. The whole process takes several hours and has to be done with great care and constant adjustments from the bridge since anything lowered over the side might become tangled with the rudder or propellers, its own cable, or otherwise be damaged or lost. The water brought up from depth in the Niskin bottle is collected for chemical analysis, salinity, dissolved oxygen and plankton samples. Nutrient bottles are quickly frozen for later analysis in the lab, plankton is preserved for identification under the microscope, and dissolved oxygen must be chemically tested immediately; so there is always a flurry of activity when the CTD finally is retrieved and in deck. Water on the surface is 18º and drops to 5º near the bottom. Salinity ranges between about 35.25 ppt on the surface and as low as 34.5 ppt at depth.

An NSF C-130 sampling information
An NSF C-130 sampling information

Personal Log 

There has been a good roll to the ship about every 10 seconds since we left port and after a few days your body anticipates it and I only notice the movement when I see water in a basin or the shower floor sloshing with it, or when something that is not secured bangs around. This movement approximates the wave period of the largest swells and they are generated by the constant winds drawn towards the Equator – the Trade Winds which merchant sailing vessels could always rely upon. In 1520, these same winds pushed Magellan northwest after crossing into the waters to our south that he called El Pacifico. When on deck, I have noticed a low and longer period swell from the west, which is a clue that there is some far off storm brewing. Or perhaps, since the Pacific is so wide, that like the light from distant stars, it has gone through its entire existence, dissipated, and its energy is just reaching us now…only a faint remembrance in the sea.

Screen shot 2013-04-19 at 9.20.33 PM

I’ll take note of things over the next few days and look for changes like the Polynesians did when watching for storms. Higher, shorter period swells indicate that the storm is approaching. This gives you time to prepare for the large, short period, wind-driven seas that challenge ships and sailors.

“Look not to leeward for fine weather.” J. Heywood, 1546

This sailor’s expression helps illustrate the fact that because winds are generated by the pressure gradient between high and low air masses, tacking into the wind moves you closer to fairer weather than running with it. (In actuality, the high pressure, and hopefully fair weather, is about 90º to the pressure gradient.) That doesn’t always explain waves however. Wave size is determined by wind speed, duration and fetch (the distance over which the wind blows), and over the broad expanse of the Pacific, there can be many storms and wind patterns creating waves simultaneously.

Before physicists and meteorologists fined-tuned the mathematics, sailors had their own theories about waves. One observation was that the size of seas (waves in a storm) could be estimated by the wind speed…a storm with 60-knot winds might produce 60-foot waves. People tend to overestimate wave size, especially when at sea, and the theoretical height is probably only about 80% of that figure (Still a very sizable and terrifying mass of water if you are in the midst of it!).

“Now would I give a thousand furlongs of sea for an acre of barren ground.” Shakespeare – The Tempest.

Another difficult aspect of wave behavior is estimating the velocity and distance between waves (wave period); and here we turn to the oceanographers and their experimental wave tanks. To try to understand waves at sea, it is much simpler to generate perfect swells in a controlled environment. Although wave behavior in a storm is chaotic and almost impossible to monitor accurately, there is good data on the swells that spread out from the fetch, and for that we turn to the ship’s “Bowditch.” (Nathanial Bowditch’s – American Practical Navigator).

So the 10 second swells rocking the ship are traveling at a speed of about 30-knots, and have a wavelength of over 500-feet; which means, among other things, smooth sailing for the Brown (and most of her passengers). I’ll continue to watch for signs of change and hopefully our fine weather will continue.

A breathtaking sunset
A breathtaking sunset

 

 

Dave Grant, November 11, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 11, 2008

Pilot boat alongside the Brown
Pilot boat alongside the Brown

Science and Technology Log 

The ship was cheered, the harbor cleared, Merrily did we drop, Below the kirk, below the hill, Below the lighthouse top – Coleridge

Finally, it is time to cast off. For days the scuttlebutt has kept us guessing about what has been holding up the cruise. It is approaching Midnight and dock workers have suddenly arrived, crew is adjusting lines and has flushed the birds, and new sounds and rumbling from the engine room are emanating through the deck. I am half asleep, lying in my bunk, and starting to hear announcements from the bridge that remind me of HAIKU:  All stations report. Testing bow thrusters. Visitors must leave the ship. Cast off lines. 

The Ron Brown has come to life! Leaving port is complicated since even the most experienced captain is usually in strange waters. For this reason, a local ship’s pilot is taken onboard to guide us. Thoreau wrote about the pilots off of Cape Cod in the 1800’s and describes how after lookouts spotted a vessel, pilots would race their sailboats to claim the fee for guiding the ship safely to port. Our pilot boarded with great fanfare and salutations from the deck hands. Even though it was calm, it can be dangerous transferring between vessels. Once aboard, he headed to the bridge to take over the wheel.

Close up of the radiosonde
Close up of the radiosonde

Hands-on training started immediately. Our first task was to use a sonde to take radio soundings of the atmosphere above the ship. Radiosondes are lifted by balloons and as they rise, broadcast atmospheric pressure, temperature and humidity data to the ground station. (In this case the lab on the ship.)  This allows atmospheric scientists to record a slice of the air up through the cloud levels through most of the troposphere, where our weather is generated. Radiosondes can also be modified to conduct ozone and radioactivity soundings for pollution studies, but the emphasis of the VOCALS research is the marine layer and its interaction (linkage) between the ocean and atmosphere. Here in the Southeast Pacific, away from continents and major cities, the air should be some of the least polluted on the planet.

Radar reflectors and parachute accessories are available too, but not needed out here since recovery is not an option. Once the balloon reaches low enough air pressure, it expands too much and bursts, and the unit falls into the ocean. (Now, before you start worrying about sea turtles swallowing balloons and meteorologists littering the ocean…this was my first question, and I was told that these materials deteriorate rapidly once they are removed from the hermetically sealed foil containers.)

Many students will state that observing weather and collecting data was the “hook” that got them interested in science; and that certainly applies to me too. As an elementary student helping Mr. Giffin and Mr. “Z” set up mercury column barometers, and seeing 16mm movies of “real scientists” launching weather balloons, really piqued my curiosity. And here I am, so many years later, sending up my own balloons – and for that matter, launching them off a ship in the middle of the ocean!

The science of radiosondes has been around since before WWII and is fairly straight forward. First, read the SAFETY INSTRUCTIONS FOR BALLOON OPERATORS:

  • Do not use in an area with power lines or overhead obstructions.
  • Do not use without consultation and cooperation with aviation authorities. (We will not see any air traffic here, except the scheduled flyovers from VOCALS research aircraft.)
  • Use extreme caution if generating hydrogen gas. (No problem. We use helium; but I did have a flashback of our grandmother Hinemon’s tale about witnessing the Hindenburg explosion from the family farm near Lakehurst, NJ.)
  • The balloon film is only 0.05 mm thick upon launch, so ensure that there are no sharp or pointed objects nearby. (That seems pretty obvious now, doesn’t it Homer Simpson?)
  • And finally, the Dennis the Menace clause: It is not advisable to deflate the balloon if it is leaking. Instead, release the balloon without a load. 
Balloon with message that says, “Thanks TAS!”
Balloon with message that says, “Thanks TAS!”

The units we send aloft are made in Sweden and have a small GPS omni-directional receiving antenna that looks like an eggbeater; a 9-inch wire broadcast antenna; and a thin metal sensor “boom” for temperature and humidity. Power is supplied by a curious little low voltage battery that is activated when soaked in water for a few minutes while the sonde is calibrated by the radio receiver and computer. There are a dozen steps to remember for a successful flight.  First the unit is unpacked from its shipping container. Then it is checked to confirm it is functioning and calibrated to the local conditions of temperature, pressure and humidity; as well as the current latitude and longitude. Fortunately the ship monitors these conditions continuously, so you just have to punch in the numbers prior to release. There is a science to filling the balloons. Too much Helium and it rises too fast for the sensors to record good information. Too little Helium and it may hit the water and malfunction. (You don’t get any second chances!)

Once the balloon is filled, and any messages you wish to photograph are attached to it, clearance is requested from the bridge by letting the duty officer know you will be on the “lee side of the stern” to launch it. Just like when you are seasick…this keeps things blowing away from the boat, instead of in your face. I thought I was clever putting our college logo and president’s name on one, until I saw the Great Pumpkin – a well-decorated balloon that made it to a whopping 23,464 meters on Halloween! (Not to be outdone next time, I am working secretly at night on a Thanksgiving turkey design.) The wind has been remarkably gentle most days, but with the ship rocking and steaming ahead constantly, handling a large balloon while zigzagging across deck between equipment and storage boxes can be challenging, especially in the dark. Sounding balloons are sent up every four hours, so the work is shared by everyone. There is a friendly competition to see whose makes it the highest and gets the best data.

Data from the sounding balloon
Data from the sounding balloon

Note the details in the above image of data from a sounding balloon.  Air PRESSURE (Green line) decreases to 25.7 hPa and the balloon finally bursts. The unit then plunges back to the ocean and pressure increases back to “normal” sea level values. HUMIDITY (Blue line) shows three (3) peaks (About 95%, 75%, and 15%. The highest humidity is at sea level and when the sensor reaches cloud level. The next sharp peak is moisture moving south from the ITCZ (Meteorological Equator).  The small, wide peak is probably Cirrus clouds that were seen earlier before the lower Stratus clouds moved in to block our view. TEMPERATURE (Red line) decreases with height and humidity until the sonde reaches the Tropopause, then begins to rise where higher intensity UV light adds heat. At the top of the image, all three lines merge as the sonde plunges back to sea level.

From the flow of data while this remarkable little instrument is aloft, we can study the decreases in temperature and pressure, and the changes in humidity from sea level to the moment the balloon reaches the bottom of the clouds. An hour or two later, the computer screen even shows the poignant moment (For the launch person, at least), and the decent rate when the balloon bursts and falls back to Earth.

Directional data of balloon winds: Tracking of the sonde shows the direction is drifting in relation to the ship.
Tracking of the sonde shows drifting in relation to the ship.
GPS tracking of the sonde is accomplished with at least four ($) satellites
GPS tracking of the sonde is accomplished with at least four ($) satellites

I’ve looked at clouds from both sides now, From up and down and still somehow, It’s cloud’s illusions I recall, I really don’t know clouds at all.  – Joni Mitchell

A sunset launch
A sunset launch

Personal Log 

I have the best cabin on the ship! Below us is the freshwater tank – the Brown produces over 4,000 gallons of freshwater every day (About 30% more than is needed)  and the sloshing of all that water each time we rock not only drowns out the noise of the ship, but it sounds to me like I’m right on the surface of the water. Falling asleep, I dream that I’m Thor Heyerdahl on Kon-Tiki!

As soon as we hit the open sea you could see some people getting uncomfortable, but as always, “Doc” was on top of it dispensing sea-sickness tablets and in a very few cases, injections. Within a day everyone was moving about and within two days even the dizziest landlubber was up for duty and at every meal. There are few things worse than mal de mer. In part because, as the fishermen like to say, you can’t buy the boat from the captain once you are out there. Years ago on a long and stormy cruise to Madiera, I was issued an experimental device that was part of a NASA trial to treat motion sickness. It was a CD player with headphones that were flat plates fitted behind your ears, which sent out random vibrations to “reset” your middle ear. It reminded me of one of those hearing tests you got in grade school, and seemed to help. However, when I quizzed the ship’s surgeon Dr. Bob (Ex-marine, Vietnam-era Army helicopter pilot, emergency room specialist; trainee in NASA’s early space program, humanitarian and great storyteller) about how his gadget works, he only shrugged his shoulders and replied, “We haven’t a clue.”

An unbelievable sunset
An unbelievable sunset

As it turns out, even NASA doesn’t understand why 80% of us get motion sickness at some point in our lives; but current research is pointing away from the traditional disoriented “middle ear” hypothesis. Over the years I have had success with my own remedies, including: acupressure, ginger cubes, Coca-Cola (Not a commercial endorsement) and as a last resort, over-the-counter remedies with Meclizine. They seem to do the trick, but this night as we sail west to Point Alpha, all I needed to put myself to sleep was Richard Rodger’s soothing tango from the US Navy’s classic WWII Victory At Sea documentary – Beneath the Southern Cross.

“The sea language is not soon learned, much less understood, being only proper to him that has served his apprenticeship.” (Sir William Monson’s “Naval Tracts”)

Words to check today: 

Screen shot 2013-05-18 at 8.09.18 AM

Source information 

From Dave Grant’s collection of stories:

The world’s worst tale of seasickness? As told by Ulysses S. Grant in his Memoirs 

One amusing circumstance occurred while we were lying at anchor in Panama Bay. 

In the regiment there was a Lieutenant Slaughter who was very liable to seasickness. It almost made him sick to see the wave of a table-cloth when the servants were spreading it. 

Soon after his graduation [from West Point] Slaughter was ordered to California and took passage by a sailing vessel going around Cape Horn. The vessel was seven months making the voyage, and Slaughter was sick every moment of the time, never more so than while lying at anchor after reaching his place of destination. 

On landing in California he found orders that had come by way of the Isthmus [Panama], notifying him of a mistake in his assignment; he should have been ordered to the northern lakes. 

He started back by the Isthmus route and was sick all the way. But when he arrived back East he was again ordered to California, this time definitely, and at this date was making his third trip. He was sick as ever, and had been so for more than a month while lying at anchor in the bay. 

I remember him well, seated with his elbows on the table in front of him, his chin between his hands, and looking the picture of despair. 

At last he broke out, “I wish I had taken my father’s advice; he wanted me to go into the navy; if I had done so, I should not have had to go to sea so much.” 

Poor Slaughter! It was his last sea voyage. He was killed by Indians in Oregon. 

 

Dave Grant, November 10, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 10, 2008

Science and Technology Log 

“Ships and sailors rot at port.”  – Captain Horatio Nelson

Today is a bit frustrating for the science staff since we are delayed in our departure; although the crew doesn’t object to another day of restaurant meals and visits to town to make final purchases.

The Brown’s Meeting Room
The Brown’s Meeting Room

This gave the science and navigation team time to get up to speed on the cruise track, and view satellite images of what is happening offshore, and to determine the first waypoint of the ship – Point “Alpha.” Alpha is at -20° S, 075 W (That will put us 130-miles southwest of Arica, 1200-miles south of the Equator, and in 4,000-meters of water.) We will be at the same Longitude as Philadelphia, PA.  Surface and subsurface sampling of the sea and air is to be done at the same time air samples are captured by several aircraft passing overhead at different altitudes. Low passes by a slow-flying US Navy Twin Otter will take samples at the “boundary layer” where particles of salt spray and other particles are cast into the air by wave action; while higher passes are made by a much larger C-130 operated by the National Center for Atmospheric Research.

Simultaneously, meteorologists on the ship will be launching SONDES (Weather Sounding Balloons) that collect data on the air temperature, humidity and air pressure up to about 25,000 meters; and oceanographers will be taking water samples with a CTD meter (Conductivity, Temperature, Density) at the surface and down to 3,000-meters.

Rules and Regulations! 

“You’ll never get in trouble following orders.” Commander Tom Kramer – US Navy

Safety

 “One hand for the ship and one hand for yourself.” Onboard, the 3-Point Rule is in effect. Even at dock the ship can move, so you should always have three points of contact. (Two feet and at least one hand on a railing.) “Only YOU can prevent…!” Fire, not drowning, is the biggest hazard on a ship. Smoking is only permitted in the designated area outside the ship and at the stern.

“If it’s too hot, stay out of the kitchen!” This is an open ship, but for obvious safety reasons and to avoid interfering with operations, certain places like the engine room, machine shop and galley are generally off-limits. Inform the bridge of your activities and always wear your safety vest and helmet while on the fantail.

Health

“Wash your hands!” Living in close quarters requires good hygiene. Wash frequently since you are constantly touching doors and railings. Immediately report any injuries to the health officer “Doc.” Know the signs of seasickness and immediately seek attention if you feel dizzy, nauseous or groggy. Stay hydrated.

Courtesy

“Can you hear me now?” We were reminded that we will be working where people live (the crew), and to observe others’ privacy whenever possible. Earplugs were on our list of Items to bring and one quickly learns that there is always inherent mechanical noise on a ship in addition to any work sounds. Since the ship is metal, any vibrations from the constant scraping, grinding and chipping of rust by the maintenance crew can often be heard reverberating through several decks to the sleeping quarters; sounding like your worst nightmare about visits to the dentist. (And they start work early, and work late!)

Meals

The Galley staff serves dessert -sweet potato pie!
The Galley staff serves dessert -sweet potato pie!

“Eat it and beat it!” To paraphrase that old Army saying, a ship sails on its stomach too, and the first order of the day was food, meal times and consideration of the galley staff. Meals are closely spaced and on a tight schedule because of rotating schedules (Someone on the ship has to be maintaining power, scientific equipment and our course every minute.). Also, the kitchen is in a constant state of clean-up and prep for the next meal, which means the small staff must start at “0-Dark-Thirty” hours (Well before dawn) and is not finished until evening. Mealtime is not the time for chit-chat. Eat and make room for others who are coming off duty. Many WWII veterans admit that their motivation for joining the Navy was to be assured of warm chow. (And a dry bunk instead of a foxhole!) Regardless of your culinary tastes and dietary needs, they are met at every meal on this ship.  The cuisine…in a word?  Excellent! For those who are tardy, sleep late, like to spread out their meals, or are delayed because of  a sampling conflict or problem in the lab; the cooks are always considerate enough to leave out fruit, soup, leftovers, world-class dessert (On the rare event that any is left) and predictably, the old standby – peanut butter and jelly. 

Screen shot 2013-04-19 at 9.16.00 PM

Emergencies

Abandon ship drill - Fitting survival suits
Abandon ship drill – Fitting survival suits

“This is a Drill!” The earsplitting ship’s bell keeps everyone aware of any serious problems. There are three signals you must respond to without hesitation: “HEL-LO Gumby” Everyone has seen or used a life jacket, but the Brown’s bright orange ones are specially designed equipment with the ship’s name on the back, reflector tape, an oversized whistle, and a strobe-light that is activated automatically when it comes in contact with the water. Since they are fairly thick, they also make good windbreakers when you are on deck; so there is little excuse not to wear them. Survival suits are oversized orange neoprene “dry” suits like the ones divers wear. Putting them on during our weekly drills is quite and adventure for the first time, but this is serious business and we are all checked out by the Safety Officer. And yes, you do look like the cartoon character, especially when you are walking in your “Jumbo Immersion Suit.”

“The two-man rule” Any doctor will tell you that nothing is better for allergies than an ocean cruise, and the air here between the desert and sea is very refreshing. However, in the confines of the ship we must be aware of gases like Nitrogen and Helium that the scientists need to operate analytical equipment, and since the ship has large and powerful engines, Carbon Monoxide is always a consideration. When working with these gases and in tight quarters, we were reminded to have a partner, while the Safety Officer trained us on the 10-minute rescue breathers in our cabins.

Interesting observation: One sign that odorless, suffocating gases are present is that someone passes out while you are talking to them. (Certainly THAT is every teacher’s worst nightmare!). We are also issued an EEBD (Emergency Evacuation Breathing Device) which would give us 10 minutes of air to escape such a situation. Feeling informed, safe and secure, we were given one very important final tip from the maintenance crew: “Please don’t flush anything down the head besides toilet paper and whatever your last meal was!”  We are ready to go to sea. 

Emergency breathing device - Demonstration by safety Officer
Emergency breathing device – Demonstration by safety Officer

Personal Log 

There may be miles of cordage on a ship: Line (Thin rope), Rope (Thick rope more than 1-3/4 inches in circumference) and hawser (Really thick rope at least 5-inches in circumference). Hawsers are used to secure and tow the largest ships.  As many as ten bow, stern, breast and spring lines, ropes and hawsers secure a vessel to the wharf.

Returning to the Brown after a long day hiking around and hoping to see some unusual wildlife during our last hours of “shore leave” I noticed the gang plank was moving back-and-forth appreciably, even though the harbor was flat calm. At the beach I enjoyed watching thunderous “overhead” surf breaking on the point and speculated about what sea conditions would be like at our rescheduled Midnight departure. Back in the harbor, the circular, movement of the ship was confirmation that there was a good long period swell refracting around the breakwater and setting the port’s water in motion. Watching the ship’s lines tighten and slacken at regular intervals of about a minute, I imagined the Brown was telling us she was biting at the bit to sail! Checking the lines I realized the hawsers had become a perfect roost for Inca terns; a bird I had searched for in vain at the shore – hoping to spot at least one before the end of my trip. The Inca tern (Larosterna inca) is the most distinctive of this gregarious group of seabirds. Rare elsewhere, it is fairly common along the coasts of Chile and Ecuador…and becoming increasingly abundant on the Brown! At night they outnumber every other bird in the port.

Brown at dock with birds gathering on lines
Brown at dock with birds gathering on lines

Birds of a feather flock together and this is certainly the case with terns. They roost, breed and fish in groups, often made up of different, but similar-looking, mostly grey and white species. Identifying them can be a challenge; except in the case of the dark grey Inca tern. Its red bill and especially its whiskered facial plumes separate it from its cousins, and all seabirds. Terns are my favorite group of birds and they have a cat-like aloofness when it comes to tolerating people. Sailing home from fishing trips in New Jersey waters, I usually have plenty of bait left over (Testimony to my questionable fish-finding ability.) and I soon learned that our common and least terns in Sandy Hook Bay are happy to dive down and perform fantastic midair catches of the bait I toss off the stern. These sharp-eyed hunters never seem to miss, and for me this is often the best part of the trip.

Terns on the hawser
Terns on the hawser

I thoroughly enjoyed my night with the whiskered terns, photographing them and watching their behavior. The birds were most crowded on the thick hawsers at the bow and stern. (Unlike perching birds like robins, most seabirds are flat-footed and can’t grip a perch.) There are two lines at each end of the ship (An inner and outer) and they behave differently – the outer lines stretching more but less gracefully, and occasionally shuttering. Also, the inner lines were better lit by the harbor lights than the outer lines. What follows is some of my data-driven research on the topic of Inca terns: It appears that some subtle differences encourage a definite hierarchy in the arrangement of the birds on the lines. Between 7075% of the group were adults (with their fancy plumes and dark coloration), however they were not distributed randomly. Almost all of the birds on the inner lines were always adults, and the juveniles (brown, “clean-shaven” and with less colorful bills) were banished to the outer lines. I monitored them for many hours and the whole group regularly would take off, even if only a few were disturbed (A typical tern behavior sometimes called “panic flights.”). They would circle out over the harbor, squawk a bit, and then return to sort themselves out at the lines. Adults would always jockey for space and replace any younger birds settled in the prime locations by hovering over them and making a few squawks and stabs with their bill. I never saw juveniles dislodge adults.

Balancing flat-footed Inca tern
Balancing flat-footed Inca tern

I also noticed some courtship behavior with the terns. This involves catching a small fish and offering it to your prospective bride; and since it only occurred between adults, I assume that like the gulls at the beach, they were approaching their breeding season too. At one point before it was too dark, a large gull wandered across the parking lot and was immediately dive-bombed and chased away (More typical tern behavior near colonies). There may even have been birds on eggs inside the few select hollow openings in the wharf’s walls, since individual birds stationed themselves at the dark entrances, defending them from others that tried to land there. Hmmm…Are Inca terns cavity nesters…cliff nesters…beach nesters? There is so much to learn about Inca terns….So many birds, so little time!

Dave Grant, November 8-10, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 8-10, 2008

From the top of El Morro, NOAA Teacher at Sea, Dave Grant, points to the Ron Brown anchored offshore.
From the top of El Morro, NOAA Teacher at Sea, Dave Grant, points to the Ron Brown anchored offshore.

Science and Technology Log 

Chile is due south of Portland, Maine; and Santiago, its capital, largest city and main gateway for international visitors is about 5235 miles from my home in New Jersey (By my crude flight calculations). Sometimes called the London of South America, it is as modern and upscale as some US cities. Chile is huge and diverse; it’s more than half the length of South America and bigger than Texas. Its 2666-mile (4300-Km) coastline stretches from the sub-tropical areas and deserts in the north, across the Tropic of Capricorn (The southernmost point where the sun reaches the Winter Solstice), through agriculturally important Mediterranean and Temperate climates at its middle, to the frigid tip of the continent at Tierra del Fuego.

Chileans are friendly, good natured and known for their hospitality towards visitors. Although the population is described as mestizo (A mixture of European and indigenous bloodlines) Aymara Indians in the North and Mapuche Indians in the South still follow many of their traditional ways of working the land. After a short stay in Santiago, another 1,040 miles and two flights up the coast put us in the port of Arica, the capital of northern Chile, where we were to meet the NOAA Ship Ronald H. Brown.

Location of the VOCALS project
Location of the VOCALS project

Arica is squeezed between the nearly rainless Atacama Desert of Peru, one of the driest places on Earth, and one the widest and island-free portions of the South Pacific. It is a week’s sail to “westernmost” Chile, Easter Island in the southwest; the home of the giant Moai statues and the most remote population of Polynesians. Arica is known as La Ciudad de la eternal primavera -“The city of the eternal spring” and is a busy but pleasant commercial center; the export/import hub for the region. Arriving before the ship’s departure allowed time for two worthwhile endeavors: sitting in on meetings with scientists who were reviewing their projects and exploring this fascinating part of the world. Over 50 researchers and technicians met at the Hotel Arica, on the shore just south of the city. Discussed in detail were various aspects of VOCALS (VAMOS Ocean Cloud Atmosphere Land Study). VAMOS refers to Variability of the American Monsoon Systems – the seasonal changes of wind patterns. Atmospheric scientists presented overviews on large scale wind movements, rain and cloud-forming particles (nuclei) in the air.

Mullet and mussels at the fish market
Mullet and mussels at the fish market

Oceanographers discussed the movement of rings (50-mile wide cores or eddies of circulating water bodies) in the main study area designated ORS* – the Stratus Ocean Reference Station – a curious region hundreds of miles off of Chile with persistent stratocumulus cloud cover. Satellite images, radar, air samples taken by various aircraft and balloons, and water samples brought to the surface from hundreds of meters below are analyzed to study this expanse to better understand the interaction between the ocean and atmosphere, as well as influences on climate.  Meteorologists sometimes tease their colleagues that oceanography is a small aspect of weather science. The atmosphere and ocean are linked by exchanges of energy, and the currency for this interaction is water vapor. Major mechanisms for energy transfer in the ocean are exhibited by  great water currents – “Rivers in the sea” as Mathew Maury described them – like the Gulf Stream of North America, and the Humboldt (or Peru) Current off of the western coast of South America.

Personal Log 

Tidepools at Isla de Alacran
Tidepools at Isla de Alacran

Since the ship was not fully loaded, the galley closed and much of the crew on shore-leave, we were free to explore the town’s small shops and restaurants at its center. My first stop is always the outdoor markets to see what is being raised and caught locally, and there are some interesting choices here besides fishes, including: muselina, cangrejo, limpa, percebe. (Mussels, rock crabs, limpets and barnacles.)  Then, after enjoying a meal of this interesting nugget that I couldn’t help copying verbatim from the local menu…Pastel de jabus en su greda (“Cake baked carb whit cheese in his clay pot”)…it was off to explore the shore.

There are small pocket beaches here with ghost crab burrows; and I found a nice assortment of bivalves and univalves for my collection. There were also many empty squid egg cases that were as thin and white as tissue paper. In spite of the cool waters (60’s), children don’t hesitate jumping in the waves or sitting in the tide pools gouged in the rocks. These pools are a perfect spot for the budding marine biologist to study or play, and are filled with barnacles, pretty striped snails, and kelp. In the larger ones, small fish stranded by the tides dart for cover when they see your shadow; and other residents – little dark blennies, that match the color of the  rocks and probably spend their lives in these havens, safe from bigger predators.

Barnacles and a drill snail in a tidepool
Barnacles and a drill snail in a tidepool

Higher up the tideline where the wash of the waves – the life support of the littoral zone –  diminishes, barnacles disappear and the main residents are durable little snails grazing on algae, and enduring harsher conditions of temperature and salinity that other creatures cannot. William Beebe wrote of his little periwinkle…”when a race of creatures develops an ability to clothe itself in impregnable marble palaces, immune to a host of dangers which threatens less armoured brethren, there is little need of their changing to meet new conditions.”  The uppermost depressions in the rocks collect salt spray or ocean water during the spring tides which quickly turns to brine in the dry air and afternoon sunshine. I find the coast here reminiscent of Southern California in many ways. Sturdy foot gear is in order since much of the coast is either eroding cliffs or rocky wave washed marine terrace. This is the realm of rugged creatures like limpets, snails and barnacles that must hold or cement themselves to the rock face. It is also the haunt of the colorful Sally Lightfoot, a lively semi-terrestrial crab that darts into crevices as soon as it sees you move, or in anticipation of the next wave – whichever comes first.

Black Oystercatchers
Black Oystercatchers

Picking at whatever morsels they can catch among the rocks are groups of ruddy turnstones; tall, stately and wary curlews; and noisy and very nervous black oystercatchers. The oystercatchers have a loud squeak-toy call and announce their presence regularly to intruders like me and each other, so although discrete, they are easy to find. Grey gulls (Larus modestus) live up to their Latin name only when it comes to appearance. Since this is the Autumnal spring, hundreds of them put on a continuous and raucous show along the shore, calling to each other in courtship pursuits, or in pursuit of any working fishing boat that passes. Some birds like the striking band-tailed gull habituate to people and are common around the docks and anywhere fishermen are cutting up their catch. Others, like the Peruvian booby, fly away whenever you approach them. The boobies and their cousins the cormorants, are responsible for the guano cliffs south of Arica, and a short trip to the end of the coast road brings you to a path that leads along the white-washed precipice through a series of caves.

Geoglyphs on a hillside
Geoglyphs on a hillside

The presence of seabirds is a clue to the productivity of ocean waters, and the legendary abundance of boobies, cormorants, pelicans and gulls (and their guano) along this coast and especially across the border, confirms it. The guano islands of Peru that were mined for their rich fertilizer, harbor the world’s largest colony of seabirds, some 10 million strong. The upwelling of nutrient-rich deep waters here helps produce perhaps one fifth of the world’s annual fish catch. By lunchtime the camanchaca (coastal fog) cleared “as it always does” and I negotiated a history and cultural tour with a very agreeable taxi driver named Federico. In spite of my poor knowledge of Spanish, he was able to make it a very educational afternoon. First stop was inland to the Azapa valley and the Museo Arqueologico which specializes in cultural artifacts from the various groups that inhabited this harsh environment from the 7th Century BC until the Spanish “invasion” and colonial period. The earliest inhabitants fished and hunted fur seals and sea lions, and must have struggled constantly with their environment because of the lack of water and building materials. However they did leave behind evidence of their accomplishments: tools like fish hooks fashioned from cactus spines, weaved materials and most significantly (to the archaeologists) cementerios with clay-covered mummies – said to be the oldest in the world. Three are exhibited: a man, woman and child.

Aduana – The old Custom house
Aduana – The old Custom house

They also invented and left behind their own brand of graffiti on the barren hills – Geoglyphs. By arranging dark stones on the light dusty hillsides, they created large and highly visible outlines of people and animals, especially llamas. South of Arica is the Giant of the Andes – said to be the largest in existence. I was told these images are a type of ancient trailside billboard, which would have guided pack trains. Climbing up one steep hill to line up a photograph of a very distant condor geoglyph, I stumbled and fell flat on my back – much to the delight of Federico and a friendly dog hoping for a treat from picnickers. I wonder how long my dust angel, The Gringo of the Andes(?) will remain here, untouched by wind and rain.

On our way back to town we passed many farms where drip irrigation allows the cultivation of hedgerows of tomatoes, and of course, corn. Olives are an important crop too and the trees that the Spanish introduced are some of the largest and oldest plants in the valley. I made a mental note to pick up some of the local products to bring home to New Jersey as gifts: Aceitede Olivia (Olive oil) and a delicious Mango Chutney.  In town we visited the restored 1874 customs house (Aduana) which, to my surprise, was designed by none other than Alexandre Gustave Eiffel. Besides designing the support structures for his famous tower in Paris and the Statue of Liberty, he is responsible for a number of buildings and bridges here in South America.   

Puerto de Arica from El Morro
Puerto de Arica from El Morro

Looming over the city and harbor is El Morro. At 330 meters it offers an incomparable vista of the entire area, including a birds-eye view of surfers and windsurfers taking advantage of the consistent southeasterly breeze and swell. Birds are in constant motion too, benefiting from the updraft on the steep cliff and circling it effortlessly. Vultures are the most common, and I made eye contact with a large red-tailed hawk soaring directly in front of us. At one point three falcons of different sizes were engaged in aerial combat, diving upon each other and then wheeling high above; the smallest being the noisiest and most aggressive; perhaps defending an eyrie below us. After a glorious sunset over the sea, the wind died down “as it always does” and the cool layer of marine air moved inland. Once it was dark, the park downtown erupted in music at several locations, including what I would describe as a head-banger concert that was loud enough to cause me to retreat back to the hotel to instead be sung to sleep (as the poets say) by the mewing of the nearby gladness of gulls. 

*(ORS refers to a Woods Hole Oceanographic Institution (WHOI) buoy moored at 20º South/85º West, in the center of a vast region of cloud cover in the South East Pacific (SEP). Similar cloud regions occur off of the coasts of West Africa, California, the Western Atlantic and Western Australia, but this one is the largest and most important in modifying weather.)