Cara Nelson: Methot Madness, September 14, 2019

NOAA Teacher at Sea

Cara Nelson

Aboard USFWS R/V Tiglax

September 11-25, 2019


Mission: Northern Gulf of Alaska Long-Term Ecological Research project

Geographic Area of Cruise: Northern Gulf of Alaska – currently sampling in Prince William Sound

Date: September 14, 2019

Weather Data from the Bridge:

Time: 16:10
Latitude: 59º19.670’
Longitude: 146º07.196’
Wind: East 5 knots
Air Temperature: 14.5ºC (58ºF)
Air Pressure: 1010 millibars
Clear skies

Science and Technology Log

A Methot net is not your typical plankton net.  This large net hooks to a stainless-steel frame and has a mesh size of 3mm.  Its purpose: large jellyfish collection!  The Methot is unique not only for its size but also in its method of deployment.  The net must be craned off the starboard (right side) of the ship and submerged just under the water.  It is then towed for 20 minutes at the surface. Similar to the smaller plankton nets, there is a “cod-end” bucket that helps collect the jellies as the water filters out of the net. 

Methot net setup
Heidi working to tighten the shackles on one setup for the Methot net.
Methot net setup
Emily helps place the flow meter on the net prior to deployment to measure water flow for quantifying the abundance of organisms caught.

The setup of the Methot is tricky.  The frame that we are using was fabricated locally for these nets so there isn’t a manual for setup and a lot if trial and error is involved in the setup process.  This entails a lot of wrenching on shackles to connect the net to the frame, trying out a setup and then trying again once it is in place and we can watch the positioning and motion of the net in the water.  Fortunately, we have an amazingly positive team so we were able to meet each challenge and come up with a solution.  Our fourth time in resetting the net seems to be the charm.

lowering Methot net
The Methot being craned into the water.
Methot fully extended
The Methot looks like a giant wind sock when it is fully extended in tow next to the ship.

Heidi Islas is our onboard jellyfish guru.  I have never met anyone who loves jellyfish more than Heidi, and this passion and enthusiasm translates directly toward her commitment to her research.  She is currently working on her master’s degree at UAF with Russ Hopcroft as her advisor.  Her specific research thesis is, “the abundance and distribution of gelatinous zooplankton in the Northern Gulf of Alaska (NGA).”  Currently there is no baseline data on the type and biomass of the large jellies in the NGA so Heidi’s work is so important in helping identify not only what is present but how these jellies may be playing a role in this ecosystem particularly as predators on small fish. 

Heidi and codend
Heidi is about to open the cod-end where the jellies are trapped at the end of the net. A few of our samples were so full the jellies were up into the net and we needed the assistance of the crane to lift it back onboard.
jelly collection
One of our first collections had only a few but a nice variety of jellies: 2 Lion’s Mane, 1 albino Lion’s Mane, 1 Sea Nettle and 1 Crystal jelly.

Our typical sampling includes running either a Bongo net or Multinet off the stern (back) of the boat to collect zooplankton, and then immediately following we lower the Methot net for its 20-minute tow.  One of the deckhands, either Dave or Jen, run the crane for us, while the four of us help move and position the net into and out of the water.  At the end of the tow, we hose down the net and then open the cod-end to see what we have collected.  Our first few tows had only a few jellies but a little more variety.  Last night however, as we moved into deeper water south of Middleton island, we had a large number of jellies to process.  We assist Heidi in measuring the diameter of bells of the jellies, as well as collecting volume and mass measurements.  We then preserve any zooplankton and fish we collect for analysis by fisheries scientists back in the lab. 

measuring jellies
Emily assists Heidi in measuring and massing the jellies.
Heidi and Cara and jelly
Even though it is 3am, Heidi and I are pretty excited about our sample of Crystal jellies.

Many people might ask, why should we care about the jellyfish?  It all comes back to the food web connectivity.  For example, it is known that jellies will feed on smaller zooplankton, such as copepods and euphausiids (krill), but also on fish larvae, such as pollock.  The commercial pollock fishery is very interested in identifying any factor that may impact the adult pollock numbers.  Additionally, very little is known about what else the jellies are eating, or in what quantity.  So many questions arise about how these jellies might be impacted food availability for other species as well as serving as a food source themselves. 

Russ and worm
Russ examines a polychaete worm that was part of our sample.

Another very interesting piece of research for Heidi apart from her thesis focus is how are jellies responding to climate change.  A current hypothesis was that jellies increase in number during warming events, suggesting that they may become more abundant as our climate changes with even greater impact other species.  In her research on this topic, Heidi came across a paper published in 2013 that challenges this hypothesis.  It demonstrated that jellyfish actually follow a natural cycle of growth and decline with a peak in abundance every 19 years.  Heidi decided to analyze data that NOAA Fisheries had collected over a 38-year period from bottom trawls in the NGA.  She too saw the same cycle emerge.  Although this is exciting data, it leads to many more questions for her to explore. Such as what is driving this cyclic pattern?

giant sea nettle jelly
Emily holds a giant Sea Nettle that actually got trapped in our Bongo net. We measured it before sending it back to sea.

In both the scientific and non-scientific world it is easy to see a correlation of cause and effect and jump to a conclusion.  What I am realizing from the research going on aboard R/V Tiglax is that numerous variables must be considered before true causes can be determined from the data.  This is why collaboration in research is so important.   Physical, chemical and biological oceanographers along with fisheries biologists must work together to gain more holistic view of this NGA ecosystem to help unravel its secrets. 


Personal Log

Fortitude is my word for the past few days.  I have learned so much on this trip so far, including two important pieces of information about myself.  One is that my body does not like to work nights.  The days are blurring together for me as I adjust to my shift work.  I can say that it is definitely not an easy transition because the transition requires more than just adjusting sleep times, but also eating patterns as well.  On Friday night, due to the nature of our stations, we were not able to start our shift work until 1am.  By 5:30 in the morning as we began our last sample, I literally fell asleep on the rales of the ship waiting for our Bongo net to surface.  I think in another day or two, I will have it figured out.

A second piece of information I learned about myself, I am allergic to the scopolamine patch!  Early on Friday, I realized I was developing a rash, which soon spread.  The itching was becoming a problem and so I immediately discontinued an antibiotic I was taking thinking it was the culprit.  After the rash worsened, I then realized it was likely the patch.  After speaking with Captain John, he confirmed that this is a nasty side effect for some people.  I removed the patch Saturday and transitioned back to my usual medicine for motion sickness prevention: Bonine. Unfortunately, 24 hours later, the rash and itching persists.  Russ and John joke that they will be taping my fingers soon, so I better behave. 

After the first storm passed we were lucky enough to have several days of beautiful and surprisingly warm weather as we started along the Middleton line.  I was able to spend time on the fly bridge with Dan birding and mammal monitoring.  I will definitely highlight more on this in a later blog.  From Friday to Saturday I was fortunate enough to watch both amazing sunsets and sunrises as well as enjoy the beauty of the full moon. 

sunset
Sunset over the Northern Gulf of Alaska!

Another storm is forecast to be upon us by late Sunday evening, so our plan is to finish the Middleton line tonight and be in transit to GAK1 (just outside of Resurrection Bay) overnight.  Currently it is calling for East 40 knot winds and 11-13 foot seas.  It should be a fun ride.


Did You Know?

The jellies we are sampling all started out in the benthic (bottom) habitat in what is known as a polyp stage of their life cycle.  These polyps are attached to the bottom and will asexually bud off into the water column.  At this point, the jellies are only approximately a half of a centimeter in size.  It is estimated that it takes approximately a year for the jellies to grow to the full adult medusa stage.  The medusa is the bell-shaped, free floating stage that everyone recognizes as a jellyfish.  This amount of growth requires a lot of energy input, and thus these jellies must feed continuously to reach the adult sizes.  It is not known for sure, but it is estimated that the jellies will spend approximately a year in this phase in which they sexually reproduce.  The larva will then settle back to the benthic environment and start the cycle all over again.

Cara Nelson, The Gales of September, September 12, 2019

NOAA Teacher at Sea

Cara Nelson

Aboard USFWS R/V Tiglax

September 11-25, 2019


Mission: Northern Gulf of Alaska Long-Term Ecological Research project

Geographic Area of Cruise: Northern Gulf of Alaska – currently sampling in Prince William Sound

Date: September 12, 2019

Weather Data from the Bridge:

Time: 0830
Latitude: 60º16.073’ N
Longitude: 147º59.608’W
Wind: East, 10 knots – building to 30
Air Temperature: 13ºC (55ºF)
Air Pressure: 1003 millibars
Cloudy, light drizzle

Science and Technology Log

There is a tool for every job and the same holds true for sampling plankton and water in the Northern Gulf of Alaska (NGA).  As we sorted, shuffled and assembled equipment yesterday, what struck me the most was the variety of nets and other equipment needed for the different science research being performed as part of the LTER program. 

There are a variety of research disciplines comprising the LTER scientific team aboard the R/V Tiglax, each with their own equipment and need for laboratory space. These disciplines include physical oceanography, biological (phytoplankton and zooplankton), and chemical oceanography along with marine birds and mammal.  Their equipment has been transported from University of Alaska Fairbanks, as well as Western Washington University to the remote town of Seward AK and subsequently transferred to the ship before it could be either set up or stored away in the hold for later use.  Logistics is an important part of any research mission.

Immediately, it was obvious that some of the primary equipment on the ship, used for almost all the water sampling and plankton tows, require frequent maintenance in order to maintain function.  The winch for instance needed rewiring at port before we could depart. Winch runs the smart wire cable that allows the scientists to talk real time to the equipment (e.g., CTD and MultiNet).

v
The deck full of boxes being unpacked and stored away, as well as the winch pulled apart for rewiring

One of the most complex pieces of equipment and the workhorse of all oceanographic cruises, the CTD, takes a good deal of time to set up as well properly interface with the computers in the lab for real-time data communication.  A CTD, which stands for conductivity, temperature and depth, is a piece of equipment that accurately measures the salinity and water temperature at different depths.  The CTD is actually only a small portion of the device shown below.

CTD prep
The CTD is being put together and wired before departure.
CTD output
Temperature (blue line) salinity (red line) and fluorescence (chlorophyll) are transmitted and graphed on the computer as the CTD is lowered and raised.


The main gray bottles visible in a ring around the top are called Niskin bottles. These bottles are used to collect water samples and can be fired from the lab computer to close and seal water in at the desired depth.  These water samples are used by the team to examine both chlorophyll (abundance of phytoplankton) as well as nutrients.  As a side note, if these bottles are not reopened when the CTD is sent back down the pressure can cause the bottles to implode.  Two bottles were lost this way at our second station this morning, luckily spares were available onboard!

One bottle shattered from the pressure (on the right) and in the process, broke the neighboring bottle.

On the bottom of the CTD, there are several important sensors.  One is for nitrates and another for dissolved oxygen.  Additionally, there is a laser that detects particle size in the water, aiding in identifying plankton.  Much of this data is being fed to the computers but will not be analyzed until the scientists return the lab at the end of the cruise. 

A big decision had to be made before departing Seward late in the evening on the 11th.  A gale warning is in effect for the NGA with 30+ knot winds and high seas.  After several meetings between the chief scientists and the captain, it was determined to forego the typical sampling along GAK1 and the Seward line and head immediately to Prince William Sound (PWS) to escape the brunt of the storm. 

After getting underway late in the evening on Wednesday, the 11th, we stopped at a station called Res 2.5 in Resurrection Bay.  This station is used to test the CTD before heading out.  Just as with any complicated equipment it takes time to work out the glitches.  For example, it is imperative to have the CTD lower and raise at a particular rate of speed for consistent results and speed and depth sensor were not initially reading correctly.  Additionally, the winch continued to give a little trouble until all the kinks were worked out close to midnight. With a night focused on transiting to PWS, sampling was put on hold until this morning.


Personal Log

There are three F’s to remember when working aboard a NOAA research vessel: Flexibility, Fortitude and Following orders.  Flexibility was the word for everyone to focus on the first day.  I was immediately impressed with how everyone was able to adjust schedules based on equipment issues, coordination with other researchers on equipment loading and storage and most of all the weather.

Yesterday, there was help needed everywhere, so I was able to lend a hand with the moving and sorting and eventually assembly of some of our equipment.  The weather was beautiful in Seward as we worked in the sunshine on the deck, knowing that a gale was brewing and would follow us on our exit from Resurrection Bay.  Helping put together the variety of nets we are going to be able to use during our night shift, gave me time to ask our team a lot of questions.  I am amazed at how open and willing the entire team is to teach me every step of the way.  I am feverishly taking notes and pictures to take it all in.

Orientation and safety are also a big part of the first day on a new ship.  Dan, the first mate, gave us a rundown of the rules and regulations for R/V Tiglax along with a tour of the ship.  We ended on the deck with a practice drill and getting into our survival suits in case of a ship evacuation. 

survival suit practice
The new crew practices with their survival suits: Emily, Jake, Kira and Cara
Cara in survival suit
Although it has been a few years, I was able to don my survival suit pretty quickly.

Adjusting to a night time schedule will be one of my greatest challenges.  Usually we work the first night but we had a break due to the weather so we were able to put off our first nighttime sampling until Thursday night.  Everyone on the night crew has a different technique to adjust their body clock.  My plan was to stay up as late as possible and then rise early.  Last night however, between the ship noise and the rocking back & forth in the high seas during our transit from Seward to Knight Island passage, I did not sleep well.  Hopefully this will inspire a nap so I can wake refreshed for our first night shift. 

When I awoke this morning at 06:00, we had entered the sheltered waters of Knight Island passage. with calm seas and a light drizzle, ready to start a full day of collection.  I was able to watch the first plankton tows with the CalVet for the daytime zooplankton team with Kira Monell and Russ Hopcroft. Additionally, I made my rounds up to the fly bridge where Dan Cushing monitors for seabirds and mammals while we are underway.  I will share details of these experiences in the coming days.

For now, it is time for lunch and my power nap.


Did You Know:

There are a wide variety of plankton sampling nets each with a unique design to capture the desired type and size of plankton.  To name a few we will be using: Bongo nets, Mutlinets (for vertical and horizontal towing), Methot trawl nets, and CalVet nets.  As I get to assist with each one of these nets, I will highlight them in my blog to give you a better idea what they look like and how they work.

Cara Nelson: A Birthday Gift to Remember, September 5, 2019

NOAA Teacher at Sea

Cara Nelson

Aboard R/V Tiglax

September 11 – September 26, 2019


MissionNorthern Gulf of Alaska Long-Term Ecological Research (LTER) Program.

Geographic Area of Cruise: Northern Gulf of Alaska (Port: Seward)

Date: September 5, 2019

Weather Data from Bartlett High School Student Meteorologist Jack Pellerin

Time: 0730
Latitude: 61.2320° N
Longitude: 149.7334° W
Wind: Northwest, 2 mph
Air Temperature: 11oC (52oF)
Air pressure: 30.14 in
Partly cloudy, no precipitation


Personal Introduction

On September 10th, I enter my 46th year on this amazing planet, and on the 11th, I depart on a trip that will be a birthday gift to remember. I will be departing Seward on U.S. Fish & Wildlife Service’s R/V Tiglax to assist in the Northern Gulf of Alaska Long-Term Ecological Research study. To understand why I am so excited about this trip, I have to rewind about 30 years.

On March 24th, 1989, I watched in shock, along with the world, as the oil from Exxon Valdez swept across Prince William Sound. I was a 15-year old budding scientist learning about the importance of baseline data for ecosystems.  I didn’t know how, but I envisioned myself someday assisting in science research for this beautiful ecosystem. I dreamt of the day I would end up in Alaska and experience the Pacific Ocean.

In 2006, I was fortunate to be offered a teaching position in Cordova, Alaska on Prince William Sound where I became an oceanography and marine biology teacher.  I was in awe of the ocean and what it had to teach myself and my students. Having the ocean at our front door made hands on learning in the field possible each and every week.  We were also fortunate enough to partner with the U.S. Coast Guard Cutter (USCGC) Sycamore for a marine science field trip each year along with scientists from the Prince William Sound Science Center and U.S. Forest Service. 

zooplankton sample
Showing zooplankton to a U.S. Coast Guard crew member after a plankton tow. Photo Credit: Allen Marquette

Since 2017, I have been teaching at Bartlett High School (BHS) in Anchorage School District.  I again have the opportunity to teach oceanography and marine biology and I am thrilled.  Although we live only a few miles away, many of my students have not yet seen the ocean.  It is so important for me to make learning relevant to their lives and their locality. As much as we can incorporate Alaska and their cultures into the lessons the better.

Here are just a few snapshots from our classroom:

BHS marine biology students
Students in my BHS marine biology class learn to make sushi during a lesson on seaweed uses.
BHS marine biology students
BHS marine biology students examine zooplankton during the Kenai Fjords Marine Science Explorers program in Resurrection Bay.
BHS marine biology students
Students in my BHS marine biology class operating mini-ROVs they built to complete an underwater rescue mission.

In a few days, I will begin my two-week mission to assist in important science research in Northern Gulf of Alaska (NGA) and I feel like my 30-year old dream has come true. I will be participating in the Long Term Ecological Research (LTER) study, which is funded by the National Science Foundation (NSF). 

This cruise will be the third survey for the 2019 season for this area and the 23rd consecutive season for sampling along the Seward Line.  The goal of the NGA-LTER program is to evaluate the ecosystem in terms of its productivity and its resiliency in the face of extreme seasonal variations and long term climate change.  The mission entails doing a variety of water and plankton sampling at different stations along four transect lines in the NGA, as well as a circuit within Prince William Sound.  

sampling station map
The NGA-LTER sampling stations. Image Credit: Russ Hopcroft

I will be sailing aboard R/V Tiglax (pictured below) which is the Aleut word for eagle and is pronounced TEKL-lah.  My primary mission is to assist on the night shift with the collection of zooplankton at each station.  In addition to this, I look forward to learning as much as I can about the other work being done, including water chemistry, nutrient sampling, phytoplankton collection and analysis, and seabird and mammal surveys.  As a NOAA Teacher at Sea, I am tasked with creating lesson plans that connect this science research to my classroom.  My goal is to develop lessons that will help my students understand the importance of whole systems monitoring, as well as the important connections between ocean water properties, microfauna and megafauna. 

R/V Tiglax
R/V Tiglax. Photo Credit: Robin Corcoran USFWS

When I am not in my classroom, I like to be outside as much as possible.  I enjoy hiking, backpacking and spending time with my family on our remote property in Bristol Bay. 

Crow Pass Trail
My husband and I getting ready to backpack Crow Pass Trail , part of the historic Iditarod Trail.

My husband and I also like to travel outside of Alaska whenever possible during the winter months and see the world.  One of our favorite trips was completing a full transit of the Panama Canal.  This winter break we will be headed to the barrier reef in Belize to experience the beautiful tropical ocean. 

Panama Canal
Transiting the Panama Canal on Christmas Day on our honeymoon.

I tell my students we have researched and explored more of space than we have of our own ocean.

Cara at Space Camp
Participating in Space Camp Academy during my tenure as 2012 Alaska Teacher of the Year.

I am so excited to be working to help change that statistic!

Teacher at Sea Cara Nelson
I am honored to be a NOAA Teacher at Sea.


Did You Know?

This summer has broken many records in Alaska for warm dry weather and Southcentral has been in an official drought.  How will this impact ocean temperatures out in the NGA and will we see evidence in the plankton or other organisms we examine? 

Stay tuned to my blog and I will let you know the answer to this as well as so much more!

Catherine Fuller: This Was Not A Drill, July 17, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 17, 2019


Science Log

For the love of jellies 

Heidi and jelly
Heidi and the objects of her affection
Team Jelly
Team Jelly on the job!

Jellyfish (or jellies, since they’re not technically fish) are one of the “delights” of recovering instruments from the sea.  Often, the CTD returned to the surface covered in brown slimy tentacles, as did the sediment traps on occasion, which needed careful removal.  For most of us, the jellies were more of a nuisance, but for Heidi Mendoza Islas, the jellies are love. 

Heidi was on the night shift, which I didn’t get to spend as much time with as I would have liked, and her research was based on nightly Methot net drops and subsequent jelly inventories.  The Methot net is a 10-meter long net on a square metal frame (roughly 5 meters per side).  The net is dragged off the side of the ship for 20 minutes and then recovered.  Led by Dr. Ken Coyle, Heidi and the night shift team of Caitlin, Delaney and Adriana then counted the jellies, recorded their type and their volume by type.  One night, Heidi’s jelly count reached nearly 900! In the brief time I did spend with the team, I saw Heidi’s passion for jellies in her eyes and heard it in her voice as she lovingly explained the different types they had caught, often exclaiming, “Isn’t it beautiful?” Indeed, watching them swim next to the ship on our calmest days, they were.

What do you want kids to learn from your research?

Heidi: I would like to let people know that there are a ton of jellies out there in the ocean. They are very resilient to changes in the environment such as warmer temperatures, higher salinities, and low levels of oxygen, so this can allow them to easily scale up on the food chain and they might take advantage over other species like larval fish. As part of my research, I would like to determine if any correlations exist among jellyfish biomass, the environmental variables, and the early life stages of pollock.


Personal Log

This Was Not A Drill:

As on any ship, safety at sea is a top priority.  Early on in the voyage, Artie Levine, the Third Mate, gave us a safety briefing that included learning how to handle a fire extinguisher as well as how to put on our immersion suits and find our muster stations (gathering places) in case of emergency.  We were warned at that point that a drill would occur later in the trip.  Kira (my roommate) and I studied the information card on the back of our stateroom door that listed the signals for various emergencies just so we’d be prepared.  It’s a testament to how seriously everyone took the safety briefing that when the ship first started sounding fog signals a couple of nights later, many of us popped our heads out of our rooms, ready to muster! 

Near the end of the second week, we were indeed drilled, although we were kindly given advance warning on the message board in the mess hall.  In any type of emergency, each member of the science team is required to retrieve their immersion suits and PFDs from their rooms and report to their muster stations.  In addition, you must have a hat (watch cap or trucker hat) and clothing with long sleeves.  In order to reduce the stress of the event, the announcement of the drill is preceded by the statement, “This is a drill” repeated several times.

My exit from the ship was a little earlier than planned, but provided both the land and ship crew with essentially a live drill practice.  I woke up the morning of July 12th and found that I was experiencing severe vertigo from rolling over too quickly in bed overnight.  Needless to say, it’s pretty miserable when it happens on a moving ship!  Artie Levine, the Third Mate, and Christoph Gabaldo, the Chief Mate, came to take care of me and moved me to the infirmary.  After my symptoms had calmed down some, it was decided that, since we were about an hour out of Seward by small boat, and that the ship was scheduled to move on to the Kodiak Line, that it would be best to bring me ashore.  Artie took me in the next morning on the ship’s rescue boat.  Pete, having some work he needed to do ashore, plus being a genuinely nice guy, came with me as well.  Ed DeCastro, the Port Captain, met us at the dock, took me to get checked out and then found a place for me to stay.  In talking to Ed, the ship and land crews do go over procedures for evacuation in theory, and they were actually grateful to be able to practice the procedures in reality without having a serious situation on their hands.  I am grateful that they are prepared for any emergency, because I was taken care of very well.  Thank you, Artie, Christoph and Ed, for you compassion and your professionalism!

Operation Evacuation (VC: Bern Mckiernan)


Last thoughts…

I got on the ship not really knowing what to expect.  Everything was pretty new to me, from being in Alaska, to the research, to being on a big ship.  Despite my early exit, I thoroughly enjoyed the experience and the chance to meet a great group of people who really are unsung heroes for the research they are doing.  Whether they were adding data to years of previous research or developing new ways to track changes in the ecosystem, they are on the front lines of climate change research.  It was a privilege to be aboard the R/V Sikuliaq with them.  Speaking of…the R/V Sikuliaq is an amazing ship with capabilities I only began to learn about.  Thank you to Eric, our captain, for answering my questions about dynamic positioning and Z-drives.  My respect also goes out to the crew as well for being professional in all regards and unfailingly helpful, from launching and recovering all of our nets and traps, to fixing stuck closets and to cooking 5-star meals.

The ship is is back out now, with some of the same science team on board.  To them, and to the TAS who are out or yet to go, I wish you fair winds and calm seas!

Some memorable moments:

  • Clay conducting the music in his headphones while doing fluorescence testing
  • Heidi exclaiming, “Another beautiful girl!” whenever she found a female copepod
  • The food…it was 5-star at every meal! Doug’s midnight chocolate chip cookies were stellar
  • The night shift’s tales of how they stayed awake
  • Cribbage with Pete, Seth and Ana
  • Lunchtime talks with crew members Jim and Arnel
  • The “Grunden Girls” (Kate and Kira) on Calvet duty
  • Pete’s buoys disappearing…and then reappearing (not that we had any doubt)
  • Steffi and the “Loch Ness monster” (the sediment trap)
  • Questions of the day
  • Dan’s mealtime reports on the sea life he saw that day
  • The nightly run-down with Kira
  • The rowing machine!

Some of my favorite images:

Tropical green waters
Tropical green waters
Sun reflecting in the water
Sun reflecting in the water
Silhouette of a bird in flight
Mist obscuring the horizon
Seabird and ocean ripples
Seabird and ocean ripples
Ropes and Chains
Ropes and Chains
loops
Loops
two gulls
Two gulls
Storm clouds
Storm clouds
Seward
Seward Panorama

Catherine Fuller: From Microplankton to Megafauna, July 13, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019

Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 13, 2019

Science and Technology Log:

Through the Microscope

Gwenn with microscope
Gwenn using one of the microscopes to look at phytoplankton.
Gwenn and labels
The Lady of a Thousand Labels, hard at work.

Dr. Gwenn Hennon will be starting as an Assistant Professor with the University of Alaska in the fall.  Her interest is in the types of microbes, especially phytoplankton, that are in the water and what they are doing. She is studying what limits them, whether it is nutrients, light or other factors.  She finds it interesting to try to find interactions between phytoplankton and other organisms, such as ciliates that are filled with chloroplasts that they steal, termed “kleptoplasts.”  She investigates what microbes they stole them from, how the ciliate steals the plastid and how they maintain it. While a lot of algae have photosynthetic genes and controls in the nucleus, ciliates wouldn’t be expected to have those controls, but they must have some in order to keep plastids alive, and these need to have specific genes in order to control specific plastids.  There is a trade-off between specificity of genes for certain plastids and being able to keep the plastids alive for a long time.  Ciliates can also live by just eating other organisms, so another field of investigation would be to look at which genetics are used when organisms are switching between strategies. One goal of this research would be that, when looking at samples from various stations, someone would be able to say what the ciliates are doing without having to do experiments. 

The NGA is a very complex ecosystem, and this cruise has shown me that any scientific investigation needs to have a very specific focus rather than a shotgun approach, in order to have productive results. There is so much to be studied that the potential amount of data that can be gathered is staggering.  

Because the LTER has been funded for many years, there are great sets of time series to look at for some studies, but molecular data is fairly new and adds a lot to the picture.  Gwenn’s work, and the work of others at the molecular level are just the beginning of an understanding of life at the microscopic end of the scale. 

observation deck
Dan and Gwenn on the observation deck. Dan’s always on the lookout!

Through the Binoculars:

Fin whale
Fin whales come fairly close to us out in the deeper Gulf waters.

Dan Cushing is the U.S. Fish and Wildlife seabird and mammal specialist and is here to investigate organisms at the large end of the size spectrum, compared to everyone else on board. His workstation is primarily the bridge of the ship, where he is on the lookout for birds and mammals. He records the species and number spotted, and the time and the GPS location of each sighting. He also logs environmental conditions such as fog and wave height that can affect visibility.

Dan comes from a small fishing town with a population of 3000. He wasn’t necessarily interested in birds specifically when he was young, but developed a gradual interest in them. He likes that working with seabirds combines aspects of being a wildlife biologist with aspects of being a marine biologist. Dan has done both land-based projects at seabird breeding sites and ocean-based surveys on small boats and large research ships. One project that he worked on included attaching sensors to diving birds to record water temperature, depth, and location. This provided information about water conditions as well as about the behaviors of the birds and their feeding patterns in those conditions.

The variation in distribution and feeding strategies of bird species make them a good indicator of what is happening to the environment at different levels in the ecosystem. For example, Dan used small-boat surveys to look at changes in marine bird populations in Prince William Sound. He found that, over a period of two decades, declines had occurred in almost half of the species he looked at. In general, species that occurred farther from shore and fed on zooplankton and fish had greater declines than those that fed on prey along the shoreline and the nearby seafloor.

Studying the changes in a bird population leads to investigations that connect down the food chain through fish species to plankton (which, of course, is the focus of this cruise) and finally to climate change. Dan sees changes in the availability of fish species having a direct effect on the economic health of Alaskan communities that depend on fishing to survive. Coming from a fishing community, this hits home for him. As smaller species respond to climate change, a ripple effect works its way up the food web and so human populations must also alter their survival strategies as well.

coming in for a landing
One of Dan’s feathered friends coming in for a landing off the working deck.
albatross
An albatross follows along behind us.
Gulls
Gulls watch the working deck with interest in hopes of food (not going to happen).


Personal Log:

The longer I’m on board, the more the pieces of the puzzle seem to come together.  On thing that really strikes me about the teams on board is the intensity of their research and the drive they have.  Each person here is making the most of their opportunity for data gathering. Gwenn, for instance, I have nicknamed “the lady of a thousand labels” because her work ethic and preparedness are so impeccable.  She is just one example of the discipline and passion I see on board. 

There is enough potential data to be gathered here to provide for years of research.  Each of these researchers is not only singularly focused on their specialty but also well aware of the underlying premise of their research, i.e. that what they’re studying will serve to document climate change.  Already, this year has brought anomalous weather to the Gulf, which, in a sense, makes conclusions about how and why changes occur a bit difficult.  Another thing that is noteworthy on this cruise is that, because there are PIs (Principal Investigators) on board, there is a lot of discussion of ideas and plans for collaboration.  Already, Gwenn, Suzanne, Hana and Clay have been talking about a potential project where their ideas intersect.  The amount of time we’re out allows for more interaction between people and more room for ideas to develop. 

Finally, as I ask each person what they want kids or the public to know from their research, the answers I am getting all focus on the same thing: change is happening and every organism on the planet is affected by it.

map of the shelf
An image of the shelf; the data station lines cross over this to get a complete range of samples from shallow to deep in order to understand the complexity of the ecosystem and the changes happening within it.


What do you want kids to know about your research?

Gwenn: All things are related to each other.  All species on earth developed from the same ancestral single-celled organisms.

Dan: If you don’t pay attention to what’s around you, you won’t see how it changes.

Catherine Fuller: National Mooring Day, July 11, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 11, 2019

Weather Data from the Bridge

Latitude: 59° 00.823 N
Longitude: 148° 40.079 W
Wave Height: 1 ft, ground swell 3-4 ft
Wind Speed: 5.4 knots
Wind Direction: 241 degrees
Visibility: 5 nm
Air Temperature: 13.3 °C
Barometric Pressure: 1014.6 mb
Sky: Overcast


Science and Technology Log

At home, I regularly check information from the buoys that literally surround our islands.  They give me real time, relevant data on ocean conditions and weather so that I am informed about storm or surf events.  We also have buoys that track tsunami data, and the accuracy and timeliness of their data can save lives.  Deploying and monitoring these buoys is a job that requires knowledge of ocean conditions, electronics, rigging and computer programming. 

preparing buoy system
Pete (foreground) and Seth set up the buoy system in preparation for deployment
buoy anchors
The anchors for the buoys were made of train wheels

Pete Shipton is onboard as the mooring technician from UAF’s Seward Marine Center. This morning, he, Dr. Danielson and the crew deployed three moorings near oceanographic station GAK6i (about 60 miles offshore in the Northern Gulf of Alaska) at a depth of 230 meters. The search for the right depth required that R/V Sikuliaq do an acoustic survey of the area last night to find a kilometer-long area of the right depth and bottom slope.  The three moorings will be situated close enough to each other that for all purposes they are collecting a co-located set of readings representative of this site, yet far enough apart, with small watch circles, that they don’t overlap and foul each other.  The set of three is designed to have one surface buoy on either side with sensors at the surface and through the water column and a third buoy in the middle with sensors also distributed across all depths.

The first buoy, GEO-1, gives information on physics, optics, nutrient
chemistry and has a profiling instrument that will “walk” up and down the mooring wire from about 25 m above the seafloor to 25 m below the surface, collecting profiles four times a day. The mooring has many of the sensors that the ship’s CTD has, including an ADCP (Acoustic Doppler Current Profiler), a weather station with a GPS that measures wind speed, relative humidity, sea level pressure, and air temperature.  The buoy system was designed to withstand and operate in 8 m waves; in larger waves the surface buoy is expected to become submerged.  At one meter of depth, GEO-1 measures the temperature, salinity, chlorophyll fluorescence and photosynthetically available radiation. 

On GEO-2 (the center buoy), similar data is recorded at 22 m below the surface.  There will also be a sediment trap, mammal acoustics recorder, particle camera, and an AZFP (acoustic zooplankton fish profiler), which has four frequencies that can detect sea life from the size of fish down to the size of zooplankton. It records sound reflections from all sizes of creatures and can see fish migrations during day or night within a range of 100m (from 100m depth to the surface).

Buoy GEO-3 is the primary “guard” buoy, or marker for the whole set. It also has a real-time transmitting weather station and near-surface measurements.

Linking the mooring lines and the anchors are acoustic releases,
which are remotely controlled tethers whole sole function to listen for a “release” command that will tell them to let go of the anchor.  Since the limiting factor on the instruments is the life of the batteries, they will be picked up in a year and the acoustic release will allow the instruments to be brought back aboard Sikuliaq. These buoys will be providing real time information for groups such as the Alaska Ocean Observing System (www.aoos.org) about weather and ocean conditions, while also collecting
information about sea life in the area.

Pete and Seth on buoy
Pete (left) and Seth (right) test the stability of the buoy

Deploying the buoys was a lengthy process that required careful
coordination of parts, lines, chains and personnel.  Luckily everything
went off perfectly!  As the anchor weights for the two surface buoys deployed, they briefly pulled the buoys under, causing a bit of joking about whether the line length was calculated correctly. The brief “dunk test” was an excellent first trial for submergence during this coming winter’s storm conditions.

The second buoy briefly scares us by going under!


MarTechs:

There are opportunities for careers at sea in a wide variety of positions on board a research vessel.  One of the most interesting is the MarTech (Marine Technician), because of their dual role during a scientific cruise. 

The Marine Technicians are technically assigned to the science team although they are a part of the ship’s crew.  Bern and Ethan are the MarTechs on this cruise and both work specifically with R/V Sikuliaq. They are considered a part of whatever science team is on board at the time. The MarTechs are on 12-hour shifts, from 8:00 to 8:00.  Ethan is on at night, and Bern is on during the day, although there is some overlap.  The two men help to deploy and recover instruments for the science team and as well as helping the crew with any deck operations.  They also are responsible for the computer lab and overseeing the data displays and production from the various sensors, as well as maintaining the instruments on the ship that provide information.  Although they are always at hand to help when we need it, you will often find them also repairing and upgrading ship’s equipment and helping with engineering tasks.

Bern sets up camera
Bern setting up one of his cameras.

Bern has been a MarTech on R/V Sikuliaq since 2013, and had previous experience on other research vessels, both American and international.  Bern is also the ship’s unofficial documentation guy; he has a number of small cameras that he regularly uses to capture the action on board, whether from the vantage point of one of the cranes or on top of his own helmet. You can find examples of Bern’s camera work on R/V Sikuliaq’s Instagram site (@rvsikuliaq).

Ethan and Ana
Ethan helps Ana with the iron fish.

Like Bern, Ethan has also worked on other research vessels but has been on R/V Sikuliaq since it was built.  This is the only ship he’s been a MarTech on.  His interest in oceanography, especially marine acoustics, led him to this career.  Marine acoustics is more than just listening for large species such as whales.  There are acoustic sensors that “listen” to the ship and help ensure that it is functioning normally.  Other acoustic sensors, such as the ones based in the open keel of the ship use sound technology to map the ocean floor as we progress on our path.  Ethan was kind enough to show me the keel and explain the instrumentation. In addition, there are instruments that constantly record salinity, temperature, current strength, solar radiation and other measurements along the path we travel to provide a more complete picture of the environmental conditions existing at every point. 

open keel
The ship’s acoustic instruments are mounted in the open keel; it’s open to the sea!

The marine technicians manage the computer lab when they are not needed for operations.  This lab is the nerve center of the ship and allows the science team to work closely with the bridge to coordinate the movement of instruments and the speed of the vessel through the water to achieve optimum results.  You can find information on meteorology, navigation, engine performance, depth sounders, closed circuit monitors, ship acoustics and deck winch statistics by looking at specific screens.  In addition, the staterooms have monitors that also allow viewing of certain screens. 

computer lab
The screens in the computer lab provide all the information needed to make decisions about how and when to deploy data-gathering instruments.

By far the two displays that are followed most closely are the CTD cast screens and the AIS screen.  The AIS screen gives our course on a map, and shows our progress as well as future waypoints.  It also shows our speed and bearing to our next point as well as ocean depth and wind speed and direction.  The CTD screen shows real-time results in a number of categories such as salinity, oxygen, chlorophyll, temperature, nitrates and light as the CTD descends and ascends through the water column.  Based on the results of the down cast, the teams determine the depths from which they’d like water samples collected as the CTD rises. 

AIS screen
The OLEX or AIS screen shows our path as well as navigational information.
The CTD screen looks like spaghetti until you understand the color code for each line.


The Bridge:

The equipment on the bridge represents the pinnacle of technology as far as ship operations go.  The captain’s chair has been described by some members of the science team as the “Battlestar Galactica” or “Star Trek” chair, and it really does look like it fits in a science fiction movie.  Displays on the bridge show performance of the engines, radar returns and our bearing and range from them, and any other pertinent information to vessel performance.  Ship movement and waypoints are hand plotted by the second mate, who also oversees ship movement along with the captain, chief mate and third mate.  The ship’s officers work the bridge on a rotating watch schedule.  One of the cool features of this ship is that it operates two Z-drives, similar to what is used on tugboats.  These are propellers that can move independently of each other and turn in any direction.  They allow the ship to be maneuvered precisely, which is a great help when we need to stay on a station through multiple operations.  Various views of the bridge and the navigational instruments used by the ship’s crew are shown in the gallery below.

Captain Eric Piper
Captain Eric Piper shows off his new jacket


Personal Log

Happy Mooring Day!  It’s our self-declared “national holiday”! Because the process of deploying the moorings and buoys took up all of the morning and a part of the afternoon, most of the rest of the science team took the morning off and slept in.  So many of them ran on the treadmill that running might become a part of our “holiday” tradition.  My roommate even took bacon back to her room to eat in bed.  Gwenn brought out her Twizzlers…somewhat appropriate because they look like steel cable (even though the moorings did not use cable).  It was a nice breather for the science team, who have been working very hard to collect samples and run experiments.  Somewhere along the line, the idea of making Mooring Day a “holiday” caught on, and it’s become a bit of a joke amongst the team.  We’re down to a week to go, and everyone is beginning to think about what happens when we get in and when we all go home.  But… we’re not quite there yet, and there’s a lot of work left to do.


Animals Seen Today

stowaway
Our stowaway came to inspect today’s deployment.

We apparently have a stowaway…a small finch-like bird that flits about the ship.  It must have joined us when we were near land, and now we ARE the land. 

Catherine Fuller: Out of the Sea and into the Lab, July 3, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 3, 2019

Weather Data from the Bridge

Latitude: 58° 54.647’ N
Longitude: 146° 00.022’ W
Wave Height: 4-5 ft.
Wind Speed: 1.9 knots
Wind Direction: roughly 90 degrees, but variable
Visibility: 1 nm
Air Temperature: 13.2 °C
Barometric Pressure: 1014.4 mb
Sky: Clear, then foggy

Weather overview

We have been fortunate so far to have very calm conditions.  Winds have been variable or light and are expected to continue to be so through the weekend at least.  Wave heights have generally been about 3 feet, although they’re up to 4-5 feet today, and are expected to drop tomorrow.  The calm weather is critical for some of the testing being done, and thus is allowing more to happen.

Science and Technology Log

The focus of all of testing on board is plankton.  As the base of the food web, all species depend on their health and abundance for survival. There are multiple teams who are focused on various aspects of plankton and their reaction to environmental conditions.  Kira Monell is a graduate student at the University of Hawaii at Manoa who is working under the direction of Dr. Russ Hopcroft while on board.  She is studying zooplankton, or the animal version of plankton.   She is specifically focusing on Neocalanus flemingeri, a type of sub-arctic copepod.  It is important to study zooplankton because they provide a link between phytoplankton (the plant version of plankton) and larger fish on the food web.  Copepods are extremely abundant and varietal, found just about everywhere in the world.  They are an important food source for most aquatic species (they exist in both salt and fresh water).  They are a trophic link – a connection in the food web.  Her target species is special because they mostly eat phytoplankton during the seasonal plankton blooms.  They convert their food into a lot of lipids (fats) and thus are great sources of food and energy for larger fish.  After fattening up, they go deep into the ocean to hibernate around mid-summer. 

Kira is specifically focused on the termination of their hibernation (technically called diapause).  She is doing genetic testing to see which genes are activated or deactivated during this phase of their lives.  Messenger ribonucleic acid (or mRNA) coded by these genes is required to construct the enzymes that cause changes in body functions, so she is looking at levels of different mRNA in the copepods. She is expecting to see an increase in genes relating to oogenesis (egg formation).  Her female copepods go into diapause ready to start making eggs, so she expects to see changes in genes relating to egg growth as they come wake up from diapause.

Kira is examining copepods through three different experiments.  With some samples, she adds a stain called EDU (a dye that labels cells that are just about to divide) into her samples and then checks them at 24 hours to see which cells have divided.  Because the copepods are still alive, she can check back to see what further cell division have happened over longer periods of time.  A fluorescent microscope is required to see the EDU.  Scientists still struggle to understand what actually triggers emergence from diapause since deep water copepods don’t experience seasonal light changes, or other potential triggers that might exist on the surface. 

Another thing she is looking at is in-situ hybridization.  She makes a tag that is very specific for the gene she wants to examine.  When the probe gene is introduced, it attaches to the gene she wants to look at only if it is being actively copied.  Kira then attaches a colored or fluorescent dye to the probe and in that way she can track which genes are being expressed in specific areas of the body.

The third project that she is working on is trancriptum analysis, which requires building a complete “catalog” that shows all the RNA used by a species. She can then look at which gene transcripts are present, and in how abundant they are, so as to compare them to the “average” version of a transcriptum to see which genes are being turned off and on under certain conditions.

To obtain samples of copepods, the zooplankton team, including Kira, uses Calvet nets.  These are four long nets that terminate in collection tubes. Weight is added to the bottom of the nets and they are submerged off the stern to 100 meters of depth and then pulled back up (a process that takes roughly five minutes).  The nets are then rinsed to collect the samples in the tubes, which are transferred into jars and brought to the lab for more detailed sorting and examination. 

Calvet rising
The Calvet is returning to the surface after being submerged
Kira and Kate rinse net
Kira and Kate rinse the length of the nets to collect their samples in the tubes in the end.

As the Calvet rises you can see the full net. (This video has no dialogue.)



Personal Log

back deck
This is the main working deck at the stern of the ship.

Getting prepared to go out on deck safely!

All of the sample collection happens on the working deck at the stern of the R/V Sikuliaq or in the adjacent Baltic Room.  The back deck is equipped with a variety of cranes and winches that are designed to handle heavy weights and lines under tension.  As such, it is critical to wear the proper protective gear when you’re out there: boots (preferably steel-toed), a hard hat and a flotation vest of coat.  If there’s a potential to get wet or dirty, rain gear or waterproof bibs are essential to stay dry and relatively clean. Being properly dressed is a process that took getting used to, but now it’s habit.  Again, we’re lucky to have had good weather, so the deck is usually warm enough to wear a t-shirt and jeans.  I find it calming to be outside, so I am enjoying learning about the sampling methods of other teams by watching and sometimes assisting them.  There are also observation decks at the bow that do not require safety gear.  A few of us have discovered that the forward decks are much quieter and are good spaces to decompress and look for sea life. 


Animals Seen in the Last 24 Hours:

We’ve seen a few species of birds including black turnstones, glaucous-winged gulls, Black-winged kittiwakes, as well as deeper water birds such as storm petrels and shearwaters.  In addition, there have been small pods of dolphins in the distance and one humpback whale (all we saw was the tail).