Sue Cullumber: Reflections – From the Atlantic to Arizona, June 26, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/26/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

1stgroup

Our first group for the EcoMon Survey. Kat, Kevin, Holly, Chris, Tom, Sue, Chris, and Cristina.

Personal Log: Well I’m back in my home state of Arizona.  It is really hot, the forecast is for it to be above 110º, and I miss the cool breezes of the Atlantic Ocean.  I am happy to be back in Arizona, but I will miss all the people, the marine creatures and the beauty of the Atlantic Ocean.  I will remember  this experience for the rest of my life and look forward to sharing this exciting adventure with my students, friends and family.

2ndgroup2

Our 2nd group for the EcoMon Survey. Tom, Kris, Cristina, David, Sue, Chris, Kevin and Sarah.

On the last two days onboard we finished up our EcoMon Survey and had time to add 23 more Bongo Stations.  These were completed in two areas with the first just east of Maryland and the second off the coast of North Carolina. As we headed east of North Carolina we went into the Gulf Stream and the water temperature started to increase. At these stations our samples contained more larval fish than previously. We even brought up some deep-sea fish in two of these samples. One was a species of Gonostoma and the second a Hatchet fish. Both were fairly small and black with iridescent colors and had large mouths with many teeth.

deepseafish6_22

A fish, from the species Gonostoma, that was brought up in our Bongo net.

deepseahatchet6_22

A Hatchet fish in our Bongo net sample.

Our drifter buoy, WMO # 44932,  has been showing some movement since being deployed (to track movement, put GTS buoy for data set and WMO # for platform ID).  Currently it is at latitude/ longitude:  38.73ºN, 73.61ºW.  It does appear to be moving inland, but hopefully it will catch the current and start moving further into the Atlantic.  We will be tracking it at Howard Gray over the next year.

margaretcrablegs

Margaret Coyle, our chief steward, serving Alaskan crab legs.

Last day on the Gordon Gunter, Margaret, the chief steward, prepared a special meal for all of us.  The spread included: Alaskan crab legs, roast duck with plum sauce, NY loin strip Oscar, grilled salmon, asparagus, red potatoes, Italian rolls, cream of potato and bacon soup (which I had at lunch, delicious) and cranberry cheesecake.  I choose the crab, duck, asparagus, potatoes, and cheesecake – heavenly!!!  I probably shouldn’t have had the cheesecake as well,  but it was just delicious!  Margaret always had so many great choices it was really hard to make up your mind.

dolphinbottlenose

Bottlenose Dolphin at the bow of the Gordon Gunter.

Our last night on the Gordon Gunter was amazing. We had another unbelievable sunset with fantastic colors.  A friend of mine from Arizona said, “It makes our Arizona sunsets look very bland and I think they are some of the best I’ve seen.”  Then a group of Bottlenose dolphins visited the bow of the ship, so it was truly a remarkable night I will always remember.

sunsetfinal

Our final sunset on the Gordon Gunter.

sueongunter6_24

Enjoying the cool breezes of the Atlantic Ocean.

Question of the day? :  Why do you think the deep-sea fish have such large mouths?

Sue Cullumber: Testing the Water and More, June 19, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/19/2013
Geographical area of cruise: The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Latitude/longitude: 3853.256 N, 7356.669W
Temperature: 18.6ºC
Barometer: 1014.67 mb
Speed: 9.7 knots

CTDscreen

CTD reading on the computer. Blue is density, red is salinity, green is temperature and black indicates the depth.

Science and Technology Log:

Even before the plankton samples are brought onboard, scientists start recording many types of data when the equipment is launched. The bongos are fitted with an electronic CTD (conductivity, temperature and density) and as they are lowered into the ocean the temperature, density and salinity (salt content) are recorded on a computer. This helps scientists with habitat modeling and determining the causes for changes in the zooplankton communities. Each bongo net also has a flow-through meter which records how much water is moving through the net during the launch and can is used to estimate the number of plankton found in one cubic meter of water.

ZIplankton

Zooplankton (Z) and Icthyoplankton (I) samples.

The plankton collected from the two bongo nets are separated into two main samples that will be tested for zooplankton and icthyoplankton (fish larvae and eggs). These get stored in a glass jars with either ethanol or formalin to preserve them. The formalin samples are sent to a lab in Poland for counting and identification. Formalin is good for preserving the shape of the organism, makes for easy identification, and is not flammable, so it can be sent abroad.  However, formalin destroys the genetics (DNA) of the organisms, which is why ethanol is used with some of the samples and these are tested at the NOAA lab in Narragansett, Rhode Island.

sueplankton

Holding one of our zooplankton samples – photo by Paula Rychtar.

When the samples are returned from Poland, the icthyoplankton samples are used by scientists to determine changes in the abundance of the different fish species. Whereas, the zooplankton samples are often used in studies on climate change. Scientists have found from current and historic research (over a span of about 40 years) that there are changes in the distribution of different species and increases in temperature of the ocean water.

At the Rosette stations we take nutrient samples from the different water depths. They are testing for nitrates, phosphates and silicates. Nutrient samples are an important indicator of zooplankton productivity. These nutrients get used up quickly near the surface by phytoplankton during the process of photosynthesis (remember phytoplankton are at the base of the food chain and are producers). As the nutrients pass through the food chain (zooplankton eating phytoplankton and then on up the chain) they are returned to the deeper areas by the oxidation of the sinking organic matter. Therefore, as you go deeper into the ocean these nutrients tend to build up.  The Rosettes also have a CTD attached to record conductivity, temperature and density at the different depths.

Chris-DICtests

Scientist, Chris Taylor, completing the dissolved inorganic carbon test.

CO2test

The dissolved inorganic carbon test uses chemicals to stop any further biological processes and suspend the CO2 in “time”.

Another test that is conducted on the Rosettes is for the amount of dissolved inorganic carbon. This test is an indicator of the amount of carbon dioxide that the ocean uptakes from outside sources (such as cars, factories or other man-made sources). Scientists want to know how atmospheric carbon is affecting ocean chemistry  and marine ecosystems and changing the PH (acids and bases) of the ocean water. One thing they are interested in is how this may be affecting the formation of calcium in marine organisms such as clams, oysters, and coral.

New word: oxidation – the chemical combination of a substance with oxygen.

canal

Cape Cod canal.

Personal Log:

This week we headed back south and went through the Cape Cod canal outside of Plymouth, Massachusetts. I had to get up a little earlier to see it, but it was well worth it.  The area is beautiful and there were many small boats and people enjoying the great weather.

smallboat

Small boat bringing in a new group to the Gordon Gunter.

We also did a small boat transfer to bring five new people onboard, while three others left at the same time. It was hard to say goodbye, but it will be nice to get to know all the new faces.

dolphinsthree

Common Dolphins swimming next to the Gordon Gunter.

So now that we are heading south the weather is warming up. I have been told that we may start seeing Loggerhead turtles as the waters warm up – that would be so cool.  We had a visit by another group of Common Dolphins the other day. They were swimming along the side of the ship and then went up to the bow. They are just so fun to watch and photograph.

We have been seeing a lot of balloons (mylar and rubber) on the ocean surface. These are released into the air by people, often on cruise ships, and then land on the surface. Sea turtles, dolphins, whales and sea birds often mistake these for jelly fish and eat them.  They can choke on the balloons or get tangled in the string, frequently leading to death. Today, we actually saw more balloons than sea birds!!! A good rule is to never release balloons into the air no matter where you live!

balloon

A mylar balloon seen in the water by our ship.

Did you know?  A humpback whale will eat about 5000 pounds of krill in a day. While a blue whale eats about 8000 pounds of krill daily.

Question of the day?  If 1000 krill = 2 pounds, then together how many krill does a humpback and blue whale consume on a daily basis.

Blue Whale, Balaenoptera Musculus

Blue Whale, Balaenoptera Musculus

Sue Cullumber: Navigating for Plankton – It’s a Team Effort! June 15, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date:  6/15/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Latitude/longitude:  4234.645N, 6946.914W
Temperature: 15.4ºC, 60ºF
Barometer: 1011.48 mb
Speed: 9.4 knots

Science and Technology Log:

Plankton is everywhere throughout the ocean, so how are the stations chosen and mapped?

IMG_9715

Looking over the map of our strata – photo by Cristina Bascuñán

Scientists first decide on a specific region or strata that they want to sample.  Then within this strata a specific number of stations is determined for sampling.  NOAA has developed a computer program that then randomly selects stations in the strata.  After these stations are generated, scientists play “connect the dots” to find the best route to get to all the stations. Once the route is generated adjustments are made based on time, weather and the team’s needs. These are plotted on a map and sent to the ship to see if further adjustments will need to be made.

IMG_9716

Map of our area of strata. We are currently following the red line. Many of the original stations to the east were dropped from the survey.

When the ship receives the map from the science party, they plot all the stations and make a track line to determine the shortest navigable route that they can take. Frequently the map that is originally provided has to be adjusted due to weather, navigation issues (if there is a shoal, or low area, the route may have to be changed), or ship problems. Once they come up with a plan, this has to be re-evaluated on a daily basis. For example during our survey we left four days later than planned, so many of the stations had to be taken out. Furthermore a large storm was coming in, so the route was changed again to avoid this weather. The Operation’s Officer onboard (Marc Weekley on the Gordon Gunter) speaks with the science party on a daily basis to keep the plan up to date and maintain a safe route throughout the survey.

IMG_9343

The Gyro Compass on the Gordon Gunter.

IMG_9642

The Sperry Marine – shows the location of vessels near the Gordon Gunter.

IMG_9700

Commanding Officer, Jeff Taylor, at the bridge with Ops Officer, Marc Weekley at the watch.

Ship Technology: The Gordon Gunter and all other NOAA vessels use many types of equipment to navigate the ship.  They have an electronic Gyro Compass which is constantly spinning to point to True North (not magnetic north).  This is accurate to a 10th of a degree and allows for other navigation systems on the ship to know with great accuracy what direction the ship is pointing. It also is used to steer the ship in auto pilot. When needed they can switch to manual control and hand steer the ship. They also have a magnetic compass onboard, if all electronics were to go out on the ship.  Also on the bridge are two radars, which provides position of all boats in the area and is used for collision avoidance. Underway, the Captain requires the ship to stay at least 1 nautical mile from other vessels unless he gives commands otherwise.

Once a station is reached the ship has to position itself so it will not go over the wire that is attached to the survey equipment.  Taking into consideration all of  the elements, which includes the wind speed, current weather conditions and the speed of the current, they usually try to position the boat so that the wind is on its port side.  In this way the wind is on the same side as the gear and it will not hit the propellors or the hull. The ship’s sonars determine the depth of the ocean floor and the scientists use this information to lower their equipment to a distance just above this depth.

IMG_9738

Cathleen Turner and Kevin Ryan take water samples from the Rosette.

Vocabulary:

Bow – front of the ship

Stern – back of the ship

Port – left of bow

Starboard – right of bow

Personal Log: 

Brrr… it’s cold!  To avoid the big storm we headed north to the Bay of Fundy that is located between Maine and Nova Scotia.  Seas were fairly calm, but was it cold at 9º C (48ºF), but with the wind chill it was probably closer to 5.5ºC (42ºF)!  We are now heading south so it is starting to warm up, but luckily it won’t be as hot as Arizona!

Loggerheadshark - tom

Loggerhead turtle being tracked by a Blue Shark – photo by Tom Johnson

readyfortakeoff

Shearwater trying to take off.

 

 

 

 

 

 

 

Trying to take photos of animals in the ocean is very difficult.  You have to be in the right place, at the right time, and be ready. Today we saw several sightings of whales, but they were in the distance and only lasted a second.  During this trip, there was also a sighting of a shark attacking a Loggerhead turtle, but by the time I got to the bridge we had passed it by.  Lately we have seen a great variety of sea birds including:  shearwaters, puffins, sea gulls, and about twenty fiver other types. Even though it can be a little frustrating at times, it is still very calming to look out over the ocean and the sunsets are always amazing!

shipinpinkandbluew

Sailing into a beautiful sunset

I can’t believe that there is only one week left for the survey.  Time has gone so fast and I have learned so much.  Tomorrow we are doing a boat exchange and some people are leaving while others will come onboard.  I will miss those people that are leaving the ship, but look forward to meeting new people that will join our team.

Did you know?  The ratio of different salts (ions) in the ocean water are the about same in all of the world’s oceans.

puffin

One of the pufffins we saw up by Maine.

Sue Cullumber: Can’t Wait to Head Out As a NOAA Teacher at Sea! May 21, 2013

NOAA Teacher at Sea
Sue Cullumber
(Soon to be) Onboard NOAA Ship Gordon Gunter
June 5– 24, 2013

Mission: Ecosystem Monitoring Survey
Date: 5/21/13
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

hikein

My students on a field-trip to the desert.

endofday

Howard Gray School in Scottsdale, Arizona.

Personal Log:

Hi my name is Sue Cullumber and I am a science teacher at the Howard Gray School in Scottsdale, Arizona. Our school provides 1:1 instruction to students with special needs in grades 5-12 and I have been teaching there for over 22 years!  In less than two weeks I will be heading out to the Atlantic coast as a NOAA Teacher at Sea.  I am so excited to have this opportunity to work with the scientists aboard the NOAA ship Gordon Gunter.

I applied to the NOAA Teacher at Sea program for the following reasons:

First, I feel that directly experiencing “Science” is the best way for students to learn and make them excited about learning. To be able to work directly with NOAA scientists and bring this experience back to my classroom gives my students such an amazing opportunity to actually see how science is used in the “real world”.

GALAPAGOS, ECUADOR

Visit to Española Island – photo by Pete Oxford

IMG_5384

Students holding “Piggy” and our other baby Sulcata tortoises.

Secondly, I love to learn myself, experience new things and bring these experiences back to my students. Over the past several years I have had the opportunity to participate in several teacher fellowships.  I went to the Galapagos Islands with the Toyota International Teacher Program and worked with teachers from the Galapagos and U.S. on global environmental education. From this experience we built an outdoor habitat at Howard Gray that now houses four tortoises.  Students have learned about their own fragile desert environment, animal behavior and scientific observations through access to our habitat and had the opportunity to share this with a school in the Galapagos. I worked with Earthwatch scientists on climate change in Nova Scotia and my students Skyped directly with the scientists to learn about the field research as it was happening. Last summer I went to Japan for the Japan-US Teacher Exchange Program for Education for Sustainable Development. My students participated in a peace project by folding 1000 origami cranes that we sent to Hiroshima High School to be placed in the Hiroshima Peace Park by their students. We also  held a Peace and Friendship Festival for the community at Howard Gray.

cranesgroup-copy

Completion of the 1000 cranes before sending them to Hiroshima.

IMG_6468

Japanese teachers learn about our King Snake, Elvis, from the students.

This year we had a group of Japanese teachers visit our school from this program and students taught them about many of the sustainable activities that we are working on at school.  Each has brought new ideas and amazing activities for my students to experience in the classroom and about the world.

edgeofcanyon

Dusk at the south rim of the Grand Canyon.

Lastly, Arizona is a very special place with a wide variety of geographical environments from the Sonoran Desert (home of the Saguaro) to a Ponderosa Pine Forest in Flagstaff and of course the Grand Canyon!  However, we do not have an ocean and many of my students have never been to an ocean, so I can’t wait to share this amazing, vast and extremely important part of our planet with them.

So now I have the chance of a lifetime to sail aboard the NOAA ship Gordon Gunter on an Ecosystem Monitoring Survey. We will be heading out from Newport, RI on June 5th and head up the east coast to the Gulf of Maine and then head back down to Norfolk, Virginia. Scientists have been visiting this same region since 1977 from as far south as Cape Hatteras, NC to the an area up north in the Bay of Fundy (Gulf of Maine between the Canadian provinces of New Brunswick and Nova Scotia).  They complete six surveys a year  to see if the distributions and abundance of organisms have changed over time. I feel very honored to be part of this research in 2013!

Gordon Gunter

NOAA Ship Gordon Gunter (photo credit NOAA)

One of the activities I will be part of is launching a drifter buoy. So students are busy decorating stickers that I will be able to put on the buoy when I head out to sea.  We will be able to track ocean currents, temperature and GPS location at Howard Gray over the next year from this buoy.  Students will be studying the water currents and weather patterns and I plan to hold a contest at school to see who can determine where the buoy will be the following month from this information. While out at sea my students will be tracking the location of the Gordon Gunter through theNOAA Ship Tracker and placing my current location on a map that one of my students completed for my trip.

IMG_9292

Spending time with my husband, Mike, and son, Kyle.

Outside of school, I love to spend most of my free time outdoors – usually hiking or exploring our beautiful state and always with my camera!  Photography is what I often call “my full-time hobby”.  Most of my photos are of our desert environment, so I look forward to all amazing things I will see in the ocean and be able to share with my husband and son, students and friends!  One of my passions is to use my photography to provide an understanding about the natural world, so I am really looking forward to sharing this fantastic adventure with everyone through my blog and photos!

wellearnedrest3

Enjoying the view during one of my hikes in the Sonoran Desert.

Kirk Beckendorf, July 19, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 19, 2004

Weather Data from the Bridge
Time Noon ET
Latitude- 44 8.76 N
Longitude- 66 42.03 W
Air Temperature 12 degrees C
Water Temperature 9 degrees C
Air Pressure 1007 Millibars
Wind Direction at surface South
Wind Speed at surface 11 MPH
Cloud cover and type FOG!!!

Daily Log

Ozone can be a major pollutant but we don’t release it into the atmosphere, so where does it come from?

More fog!!! We are all getting tired of the fog. I wonder what the Nova Scotia coast looks like. We have been along the coast for awhile, but I only got a glimpse through the fog for a few minutes.

We followed the Boston pollution up here but now we are in clean air. It has been very interesting, for both the scientists and myself, to see how the kinds and amounts of the gases has changed as the pollution gets older. Leave a glass of milk in the sun on the kitchen counter for a few days and it will change. Air pollution floating in the air and cooking in the sun also changes.

Paul Goldan points out some of today’s data which shows that the air is coming from a pine forest. Every thirty minutes Paul’s equipment samples the air and measures the concentration of 150 different VOC’s (volatile organic compounds). Some VOC’s can be man made and others are natural. This morning’s data shows very low levels of human pollution but there are spikes in the graph for two chemicals that are released into the atmosphere by pine trees (the pine scent). We look at the wind profiler and see that the wind is blowing from Nova Scotia.

Avery Bell emailed and asked which pollutant is most potent. As I have mentioned, the two parts of air pollution are the gasses and the particles. According to several of the scientist on board, ozone and the very tiny particles are the two of most concern from a health standpoint. Small particles and ozone can both damage your lungs. For people who already have breathing problems (such as asthma or emphysema), it can make matters even worse. Ozone also damages plants, both wild and agricultural crops, reducing crop yields. The cost of agricultural losses was one of the first reasons that ozone became a concern.

Every day I spend time talking with some of the scientists who are here from NOAA’s Aeronomy Lab. They are studying ozone and many other gases in the atmosphere. To decrease ozone pollution is much more complicated than just saying let’s reduce the amount of ozone we release. We don’t release ozone into the atmosphere as a pollutant!!! It is made in the atmosphere when other gases combine in the presence of light.

Imagine you live in the desert and you plant a tree in your back yard. It of course needs water, air, nutrients from the soil and light to survive and grow. In your backyard it gets all of the light, air and nutrients that it needs; but imagine that you never water the tree. The tree survives because it gets a little rain, but it doesn’t grow much. Water is limiting its growth. If you water it a lot, the tree grows a lot.

High ozone levels occur in a similar way. For ozone to form, certain gases and sunlight have to be present. If there is only a small amount of those gases, only a small amount of ozone can form. But if there are a lot of those gases, a lot of ozone will form. In the unpolluted atmosphere, there are low amounts of the gases that are needed to make ozone. Guess what happens when we burn fuels to run our vehicles, to make electricity, to heat and cool our homes, and to make the products that we use every day. You guessed it; we release a lot of the gases that are needed to make ozone. Ozone can then reach the high levels necessary to become a health risk. It does not take that much ozone to be at a dangerous level. A level of 80 PPB (parts per billion) for 8 hours is considered too high.

It is very difficult to try and understand what 80 parts per billion really means but I’ll try to help. It takes about 31.7 years to have 1 billion seconds. Imagine how much air you would have if you took a breath every second for 31.7 years and blew all of the air into one balloon. Now imagine that 80 of those 1 billion breaths were ozone. The concentration of ozone in the balloon would be 80 PPB.

Questions of the Day

What are three activities that you do everyday that can add to the atmosphere the gases that help form ozone?

What can you do to reduce the amount of those gases that you are responsible for producing?

Based on the example in the last paragraph how many breaths of ozone could you have in the balloon if there was 1 PPB?