Shelley Gordon: A Day on the Back Deck, July 20, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019

Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 20, 2019

Weather data: Wind – variable 5 knots or less, wind wave ~1’, Swell – NW 7’@ 10sec / S 1’ @ 11sec, Patchy fog

Science Log

7:39am – We are about to pass under the Golden Gate Bridge, heading west toward the Farallon Islands.  Several small fishing boats race out in a line off our port side, hulls bouncing against the waves and fishing nets flying in the wind.  I am aboard R/V Fulmar in transit toward data collection point 4E, the eastern most point along ACCESS Transect 4.  The TTG (“time to go,” or the time we expect to arrive at 4E) is estimated at 1h53’ (1 hour, 53 minutes), a figure that fluctuates as the boat changes course, speeds up, or slows down.  

This is my second day on an ACCESS research cruise.  Yesterday I got my boots wet in the data collection methods used on the back deck.  The ACCESS research project collects various types of data at specific points along transects (invisible horizontal lines in the ocean). Today we will be collecting samples at 6 different points along Transect 4.  With one day under my belt and a little better idea of what to expect, today I will aim to capture some of the action on the back deck of the boat throughout the day. 

9:41am – Almost to Station 4E. “5 minutes to station.”  This is the call across the radio from First Mate Rayon Carruthers, and also my signal to come down from the top deck and get ready for action.  I put on my rain pants, rubber boots, a float jacket, and a hard hat.  Once I have my gear on, I am ready to step onto the back deck just as the boat slows down for sample collection to commence.  At this first station, 4E, we will collect multiple samples and data.  Most of the sampling methods will be repeated multiple times through the course of the day at different locations and depths (most are described below). 

deploying hoop net
Dani Lipski and Shelley Gordon deploy the hoop net. Photo: Rachel Pound

10:53am – Station 4EX. We finished cleaning the hoop net after collecting a sample at a maximum depth of 33m.  The hoop net is a tool used to collect a sample of small living things in deep water.  This apparatus consists of an ~1m diameter metal ring that has multiple weights attached along the outside.  A 3m, tapered fine mesh net with a cod end (small plastic container with mesh vents) hangs from the hoop.  Attached to the net there is also a flow meter (to measure the amount of water that flowed through the net during the sample collection) and a depth sensor (to measure the depth profile of the tow).  To deploy the net, we used a crane and winch to hoist the hoop out over the surface of the water and drop the net down into the water. Once the net was let out 100m using the winch, we brought it back in and pulled it back up onto the boat deck.  Using a hose, we sprayed down the final 1m of the net, pushing anything clinging to the side toward the cod end.  The organisms caught in the container were collected and stored for analysis back at a lab.  On this haul the net caught a bunch of copepods (plankton) and ctenophores (jellyfish).

Kate Davis preps samples
Kate Davis fills a small bottle with deep water collected by the Niskin bottle.

11:10am – Station 4ME. Dani Lipski just deployed the messenger, a small bronze-colored weight, sending it down the metal cable to the Niskin sampling bottle.  This messenger will travel down the cable until it makes contact with a trigger, causing the two caps on the end of the Niskin bottle to close and capturing a few liters of deep water that we can then retrieve back up at the surface.  Once the water arrives on the back deck, Kate Davis will fill three small vials to take back to the lab for a project that is looking at ocean acidification.  The Niskin bottle is attached to the cable just above the CTD, a device that measures the conductivity (salinity), temperature, and depth of the water.  In this case, we sent the Niskin bottle and CTD down to a depth of 95m. 

deploying the CTD
Dani Lipski and Shelley Gordon deploy the CTD. Photo: Rachel Pound

12:16pm – Station 4M. Rachel Pound just threw a small plastic bucket tied to a rope over the side of the boat.  Using the rope, she hauls the bucket in toward the ship and up over the railing, and then dumps it out.  This process is repeated three times, and on the third throw the water that is hauled up is collected as a sample.  Some of the surface water is collected for monitoring nutrients at the ocean surface, while another sample is collected for the ocean acidification project.

surface water sample
Rachel Pound throws a plastic bucket over the side railing to collect a surface water sample.

1:36pm – Station 4W. Using a small hoop net attached to a rope, Rachel Pound collected a small sample of the phytoplankton near the surface.  She dropped the net down 30ft off the side of the boat and then towed it back up toward the boat.  She repeated this procedure 3 times and then collected the sample from the cod end.  This sample will be sent to the California Department of Public Health to be used to monitor the presence of harmful algal blooms that produce domoic acid, which can lead to paralytic shellfish poisoning.

Tucker trawl net
Shelley Gordon, Dru Devlin, Jamie Jahncke, and Kirsten Lindquist prepare the Tucker trawl net. Photo: Kate Davis

2:54pm – The final sample collection of the day is underway.  Jaime Jahncke just deployed the first messenger on the Tucker trawl net.  This apparatus consists of three different nets.  These nets are similar to the hoop net, with fine mesh and cod ends to collect small organisms in the water.  The first net was open to collect a sample while the net descended toward ocean floor.  The messenger was sent down to trigger the device to close the first net and open a second net.  The second net was towed at a depth between 175-225m for ~10 minutes.  After the deep tow, a second messenger will be sent down the cable to close the second net and open a third net, which will collect a sample from the water as the net is hauled back to the boat.  The Tucker trawl aims to collect a sample of krill that live near the edge of the continental shelf and the deep ocean.

3:46pm – After a full day of action, the boat is turning back toward shore and heading toward the Bodega Bay Marina. 

5:42pm – The boat is pulling in to the marina at Bodega Bay.  Once the crew secures the boat along a dock, our day will be “done.”  We will eat aboard the boat this evening, and then likely hit the bunks pretty early so that we can rise bright and early again tomorrow morning, ready to do it all again along a different transect line!

Did You Know?

The word copepod means “oar-legged.” The name comes from the Greek word cope meaning oar or paddle, and pod meaning leg. Copepods are found in fresh and salt water all over the world and are an important part of aquatic food chains. They eat algae, bacteria, and other dead matter, and are food for fish, birds, and other animals. There are over 10,000 identified species of copepods on Earth, making them the most numerous animal on the planet.

Erica Marlaine: Diving Down the pH Scale, July 13, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019

Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 13, 2019

Weather Data from the Bridge:

Latitude: 57º 09.61 N
Longitude: 152º 20.99W
Wind Speed: 15 knots
Wind Direction: 210 º
Air Temperature:  12º Celsius
Barometric Pressure: 1013 mb
Depth of water column 84 m
Surface Sea Temperature: 12º Celsius

Science and Technology Log

Are you wondering what it’s really like to live and work full-time on a NOAA research vessel? I asked Andrea Stoneman, the Senior Survey Technician on the NOAA Ship Oscar Dyson.

Andrea Stoneman
Senior Survey Technician Andrea Stoneman

Like everyone onboard the Oscar Dyson, Andrea is always working hard, but always has a smile on her face. Originally from Duluth, Minnesota, she has been employed by NOAA as a “wage mariner” for a year. A wage mariner means she is an at-sea civilian employee of NOAA. She began college at the University of Minnesota as a business major, but an internship as a freshwater mussel researcher changed her life and made her realize her true love: BIOLOGY! She earned a degree in Environmental Science, and then attended graduate school at Delaware State University, where NOAA funded her research on ocean acidification and its impact on fish.

Are you wondering what ocean acidification means?  

The amount of carbon in the ocean is rising due to an increase in the amount of carbon dioxide (CO2) in the air. Carbon dioxide acidifies the water, reducing its pH level.  The letters pH stands for the ‘potential of Hydrogen.’ The pH scale was invented in 1909 by a biochemist names S.P. Sorenson. The scale uses numbers from 1 to 14, with 1 being the most acidic, 14 being the least acidic (or more alkaline) and 7 as the middle (neutral) point.

For the past 300 million years, the average pH of the ocean was approximately 8.2. It is now closer to 8.1, a drop of 0.1 pH units.  Remember, the numbers go “in reverse” so a drop in pH means it is MORE acidic.  You may be thinking, but it’s only a drop of 0.1. That doesn’t sound like a lot. However, a drop of 0.1 represents a 25-percent increase in acidity.  That’s because the pH scale is a logarithmic scale, not a linear scale.  To understand a linear scale, think of a ruler. The difference between inches on a ruler stays constant. A 5-inch fish is one inch bigger than a 4-inch fish, and 2 inches bigger than a 3-inch fish. In contrast, the pH scale is a logarithmic scale in which two adjacent values increase or decrease by a factor of 10.  Therefore, a pH of 3 is ten times more acidic than a pH of 4, and 100 times more acidic than a pH of 5.

Studies indicate that many marine species may experience adverse effects on their health, growth, reproduction, and life span due to ocean acidification. That means fish could develop diseases, have fewer babies, or die younger.

You and I need calcium to build strong bones. We get calcium through milk, cheese, green leafy vegetables, and many other sources. Marine species also need calcium carbonate to build their bones or shells. Ocean acidification causes carbonate ions to be less abundant in the ocean, which makes it harder for marine species to build strong bones and shells. This is especially bad for oysters, clams, sea urchins, corals, and mussels, the very species that made Andrea fall in love with science!

After graduate school, Andrea worked as a fisheries observer on commercial fishing vessels. (I met quite a few people on-board the ship who are or were observers.) To a non-fisheries person, an “observer” SOUNDS like someone who stands around watching others, but it is actually very hard work! Observers document compliance (making sure that things are being done the correct way). They take samples of the catch and collect data regarding the size of the catch and the species caught.  The data goes into the same service model that NOAA data does, which is vital for ensuring sustainable fishing for the future. 

Through her work as an observer in Alaska, Andrea met people at NOAA, took a tour of a NOAA ship, and decided to apply for a job with NOAA.  (Hmmm… When I interviewed Ensign Andonian for an earlier blog, she also mentioned visiting a NOAA ship as the thing that made her decide to choose a career with NOAA. That gives you an idea of just how amazing NOAA ships are!)

So what does a Senior Survey Technician do?

She runs and maintains all of the scientific sensors on the ship (including the meteorological and oceanographic sensors). She also runs the CTD, a device which measures the conductivity, temperature, depth, salinity, and other oceanographic parameters of the water. 

The CTD device

In addition, she is involved in setting and retrieving the fishing nets and is an expert at processing the catch in the fish lab. Andrea ensures that the data collected onboard is sound and accurate, and “packages” the data so that it is presentable and accessible to NOAA thus becoming accessible to the public whom NOAA serves.

Asked if she recommends a NOAA life, Andrea says it’s great for college graduates who have an interest in science and a love of the ocean. Some perks (especially for new college graduates) include living rent-free onboard, having delicious meals cooked for you three times a day, and getting to see the world while being involved in interesting, and sometimes ground-breaking, scientific research. An added perk is that working for the federal government can “erase” some of your student loans!

Andrea enjoys being the Senior Survey Technician onboard the NOAA Ship Oscar Dyson, and has fallen in love with Alaska, which she now considers her home.

Click below to watch a 2-minute video by NOAA about ocean acidification:

Personal Log

While I cannot describe what it is like to live full-time on a NOAA ship, I can tell you what it’s like as a Teacher at Sea for 26 days. Like everyone onboard, I “work” a 12-hour shift.  The science team works shifts starting at either 4 a.m. or 4 p.m.  I was assigned the 4 p.m. to 4 a.m. shift. That means I wake up most days between 2:30 and 3:00 in the afternoon.  On days that I am “good” I head down to the gym. On other days, I grab a light “breakfast” before heading to the chem lab to start my shift.

Often we start our shift processing fish by 4:30. First I suit up in steel-toed boots, a waterproof jacket and overalls, and elbow-high rubber gloves. 

Erica ready for the fish lab
I am ready to work in the fish lab!

Then we process the haul, which means sorting approximately 1000 pounds of fish and jellyfish by species.

An average-sized haul

We weigh them, measure them, and dissect some to collect otoliths (ear bones) or ovaries.  All of this can take 2-3 hours. Then we clean.  The fish lab gets COVERED in fish slime, scales, and jellyfish goo.

Jellyfish "goo"
Jellyfish “goo”

There are high-powered waters sprayers hanging from the ceiling, and we blast every surface in the room with saltwater for at least 10 minutes after every haul. Imagine cleaning your kitchen with a fire engine hose! It’s definitely the most fun I have ever had cleaning!  

cleaning the fish room
One of the many high power saltwater sprayers

At the end of the cruise, I will join Andrea the Survey Technician and the science team for 2-3 hours of meticulously scrubbing and spraying the fish lab so that it is clean and ready for the next group that comes aboard a few days after we leave.

Since the scientists onboard often want to do “pair trawls” (fishing in the same area using the “old” AWT net and the “newer” LFS net in order to align the catch data with the acoustics data),  I am often back in the fish lab an hour later to process another haul, and again clean the fish lab.

After that, depending upon the time, I might have a snack, or do research and write blogs, or spend time in the chem lab with my co-workers, Matthew Phillips (the Fish Lab Lead) and volunteer biologist Nathan Battey, discussing the haul or what is coming up for the rest of the shift. At about 11 p.m., the sun sets, and sometimes it is spectacular, so I try to pop out onto the deck for a quick photo. 

The sun setting near Mitrofania
The sun setting near Mitrofania

At midnight, we start getting ready to do the drop camera to determine which areas are trawlable. We usually do at least 4 camera drops, from approximately 1 p.m. to 4 p.m. This time of night often involves the science team consuming caffeine, ice cream, red vines, sour patch kids, or all of the above. At 4 a.m., the next shift starts, and my roommate, Jamie Giganti, comes into the chem lab. Jamie is a field coordinator for AIS. She works as an observer part of the time, but also provides support and training for new observers, and acts as a liaison between boat captains and observers.

Jamie Giganti
My roommate Jamie Giganti

Jamie’s arrival in the chem lab means it is my turn to go to “our” room.  Although we are roommates, we are never actually in the room at the same time. The goal is that you stay out of the room for the 12 hours your roommate is off-shift, allowing them to sleep or relax.  That means that every time I am on shift I need to make sure that I take everything I might need for the day.

The first few days onboard, I was in bed and asleep 15 minutes after my shift ended. Now that I am accustomed to the schedule, or perhaps due to the caffeine or sugar, I am often up until 5 or 5:30 a.m. That means I go to sleep just as the sun rises.

My stateroom has a bathroom and shower, a desk, a few shelves, lockers that act as a closet, and bunkbeds.  (I was so happy when Jamie asked if she could have the top bunk!)

My state room
My state room

The large window has both magnificent views of Alaska and also blackout curtains that block the sun so that people on my shift can sleep.

The shower area in the bathroom has a slightly raised border, but since the boat moves while you are showering, so does the shower curtain.


Perhaps other people have figured out how to get the water to stay IN the shower.  I am still working on that. On the upside, the bathroom floor gets cleaned every day! (I am told that one trick is to use zip ties to “lengthen” the shower curtain.  (Next time?)

Processing a haul seems easy now, but it was overwhelming the first few days! As a non-scientist, I was unfamiliar with fish and jellyfish species, perplexed by the computer program used to enter data, and kept confusing which fish to measure, which fish to weigh, and which fish to measure and weigh.  I am so grateful for the patience of everyone around me!

Amazingly, I never got seasick. I wore a scopolamine patch for the first part of the trip, and then one day decided to take it off and learned that I had in fact “gotten my sea legs.” Now I barely feel the boat moving during the day and enjoy the light rocking at night.

I am writing this during my last few days onboard.  While we have occasionally been near land, during much of our time onboard, the view was the incredibly beautiful Gulf of Alaska.  Yesterday, when I saw land in the distance, I was sad to learn that it was Kodiak.  That means my time on the NOAA Ship Oscar Dyson is almost over. 

Sarah Raskin: Teacher at Sea Days 2 & 3, March 14-15, 2015

NOAA Teacher at Sea

Sarah Raskin

Aboard NOAA Ship Bell M. Shimada

March 13-18, 2015

Mission: Channel Islands Deep-Sea Coral Study

Geographic Area: Channel Islands, California

Date: March 14-15, 2015

Day 2:  Saturday 3/14/15 

Happy Pi Day everyone!  The second day on the ship was productive and incredible.  The weather was fantastic throughout the entire day, with hardly any wind and a sheet glass ocean.  The stillness of the water made it easy to spot wildlife, and during the day we saw multiple pods of dolphins, sea lions, and a variety of sea birds such as cormorants and brown pelicans.

view from Shimada
A beautiful day aboard the Bell M. Shimada in the Channel Islands National Marine Sanctuary
Dolphins swimming alongside the Shimada

The beautiful weather also made for smooth conditions to launch the ROV.  The ROV took three dives today at different locations and depths each time.  Peter and his team picked the locations around the Islands, staying true to spots they had visited in previous years.  Part of their research involves looking at the same coral beds over the course of many years and recording what they observe and noting any changes that may have occurred.  They are observing how the coral, specifically the species Lophelia pertusa, reacts to changes in pH levels and temperature.  This information is important in finding indicators for how our ocean is being affected by warmer temperatures and ocean acidification.

Retrieving the Beagle ROV
Retrieving the Beagle ROV from its first dive of the day
Santa Cruz Island and the ROV
Santa Cruz Island and the ROV

So what exactly is ocean acidification?

As humans, we release carbon dioxide (CO2) into the atmosphere and have been doing so in large quantities since the Industrial Revolution.  Carbon dioxide is released during combustion, when we drive our cars, power our houses and factories, use electricity, burn things, cut down trees, etc. 

The ocean acts as a sponge and absorbs about 30 percent of the carbon dioxide from the atmosphere.  However, as levels of COrise in the atmosphere, so do the levels of CO2 in the ocean.  This is not great news for our ocean or the organisms that make their home there.  When CO2 mixes with seawater, a chemical reaction occurs that causes the pH of the seawater to lower and become more acidic.  This process is called ocean acidification.

Even slight changes in pH levels can have large affects on marine organisms, such as fish and plankton.  Ocean acidification also reduces the amounts of calcium carbonate minerals that are needed by shell-building organisms to build their shells and skeletons.  The damage to these shell-building organisms, including many types of plankton, oysters, coral, and sea urchins, can have a negative ripple effect throughout the entire ocean food web.  An important part of the mission of this trip is to see how ocean acidification is affecting different types of deep-sea coral, such as Lophelia pertusa, that use calcium carbonate minerals to build their skeletons.

pH scale

The scientists and the MARE team conducted three ROV dives throughout the day.  The first dive brought up an outstanding Lophelia sample, and along with it a bizarre deep-sea creature called a basket star.  Basket stars are a type of invertebrate that are related to brittle stars.  Even though they feed mostly on zooplankton, they have long spindly arms that can reach to over a meter in length.   It was astonishing to be able to see this alien looking creature alive and moving!

Day 3: Sunday 3/15/15

After long hours and a late night, the MARE team was able to get the manipulator arm on the ROV up and running, after having technical difficulties with it during the first half of our trip.  This was perfect timing for the first ROV dive of the day in the waters between Santa Cruz and Anacapa Islands.  The goal of this dive was to find scientist Branwen Williams a type coral known as Acanthogorgia.  This coral is incredibly beautiful; tall, fan-like and golden in color.

coral and shark egg case
An Acanthogorgia with a cat shark egg case

Bombs Away:   Branwen hoped to collect samples of this coral to take back to her lab for testing.  She and her team of students and scientists will use these samples to ascertain how old the corals are, how fast they grow and what are they eating.  Branwen explained to me that coral, similar to trees, have growth rings that can be used to determine age as well as other factors.  She mentioned that when looking at age, she looks for the pattern of the “bomb curve” within the coral rings and that provides scientists with a relative date of how old the corals are.  The “bomb curve” is a concentration of radiocarbon (14C) that is found in corals in every ocean in the world.  The concentration of radiocarbon is a direct product of the bomb testing that took place starting in the 1950’s and produced large amounts of this radiocarbon into the atmosphere.  The ocean absorbed that particular type of carbon, and in turn it was absorbed by the corals, who are suspension feeders.  Suspension feeding means that corals eat by stretching their tentacles out to catch tiny particles that are floating by.  So scientists identify the start and peak of the bomb testing in the radiocarbon stored in the coral skeleton to determine growth rates and then the ages of the corals. This was very shocking to me that corals in every ocean have this radiocarbon in their bodies, and clear evidence of how much human actions impact the entire globe.

team looks at samples
The team looks to see what samples have been collected
The Chief Boatswain prepares to operate the winch that will help lift the ROV out of the water
MARE and NOAA crew work together to make sure the ROV makes it back on board safe and sound

Diving Deep:  The ROV was dispatched into the water and soon sunk to around 200 meters.  As it cruised along the ocean floor the team watched as a variety of rockfish scuttled by.  The ROV has two sets of lasers that shoot out in front of it, each spaced 10 centimeters apart.  This gives the scientists an idea of the size of objects or organisms that pass in front of the camera.

The team located the Acanthogorgia habitat and got to work collecting samples using the manipulator arm.  The manipulator arm reminds me of the claw game found in most arcades.  Andy remotely operated the arm, while Dirk worked simultaneously to control the ROV.  Together they were able to collect three exceptional samples, including two Acanthogorgia corals attached to hefty rocks. Each time the manipulator arm reached towards a coral, the whole crew of the Shimada held in their breath in suspense.  Would the arm be able to grasp its target?  The live footage from the ROV is now being streamed throughout the entire ship; in the lounges and staterooms too, so Andy and Dirk had a quite an audience cheering them on!

ROV watch party
Andy and Dirk work the controllers while Peter, Branwen and Leslie watch closely nearby

The samples made it back to the ship safely.  Branwen prepared the coral to take back to the Keck Science Department of the Claremont College where she and her students will conduct their research about this little known species of coral.

Thinking about the effort it takes to research deep-sea coral, involving ROVs and commissioning ships to reach their remote locations, it’s no wonder we know little about them and so much more about their shallow water relatives.

Branwen and coral
Branwen and one of the Acanthogorgia samples
Dirk and Andy coral
Dirk and Andy after a job well done
Chief Survey Tech and ROV
Our Chief Survey Tech waits patiently to assist with the next ROV dive.

Janelle Harrier-Wilson: T-8 Days and Counting – It’s Almost Time to Set Sail! September 14, 2014

NOAA Teacher at Sea
Janelle Harrier-Wilson
(Soon to Be) 
Onboard NOAA Ship Henry B. Bigelow
September 23 – October 3, 2014 

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Atlantic Ocean from the Mid-Atlantic Coast to S New England
Date: September 15, 2014

Personal Log

Janelle Harrier-Wilson with husband, Neil, and golden retriever, Devon, as a puppy.
With my husband, Neil Wilson, and my dog, Devon. He was a puppy at the time and graduating from training classes.

Hello and welcome! I am so excited to be a part of the NOAA Teacher at Sea experience. I currently teach chemistry, engineering, and technology at Lanier High School in Sugar Hill, GA (outside of Atlanta). I am part of an awesome project based learning (PBL) program called CDAT (Center for Design and Technology), which focuses on science, technology, engineering, and math (STEM). Lanier High School opened in 2010, so this is our fifth year as a school; however, this is my first year teaching here. Before transferring to Lanier High School, I taught sixth grade Earth science at Lanier Middle School for eight years. Now, I have the awesome privilege of teaching many of my students a second time. It’s really fun to see how much they have grown up and matured since they were sixth graders.

I am looking forward to sharing what I learn with my students as I think my engineering students will gain insight into shipboard careers they may have never considered, especially as it relates to engineering. I think my technology students will get a chance to see how scientists collect and organize data using technology tools.

Although I teach chemistry and this research cruise is focusing on fisheries, I know my students will gain a new understanding of our oceans. Sampling the health, age, and quantity of different fish species with the NOAA scientists help us to measure the health of the oceans. Some of the big issues with the health of our oceans concern overfishing, human pollution, and ocean acidification. Ocean acidification refers to how the oceans take some of the extra carbon dioxide from the air and dissolve it into the water. This lowers the pH of the water making it more acidic, which can affect the health of the ocean’s inhabitants.

I applied to be a NOAA Teacher at Sea so I could learn more about our oceans in order to share this knowledge with my students. I have always been a hugely passionate about space and space exploration. I’ve had so many cool space opportunities like seeing shuttles and rocket launches, going to Space Camp, floating in microgravity, and most recently, helping our students talk to Reid Wiseman on the International Space Station via amateur radio.

Space is awesome and amazing, but we have an equally amazing frontier right here on own planet, our oceans. I want to be able to share with my students about the oceans with as much confidence and enthusiasm as I do about space, so I am extremely happy to be a Teacher at Sea so I can begin to glimpse all the science our oceans entail. I was also inspired to apply after hearing the stories from two Teacher at Sea Alumni Jennifer Goldner and Kaci Heins, who I met at Advanced Space Camp and now call dear friends.

Experimenting in microgravity with Kaci Heins photo from NASA
Experimenting in microgravity with Kaci Heins photo from NASA

Janelle Harr-er-Wilson on the water in Florida as a child
Me as a child in Florida

I grew up on the west coast of Florida near the Gulf of Mexico. Just two miles from my house was a tiny commercial fishing village, Cortez. My childhood best friend lived in Cortez, so I spent many days running up and down the docks and sampling the fresh caught seafood. (Fresh smoked mullet was my absolute favorite!) This gave me a unique look at the importance of fishing to a community. I even had a chance to go out on a small boat with a commercial fisherman and a few of my friends one night and catch fish via nets. So even though space has always been my passion, I feel a connection to the ocean as well.

Teacher at Sea goodies
Teacher at Sea goodies

My cruise is on the Henry B. Bigelow, a NOAA ship outfitted for fisheries research. You can take a virtual tour of the Henry B. Bigelow including the science labs, and track the ship here.

I am part of Leg II of the Autumn Bottom Trawl. We will be taking samples of fish and other species of marine animals from the Mid-Atlantic to Southern New England to measure the abundance, health, and age of certain fish species. As part of the science team, I will work a twelve hour shift everyday – either from noon to midnight (day shift) or from midnight to noon (nigh shift). I will find out my assigned shift when I arrive to the ship.

Right now I am working on getting everything I need ready and thinking about packing. Since space on the ship is very valuable, I am trying to pack as lightly as possible. Some of the things I plan to bring with me are earplugs (I hear the engines are loud so it’s good to have these while sleeping), anti-nausea aids so I don’t get seasick, and cameras to document my trip. A couple of weeks ago, I received this cool package of items from the Teacher at Sea program. I’ll definitely be bringing the water bottle, shirt, and hat with me. The good thing is there are laundry facilities on board, so I don’t have to pack too many outfits. I also plan to bring a companion along with me. At my school, we are the Lanier Longhorns, so I will be bringing one of the plush longhorns along with me for this adventure. My question for you is which one? Toro or Tyson? You get to decide!

Who should join me at sea: Toro or Tyson?
Who should join me at sea: Toro or Tyson?


At Lanier, our motto is Learn.Lead.Succeed. I cannot wait to learn new things on this trip and share them all with you! What things to you hope I will learn and share with you? Please leave your ideas in the comments. Until next time!

Kaitlin Baird: Women in a H2O World: Girl Power in Science, September 19, 2012


NOAA Teacher at Sea
Kaitlin Baird
Aboard NOAA Ship Henry B. Bigelow
September 4 – 20, 2012

Mission: Autumn Bottom Trawl Survey with NOAA’s Northeast Fisheries  Science Center
Geographical Area: Off the Coast of Long Island
Date: September 19th

Location Data:
Latitude: 40’54.90
Longitude: 73’30.18

Weather Data:
Air Temperature: 18.4 (approx.65°F)
Wind Speed: 10.64 kts
Wind Direction:  Northwest
Surface Water Temperature: 20.08 °C (approx. 68°F)
Weather conditions: sunny and fair

Science and Technology Log:

Ocean acidification have been the buzz words in the shellfish and coral reef world for the last few decades, but how will changes in our ocean’s pH affect our coastal fisheries resources? The Henry B. Bigelow is host to another project to help monitor this very question. The ship has an automated system that draws in surface seawater through an uncontaminated line and feeds it to a spray head equilibrator (seen in photo). Here, this instrument measures the partial pressure of carbon dioxide through an infrared analyzer. Standards are used to automatically calibrate the instrument periodically so it can take data while the fish are being counted and measured. How great is that!

Partial pressure Carbon Dioxide system schematic
Partial pressure Carbon Dioxide system schematic

It has already been shown and well documented that our oceans are getting more acidic. Something to remember is that our ocean and atmosphere are always in equilibrium in terms of carbon dioxide. Therefore, if we emit more carbon dioxide some of that will be absorbed by the ocean. The rapid changes in development since the industrial revolution have led to more carbon dioxide in our atmosphere and therefore, over time, more diffusing into the ocean. The amount of carbon dioxide our ocean is absorbing has changed its chemistry. Increasing partial pressure of carbon dioxide (through several chemical reactions) makes the carbonate ion less available in the ocean (especially the upper layers where much aquatic life abounds).

This does not mean the ion isn’t there, it just means it is less available. Now why is this important to fisheries? Well, many organisms are dependent on this carbonate ion to make their tests, shells, and skeletons. They combine it with the calcium ion to make calcium carbonate (calcite, aragonite and other forms). If they can’t properly calcify this affects a large range of functions. In terms of commercial fisheries, scientists want to know more how acidification will affect commercial species that make their own shells, but also the fish who call them dinner. Ocean acidification has also been shown to affect other food sources for fish and reproductive patterns of the fish themselves. The fish research at NOAA will concentrate on the early life history stages of fish, as this is their most vulnerable phase. The research priority is analyzing responses in important calcifying shellfish and other highly productive calcareous phytoplankton (base of the food chain). To learn more in detail from NOAA please read this. By monitoring the partial pressure of carbon dioxide at fisheries stations over time, scientists can compare this data with the health, location, and fitness of much of the marine life they survey.

Partial pressure Carbon Dioxide system
Partial pressure Carbon Dioxide system

Personal Log:
As my time on the Bigelow is drawing to a close, I wanted to highlight some of the amazing women in science on board the ship who play key roles in the research and upkeep of the ship. I have asked them all a few questions about their job and for some advice for young women who would like to take on these various roles in the future! Since we have so many talented women on the ship, please stay tuned for another addition!

Amanda Tong

Amanda Tong
Amanda Tong — Fisheries Data Auditor, Northeast Fisheries Observer Program

Job Title:
Fisheries Data Auditor with the Fisheries Sampling Branch
Program: Northeast Fisheries Observer Program
NOAA Fisheries Service
National Oceanic and Atmospheric Administration

What she does:
Amanda is responsible for working with the Fisheries Data Editor to be the collator of information received from the Fisheries Observers and more specifically the Fisheries data editors. She is looking for any errors in data reporting from the Fisheries Observer Program and working with the editors who are in direct contact with them.

If you remember in my last blog, I talked about the otolith and length information going to the Population Dynamics group who make models of fisheries stocks. The data from the Fisheries Biology program is also given to this end user. This way the models take into account actual catches as well as bycatch. Other end users of the data are graduate students, institutions and other researchers.

Amanda’s favorite aspect of her job:
Amanda likes being the middle person between the fishing industry while also working for the government. She likes seeing how the data change over the years with changes in regulation and gear types. She finds it interesting to see how the fisheries change over time and the locations of the fish change over time. She also loves hearing the amazing stories of being at sea.

What type of schooling/experience do you think best set you up for this job:  Amanda received a degree in marine biology, which she thinks set her up perfectly. She suggests however that the major doesn’t have to be so specific as long as it has components of biology. The most important aspect she feels was volunteering and learning how to do field work with natural resource management, even if on land. Learning how to properly sample in the field was really important. Amanda is a former Fisheries Observer so she also knows the ins and outs of the program that collects the data she is auditing. This helps her look for easily recognizable errors in the data sets from all different gear types. By gear types I mean trawls vs. gill nets vs. long lines etc.

Robin Frede

Robin- Fisheries Data Editor
Robin — Fisheries Data Editor

Job Title:
Fisheries Data Editor
Branch: Fisheries Sampling Branch
Program: Northeast Fisheries Observer Program
NOAA Fisheries Service
National Oceanic and Atmospheric Administration

What she does:
Robin deals directly with the Fisheries Observers. Fisheries observers are assigned to different boats and gear types up and down the eastern seaboard to record catches and bycatch as well as run sampling protocols. After each trip Robin checks in with the observer for a debrief and they send on their data to her. It is her responsibility to take a good look at the data for any recognizable errors in measurement or sampling error. Since she was a fisheries observer herself, she can coach the observers and help mentor them in sampling protocol and general life at sea. Once she reviews the data set it gets collated and sent off for review by the Fisheries Data Auditor.

Favorite part of her job:
Robin’s favorite part of her job is being a mentor. Having done the program herself previous to her current job she has a full understanding of the logistical difficulties that observers face at sea. She also is well versed in all of the aspects of sampling with different gear types. Since she is no longer at sea on a regular basis one of her favorite aspects is getting to go to sea on a shadow trip to help out new observers. She also participates in one research trip (currently on the Bigelow now), and one special training trip each year.

What type of schooling/experience do you think best set you up for this job:
Robin suggests a Biology basis for this type of job and lots of experience volunteering with field work. Understanding the methodology and practicing are very important to accurate data collection. Accuracy and practice make her job as an editor a lot easier. If you think you might be interested in this type of career Robin suggests the Fisheries Observer Internship. You can find out if you like spending a lot of time at sea, and this line of work, plus get exposure to many sampling protocols.

Amanda Andrews

Amanda Andrews-Survey Technician
Amanda Andrews — Survey Technician

Job Title:
Survey Technician
Office of Marine and Aviation Operations
National Oceanic and Atmospheric Administration

What she does:
Amanda wears many hats and goes wherever the Henry B. Bigelow goes. She is in charge of supervising data collection and analysis. She is the liaison between the ship’s crew and the scientific crew.  She is in charge of the scientific equipment function and maintenance. Amanda is the go-to person on each survey during sampling. She also is responsible for helping crew on the back deck.

 Favorite Part of her Job:
Amanda’s favorite part of her job is that the ocean is her office. She lives aboard the Bigelow and where it goes, she goes.

What type of schooling/experience do you think best set you up for this job:
Amanda started out working on the back deck of NOAA ships and progressed to become a survey technician. She suggests having a good background in marine biology and biology in school, but more importantly always be willing to learn.

Nicole  Charriere

Nicole Charriere- Sea-going Biological Technician
Nicole Charriere — Sea-going Biological Technician

Job Title:
Aboard the ship currently: Day Watch Chief
Official title: Sea-Going Biological Technician
Branch: Ecosystem Survey Branch
Northeast Fisheries Science Center
National Oceanic and Atmospheric Administration

What she does:
Nicole’s job entails being at sea between 120 and 130 days a year! She specifically goes out on Ecosystem Survey cruises that she can do some choosing with.  She goes out on bottom trawling, scallop, and clam survey trips. Her job is to help the scientific party either as a watch chief or chief scientist. She has to handle all sampling as well as fully understand all of the survey techniques. She is well versed in the Fisheries Scientific Computer System (FSCS) and needs to know her fish and critter ID. She is the one responsible for sending down all the species already pre-tagged with their ID.  On top of all that she is also responsible for monitoring the censors on the net and regularly replacing them.

Favorite part of her job:
Nicole’s favorite part of her job is not being in an office and being at sea. Her work environment is always changing, as the scientific crew is always changing and so are the species she works with. She enjoys working and meeting new people each cruise.

What type of schooling/experience do you think best set you up for this job:
Nicole says to get to where she is you have to work hard. You might not be the one with the most experience, but if you work hard, it doesn’t go unnoticed. She also suggests networking as much as possible. Get to know what people do and learn from them. She says studying biology was helpful, but not an absolute necessity. Above all, make sure you love what you do and make sure you are excited to go to work.

Caitlin Craig

Caitlin Craig- Department of Conservation (NY)
Caitlin Craig — Department of Environmental Conservation (NY)

Job Title
Diadromous Fish Department Intern
Department of Environmental Conservation (DEC)
State of New York

What she does:
Caitlin participates in field surveys twice a week that target striped bass. The data are used to look at their migration patterns in Long Island waters.  While at DEC she was also looking at the juvenile fish species in the bays and estuaries of Long Island sounds. Her job entails collecting data in the field, entering it and collating data for the various projects.

Her favorite aspect of the job:
She really enjoys that her job is a mix of office and field work where she can put some of the research and management skills she learned at Stonybrook University into practice. She also really enjoys seeing the many species that call Long Island Sound home.

What type of schooling/experience do you think best set you up for this job:
Caitlin suggests trying to make as many connections as possible, and not to be afraid to ask questions. Programs are always looking for volunteers and interns. If you are interested in working at the governmental level she suggests a postgraduate work in Marine Conservation and Policy (she attended Stonybrook University).

Thanks for reading! Stay tuned for my final blog with lots of critters from the cruise!

Stephen Bunker: Data Sampling, 23 October 2011

NOAA Teacher at Sea
Stephen Bunker
Aboard R/V Walton Smith
October 20 — 24, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: 23 October 2011

Weather Data from the bridge

Time: 6:23 PM
Wind direction: Northeast
Wind velocity: 5 m/s
Air Temperature: 25° C (77° F)
Clouds: stratocumulus

Science and Technology Log

Collecting data is what science is all about and scientists can measure many different things from the ocean. They generally take these measurements in two different ways: discrete and ongoing samples.

Cheryl is preparing filter samples made from water collected with the CTD. These samples will be frozen and analyzed later in a laboratory on shore.

Discrete sampling means scientists will take samples at different times. When we take measurements at regular intervals, we can compare the data and look for patterns. On the R/V Walton Smith we take discrete samples each time the CTD is lowered. At approximately every two weeks RV Walton Smith will revisit the same location and collect data again. These bi-monthly data samples will let the scientists compare the data and look for patterns.

Remember when we collected weather data in class? We were also doing discrete sampling. We collected weather data from the morning and afternoon each school day. We would record precipitation, wind velocity and direction, air temperature, barometric pressure, and cloud types. Remember the pattern we noticed? When the afternoon temperature was cooler than the morning, we would have precipitation the next day.

Pump and valve system used for water sampling
Here is the pipes, valves and instruments used to take ongoing samples of surface water.

Ongoing sampling is also done on the R/V Walton Smith. On the fore, port (the left front) side of the ship, ocean water is continually sucked into some pipes. This surface water is continually pumped through instruments and water chemistry data is collected.

This continual data sampling is recorded on a computer and graphs can be made for  different characteristics of water chemistry. When continual data is graphed, the graphs have a smoother shape than they would with discrete samples.

Initially I thought that we were just collecting data each time we stopped to lower the CTD. Actually we had been collecting data throughout the entire voyage.

Kuan is monitoring his ongoing data collection of dissolved inorganic carbon.

Kuan, one of the scientists on our cruise, was measuring the amount of dissolved inorganic carbon in the ocean. The process of doing this has typically been a discrete sampling process that involves chemically analyzing water samples, Kuan has developed an instrument that would take ongoing water samples and measure the amount of dissolved inorganic carbon continually.

His instrument would tap into the water pipes above and take ongoing samples throughout the trip. He also wrote a computer program that would record, calculate, and graph the quantity of dissolved inorganic carbon. He even collects GPS data so he can tell where in the ocean his samples were taken. His experiment, I learned, is cutting-edge science or something that hasn’t been tried before.

Personal Log

I hadn’t realized the close connection there is between our earth’s atmosphere and its oceans. I understood how the ocean temperatures and currents  affect our weather systems. But, I didn’t understand how on a micro scale this happens as well. The ocean will exchange (absorb and give off) carbon dioxide and many other molecules with the air.

Why is it important to understand how the ocean and atmosphere interact? We often hear how greenhouse gasses are contributing to climate change. Carbon dioxide, considered a greenhouse gas, is one of the inorganic carbon molecules absorbed and given off by the oceans. When it is absorbed, it can make the ocean slightly more acidic which could harm the micro organisms that are in the ocean food chain

Understanding the interaction between atmosphere and ocean will help us understand why some areas of the earths ocean absorb more carbon dioxide and others don’t.

Scott Donnelly, April 22, 2008

NOAA Teacher at Sea
Scott Donnelly
Onboard NOAA Ship McArthur II
April 20-27, 2008

Mission: Assembly of Science Team and Movement of Science Gear/Equipment
Geographical Area: Coos Bay to Astoria, Oregon
Date: April 22, 2008

Weather Data from the Bridge 
Sunrise: 0620 Sunset: 2010
Wind: 10 kts, 25 kts gusts
Seas: 4-7 ft
Rain showers possible

Open Niskin bottles on CTD platform
Open Niskin bottles on CTD platform

Science and Technology Log 

What’s the significance of the NH Line (Newport Hydrographic, 44O39’N)? Water and biotic data acquisition at the NH Line began over 40 years ago. The NH Line then is significant on account of the long-term historical sample collection and data sets that it provides. Consequently, temporal (time) comparisons involving water and biotic data can be made over decades as opposed to shorter lengths of time such as years or months. It’s my understanding that nearshore and offshore sampling along the Oregon Continental Shelf (OCS) always includes the NH Line. My second 4-hour shift began at 0100 and ended shortly after 0500. Regardless of time of day each shift sets up and collects water samples from each of the twelve Niskin bottles on the CTD rosette. Typically, three water samples are collected at a particular depth. How does remote sub-surface water sampling work? When the CTD is deployed from the ship’s fantail, initially the top and bottom lids on all twelve Niskin bottles are open as shown in the photo below.

The CTD is lowered into the water and once the desired depth is reached the requisite number of Niskin bottles are closed electronically from the ship by whoever is in the control room. For my shift it’s team leader Ali Helms. After that is done, the CTD then is lowered or raised to another depth where another “firing” takes place and more water samples at a different depth are collected. When sampling is complete, the CTD is raised to the surface and onto the ship where it is secured to the fantail deck. The water in each Niskin bottle is collected and taken to the ship’s wet lab where each water sample collected at a particular depth is analyzed for other water quality parameters not measured by the CTD.

YSI datalogger
YSI datalogger

Other water parameters measured on this cruise in the wet lab include: total dissolved solids (TDS), pH, and turbidity (how transparent, or conversely cloudy, is the water). A YSI 6600 datalogger interfaced with a multi-sensor water quality probe (sonde) is used to measure the aforementioned water parameters. See photos below. The CTD and Niskin bottles then are hosed down with freshwater and reset for the next sampling site.  After the CTD is reset for the next sampling site, then it’s time to collect biotic samples from the surface and at different depths. Biological sampling always follows a CTD cast. On this cruise biological sampling is carried out on the ship’s starboard side just fore of the fantail. Collection of marine invertebrate (boneless) organisms uses nets that vary in size, shape, density of net mesh (number of threads per inch), and volume of detachable sample collection container (called a cod end). Sampling nets are conical in shape and typically are made from Dacron or nylon threads that are woven in a consistent, interlocking pattern. Each specifically designed net is attached to a wire cable and deployed from the starboard side. If collection/sampling is done below the water’s surface (also called sub-surface), a weight is attached to the net’s metal frame.  A bongo net is an example of a net used for the collection of invertebrate marine organisms at some defined depth below the surface (see photos below).

Multi-sensor water sonde
Multi-sensor water sonde

A bongo net collects organisms by water flowing into the net, which is parallel or horizontal to the water surface at some depth below the surface. Consequently, use of a bongo net requires that the ship moves forward. Deployment of a bongo net requires the use of trigonometry, a favorite math course of mine in high school a long time ago. The length of cable let out by the NOAA deckhand operating the winch with cable does not equal the depth that the bongo net is lowered below the surface. (This would be true if the net was simply dropped straight down over the side of the ship.) Let’s use the drawing below to illustrate this.

Suppose sample collection is to be done at 100m (328 feet) below the water’s surface. More than 100m of cable needs to be let out in order to lower the bongo net to 100m below the water’s surface. How much cable beyond 100m is let out (x) depends on the angle (θ) of the net (and hence cable) to the water’s surface. The angle θ is measured by a protractor attached to the cable and pulley at the position identified with the blue star in the drawing. The angle θ in turn depends on the ship’s forward speed. To calculate the length of cable that needs to be let out, the following trigonometric formula involving right triangles is used: sin θ = cos-1θ = 100mx. The calculated value x is communicated to the NOAA deckhand, who controls the winch that lets out the desired length of cable. When this cable length is reached, retrieval of the bongo net begins.

Duel sampling bongo nets ready for retrieval
Duel sampling bongo nets ready for retrieval

The volume of water that contains the marine organisms and that flows through the bongo net is recorded by a torpedo-shaped rotary flowmeter (left photo below), which is suspended by wires or thick fishing line in the middle of the net’s mouth. As water moves past the meter’s end, it smacks into and transfers its momentum to the flowmeter’s propeller, which rotates or spins. The propeller’s shaft in turn is linked to a mechanical counter inside the meter’s body (right photo below). A complete revolution of the propeller equates to a certain number of counts and that is related to a certain volume of water that has flowed past the meter.  The mathematical difference between the two numbers recorded before the net’s deployment and after the net’s retrieval is plugged into a mathematical formula to obtain the estimated total volume of water that flowed through the net’s mouth during the time of collection. Consequently, the weight or number of biomass collected by the net can be related to the volume of water in which the biomass was found. This gives an idea about the density of biomass (weight or number of biomass units per volume seawater, g/m3) in a horizontal column of seawater at a given depth and site. In tomorrow’s log I’ll talk about what marine organisms a bongo net collects (including photos) and also discuss and describe the three other nets used on this cruise to collect marine invertebrates.

Mechanical counter in flowmeter
Mechanical counter in flowmeter

Personal Log 

So far after one full day at sea, I haven’t experienced any indications of sea sickness in spite of rough seas (see weather forecast at beginning of log). Four other science team members haven’t been as fortunate. I didn’t witness any visible bioluminescent surface events on the early morning shift (0100 to 0500). I walked to the ship’s bow since this would likely be the best place to witness bioluminescence given all the agitation of seawater there. I left a bit disappointed but there are still five days remaining. The CTD and both the DO and chlorophyll probes (sensors) operated without any problems.

Bob and I communicate well and have similar personalities and intellectual interests. Before carrying out a task we discuss how it’s to be done and then agree to do it as discussed and in the order discussed. Communication is critical because when sampling for biological organisms for example, the nets have large, heavy weights attached so once the net is lifted from the ship’s deck for deployment the weight is airborne so to speak and free to move without resistance. Getting clobbered in the head or chest obviously would not be pleasant. The bongo net uses a 75 pound weight and the net’s solid metal frame must weigh another 25 pounds. Caution and paying attention are paramount once 100 pounds are lifted from the deck, suspended from a cable free to move about with the rolling and pitching of the ship with only air providing any sort of resistance against its movement.

 Rotary flowmeter
Rotary flowmeter

Bob and I have delegated certain tasks between us. We agreed that when a net is deployed, he will always control the net’s upper halve where the net’s “mouth” and weight are located; I in turn will control the net’s bottom halve where the netting and sample containers or cod ends are located. When the net is ready to be lifted from the sea and returned to the ship’s deck, the tasks for retrieval are the same as for deployment, though in reverse order from deployment. Before the net is lifted shipboard, it’s washed or rinsed top to bottom with seawater from a garden hose that gets seawater pumped directly from the Pacific. Washing is necessary because the collected marine organisms adhere to the net’s mesh so in order to get them into the sample container (cod end) at net’s end they must be “forced” down into the cod end. Once the net is shipboard, the cod end and collected organisms are emptied into a sample jar, sample preservative is added, and the container is labeled appropriately.

Screen shot 2013-04-20 at 4.51.18 AM

Scott Donnelly, April 21, 2008

NOAA Teacher at Sea
Scott Donnelly
Onboard NOAA Ship McArthur II
April 20-27, 2008

Mission: Assembly of Science Team and Movement of Science Gear/Equipment
Geographical Area: Coos Bay to Astoria, Oregon
Date: April 21, 2008

Weather Data from the Bridge 
Sunrise: 0620 Sunset: 2010
Wind: 10 kts
Seas: 4-7 ft
Rain showers

Cape Disappointment Lighthouse where the mighty Columbia River collides with the Pacific Ocean
Cape Disappointment Lighthouse where the mighty Columbia River collides with the Pacific Ocean

Science and Technology Log

With childlike anticipation and excitement I waited for the McARTHUR II to be freed from its berth and be given the freedom to sail towards the ocean world ruled by Neptune, the god of water and sea in Roman mythology. The time had finally arrived and with the captain’s decision we pulled away from the dock, turned 180O, and set “sail” due west to where the water worlds of the Columbia River and Pacific Ocean collide. After exiting the Columbia and entering the Pacific, the McARTHUR II would turn south and set a heading toward the first sampling station located about nine miles offshore due west of Cape Falcon. ETA (Estimated Time of Arrival) is early afternoon. In the meantime I enjoyed the rugged, coastal scenery of the far southwestern tip of the state of Washington on the northern shore of the Columbia River. Before long I was officially an ocean mariner. An important question was soon to be answered: How long would it take for me to obtain my sea legs? 

It was time to get to work. Before reaching the first sampling site the science team met in the lounge to try on thermal survival suits to determine if they fit properly. It was cumbersome putting on the heavy red suit; I looked liked the cartoon character Gumby (but red rather than green) but it gave me a bit of peace of mind. Hopefully, that’s the last I’ll see of that suit. Next, we met on the ship’s fantail (back lower working deck of the ship). The Chief Bos’n discussed shipboard operations that are carried out on and safety issues associated with the fantail, the working section of the ship. Hardhats and a working vest are mandatory. We then learned how to operate the “A” frame that aids in deployment and retrieval of the heavy, bulky CTD platform, how to properly attach the Niskin bottles’ cables to the triggering latch at the top of the CTD, and lastly how to correctly deliver the water collected inside the Niskin bottles to a sample container for analysis in the ship’s wet lab.

From the fantail we moved to the main deck on the starboard side aft of the ship’s middle section to learn how to deploy, retrieve, and collect samples from the four types of zooplankton nets, each of which also requires recording certain kinds of data about the cast. I’ll discuss biological sampling in more detail later. Admittedly, when it was all done I was a bit overwhelmed but figured that after a station or two when I developed a rhythm and familiarity with the equipment and time scale for collecting samples, I would get the hang of it.

It was 1500 (3pm) and the McARTHUR II had rendezvoused with the first nearshore sampling site about 10 miles west of Cape Falcon (45O46’N, 124O10’W). Preparations were complete and now it was time to begin 24 hour non-stop operations. I put on rain gear and rubber boots, found some dry gloves, and adjusted my hardhat and workvest. With that, Bob Sleeth and I made our way to the “A” frame to prepare for the first CTD deployment.

Personal Log 

Winch (foreground left) and “A” frame (background) used to deploy and retrieve the CTD platform
Winch (foreground left) and “A” frame (background) used to deploy and retrieve the CTD platform

My first full day at sea. We departed early morning on schedule from the Astoria dock. As expected we met rough waters where the Columbia River and Pacific Ocean meet. The day was overcast as is typical for this region of the U.S. this time of year, and cold. It snowed during the trip out to sea. Along the Columbia I was treated to the gorgeous coastal cliffs of Cape Disappointment to the north and the snow capped mountains south of Astoria. The swells subsided once the McARTHUR II reached water depths >200 feet. I’ve been out to sea for over twelve hours now and I’ve experienced no signs of sea sickness though the waters have been relatively calm. I am still earning my “sea legs” but I suppose by cruise’s end I won’t run into the hallway walls, the hallway water fountain, or my bed as often.

The overcast, gray skies ruined any chance in witnessing a marine sunset. I was still energized and excited like a kid on a “candy high” when I crawled into my lower bunk bed at 1900 (7pm). With my first shift complete I looked forward to my second shift at 0100 (1am). I figured though that I wouldn’t sleep with it being a new environment, new sounds, new smells, and the ship pitching and rolling. For the next five hours I went back and forth between sleep and semi-sleep where you’re relaxed but at the same time fully aware of the surroundings. Half past midnight I rolled out of bed, got dressed, and went to the dry lab to prepare for the 0100 to 0500 shift. 

Scott Donnelly, April 20, 2008

NOAA Teacher at Sea
Scott Donnelly
Onboard NOAA Ship McArthur II
April 20-27, 2008

Mission: Assembly of Science Team and Movement of Science Gear/Equipment
Geographical Area: Coos Bay to Astoria, Oregon
Date: April 20, 2008

NOAA TAS Scott Donnelly (green helmet) and fellow science team member Bob Sleeth collecting zooplankton
NOAA TAS Scott Donnelly (green helmet) and fellow science team member Bob Sleeth collecting zooplankton

Science and Technology Log 

The start of the cruise has been delayed one day due to the rough, unpredictable, and potentially dangerous waters where the mighty eastward flowing Columbia River and its massive volume of freshwater collides head on with the cold, salty water of the vast Pacific Ocean. Where this water slugfest happens, sands bars shift repeatedly this way and that way as the pushing and shoving between the massive volumes of sea and freshwater continues without interruption. At low tide the sand bars are easily seen; they are numerous and of great area and irregular in shape.

On account of the delay, most of the day was spent making sure instruments worked properly and non-instrument equipment was organized to maximize efficiency. Perhaps though more importantly, the delay gave the eleven science team members— most of them complete strangers to one another—extra time to get to know one another. This is important because all of us will be shipboard for eight days confined to quaint sleeping quarters, working, eating, relaxing, playing, and interacting with each other. There’s no escaping once the ship moves away from the dock and goes out to sea. It also gave science team members time to get to know the ship’s crew, who themselves play a key role in the overall success of the mission.

Science team meeting in the dry lab aboard NOAA ship McARTHUR II
Science team meeting in the dry lab aboard NOAA ship McARTHUR II

Communication is a two-way street. From the science team perspective we have to communicate with each other and also with the crew in order to be productive and minimize mistakes. Ocean science truly is an interdisciplinary endeavor that relies on the talents and work ethic of the people involved. This brings me to my next topic. Science is a uniquely human pursuit; good science relies on people. Modern scientific inquiry is all about assembling the best minds and talent possible into a highly productive team. It’s not just about brains though. Personalities and people skills matter too. In fact, they matter a lot. They can make or break a scientific mission. All it takes is an individual with a 60-grit sandpaper personality to upset the ebb and flow of human group dynamics.

Ocean science is all about teamwork!  

In a few hours I’ll see how such dynamics work out on this cruise with this assemblage of people, the youngest being an undergraduate science major and the oldest a retired Silicon Valley engineer. Four of the eleven science team members (myself included) have never been at sea. We don’t know what to expect or, for that matter, think about with respect to what lies ahead this next full week.

After lunch we met as a group with the NOAA Corps officers and reviewed the ship’s rules and regulations. We then had a science team meeting whereby the cruise’s Chief Scientist, Dr. Steven Rumrill, gave a brief overview of the cruise’s scientific mission, discussed shipboard operations, the cruise’s plans and objectives, and the itinerary and the logistics associated with sample collection and data acquisition.

In summary, the science team will measure a number of salient water quality parameters (see my log April 19, 2008) and collect samples of marine invertebrates (boneless organisms) along the Oregon Continental Shelf (OCS) at varying depths and distances from the coast over the period of 20-27 April 2008. This time of year was chosen because it precedes the development of an upwelling/hypoxia event that is anticipated to develop later in the summer of 2008. (The oceanographic terms upwelling and hypoxia will be discussed later in this log.) Water and biological sampling will continue non-stop for 24hrs per day, every day of the cruise except the last day when preparations are made for eventual docking.

Each work shift is four hours in length and is followed by an eight hour rest & relaxation (R&R) period. My assigned shift mate is Bob Sleeth and the team leader Ali Helms, a research cruise veteran who works full-time under Chief Scientist Steve Rumrill at South Slough National Estuarine Research Reserve (SSNERR). Ali will work the CTD controls in the dry lab while Bob and I will collect water samples from the CTD Niskin bottles and also zooplankton and phytoplankton using specially designed nets deployed starboard (right side of ship) to various depths and eventually retrieved after a certain length of time. Our daily shift schedule is from 0100 to 0500 (1am to 5am) and 1300 to 1700 (1pm to 5pm) with an eight hour R&R period in between each shift. Once started operations will continue on a 24-hour basis without interruption unless for inclement weather or seas.

The map to the right shows the major geographical regions where sampling will occur along the continental shelf of Oregon between Astoria (46O10’N, 123O50’W) and Cape Blanco (42O51’N, 124O41’W). At each sampling site biological (phytoplankton and zooplankton) samples will be collected at varying depths using special collection nets of varying mesh and design.

The operating area for this cruise is the nearshore region of the Oregon Continental Shelf (OCS), between Astoria (Cape Falcon 45o46’N, 124o40’W) and Cape Blanco (42o51’N, 124o41’W) at sites or stations ranging from 3 to 55 miles off the coast. Multiple sampling stations are scheduled along the Newport Hydrographic (NH) Line (maroon line), the Umpqua Estuary Line (green line), the Coos Bay Line (blue line), and the Coquille Estuary Line (orange line). The number of sampling stations is indicated by the number adjacent each colored line. Sampling also will take place at multiple sites (26 total) south of the Columbia River-Pacific Ocean interface and north of the NH Line as indicated by the purple circle on the map at right. Weather permitting, in total there are 59 sites where chemical and biological characterization of the water column will be carried out.

Previously I mentioned the oceanographic terms upwelling. So what is upwelling? A short definition is that upwelling is a vertical water circulation pattern in which deep, cold and typically nutrient- rich seawater moves upward to the ocean surface. Upwelling occurs in a number of places around the world on the western side of continents. It is caused either by strong, consistent winds blowing parallel to the shore as is the case on the Oregon coast in the summer months, or by deep, cold ocean currents smashing into the continental landmass and having no where to go but up as is the case in the southern hemisphere off southern Chile (South America) and Namibia (southwestern Africa). During summer in the northeastern Pacific, a clockwise rotating, high-pressure air system is positioned off the Washington-Oregon coast. Strong northerly winds blow south parallel to the Washington-Oregon coasts pushing the surface water towards the equator. At the southernmost region of the high pressure air system the water is pushed out to sea, away from the Oregon coast. As the surface water is pushed south toward the equator, deep, cold water from below upwells and thereby replaces the warmer, less dense surface water displaced to the south by winds of the high-pressure air system.

Hypoxia describes seawater that is low in dissolved oxygen gas (DO). Generally, the accepted concentration value for waters deemed hypoxic is less than (<) 1.5mg O2/L seawater. Marine organisms vary in their oxygen demand. The more active and larger swimming marine organisms such as tuna and mackerel typically require more oxygen per body weight in order to generate the metabolic activity necessary to supply their dense muscles with the requisite energy to slice through the water oftentimes counter to the current. So an active fish that moves into hypoxic waters decreases its chance of survival.

Oregon coast
Oregon coast

Personal Log 

As expected I didn’t sleep well last night, the first night on the ship. It wasn’t because of the ship’s movement either. It hardly moved as the Columbia River was calm with the wind blowing weakly. It’s a given that more often than not I sleep poorly in a new environment whether it’s a hotel, my in-laws home, or camping. Even if dead tired at best I’ll catnap for 1.5 hour intervals at the most, if lucky.

I was assigned to share living-sleeping quarters with three other science team members. The cabin contained two bunk bed units (top and bottom) separated by a wall, two small desks in the corners, ample storage space below each lower bunk bed and all along three of the four walls of the room, a (very) small lavatory with a hot/cold water shower and toilet, and a sink with hot/cold water to freshen up in the morning or before bed. In spite of the room’s relatively small size (~12ft x ~12ft), the storage capacity was more than enough to accommodate the personal gear of four people for simple, Spartan living. Every square inch of wall space was utilized for storage or some other useful, practical function. Basically, no space was wasted. Wall hooks were everywhere to hang jackets. Each bed had its own reading light, a full-length curtain for privacy (relatively speaking), and a side bumper so that when the ship rolled one didn’t roll out of bed onto the floor. Overall, it was a good example of efficient use of space for simple, practical, but productive living.

The mission delay provided more time for me to talk to and get to know members of science team, particularly my assigned shift mate Bob Sleeth, a retired Silicon Valley electronics engineer. After a hearty breakfast we spent Sunday morning exploring the quiet Astoria waterfront. Bob and a friend sailed in a 35 foot yacht from San Diego to French Polynesia in the South Pacific, spending a year sailing to and from the small islands that constitute the vast archipelago of beautiful islands including Bora Bora and Tahiti.

Cargo ship arriving at Astoria port
Cargo ship arriving at Astoria port

After lunch I spent a considerable amount of time studying the wrestling match between the ebb and flow of the high and low tides of the Columbia River. Salt water vs. fresh water. Bob gave me a few pointers on how wave structure gives a clue about the subtle changes in wind direction and speed at the water’s surface. This led to a lengthy conversation about how the nameless but intrepid mariners of ancient times, the Vikings, and those of the Age of Maritime Discovery of the European Renaissance (Ferdinand Magellan, Christopher Columbus, James Cook and many more) used their observational powers to chart the vast oceans without the aid of longitudinal coordinates. For example, the appearance of a certain bird over water, marine organism, or the change in surface water color or texture possibly meant that land or an island, yet unseen over the curvature of the earth’s surface, lay just below the horizon.

Throughout the day a number of cargo ships loaded with goods made their way slowly into port. That led to a discussion about how a seemingly small decrease in water volume translates into cargo ships having to shed weight else they run aground. Early tomorrow morning we start the mission and head out to the intimidating, deep waters of the Pacific Ocean. 

Scott Donnelly, April 19, 2008

NOAA Teacher at Sea
Scott Donnelly
Onboard NOAA Ship McArthur II
April 20-27, 2008

Mission: Assembly of Science Team and Movement of Science Gear/Equipment
Geographical Area: Coos Bay to Astoria, Oregon
Date: April 19, 2008

Loading gear onto the McARTHUR II in the snow and rain
Loading gear onto the McARTHUR II in the snow and rain

Science and Technology Log 

The long, winding drive along US Highway 101 from Oregon Institute of Marine Biology in Charleston to Astoria was well worth it. For the most part every turn opened to a panoramic view of the Pacific Ocean to the west. To the east, lush, verdant open meadows, some inundated with small ponds and bordered by thick coniferous forests, pleased our eyes. We stopped in Newport, OR to pick up a science team member and had lunch at a local restaurant with a microbrewery. I feasted on Kobe Chili.

NOAA Teacher at Sea, Scott Donnelly, next to a CTD with Niskin bottles in port at Astoria, OR
NOAA Teacher at Sea, Scott Donnelly, next to a CTD with Niskin bottles in port at Astoria, OR

After arriving at the Astoria dock (45O12’N, 124O50’W) late afternoon and loading all the gear, equipment, and supplies aboard the McARTHUR II, we spent the evening moving personal gear into our assigned shipboard cabins, setting up and troubleshooting the computer and data collection systems, organizing the ship’s wet lab, installing dissolved oxygen (DO) and chlorophyll fluorometer sensors onto the shipboard Conductivity-Temperature-Depth (CTD) platform, and calibrating the instruments in preparation for the cruise.  The scientific instrumentation that will be used on the cruise is impressive and worth mentioning since in science data are only as good and believable as the tools used to collect it. The cruise’s instrument workhorse will be the CTD as it will be used at every sample site. The following physical-chemical water quality parameters will be measured continuously as the CTD descends and then ascends through the water column: conductivity, temperature, depth, dissolved oxygen (DO), and chlorophyll a fluorescence. Attached to the CTD are twelve cylindrical Niskin bottles, each with a volume capacity of 2.5 liters (0.66gal). Water collected in the Niskin bottles at various depths will be collected and taken to the ship’s wet lab where the following water quality parameters will be measured using a multi-sensor sonde or probe: salinity, pH, and turbidity. The photo below shows the CTD with Niskin bottles.

Let’s begin by talking about a CTD, which measures seawater’s conductivity (more or less the amount of dissolved ions in a given mass or volume of seawater), its temperature, and depth of the surrounding water column at the time a measurement is made. The latter two parameters are self-explanatory so let’s focus on conductivity. Seawater conducts electrical current because seawater contains dissolved ions, i.e. charged particles, either positive or negative. The major ions in seawater contributing to its conductivity are predominately sodium (Na+) and chloride (Cl) but other ions in varying amounts, depending on location and depth, are present as well. Examples include magnesium (Mg+2), calcium (Ca+2), carbonate (CO3-2), bicarbonate (HCO3), and sulfate (SO4-2). Other important elements found in trace or very small amounts in seawater are lithium (Li+), iodine (I), zinc (Zn+2), iron (Fe+2 and Fe+3), and aluminum (Al+3). This list is not exhaustive by any means.

Conductivity is related to salinity. In general, the greater seawater’s conductivity, the greater its salinity. Salinity of seawater though is not constant; it depends on a number of factors, two of the more important being depth and temperature.  Atmospheric gases, namely molecular nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), readily dissolve in seawater, particularly so at the ocean’s surface where wave action facilitates this process. A dissolved oxygen (DO) probe (or sensor, typically the two words mean the same thing) measures the mass (or weight) of O2 dissolved in a given mass or volume of water. The units associated with a measured value then would be either mg O2(g)/kg seawater or mg O2(g)/L seawater. The symbol mg means milligrams, kg means kilograms (1kg = 1,000g = 2.2 pounds), and L means liter. Why is the denominator in the ratio either kg or L? The unit kg is a unit for mass, which does not depend on temperature. The mass (or weight) of a substance does not change simply because it gets warmer or cooler because mass measures the quantity of matter of the substance. The mass of any substance then is independent of temperature. If a book weighs one pound, it weighs one pound regardless if it’s placed in the sun or in the freezer. The unit L (liter) is a unit for volume, the value of which does depend on temperature. An object of some mass occupies a greater volume when warm than when cool.

Also attached to the CTD platform is a chlorophyll a fluorescence sensor, which measures the mass of chlorophyll (typically in micrograms, mcg or μg) per volume (typically one liter, L) seawater (overall units mcg/L). Small biological organisms called phytoplankton contain chlorophyll and hence carry out photosynthesis. Like the photosynthesis carried out by terrestrial vegetation, phytoplankton utilize the red and blue light-absorbing molecule called chlorophyll and the carbon dioxide (CO2) dissolved in seawater to produce biomass and molecular oxygen gas (O2). The famous equation for photosynthesis is:

CO2 + red and/blue light + H2O Ö biomass + O2 Photosynthesis though doesn’t work unless sufficient red and/or blue light from the sun is available at the depths phytoplankton are found. The zone in the ocean near the surface where marine photosynthesis takes place is called the photic zone.

The amount of chlorophyll measured by the sensor is in direct proportion to the amount of photosynthesizing phytoplankton found in seawater. Chlorophyll then can be counted so to speak by making the chlorophyll molecule in phytoplankton fluoresce, i.e. emit light. A chlorophyll fluorescence sensor (CFS) shoots a pulse of blue light into the surrounding seawater. A chlorophyll molecule absorbs the blue light which causes it to emit (give off) red light. The CFS sensor measures the red light emitted. Basically, the more red light that’s emitted means the more chlorophyll-containing phytoplankton present in the surrounding seawater at the depth where the measurement occurs.

Pelagic snail collected off the southern Oregon coast near Coos Bay
Pelagic snail collected off the southern Oregon coast

A CO2 probe interfaced with a computer for continuous real-time data collection measures the amount of gaseous CO2 (in milligrams, mg) dissolved in a given volume of water (typically one liter). Measuring CO2 in seawater is done to gauge the extent of CO2 gas the ocean “cleans” or “scrubs” (not the television show) from the atmosphere. The world’s oceans are huge CO2 sinks because they absorb enormous amounts of gaseous CO2 from the atmosphere annually, a good amount of which is converted into biomass by the photosynthetic activity of phytoplankton.

The “unused” dissolved CO2 forms carbonic acid, H2CO3, which in turn drops the seawater pH, thereby eventually making seawater more acidic. This added acidity (drop in pH) is countered or buffered by the ocean’s natural basic pH, resulting in essentially no net change in pH. But this buffering capacity has limits. If the buffering capacity is exceeded by the addition of too much CO2 in a given time period or the reduction in phytoplankton photosynthesis, then the net result is a drop in pH, making the seawater more acidic. This change in seawater chemistry, in turn, can have deleterious effects on the biology of marine organisms, especially those organisms that live and reproduce in a limited pH range.

One marine organism that is expected to succumb to the predicted net acidification of the oceans over the next decade or so, if not sooner, is the pelagic snail (see photo below). The term pelagic means open so a pelagic snail is found in the open ocean away from the coast.

Why is the pelagic snail threatened? Acidification of the ocean increases the solubility of calcium carbonate (CaCO3), the major constituent of the shells of marine organisms. Solubility is a chemistry term that relates the amount of substance (CaCO3) dissolved in a liquid, in this instance seawater. Essentially a drop in pH (acidification) increases the amount of calcium carbonate in the exoskeleton or shells of marine organisms dissolved, thereby producing thinner shells. Ultimately the shell becomes too thin and any major wave action will break the shell and the organism dies. To show this process, place an egg in a glass of vinegar overnight. The egg shell’s chemical composition is CaCO3. Vinegar is acidic. Over time the shell becomes progressively thinner. Eventually the egg shell dissolves away completely if the egg remains in the vinegar long enough. The yolk inside the egg then is no longer protected by the shell.

Personal Log 

NOAA vessel McARTHUR II in port in Astoria, OR
NOAA vessel McARTHUR II in port in Astoria, OR

I awoke Saturday morning to the music of song birds and a slight drizzle. I couldn’t identify which type of song bird but it didn’t matter; it was a good start to what would be a great day. Early Saturday morning we packed the scientific gear and sensitive equipment/instruments for the seven-hour vehicular transport along US Highway 101 to Astoria, Oregon (45O12’N, 124O50’W), where the NOAA research ship and crew of the McARTHUR II (see photo left) were docked and awaiting our arrival. The south-north drive along US Highway 101 is long and winding but is replete with breathtaking scenery at every turn. It’s highly recommended when visiting Oregon.

The seven-hour drive in the minivan from Coos Bay to Astoria was a good chance to interact with and talk to some of the other science team members, all of whom I had never met nor talked to previous to today. We all would be shipboard with each other for nine straight days. I had better get to know them and get an idea what makes them tick. I’m sure they thought the same.

In addition, over the past year or so I have developed a keen interest in how ships work and as I came to find out during the seven-hour drive so too did a fellow science team member, Bob Sleeth, who sat adjacent to me during the drive to Astoria. The NOAA crew was most welcoming and eager to talk about their ship. Bob and I were treated to an immensely educational tour of the McARTHUR’s navigational systems capabilities from Ensign Andrew Colegrove, a NOAA junior officer who obviously is passionate about both his job and maritime history; he also has a wealth and breadth of knowledge about the practical, engineering ins-andouts of modern ship technology and operational systems. I lost track of time but I’m sure the personal tour lasted more than two hours.

Elizabeth Eubanks, August 3, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: August 3, 2007

Weather Data from the Bridge taken at 1300 (5am)  
Visibility: 10+ miles
Air temperature: 18.7 degrees C
Sea Temperature at surface: 21.9 degrees C
Wind Direction: 010N
Wind Speed: 5 kts
Cloud cover: partially cloudy– stratus
Sea Level Pressure: 1014.2 MB
Sea Wave Height: 1-2 ft
Swell Wave Height: <1 ft

Science and Technology Log 

Cleaning – Cleaning – Cleaning. We fuel for 4+ hours – Amazing! We will be in port by 2pm today.

Screen shot 2013-04-18 at 7.23.31 AM

Personal Log 

Thank you, thank you, thank you. I have been honored to be selected to participate in NOAA’s Teacher at Sea program. This has been a life-changing adventure. I am wiser and have so much to share with my students and community.

A huge thanks to all of the scientist for being so nice and so helpful. I feel honored to have worked with Dr. Suzi Kohin, Dr. Russ Vetter and Dr. Jeff Graham as well as grad students Lyndsay Field, Heather Marshall, Dovi Kavec (thanks for being my on board conscience!), Noah Ben Aderet, Alfonsia “Keena” Romo-Curiel, South West Fisheries staff (including Suzi and Russ), Anne Allen (thanks for taking me to the bow chamber), Eric Lynn, Monterey Bay Aquarium staff, Ann Coleman (thanks for teaching me how to set and haul and collect data), and my roommate Leanne Laughlin from California Department of Fish and Game.  The crew has been awesome. I give you many, many thanks and wish you the best at sea. Chico – I am happy and I know it – so my face surely shows it! Jose – “any minute now” and you will catch a fish.

Peter good luck at the Maritime Academy and with the guitar.

LCDR Keith Roberts, thanks for your command. XO Kelley Stroud, thanks for your help with kids’ supplies. I am going to stop here, in case I forget someone, but please know I appreciate all of the folks on the deck, bridge, engine room (Great tour John!) and the galley (the food was amazing) so much. Thanks for your interviews – you will be famous. This trip has been amazing!

Screen shot 2013-04-18 at 7.23.46 AM

Questions of the Day 

What sounds most interesting about the adventure at sea? Would you like to go to see to study sharks? 

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis. ———Yes, you get extra credit for this. 

Elizabeth Eubanks, August 1, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: August 1, 2007

Weather Data from the Bridge  
Visibility: 10 miles
Air temperature: 17.4.0 degrees C
Sea Temperature at 500 m: 4 degrees C
Sea Temperature at surface: 15.2 degrees C
Wind Direction: 300 W
Wind Speed:  13 kts
Cloud cover: cloudy–stratus
Sea Level Pressure: 1014.7 MB
Sea Wave Height: 1-2 ft
Swell Wave Height: 3-4 ft

Science and Technology Log 

Make use of all or your resources! Yes, this ship is charted to study sharks, but as mentioned previously there are many other research projects going on. Dr. Russ Vetter and Eric Lynn are administering a CTD apparatus twice daily in the proximity of where the long lines are set: every night at 2000 (8pm) and every morning at 0500 (5am). CTD stands for Conductivity, Temperature and Depth. This machine costs approximately $15,000 and helps give scientist data to evaluate. The apparatus is dropped from a J Frame, a crane-like structure, from the ship into the ocean, while being guided by E. Lynn and R. Vetter who are strapped to the ship. See photos above and below. The apparatus contains two bottles, similar to a large thermos. Both bottles are open all the way down, depending at what depth the CTD drops to. On this trip it has ranged between 250m and 1,000m down. Once it gets to its destination the scientist pushes a button on their computer that is connected to the bottles and tells them to fire. This action shuts the bottles trapping water samples inside. One bottle is used for maximum depth water collection and the other is used for water sample collections at 10m. They have boxes filled with water samples that will be taken back to San Diego for testing by other scientists.

NOAA scientists, Eric Lynn and Dr. Russ Vetter prepare to lower the CTD. Notice the green cylinders on the left side of the CTD – they are bottles for water samples.
NOAA scientists, Eric Lynn and Dr. Russ Vetter prepare to lower the CTD. Notice the green cylinders on the left side of the CTD – they are bottles for water samples.

There are many other structures on the CTD that measure, salinity, temperature, depth, oxygen levels and fluorescence. Fluorescence measures how much chlorophyll is in the ocean and can be compared to the oxygen levels. Chemical Scientists who work for NOAA have put CO2 detection equipment on board many of the NOAA ships including the NOAA ship DAVID STARR JORDAN. The scientists do not travel with the ship, but come and check the data quite often. Global warming and CO2 levels in the atmosphere have been a hot topic. Many, many years ago when scientists were determining what to do with all the extra CO2, they had thought about pumping into the ocean. Thinking has changed a lot since then. Now scientists realize that the extra CO2 in the ocean is just as detrimental to the ocean as it is to the atmosphere. We’re all connected, we’re all affected. 

A very simple way to think about this is to think of the age-old science experiment of when you put a tooth in a bottle of soda and after a short time the tooth dissolves.  When CO2 is added to ocean water it creates a carbonic acid. Our bones are made of the mineral calcium (Ca) which keeps them hard and allows them to support our bodies.  Sea creatures that have bones or a shell count on Ca as well. Can you imagine what would happen to a clam that didn’t have enough Ca to make a shell? Or could you imagine a clam that had a shell and the acidic ocean water ate it up? These are things we need to imagine. Because of the increase in CO2, our average ocean Ph has dropped from ~ 8.1 down to 7.8, thus making the ocean more acidic. What I write here is only a first stepping stone to so many various things that are occurring with an increase of CO 2 levels on our planet.

The CTD being lowered from the J Frame on the NOAA ship DAVID STARR JORDAN
The CTD being lowered from the J Frame on the NOAA ship DAVID STARR JORDAN

Personal Log 

I can recall sitting in my classroom sometime in March or April. Maggie, a student, was in the room and it was well over an hour after school. I checked my email as I do routinely and there it was, the long awaited message from NOAA. I was a little nervous opening it, but did rather quickly. I was so excited to find out that I had been chosen to participate and immediately shared the news with Maggie, Rob and Dr. Finely the principal of my school. Anticipation filled my life until I got my assignment which was to board the NOAA Ship ALBATROSS IV in July, out of Woodshole, Mass to do a sea scallop survey. Of course I started reading all of the logs teachers had written. I prepared myself for working 12-hour shifts and measuring scallops. In May, when the staff at NOAA realized I would be in San Diego and that there was an opening on the NOAA Ship DAVID STARR JORDAN, they called and asked if I wanted to work with sharks.

It only took me 24 hours to accept that position and then I had new logs to read and new things to anticipate. I was extremely excited and equally as nervous. Would I get sick? Would people be nice? Would I feel safe and comfortable? Would I like the jobs I needed to do? Was I capable of doing the jobs? Oh no – I am not so great with the metric system, will people think I am stupid if I have to think and research before making a conversion? How much will I miss Rob? Will I like boat life? Then my questions even got more specific. Will have enough food? Which snacks should I bring? What does closed-toed shoes mean– can I wear Keens? Do I bring a towel? How many hobby supplies or books should I bring? How many girls will be there? Do we have to share a room with a guy (really I didn’t know)? You can imagine all of the questions I had and they didn’t stop until I had spent 24 hours on the ship and then I understood.

Here I am 11 days into this amazing adventure that has far surpassed anything I imagined. I have 2 more nights to get a giant “rock” (from the ocean waves) to sleep and 3 days to live on the Pacific Ocean. We only have 2.5 sets left to do.  Amazing. – I am going to enjoy every bit – starting right now – I am going to enjoy some of the great folks on board.  

Question of the Day 

What are some things YOU can do to further prevent the ocean from becoming more acidic?

What is a terapod?

What are some things that you anticipate about the upcoming school year?

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis. ———Yes, you get extra credit for this.