Theresa Paulsen: Where There is a Will, There is a Way! April 1, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: April 1, 2015

Weather Data from the Bridge:  Partly Cloudy, 26˚C, waves 1-3ft, swells 3-6ft.

Science and Technology Log:

Dr. Wilford (Bill) Schmidt has demonstrated the saying, “Where there is a will, there is a way,” throughout this  entire cruise.  He knew this voyage would put his new free vehicle design to the test and he came prepared to modify this, tweak that, collaborate with the crew, confer with his university team, test, and repeat.  He is an engineer and that is the name of the game.

1.  The first deployment looked great. The vehicle reached 1000m.  The magnetometer and 3-axis accelerometer worked great.  All systems were a go.  A water sampling device was used as a dummy payload.

FV Dummy Test
The free vehicle with a water sampling device as a dummy payload.

 

Test Data
Data from the Test Deployment

 

Crossing fingers for more success.

2.  The next step was to attach a CTD (a probe that measures Conductivity, Temperature, Depth).  The deployment and retrieval process again went smoothly, this time to 2126m, but there was a problem retrieving the log file from the bottom sphere and one of the anchor burn wires did not burn.

 

FV with CTD
The free vehicle with CTD attached.

Collaboration required with folks on shore and the electronics technicians on this ship.  Tweak this, fix that.

Troubleshooting
Dave Blessing, Electronics Tech, and Bill Schmidt troubleshooting.

Bill opened the spheres to change the batteries for the satellite transponder.

Open Sphere
One of the opened spheres
Keeping a log
Zamara Fuentes keeping a log of all of the adjustments and parameters
Repressurizing the sphere
Rolf Vieten pressurizing the sphere

All systems were a go again.

3.  The crew deployed the free vehicle with the CTD to 4679 m.  It took a little longer to find and retrieve the vehicle.

FV Retrieval
Retrieval of the free vehicle

The data files indicated that the galvanic releases released the anchor prematurely, at about 100 meters from the bottom.  Both spheres worked during the mission.  Data files were retrieved from each.  During inspection water was found in the bottom sphere.  Spalling of the glass (flaking) was seen on the inside.  The leak is assumed to have taken place as the surface under low pressure conditions, otherwise the damage would have been worse.  The electronics were in good shape but the bottom sphere had to be retired.

Oh no!  Is that the end?  Not when you have great minds on board!

This is where engineering in the ocean environment gets tricky.  Bill can’t just head back to the university and make the necessary repairs.  Instead he needs to make use of the very valuable ship time by pinch-hitting.  Bill recalculated the buoyant force on the vehicle with only one sphere.  It might just work!

Tweak this, lighten that, new attachments there. Ready for a float test!

Single sphere float test
The single sphere float test was a success!

Will the single sphere allow it to ascend from the bottom fast enough for us to deploy and retrieve it during our mission?  That question required further testing.  So the crew planned to lower it into the water a short distance with the winch and allow it to float back up.  The weather would not allow it.  The seas were too rough to allow the ship to stay in one place during the vehicle test without dragging the free vehicle thereby negating the results of the test.

Operations team meeting
Operations team meeting

Plan B?  The operations team hatched a plan to tie the free vehicle to buoys on a long rope.  That allowed the vehicle to sink and be recovered easily if it rose too slowly. First a buoyancy test had to be done to make sure the buoys wouldn’t sink with the vehicle.

Buoy Float Test
Buoy float test

The vehicle rose in less than 10 minutes so the team was back on track!  With a few extras like flags for better visibility, the vehicle was ready to dive!

Preparing for the big dive to 8000+ meters!
Preparing for the big dive to 8000+ meters!

4.  The deployment into the trench went smoothly.  The crew had that routine down pat.  After 10 hours it was time for the retrieval.  Everyone gathered at the bridge to try to spot it.

FV lookout
On the lookout for the free vehicle.
Port side lookouts
Port side lookouts
Free Vehicle Returns
The free vehicle returns from the deep!

It successfully collected data down to the bottom at 8379m, a possible record for a free vehicle!

Successful Dive
Bill content with a successful dive

The CTD data was processed and looked great during the descent.

FV CTD data
Free vehicle CTD data from the Puerto Rico Trench

Inspection of the data log showed that while the vehicle was ascending from the bottom, something was triggering a mission cancel order – 28 times!  This bug required more testing and mission simulating before another deployment in the trench.  Just after 8pm, Bill announced his equipment was ready to go for a 6 am deployment the next day.

5.  The next day, the retrieval took a bit longer due to choppier sea conditions.

The crew bringing the free vehicle aboard.
The crew bringing the free vehicle aboard.

Again the vehicle logs showed “cancel mission” messages during the ascent.  It is confounding Bill and his team back home, because during mission simulations the mission goes to completion without a problem.

In all the voyage has been very constructive for Bill’s engineering team.   They successfully deployed the vehicle to the bottom of the Puerto Rico Trench known to be the deepest part of the Atlantic Ocean.  That is something to celebrate!  They have learned a great deal about what types of modifications they should make to improve the retrieval process.

This was a great first test of the free vehicle design.  The next time out at sea will come soon enough and Bill’s team will be ready!

Personal Log

As the voyage comes to an end and we travel nearer to shore, I am filled with mixed emotions.  I will miss the ocean, the feeling of being a part of an exploration expedition, and these people.  I am also very happy to be going home to my family and my students.  I am looking forward to sharing what I have learned.  I will be looking for partnerships to help get students involved in reseach on our inland sea, Lake Superior.  If you have any suggestions, please leave a comment below!

Exciting moments?  Seeing these creatures!

Whale
Small whale swimming next to the vessel.
Dolphin
A dolphin playing in our wake. Photo credit: Jossue Millan

Other great moments include driving the ship and making video fly-bys of the ocean floor with the bathymetry and backscatter data.  Very awesome!  The videos will be coming soon so stay tuned!

Did you know?

Do you remember the flying fish I wondered about a few blogs ago?  I have never seen them before.  At first I thought I was seeing things.  I thought I saw a very large dragonfly dive into the water.  Then I saw more.  – schools of them jumping away from the boat all at once.  In a blink of an eye they were gone.

A flying fish.  Image courtesy of “Bermuda: Search for Deep Water Caves 2009 Exploration,”  NOAA Ocean Explorer

According to Wikipedia, there are 64 species of flying fish!  They fly out of the water to evade predators.  That’s a pretty cool adaptation!  You can learn more here.

Question of the Day:

Theresa Paulsen: How Low Can You Go? March 29, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: March 29, 2015

Weather Data from the Bridge:  Partly Cloudy, 26.7˚C, waves 1-3ft, swells 2-4ft.

Science and Technology Log:

We launched and recovered a CTD earlier this week.

A CTD (Conductivity, Temperature and Depth probe) is used to study the characteristics of ocean water masses, as well as to insure data quality and accuracy from XBTs (Expendible Bathythermograph). In a previous blog, I discussed how the XBT is used to measure the temperature of the water to a depth of about 760 meters. That coupled with the conductivity sensors on the vessel are used to calculate salinity and pressure to derive a measure of the velocity of sound through water, an important factor when collecting sonar data.

An XBT can be launched while the vessel is underway without pausing the sonar, but it doesn’t collect data all the way to the bottom of the water column.

Launching an XBT
Trying my hand at launching an XBT

A CTD can go all the way to the bottom, depending on the depth of the ocean, the length of the tether cable, and the pressure rating of the frame and equipment making up the CTD.  The titanium frame and equipment making up the CTD currently aboard the Okeanos can be lowered to 6500 meters.   It is very large and requires the vessel to stay put during the entire process since it is tethered to the ship.

Since a CTD collects all three factors involved in the computation of speed of sound in water (salinity, temperature, and depth) and is therefore more accurate than an XBT which only collects temperature, it is used at least annually to provide comparison data for the XBT measurements. This is the reason our scientists used it on this cruise.  Additionally, scientists on board a vessel may want to deploy a CTD more often if water masses are expected to change, or if they are interested in studying other features of the water column such as particulates, gaseous seeps, dissolved oxygen or oxygen reduction potential, or if they want to collect water samples at different depths.

The CTD
Survey Tech, Scott Allen and the CTD.

In the above photo the small red arrow is pointing to the water sample tubes, the large blue arrow to the CTD, and the large red arrow to the altimeter which senses when the probe is within 200 meters from the bottom allowing winch operators to slow the descent to avoid damaging equipment.  Scott Allen is the Survey Tech on board.  His job is to maintain and calibrate the CTD.  He helps launch and recover the CTD and then operates the software to collect and process the data.

CTD Data
Our first CTD launch data.

The CTD software plots the temperature (green), sound velocity (pink), conductivity (yellow), and the salinity (blue) on the x-axes against depth on the y-axis.  You can see locations on the graph where the values for temperature and salinity shift in a significant way with changes in depth.  These shifts can indicate a boundary between different water masses.  The upward spikes in the data are likely caused by some error in the equipment connections.

Let’s conduct an experiment!

Have you ever wondered what would happen to a styrofoam cup if you lowered into the water 2100 meters? The folks here tell me you get some pretty interesting results, so we had to give it a try.

Problem:  Determine the effect of extreme pressure on a styrofoam cups.

Background:  Styrofoam, properly called expanded polystyrene foam, is made by infusing air into polystyrene (a synthetic polymer) using blowing agents. Learn more here.

Hypothesis:  What is your hypothesis?  What do you think will happen to the air pockets if we send the cups to the depths of the ocean?

Procedure:

1.  Decorate your cups, leaving one as a control for comparison after submersion.

Styrofoam Cups
Decorating 12 oz styrofoam cups
Cup Decorations
More cup designs

The Before Picture

2.  Place the cups in a mesh dive bag and attach to a CTD.

Cups ready
Our cups are ready to dive!

3. Lower the CTD to 2100 meters

Launching the CTD
Launching the CTD

4.  Raise the CTD and examine the cups.

Raising the CTD
Raising the cups and CTD

Analysis:

So how much pressure was exerted on the cups at 2100 meters?  We can use this formula to calculate it:

P = pgh

Pressure in a fluid = (density of water) x (acceleration due to gravity) x (height of the fluid above the object).

If the density of seawater is 1027 kg/cubic meter, the acceleration due to gravity is 9.8 m/s/s and the depth is 2100 meters, what is the pressure?

You should get 21 million Pascals (Newtons/square meters) or 21,000 kPa.  If 1 kPa = 0.145 psi, how many pounds of pressure per square inch are exerted on each cup?   About 3000 pounds per square inch.  That’s about the weight of a compact car over each square inch!  For comparison, at sea level the atmospheric pressure is 14.7 psi.

So what happened to our cups under all that pressure?  Check it out!

Cups after dive
Our cups after a dive to 2100m. They are tiny!
Shrunken cups
More shrunken cups.
Shrunken cups
Showing off my shrunken cups.

Conclusion:

Was your hypothesis supported or refuted?  What happened to the air trapped in the styrofoam?

Air extraction is the reason that Dr. Wilford Schmidt uses iron rebar rather than cement to provide the anchor for his free vehicles.  The cement crumbles as the air pockets give way and air is squeezed out.  Cement is not as flexible as the polystyrene.

Free Vehicle
The free vehicle with rebar anchor

What other materials might change under pressure?  If you don’t have access to the deep ocean or a CTD, you could always try a pressure cooker – but be safe!

Personal Log:

I am inspired by all the people working on this vessel.  They are so adventurous and have seen so much.  I wondered what inspired them to do what they do.  Here are some of their answers:

Mapping Intern, Kristin Mello:  Took a class in scuba diving and realized she loved it and wanted to learn more.  Her dive instructor encouraged her to do an internship as a research diver and she has been studying the ocean ever since.

Free Vehicle Tech, Zamara Fuentes:  Built a model of a volcano in school became very interested in geology.  Now she studies tsunami impacts on the Caribbean islands.

NOAA Corps Officer, Nick Pawlenko:  Had never really spent much time on boats as a kid, but was inspired by Clive Cussler novels to explore the ocean.

Expedition Coordinator, Meme Lobecker: Her love of the oceans made her want to put her geography skills and interest in data collection to work in the ocean environment.

Engineer, Chris Taylor:  Wanted to put his love of engineering to work for good pay.  “There is never a dull moment,” he says.

Mapping Watch Lead, Melody Ovard:  Just likes being near the ocean.  “It’s a proximity thing.  I am curious about what goes on in it,” she says.

Free Vehicle Scientist, Bill Schmidt:  Loved surfing and was interested to learn what caused the changes in the surfing conditions day-to-day.  Then he read Willard Bascom’s book, Waves and Beaches, and was hooked.

NOAA Corps Officer, Bryan Pestone:  Swimming competitively and lifeguarding on the beach led him to a degree in marine biology.

Mapping Intern, Jossue Millan:  An astrobiology poster caught his eye in his physics class, which peaked his interest in life in extreme environments.  He enjoys the interdisciplinary sciences.

Teacher at Sea, Theresa Paulsen:  I am inspired by the wonder in a kid’s eye or on a proud parent’s face and by the beauty that surrounds us from the depths of the oceans to the expanses of space.  Life is amazing – and far too short to waste, so we have to make the most of it while we can.

Sunset Image
Thanks for the inspiring conversation everyone!

What inspires you?  Post a comment and let me know!

Did You Know?

For every 10 meters you go below the surface, pressure increases by one atmosphere (14.7 psi).  Scuba instructors typically don’t recommend diving deeper than 40m to decrease the risk of decompression sickness, known as “the bends,” or equipment failures that could lead to drowning.

Question of the Day:

The deepest successful dive in the Guiness Book of World Records is currently 332.35 meters (1090ft)!  Yikes!  Read about it here.

Theresa Paulsen: Intriguing Deployments, March 19, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: March 19, 2015

Weather Data from the Bridge:  Partly Cloudy, 26.7˚C, waves 1-3ft, swells 2-4ft.

Science and Technology Log:

This morning at breakfast Commanding Officer Mark Wetzler, or CO, explained that we would be deploying instruments today.  The first one was a glider for the Navy. The Slocum electric glider is like a tiny, unmanned submarine built like a non-explosive torpedo with small wings. It has the ability to be remote-controlled for weeks to months at sea operating 24 hours a day even in the worst weather.  They can be programmed to travel back and forth, dive, and rise periodically to communicate data back to the mainland and accept new missions.  These autonomous underwater vehicles (AUVs) can collect many different types of data such as temperature, conductivity, or audio recordings, depending on the sensors attached. Gliders like this one can help detect tsunamis or other changes in the ocean.

Our vessel also records data 24 hours a day but is limited in its duration at sea by the needs of the people and fuel onboard.  Have you wondered how we can stay out at sea for nearly 3 weeks at a time without hitting the grocery store or service station?  I’ll explain more about that in a future blog.

Navy Glider
Close-up of Navy glider
Deploying the Navy Glider
Navy Glider Deployment
Navy Glider at Sea
Navy Glider at Sea

 

The next deployment was a test run of a “free vehicle.”  Dr. Wilford “Bill” Schmidt, and his assistants, Rolf-Martin Vieten and Zamara Fuentes from the University of Puerto Rico, Mayguez (UPRM) are testing the design of vehicles that can be deployed from a vessel like the Okeanos Explorer or a smaller ship.  These vehicles are inexpensive to make, easy to deploy, and do not need to be tethered to the ship.  They can be programmed to dive to the deepest parts of the ocean, or whatever depth desired, in order to take samples or record data.  Once the vehicle has completed data collection or sampling, it releases its anchor and rises the surface where it is retrieved.  Meanwhile the deployment vessel can continue other operations such as mapping.  Time is not wasted on a research vessel!  On this cruise they will use the device to sample the conductivity, temperature and depth of the water column.  This will help them learn more about the interaction between different water masses in the Puerto Rico Trench.

 

Bill's Team
Wilford “Bill” Schmidt, Zamara Fuentes, and Rolf-Martin Vieten with the Free Vehicle

Water masses in the trench are of particular interest to Bill, a professor of physical oceanography, because they could hold a key to understanding the flow of different ocean currents.  He explained that water masses form at the surface at a particular temperature and with a certain salinity corresponding to the surface conditions at the time.  Temperature and salinity are conservative properties, meaning they don’t change as the water mass moves.   So as a water mass formed in Antarctica sinks and moves toward the deepest parts of the ocean due to its density, its cold temperature and salinity don’t vary significantly. So temperature and salinity can serve as fingerprints of water masses.  Therefore as he measures these factors through the entire water column in the trench, we would expect to see the values change as we move from the North Atlantic Deep Water to the Antarctic Bottom Water.  The image below shows a generalized representation of the typical flow pattern of large water masses.

Ocean Circulation
The ocean circulation system. Image courtesy of NASA.

Bill’s work is supported by NOAA and the National Science Foundation. The NOAA Office of Exploration and Research recently provided him with an award to produce 5 free vehicles with his university team.  The fact that Bill’s vehicles are able to travel untethered into the hadal zone at a very low cost makes them uniquely valuable to researchers.  Data from the hadal zone is virtually non-existant because only enormous vessels would be able to support winches that could handle the 10,000+ meters of cable that would be required for the tethered vehicles currently used.  Since the average depth of the ocean is only 4000m, there is not a large enough demand to make manufacturing such large winches economically feasible.

Also, Bill’s free vehicles are small and can be deployed on very short notice, allowing them to capture data as major events occur. The vehicles can carry interchangeable payloads that could be used in all scientific disciplines. A biologist could request water or bottom substrate samples to examine life forms in the hadal zone that may not exist elsewhere.  A geologist might also like to sample the bottom substrate or might wish to record seismic activity at the bottom of the trench to better understand plate interactions.  A chemist interested in oceanography could examine the water for trace elements or compounds that were emitted into the air at one point in time, such as chloroflourocarbons (CFCs) that were once used but are now illegal in the US due to their impact on the ozone layer, or tritium (H-3) remnants from nuclear bombs used in WWII. This could provide us with an estimate of how long ago the water mass was at the surface and help us determine the rate of flow into the trench.  The research possibilities are endless.

FV Test
The first free vehicle test of the voyage

Initial tests looked good. During our 19 day voyage, Bill’s team and the crew will deploy the vehicle up to 11 more times with up to 6 locations strategically placed in the Puerto Rico Trench.

Personal Log:

Are you interested to know what the accommodations are like aboard the Okeanos?  They are comfortable enough for a work boat.  Take a look for yourself!

Porthole
The porthole in my room.

 

My Bed
My Bed

I love the curtain around my bottom bunk.  It reminds me of the forts my brothers and sisters and I built as kids.  I have slept like a baby ever since arriving.  The rocking of the boat is very calming.

There are a couple of nice spots to relax and chat, and write in my blog.  Here are the library and the lounge.

Library
Chris Taylor and Nick Pawlenko in the library
Lounge
The Lounge

I am surprised that I really haven’t been seasick. Motion sickness medication really helps. If you really get sick, there is a medical officer on board and sick bay.

The Sick Bay
The Sick Bay

I showed you the galley in the last post.  We eat in the Mess Hall.  The Chief Steward puts tennis balls on the bottom of the chairs to avoid scratching the finish on the floor.  Good thinking!

The Mess Hall
The Mess Deck

And when I have eaten too much, there is the fitness room!  There is a scale in the fitness room, but when you stand on it, the action of the boat rocking causes the scale to oscillate by 30-40 pounds.  It is a great demonstration of the difference between mass and weight!

Fitness Room
The Fitness Room

The best place to hang out is outside, of course, where you can possibly see a spouting whale or swimming dolphin.  I have seen both on this trip already but I need to be quicker with the camera!  Maybe next time!!

View from the bow
The view from the bow of the ship

Question of the Day:

Frank Hubacz: ADCP Deployment, May 2, 2013

NOAA Teacher at Sea
Frank Hubacz
Aboard NOAA ship Oscar Dyson
April 29 – May 10, 2013

 

Mission: Pacific Marine Environmental Laboratory Mooring Deployment and Recovery
Geographical Area of Cruise: Gulf of Alaska and the Bering Sea
Date: May 2, 2013

Weather Data from the Bridge:

Partly sunny, WindsN 5-10 knots
Air Temperature 1.3C

Relative Humidity 60%

Barometer 1008.2 mb

Surface Water Temperature 2.8C

Surface Water Salinity 31.37 PSU

Science and Technology Log

As I described previously, one of the instruments being deployed on this cruise is an Acoustic Doppler Current Profiler (ADCP), which measures speed and direction of ocean currents across an entire water column using the principle of Doppler shift (effect).  The Doppler Effect is best illustrated when you stop and listen to the whistle of an oncoming train.  When the train is traveling towards you, the whistle’s pitch is higher. When it is moving away from you, the pitch is lower. The change in pitch is proportional to the speed of the train.  The diagrams below illustrates the effect.

Doppler Effect
Doppler Effect
Another view of the Doppler Effect
Another view of the Doppler Effect

The ADCP exploits the Doppler Effect by emitting a sequence of high frequency pulses of sound (“pings”) that scatter off of moving particles in the water. Depending on whether the particles are moving toward or away from the sound source, the frequency of the return signal bounced back to the ADCP is either higher or lower. Since the particles move at the same speed as the water that carries them, the frequency shift is proportional to the speed of the water, or current.

The ADCP has 4 acoustic transducers that emit and receive acoustical pulses from 4 different directions. Current direction is computed by using trigonometric relations to convert the return signal from the 4 transducers to ‘earth’ coordinates (north-south, east-west and up-down. (http://oceanexplorer.noaa.gov/technology/tools/acoust_doppler/acoust_doppler.html).  The most common frequencies used on these units are 600 KHz, 300 KHz, and 75 KHz.  The lower the frequency the greater the distance that the wave can propagate through the ocean waters.

Determining current flow helps scientist to understand how nutrients and other chemical species are transported throughout the ocean.

Typical 4 beam ADCP sensor head. The red circles denote the 4 transducer faces.
Typical 4 beam ADCP sensor head. The red circles denote the 4 transducer faces.

Prior to sailing, ADCP mooring locations are selected by various research scientists from within NOAA.  Next, engineers develop a construction plan to secure the unit onto the ocean floor.  Once designed, the hardware needed to construct the mooring is sent to the ship that will be sailing in the selected mooring locations.  Prior to arriving at the designated location it is the responsibility of the science team to construct the mooring setup following the engineering diagram shipped with each ADCP unit. ADCP moorings can be constructed to hold a wide variety of measuring instruments depending upon the ocean parameters under study by the research scientist.

ADCP Construction Diagram
ADCP Construction Diagram

The moorings are built on the ship’s deck starting with an anchor.  The anchor weight is determined based upon known current strength in the area where the mooring will be located.  Anchors are simply scrap iron railroad train car wheels which bury themselves into the sediment and eventually rust away after use.  The first mooring unit that we assembled had an anchor composed of two train wheels with a total weight of 1,600lbs.  Although this mooring was built from the anchor up this is not always the case.  When setting very deep moorings the build is in the reverse order.

Selecting the anchor
Selecting the anchor
Anchor on the back deck
Anchor on the back deck below the gantry

Next, an acoustic release mechanism is attached to the anchor by way of heavy chains.  This mechanism allows for recovery of the ADCP unit as well as the release mechanism itself when it is time to recover the ADCP.  The units that we are deploying will remain submerged and collect data for approximately 6 months.

Acostic Release Mechanism
Acoustic Release Mechanism
Bill attaching the acoustic release mechanism
Bill attaching the acoustic release mechanism

Finally, an orange closed-cell foam and stainless steel frame containing the actual instrumentation is connected to the assembly and then craned over the back deck.  The stainless steel frame has a block of zinc attached to it which acts as a sacrificial anode.  Sacrificial anodes are highly active metals (such as zinc) that are used to prevent a less active metal surface from rusting or corroding away.  In fact, our ship has many such anodes located on its hull. Once the entire unit is in position, a pin connected to a long chord is pulled from a release mechanism and the unit is dropped to the ocean floor.  Date, time, and location for each unit are then recorded. 

Hoisting ADCP
Hoisting ADCP
ADCP unit assembly
ADCP unit assembly
Assembling mooring unit
Assembling mooring unit
Ready for launch
Ready for launch

To recover the unit, an acoustic signal (9-12 Khz) is sent to the ship from the sunken mooring unit to aid in its location.  Once located, a signal is used to activate a remote sensor which powers the release mechanism to open.  The float unit then rises to the surface bringing all of its attached instruments along with it.  The stored data within the units are then secured and eventually sent along to the research scientist requesting that specific mooring location for ocean current analysis.

Recovering a mooring with a rope lasso
Recovering a mooring with a rope lasso

Personal Log

On my first day of “work” I was able to watch the science teams deploy three different ADCP moorings as well as conduct several CTD runs.  I will discuss CTD’s in more detail in future blogs.  I was impressed by the camaraderie among all of the science team members regardless of the institution that they represented as well as with members of the deck crew.  They all work as a very cohesive and efficient group and certainly understand the importance of teamwork!

Adjusting to my new work schedule is a bit of a challenge. After my work day ended today at 1200 hours, I fell asleep around 1500 hours for about 4 hours.  After trying to fall back asleep again, but to no avail, I decided to have a “midnight” snack at 2000 hours (8pm).  I finally fell asleep for about 2 more hours before showering for my next shift.  I think I now have more empathy for students who come to my 8am chemistry class and occasionally “nap”!

A wide selection of food is always available in the ship’s galley. I have discovered that I am not the only one taking advantage of this “benefit”!  I will definitely need to reestablish an exercise routine when I return home.  We are currently heading for Unimak Pass which is a wide strait between the Bering Sea and the North Pacific Ocean southwest of Unimak Island in the Aleutian Islands of Alaska.

Did you know that since the island chain crosses longitude 180°, the Aleutian Islands contain both the westernmost and easternmost points in the United States. (172° E and 163° W)!

180 longitude

Stephen Bunker: Current Drifter, 24 October 2011

NOAA Teacher at Sea
Stephen Bunker
Aboard R/V Walton Smith
October 20 — 24, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: 24 October 2011

Science and Technology Log

Homemade current drifter
A current drifter we lowered off the RV Walton Smith.

At a couple of stops on the cruise we dropped some current drifters overboard. These current drifters will float at the surface of the water and travel with the gulf current. On top of the drifter there is a transmitter that will send a signal to a satellite. The scientists can then track movement of these drifters and map the ocean currents.

This drifter, I learned, was simply made. The materials, except for the GPS transmitter, can be found at a local hardware store and tackle shop.

Personal Log

Scientists at work
(from left to right) Brian, Maria, Nelson & Kuan at work on the RV Walton Smith.

My cruise with the R/V Walton Smith has been exciting. It has been great to learn how science — in particular oceanography — is done. Scientists are dedicated, focused people. I can tell they love what they do.

The crew of the R/V Walton Smith are incredible. I have a lot of respect for anyone that can parallel park something the size of a house. Talk about teamwork!

To finish off, here are some sunset photos taken on the voyage.

Sunset 9/19/2011

Caitlin Thompson: Zooplankton, Ocean Currents, and Wave Gliders, August 7, 2011

NOAA Teacher at Sea
Caitlin Thompson
Aboard NOAA Ship Bell M. Shimada
August 1 — 14, 2011

Mission: Pacific Hake Survey
Geographical Area: Pacific Ocean off the Oregon and Washington Coasts
Date: August 7, 2011

Weather Data from the Bridge
Lat. 47 degrees, 00.8N
Long. 124 degrees, 29.8W
Present weather: Cldy 8/8
Visibility: 10 n.m.
Wind direction: 323
Wind speed: 08 kts
Sea wave height: 1 feet
Swell waves – direction: —
Swell waves – height: —
Sea water temperature: 13.7 degrees C
Sea level pressure: 1018.8 mb
Temperature – dry bulb: 15.8 degrees C
Temperature – wet bulb:  14.7 degrees C

Science and Technology Log

On the fish deck in my work clothes
On the fish deck in my work clothes

The Shimada conducts research around the clock, with crew members working twelve-hour shifts. So far, I have worked with the acoustics team studying hake during the day, when the hake school together and are easy to fish. Last night I branched out, staying up with Steve Pierce, the oceanographer studying ocean currents, Jennifer Fisher, a faculty assistant at Oregon State University (OSU) who is studying zooplankton, and her intern, Angie Johnson, a graduate student at OSU. All the different research on this trip complements each other, and I learned more about the acoustic team’s work from the night people.

Gray's Harbor Transects
Gray's Harbor Transects

The map at right shows the transects we follow and the stations that the night team takes samples, which Steve chooses. Just like the acoustics team, he only chooses sites on the east-west transects. The night team usually works one transect ahead of the day team, and must have the ship back where they started by sun-up. Steve is mapping small currents because, he says, surprisingly little is known about ocean currents, even though they have a tremendous impact on ocean life.

He is especially interested in the polar undercurrent that brings nutrient-rich water from the south up along the west coast. A small current, it is nonetheless important because of the nutrients it carries, which come to the surface through upwelling. He uses an acoustic device, the Acoustic Doppler Current Profile (ADCP), to find the velocity of the water at various depths. The data from the ADCP is skewed by many factors, especially the velocity of the ship. Later, Steve will use trigonometry to calculate the true velocity. He also uses the Conductivity, Temperature, Depth (CTD) meter, lowered into the water at every station during the night. The CTD gives much more information than its name would suggest, including salinity, density, and oxygen. It is deployed with a high-speed camera and holds bottles to capture water samples. I was impressed by the amount of work – and math! – that Steve does in between cruises. When he has down time on this cruise, he told me, he is calculating work from two years ago.

Jennifer divides a sample in the Folsom plankton splitter
Jennifer divides a sample in the Folsom plankton splitter

Jennifer and Angie are studying plankton, the organisms at the very bottom of the food web. Immediately, I recognized euphausiids, or krill, from the contents of hake stomachs. Actually I recognized their small black eyes, which always reminded me of poppy seeds when I saw them in hake stomachs. Jennifer is conducting this work through her group Northwest Fisheries Science Center, which, as she describes it, gives her a wonderful freedom to research different projects related to ocean conditions, especially salmon returns. In this project, they measuring phytoplankton, tiny, photosynthetic organisms, by measuring chlorophyll and nutrients. They are also looking at zooplankton, like euphausiids, salps, and crab larvae, which we examined other the microscope. To help the acoustics team refine their ability to use sonar to identify zooplankton, Jennifer and Angie record certain species. The acoustics team will match up the acoustics data that is continuously generated on this ship with the samples.

Angie
Angie takes water samples from the CTD.

Today, the second catch of the day was aborted because of whales too close to the ship. However, the NOAA’s Pacific Marine Environmental Laboratory (PMEL), had asked the Shimada to investigate its waveglider. A waveglider is type of robot called an autonomous underwater vehicle (AUV). Programmed to travel and record data, it does not need an operator. The PMEL folks were concerned, however, that its AUV might have a problem.The bridge set the course for the AUV, described as a yellow surfboard, and I headed up to the flying deck, the highest deck and an ideal spot for observation, to watch for it. Immediately we saw a humpback whale, just starboard of the ship, spout and roll through the water, its tail raised in the air. Soon the AUV appeared. We saw nothing wrong with it but communicated our observations, photographs, and video tape of it to PMEL. The PMEL’s system of wavegliders monitor carbon dioxide levels and use the kinetic energy of ocean waves to recharge the batteries. The acoustics team hopes to get their own waveglider next year to collect acoustic data in between transects. As I was peering  over the edge of the boat, examining the surfboard-like robot below, I heard a loud splash. A bout ten  Dall’s porpoises were playing around the bow of our boat, rippling in and out of the water. Dall’s porpoises are tremendously playful creatures, and will often play around ships. But our ship was barely moving, and the porpoises soon lost interest and swam away.

Wave Glider
Wave Glider, seen from above

Personal Log

I’m getting a little of everything on this cruise. I would have stayed up two nights ago for the deploymentof the CTD and zooplankton samples, but the propeller developed a loud enough whamming sound to suspend all operations indefinitely. I woke up at 4:00 AM yesterday because the boat was swaying back and forth violently. (Violently by my standards, that is; more experienced mariners insist the swell is nothing.) Since our bunks go port to starboard, I could feel my weight sliding from hip to head to hip to head as I was rocked back and forth in bed. Meanwhile a discarded lightbulb in a metal shelf was rolling back and forth steadily – rattle-rattle-WACK! rattle-rattle-WACK! – until Shelby Herber, a student at Western University and my roommate, got up, found the culprit, and wrapped it in a shirt. When I woke again, it was eleven hours after the discovery of the problem with the prop and well past breakfast, and I started to get up until Shelby told me we were off transect, headed to shore because of the propeller.

Wave Glider
Wave Glider from beneath the water, taken from PMEL's website

So we took our time getting up. But when I finally arrived in the acoustics lab, Rebecca was running up the hall, saying, “Caitlin, I was looking for you! There’s a great big shark outside, and we’re pulling up the ROV!” The ROV is the remotely controlled vehicle, a robot like the AUV, but one that requires an operator to make it move. Unfortunately, out on the fish deck, the ROV was being put away and the shark gone off on his fishy business. To console me, John had the videotaped footage from the ROV and the dorsal fin of the shark, and showed me both. The ROV revealed no damage and I was invited down to the winch room, where the bang-bang-bang coming from the propeller was unnerving.

ROV
Puzzled birds approach the ROV

Everyone was in an uproar trying to decide what to do, an uproar made all the more dramatic by the steady lurching and swaying of the ship, which throughout the day has sent most of the scientists to their room for at least a few hours and most of the deck hands to tell stories of unhappy tourists who couldn’t find their sea legs. Finally, the engine guys decided the warped propeller would not prevent us from getting to Port Angeles, and Rebecca decided it would not interfere with the acoustics, and we got back on transect.

ROV
ROV

I’m getting a little bit of everything on this cruise. I’ve seen sharks and marines mammals, calm seas and rockier seas, an impressively well-functioning ship and a number of technological problems. I’ve interviewed scientists, NOAA Corps officers who command the ship, and crew members who recount endless adventures at sea. I’m even signed up for the cribbage tournament, which I’m not entirely thrilled about since I don’t know how to play bridge. I’ve been impressed by how much time and information everyone seems to have for me. I am constantly thinking how I can bring this experience back to my students. Some ideas are to have a science and math career day, collect weather data like the data the bridge collects, dissect hake, and examine zooplankton under a microscope. Various people on board have volunteered to help with all my ideas.

Diane Stanitski: Day 12, August 22, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 12: August 22, 2002

Weather log:
We currently have nearly overcast skies again with rain falling from cumulus and stratocumulus clouds. Our observations at 0800 this morning are:
Latitude: 10°38’N
Longitude: 141°26’W
Visibility: 12 nautical miles (nm)
Wind direction: 200° (direction from which the wind is blowing)
Wind speed: 13 kts
Sea wave height: 4-6′
Swell wave height: 6-8′
Sea water temperature: 27.6°C
Sea level pressure: 1010.0 mb
Cloud cover: 7/8, rain from cumulus and stratocumulus clouds

I awoke last night to swells approaching 8′ and the ship rockin’ and a rollin’! We were in the tail end of a low pressure system with lots of convection (new word from yesterday’s log) causing turbulence in the air and seas. A bottle had fallen over in the bathroom and it continued to roll back and forth hitting the walls for about 10 minutes before I was awake enough to realize the source of the sound; I then climbed down the ladder from the top bunk to rescue the bottle.

Right now, we are attempting to avoid Tropical Storm Fausto, which is currently located to our east and heading 275° (just north of west) at 11 kts. Its central pressure is 994 mb and its maximum sustained winds are 55-65 kts with 12′ seas. The Hurricane Prediction Center’s 72-hour forecast shows 75 kt winds with the possibility of gusts to 90 kts on the 25th with continued movement NW. We should slide just south of the storm and might feel some effects, but they’ll likely be minimal. Aaah, wonderful tropical weather in August! Check out www.weather.gov and view their tropical weather or hurricane page to determine the actual path of the tropical storm.

Science and technology log:
We conducted another live test broadcast this morning with the main Office of Global Programs office and Caption Colorado, the company that will provide captioning for the broadcast. It was 18 minutes long and the transfer was a success. The decision has been made that we’ll do a 20 minute live broadcast tomorrow (Friday) to be received at 4:00 PM EST in the U.S. If you miss Friday’s live broadcast, be sure to contact Jennifer at jennifer.hammond@noaa.gov before next Monday to tune into our upcoming broadcasts next week. I’m also anxious to hear from more of you about your interests in oceanography and climatology and the questions that you have for me that I’ll share with our global audience next week. I will do my best to find the answers!

The first official CTD data collection took place last night at 7:30 PM (1930) and a 3:30 AM reading this morning also proved to be successful. I awoke at 2 AM to see if Jason and Paul needed help, but it wasn’t yet time to conduct the test so I happily went back to bed. I did assist with today’s CTD at 12:20 this afternoon. I was so amazed at the entire process. First, the ship must stop and hover for approximately 1 to 1-1/2 hours over the same spot while the CTD sampling takes place. There are 12 depths at which water samples are collected in large cylinders between the ocean’s surface and 1000 m down (See yesterday’s photos for a picture of the CTD cylinders.). Just think of the pressure being exerted on the cylinders at over 3000 ft below the surface! Kirby, one of our two NASA scientists, gave me a styrofoam cup that was intentionally sent down with the cylinders and it’s now a small crushed, but perfect cup. I can’t wait to show my students! The person who controls the CTD from the computer end must work in close cooperation with the winch operator who is in charge of carefully lowering the heavy CTD device into the water and releasing it at different rates of speed to various depths. Any air bubbles that are present must be pushed out of the cylinders so the CTD is first lowered to 10 m, raised to just below the surface, and then lowered again to the greater depths. If the ship’s schedule is not rushed (unlike today), the CTD is lowered to approximately 200 meters off the ocean floor, which could be down to almost 5000 meters, our current depth below this ship! We only had time to lower the sensors to 1000 m today, and then the winch operator raised the CTD to 12 different depths where the carousels (cylinders) were “fired” to allow the bottles to flush and for samples to be collected. Lastly, two samples were taken at the surface. Once the CTD was lifted out of the water, Nadia, my roommate, collected water samples (see photo log) from each of the 13 cylinders to study salinity levels, which tells us something about the conductivity of the water. One reason that this is useful is because the degree of salinity in the water is related to flow of warm and cold ocean currents to and from higher latitudes, and may have been responsible for sudden shifts in climate in the past based on the slowing of our global currents! I have found that it’s incredibly important to ask why each study on the ship is significant to place it in context and to understand the big picture.

John and I met in the early afternoon to create the storyboard for tomorrow’s broadcast. We will highlight the Captain or Skipper of the ship; our Chief Scientist; Medical Officer; Lobo, the Chief Engineer; and Doretha, the Cook. We’ll also have an opportunity for you to win a NOAA T-shirt if you respond with the correct answer to our KA quiz question.

The Chief Scientist and I played 2 out of 3 Yahtzee games tonight just after dinner. It looks like I’m heading to the next round, lucky me! That’s about all that Yahtzee is, luck, but an awful lot of fun. I was invited to ride the RHIB tonight to make our way to a buoy that needed repair. The evening ride was beautiful! There was a full moon with a gorgeous halo around it (good question for tomorrow’s log) and approximately 4′ swells that made it just a bit rocky. There were six of us in the boat. Two scientists hopped onto the floating buoys and started making repairs because there was major damage to the anemometer and the precipitation gauge. One of them started feeling seasick because you’re swaying (just a bit) back and forth and you’re about 8′ above the ocean surface. He hopped off and they asked if I’d like to jump on to help with the buoy repair! Wow! (Mom, please skip this part…I couldn’t help myself.) It was safe, yet thrilling. I helped get the new rain gauge in order and placed small spikes on the top to keep birds from sitting on the edge of the sensor making their own contributions to the contents of the inner gauge. I also helped test it by pouring water through as Dave downloaded data from all the sensors to a computer and checked to make sure they were up and running. I couldn’t believe how lucky I was! I was floating on a buoy in the middle of the Pacific Ocean helping to fix meteorological instrumentation! The ship was all lit up in the distance about ½ a mile from the buoy. We found the exact location of the buoy because of the ship’s radar that spotted it right away and led us to the floating donut. I’ll include some (very dark) photos of this adventure tomorrow.

Well, I’m going to review my notes for tomorrow’s broadcast before heading to bed. It has been another grand day on the great Pacific.

The question of the day for all of you is: What are crepuscular rays? Yes, please consult your meteorology text sitting on your shelf, the Web, or my photo log, to find out. Then, email me to let me know how smart you are!

The FOO’s quote of the day: “Adversity is the first path to truth.”
– Lord Byron

Hope to hear from you soon,
Diane