Elaine Bechler: Off the Back, July 23, 2011

NOAA Teacher at Sea
Elaine Bechler
Aboard R/V Fulmar
July 21 – 26, 2011 

Mission: Survey of Cordell Bank and Gulf of the Farallones NMS
Geographical Area of Cruise:  Pacific Ocean, Off the California Coast
Date: July 23, 2011 

Science and Technology Log

Today was day three of my Teacher at Sea experience aboard the R/V Fulmar.  It is a big eye-opener to have experienced this.  We have been documenting all birds, marine mammals and debris while we travel along  transects through the Gulf of the Farallones NMS (National Marine Sanctuary) and Cordell Bank NMS.

transects in the study area

Transects in the study area

At the back of the boat is where other important data was collected.  There, we deployed nets to collect plankton and krill.  We also gathered abiotic parameters about the water. This section is to inform you about the CTD, the hoop net and the tucker trawl.  Why would collecting plankton and krill be important?  What would be an example of some abiotic parameters that could be measured in ocean water?

Some of the transects on the map to the left are marked with black dots and yellow stars.  Black dots are where we would drop a device called a CTD into the water.  CTD stands for conductivity, temperature and depth sensor.  The boat would stop at the station and two of us would guide the CTD to the center of the back edge of the boat.  The two crew members (Captain Erik Larson and mate Dave Benet) would locate themselves at two stations on the boat where they could control the movement of the boat and the winch.  The winch wire could be attached o any heavier device that needed to be deployed off of the back.  We would use the computer to determine the depth at that location.  Then we would communicate with Erik and Dave to tell them how deep to drop the CTD. Why did we all have to wear hard hats?  Why are we wearing large orange jackets?

controlling the back deck operations

Controlling the back-deck operations

Another job we did off the back was to gather zooplankton with the hoop net.  We would attach the net to the winch. The crew would assist us in dropping it to the proper depth (approximately 50 meters which was as close to the bottom as we could get without dragging the net).  After a specific amount of time we would bring the net up and put the sample into collection bottles.  These bottles will be sent to a lab to be analyzed after the trip.  It was amazing to see the variability of organisms in the net.   We found krill in all stages of development.
Andrea and I positioning the CTD

Andrea and I positioning the CTD

Sometimes the sample would be ruined if we captured a jelly fish.  Having a jelly fish in the plankton net acts as a slimy block.  Our net would sometimes come up with a clean sample of plankton, other times the net would be covered with brownish slime (phytoplankton) which required a lot of cleaning afterwards. The science team was very interested in the status of the krill in the catch.

deploying the hoop net

Deploying the hoop net

the tucker trawl

The tucker trawl

Another net that was used to collect samples was called the tucker trawl.  We would deploy the tucker trawl when the vessel came to the continental shelf break (about 200 meters)  of transects 2, 4, and 6, 8 and 10.  This net required 3 to 4 people to launch it.  It had three plankton nets, each of which was set to close at specific depths.  Our first sample came up with mud from the bottom (the net hit the bottom by mistake). Included in that mud was a purple slimy hagfish and a few tiny sea stars.  A later sample was filled with krill.

Water nutrient samples were also gathered from the side of the boat.  Cordell Bank  and Gulf of the Farallones National Marine Sanctuaries can be rich in nutrients such as phosphorus and nitrogen due to upwelling.

obtaining water for nutrient samples

Obtaining water for nutrient samples

Upwelling occurs when strong winds drive warm, nutrient-poor surface waters away from the shore.  These surface waters are replaced by nutrient-rich deep water and provide nutrients for the unicellular algae. What is upwelling?  What importance are nutrients to algae? 

Elaine Bechler: Phenomenal Feeding Frenzy, July 25, 2011

NOAA Teacher at Sea
Elaine Bechler
Aboard R/V Fulmar
July 21 – 26, 2011 

Mission: Survey of Cordell Bank and Gulf of the Farallones NMS
Geographical Area of Cruise:  Pacific Ocean, Off the California Coast
Date: July 25, 2011 

Science and Technology Log

Humpbacks performing vertical lunge feeding

Cool stuff today.  While transiting between one transect and another, the R/V Fulmar happened upon a major feeding event.  While approaching, hundreds of birds could be seen flying and diving along with evidence of many humpback whale spouts.  It turned out to be a furious feeding frenzy of myriads of birds, dolphins, pinipeds and whales.  Very dramatic was the vertical lunge feeding of the humpback whales.  We could see their huge mouths open and pointed upward as they gobbled silvery fish.  The whales would release huge loud exhales over and over.  A pod of 20 Pacific white-sided dolphins would lunge and dive down randomly seeking the swift swimmers.  Entering from the north side came a pod of Northern-right whale dolphins so sleek and moving in a group as if choreographed.  Thousands of seabirds including Sooty and Pink footed Shearwaters, Northern Fulmars, Black-footed Albatrosses, Western Gulls, Fork-tailed Storm Petrels and Common Murres were diving and competing for the fish.  We could hear the feet, wings, beaks and calls from their interactions on the surface.   It was remarkable to see the shearwaters swimming after the prey.  The feeding group would move and change as the school of fish darted about from below.  It was a tumultuous feast.

Bird feeding frenzy

shearwater feeding under water

Shearwater feeding under water

What we witnessed was the food web in action!  Each of these animals was supported by the fish they were eating.  Those fish were supported by a smaller food source such as smaller fish and zooplankton.  Those small organisms rely on the phytoplankton to capture the solar radiation from the sun and to use the deep water nutrients which were upwelled to the surface waters.   Create 5 food chains 5 organisms long that could have been in place in the ocean that day.

Dall's Porpoise

Dall's Porpoise

Earlier I noted a Western Gull spy a white object in the water and attempt to land on it for feeding only to find it was a piece of paper.  I had never observed the interaction of a marine animal with marine debris until now.  It was obvious that the debris caught the gull’s attention from a good distance away and had attracted it to the surface of the water.  How could this action affect the food web?

I feel fortunate to have been chosen to experience this cruise and all that went along with it.  I’d do it again in a heartbeat (with sufficient amounts of  seasickness medication!).  Thank you R/V Fulmar crew, ACCESS team, PRBO Conservation Science , TAS team and NOAA for this opportunity.  Thank you Sophie Webb for all of the photos of the frenzy on this page.

Pacific White-sided dolphins and Kaitlin

Pacific White-sided dolphins and Kaitlin

Anne Mortimer: Cam-trawl, July 14, 2011

NOAA Teacher at Sea
Anne Mortimer
Onboard NOAA Ship Oscar Dyson
July 4 — 22, 2011 

Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 14, 2011

Weather Data from the Bridge
Conditions: sunny and windy
Air Temperature: 10.1 ⁰C
Sea Temperature: 7.6 ⁰C
Wind direction: 237 ⁰C
Wind speed: 20 knots
Wave height: 2-3 ft.
Swell height: 5-6 ft.

Science and Technology Log

My last blog I said that I would talk more about the cam-trawl. This technology was created by scientists working on the pollock survey. The purpose behind the cam-trawl is to be able to put a net in the water with an open cod-end (basically a net with an opening at the end), and have images of the number, species, and size of fish that went through the net. Of course, sometimes some fish would have to be brought on deck so the otoliths and stomachs could be taken back to the lab in Seattle. Overall, this could eliminate taking so many research-based fish and/or invertebrate samples. When cam-trawl is used on acoustic-trawl surveys, the echograms can be matched up with the stereo-camera  images which can provide more data about the distribution of fish or other marine organisms in the water.

How the cam-trawl works: it is a stereo-camera system that takes snapshots of whatever comes through the net. These images allow the research team (including me on this leg) to determine the approximate number, species (some, not all), and size of fish that go through the net.

cam-trawl image

This still image from the cam-trawl shows a salmon and pollock against a black “curtain.”

The pictures are taken at the same time, but because of the slight difference in camera position, they look similar but not identical. You can mimic this with your eyes by looking at an object with only your right eye, then switching to looking with only your left eye. Did you see the same object but from a slightly different perspective? This is called disparity, or parallax (astronomers often use parallax to estimate the distance of far-away stars or other celestial objects). The program that was written for the cam-trawl (also by this research team) can then calculate the approximate size of the fish based on their relative positions.

In this photo, I’m using the cam-trawl measuring program to measure a sample of fish.

This screen shot shows the stereo-images and the yellow measurements that I’ve added. Using the lengths that I’ve chosen for the program, it calculates the approximate length (in meters) of the fish.

Personal Log

After several windy days with lots of swell, I’m happy to be in calmer waters. I’ve been working on the computer for some of the time which doesn’t go well with swell. I have also found it to be very tiring and tense on my body to be in constant motion and prepared to grab whatever I can to stay upright. I can’t tell you how hard it is to use a treadmill or take a shower in rough seas! BUT, for the time being, it’s calm and I just watched a great sunset over Kodiak island with a few humpback whale blows in the distance. If you are still wondering about the salmon in the picture above, it’s a chum!

Species Observed
humpback whales
northern fulmars
tufted puffins
black-footed albatross
storm petrels
porpoises (yesterday)

Anne Mortimer: Fishing, July 7, 2011

NOAA Teacher at Sea
Anne Mortimer
Onboard NOAA Ship Oscar Dyson
July 4 — 22, 2011 

Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 7, 2011

Weather Data from the Bridge
Air temperature: 9.53 C, Foggy
Sea temperature: 8.19 C
Wind direction: 145
Wind Speed: 18.73 knots
Barometric pressure: 1013.22 mbar

Science and Technology Log

Last night, we attempted a bottom trawl for walleye pollock. The way scientists know that fish are present is by using acoustic sampling. The centerboard of the ship is set-up with sound emitting and recording devices. When a sound wave is emitted toward the bottom, it will eventually be returned when it hits a fish or the ocean bottom. This is called echo-sounding and has been used by sport & commercial fisherman and researchers for many decades. The sound waves are sent down in pulses every 1.35 seconds and each returned wave is recorded. Each data point shows up in one pixel of color that is dependent on the density of the object hit. So a tightly packed group of fish will show as a red or red & yellow blob on the screen. When scientists see this, they fish!

This echogram shows scientists where fish can be found.

The scientists use this acoustic technology to identify when to put the net in the water, so they can collect data from the fish that are caught. The researchers that I am working with are specifically looking at pollock, a mid-water fish. The entire catch will be weighed, and then each species will be weighed separately. The pollock will all be individually weighed, measured, sexed, and the otolith removed to determine the age of the fish. Similar to the rings on a tree, the otolith can show the age of a fish, as well as the species.

pollock otolith

A pollock otolith.

Pollock otolith in my hand

These scientists aren’t the only ones that rely on technology, the ships navigation systems is computerized and always monitored by the ship’s crew. For scientific survey’s like these, there are designated routes the ship must follow called transects.

globe chart

This chart shows the transects, or route, that the ship will follow.

This chart shows the route (white line) of the ship once fish were spotted. When scientists find a spot that they want to fish (green fish symbol), they call up to the bridge and the ship returns to that area. As the ship is returning, the deckhands are preparing the net and gear for a trawl.

Personal Log

I think that I must have good sea legs. So far, I haven’t felt sick at all, although it is very challenging to walk straight most times! I’ve enjoyed talking with lots of different folks working on the ship, of all ages and from all different places. Without all of the crew on board, the scientists couldn’t do their research. I’ve been working the night shift and although we’ve completed a bottom trawl and Methot trawl, we haven’t had a lot of fish to sort through. My biggest challenge is staying awake until 3 or 4 am!

Did you know?

That nautical charts show depths in fathoms.  A fathom is a unit of measurement that originated from the distance from tip to tip of a man’s outstretched arms. A fathom is 2 yards, or 6 feet.

Species list for today:

Humpback Whale

Northern Fulmar

Tufted Puffin

Stormy Petrel

petrel

Fish biologist Kresimir found this petrel in the fish lab; attracted to the lights it flew inside by accident. The petrel is in the group of birds called the tube-nosed sea birds. They have one or two "tubes" on their beak that helps them excrete the excess salt in their bodies that they accumulate from a life spent at sea.

In the Methot net:

Multiple crab species including tanner crabs

Multiple sea star species, including rose star

Sanddollars

Juvenile fish

Brittle stars

Sponge

Multiple shrimp species including candy striped shrimp

shrimp variety

These are some of the shrimp types that we found in our Methot net tow.

Kathleen Harrison: Getting Underway, July 4, 2011

NOAA Teacher at Sea
Kathleen Harrison
Aboard NOAA Ship  Oscar Dyson
July 4 — 22, 2011 

Location:  Gulf of Alaska
Mission:  Walleye Pollock Survey
Date: July 4, 2011

Weather Data from the Bridge
Barometric Pressure:  1018.32 mb
Air Temperature:  8.77 ° C
Sea Temperature:  9.31 ° C
True Wind Direction:  218.63 °
True Wind Speed:  16.94 knots
Latitude:  55.12° N, Longitude:  157.31° W
Ship’s speed:  12.5 knots

Personal Log

Fishing Fleet of Kodiak

Kodiak has the second largest fishing fleet in the U.S. This photo shows some of the various kinds of fishing boats that are docked in Kodiak.

abandon ship drill

This is the survival suit, equipped with strobe light, inflatable, and leash. It is affectionately called "Gumby Suit". Isn't it adorable?

July 5, 2011:  I might not have seen fireworks yesterday, but it was still a pretty exciting day, with the departure of the Oscar Dyson from the pier.  I stood outside on the forward deck, and enjoyed the view as we pulled away from Kodiak.  We have been cruising at a steady 12.5 knots (13.5 mph), heading toward the start point of Leg II of the Walleye Pollock Survey.  Our charted course will take us from an area that is southwest of Kodiak Island, up past the east side of the island, and around to the west side of the island, ending back in the port of Kodiak.  I will start working tomorrow morning – 4 am!  Scientific information will probably be included in the next log entry.  Kodiak is a scenic fishing town, on the edge of the island. In the picture above is one of the marinas.

Right before we left Kodiak, the ship ran 2 drills.  We had to carry our survival suit to our muster station, and learn about abandoning ship, and fire drill procedures.  I hope I never have to wear this suit for real, as I was quite claustrophobic putting it on.  I know I would be thankful for it, if the need for wearing it ever came about.

I spent some time on the bridge, learning about radar, navigation, and sea birds.  I even saw a whale spout!

Species seen today:

Northern Fulmar
Tufted Puffins
Black-footed albatross
Black-legged kittiwakes

Jason Moeller: June 28, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Whale Pass
Date: June 28-29, 2011

Ship Data
Latitude: 58.01 N
Longitude: -152.50 W
Wind: 23.95 knots
Surface Water Temperature: 9.4 degrees C
Air Temperature: 10.8 degrees C
Relative Humidity: 71%
Depth: 177.72 m

Personal Log

Welcome back, explorers!

Due to the injury to the deck hand, we are done fishing. Our trip has been cut a day short and we are now headed back to Kodiak. We should arrive tomorrow morning, and I will fly back home on the 30th.

The shortest route to Kodiak was through Whale Pass, a break in Kodiak Island. The pass made for some spectacular scenery.

The entrance to Whale Pass

The entrance to Whale Pass, from the back of the Oscar Dyson

Steep hills rolling down into the water were a common sight in the pass.

Steep hills rolling down into the water were a common sight in the pass.

nav point

An island with a navigational marker in whale pass.

mountain 1

There were some spectacular views of the mountains in the pass as well.

Mountains 2

Another view of the mountains.

Mountain 3

Another view of the mountains.

Mountain

And another...

mountain

Last one, I promise! We all liked the shape of this one.

waterfall

A waterfall drops away into the ocean.

The coolest part of the pass, though, is definitely the wildlife. We saw sea otters everywhere! Unfortunately, they were so fast and at a great enough distance that the following shot is the only decent one I was able to take.

otter

A sea otter at Whale Pass.

We also saw an animal that I have been hoping to see for a long time.

killer whales

Sorry about the grainy image, but it is the only one of the Orcas we were able to get.

We also saw a puffin, but it moved so quickly that there was no hope at a photo for it. Bummer. Several humpback whales were also spotted, along with numerous gulls and other seabirds.

Science and Technology Log

Today, lets talk about krill!

What are krill, you ask? They’re animals in the Phylum Arthropoda, which means they’re related to insects, spiders, crabs, lobsters, etc. They have jointed legs and an exoskeleton, are usually a couple of centimeters in length, and are reddish/orange-ish in color. They can often be found in dense schools near the surface of the water, and play an important role in the ecosystem as a source of food for lots of larger animals (like fish, whales, & penguins).

I’ve mentioned the two types of trawl gear that we use to catch fish, but if we want to catch smaller things like plankton, the mesh on those nets is way too small. Therefore, we use a third type of trawl called the Methot which has very fine mesh to corral the plankton down into a collection container at the end of the net. In addition to having a hard container at the end — as opposed to just a bag/codend that you see in the fish trawls — the Methot trawl also has a large metal frame at the beginning of the net. Check out the photos below.

The Methot trawl being taken from the water. Note the square frame.

container

The container that collects all of the plankton in the net.

After the net is brought back on deck, one of the fishermen or deck hands brings the container of krill into the fish lab. The first thing we do is dump the container into a sieve or a bucket and start picking out everything that isn’t krill. The two most common things that are collected (besides krill) are gelatinous animals (like jellyfish & salps) and larval fish. The fish get weighed (as one big unit, not individually) and then frozen for someone to look at later on.

fish

The larval fish that we separated from one plankton tow.

After sorting the catch, we’re left with a big pile of krill, which gets weighed. We then take a small subsample from the big pile of krill (it’s a totally random amount depending on how much we scoop out!) and then weigh the subsample. Then the fun begins, as I’m the one that does this job; I get to count every single individual krill in the subsample. Tedious work. All of the data is then entered into the computer system, and the krill and anything else that we’ve caught (besides the larval fish) are thrown back into the water.

Tammy sorts through the pile of krill.

Tammy sorts through the pile of krill.

counting krill

How many individual krill are in this picture?

Species Seen

Northern Fulmar
Gulls
Puffin
Humpback Whales
Killer Whale!!!
Sea Otters!!!

Reader Question(s) of the Day!

Q. What has been your favorite thing about this trip so far?

A. I’ve been asked this question several times over the course of the last few weeks, but I’ve waited until the end to answer it.

Truth be told, it’s almost impossible to pick a favorite thing that I’ve seen or done. There are so many candidates! Exploring the Buskin River and seeing bald eagles before we set sail was a blast! Eating fresh caught salmon for the first time was a great experience, as it just melted in my mouth. Leaving shore for the first time was a lot of fun, as there is no feeling like the salt air blowing past your face at the front of a boat. Trying to take pictures of flying birds with a digital camera was a challenge, and we all had a good time laughing at the blurred images. Getting better at photography is something I’ve always wanted to do, and I feel like I have improved that. The first fish lab with the sleeper shark was great! Working in the fish lab, as messy as it was, was also a lot of fun! The XBT prank that was pulled on me was one of the best executed pranks I’ve ever seen, and it was hilarious! Hanging out and reading Martin’s Game of Throne series during breaks with my fellow scientists was a lot of fun as well, as it was just like a book club. Today’s ride through Whale Pass with the otters, whales, and mountains was exactly what I dreamed Alaska would be like.

The scientists sense of humor also made it an enjoyable trip. For example, this is what happens when you play around with the net camera for too long.

Cam Trawl Dinner

See what I mean?

That being said, if I was absolutely forced to pick a favorite memory, it would probably the impromptu fishing trip at Sand Point. You know you love your job when you decide to keep going at it on your day off.

There will be one last log posted, so if you have questions please send them to me at jmoeller@knoxville-zoo.org!

Jason Moeller: June 25-27, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 25-27, 2011

Ship Data
Latitude: 55.58 N
Longitude: -159.16 W
Wind: 14.11
Surface Water Temperature: 7.2 degrees C
Air Temperature: 9.0 degrees C
Relative Humidity: 90%
Depth: 85.61

Personal Log
Anyone who has seen the show Deadliest Catchknows how dangerous crab fishing can be. Fishing for pollock, however, also has its dangers. Unfortunately, we found out the hard way. One of our deck hands caught his hand between a cable and the roller used to pull up the trawl net and hurt himself badly.

Cable

The cable and the roller.

Fortunately, the injuries are not life threatening and he will be fine. The injuries did require a hospital visit, and so we stopped at Sand Point to treat him.

Town

This is the town of Sand Point.

airstrip

Clouds hang over the hills at Sand Point. The airstrip is in the left edge of the photo.

We stayed at Sand Point for nearly 48 hours. What did we do? We fished, of course! We used long lines and hooks, and had a great time!

lines

Bill and Alex cast fishing lines in the harbor. We tied the lines off on the boat and hauled them up from time to time to check the bait.

Alex

Alex with a flounder that he caught! He also caught several cod and a 32-lb Pacific halibut!

cod

Cod and the flounder in a bucket!

Tammy

As with every fishing trip, we also managed to catch things that we didn't mean too! Tammy (the other NOAA Teacher at Sea) especially liked the kelp!

urchin

A few visitors always hitched a ride on the kelp we caught. Here is a tiny sea urchin.

crab

This crab was another hitchhiker on the kelp.

starfish

We were bottom fishing for Halibut, and a starfish, the largest one I've ever seen, went after the bait!

A one-day fishing license in Alaska costs $20.00. We had internet, so five of us went online and bought the fishing passes. Was it worth it?

Halibut

You bet it was! This is the 25-lb halibut I caught! It was AWESOME!!!

We filleted it and had the cooks make it for dinner. With the halibut, we also cut out the fleshy “cheeks” and ate them as sushi right on the spot! It doesn’t get any fresher (or tastier!) than that!

Science and Technology Log
Today we will look at the acoustic system of the Oscar Dyson! Acoustics is the science that studies how waves (including vibrations & sound waves) move through solids, liquids, and gases. The Oscar Dyson uses its acoustic system to find the pollock that we process.

The process begins when a piece of equipment called a transducer converts an electrical pulse into a sound wave. The transducers are located on the underside of the ship (in the water). The sound travels away from the vessel at roughly 1500 feet per minute, and continues to do so until the sound wave hits another object such as a bubble, plankton, a fish, or the bottom. When the sound wave hits an object, it reflects the sound wave, sending the sound wave back to the Oscar Dyson as an echo. Equipment onboard listens to the echo.

The computers look at two critical pieces of information from the returning sound wave. First, it measures the time that it took the echo to travel back to the ship. This piece of information gives the scientists onboard the distance the sound wave traveled. Remember that sound travels at roughly 1500 feet per minute. If the sound came back in one minute, then the object that the sound wave hit is 750 feet away (the sound traveled 750 feet to the object, hit the object, and then traveled 750 feet back to the boat).

The second critical piece of information is the intensity of the echo. The intensity of the echo tells the scientists how small or how large an object is, and this gives us an idea of what the sound wave hit. Tiny echos near the surface are almost certainly plankton, but larger objects in the midwater might be a school of fish.

good fishing

An image of the computer screen that shows a great number of fish. This was taken underneath the boat as we were line fishing in Sand Point.

poor fishing

The same spot as above, but with practically no fish.

fishing

An image of the screen during a trawl. You can actually see the net--it is the two brown lines that are running from left to right towards the top of the screen.

One of the things that surprised me the most was that fish and bubbles often look similar enough under water that it can fool the acoustics team into thinking that the bubbles are actually fish. This is because many species of fish have gas pockets inside of them, and so the readout looks very similar. The gas pockets are technically called “swim bladders” and they are used to help the fish control buoyancy in the water.

swimbladder

Swim bladder of a fish.

Species Seen
Northern Fulmar
Gulls
Cod
Pacific Halibut
Flounder
Sea Urchin
Crab
Kelp

Reader Question(s) of the Day
Today’s questions come from Kevin Hils, the Director of Chehaw Wild Animal Park in Chehaw, Georgia!

Q. Where does the ship name come from?
A. Oscar Dyson was an Alaska fisheries industry leader from Kodiak, Alaska. He is best known for pioneering research and development of Alaska’s groundfish, shrimp, and crab industry. Dyson was a founding partner of All Alaskan Seafoods, which was the first company actually controlled by the fishermen who owned the vessel. He also served on the North Pacific Fisheries Management council for nine years. He is in the United Fishermen of Alaska’s hall of fame for his work. The ship was christened by his wife, Mrs. Peggy Dyson-Malson, and launched on October 17, 2003.

Dyson

Oscar Dyson

launch

The launching of the Oscar Dyson

Q. How do you see this helping you teach at Knoxville Zoo, not an aquarium?
A. This will be a long answer. This experience will improve environmental education at the zoo in a variety of different ways.

First, this will better allow me to teach the Oceanography portion of my homeschool class that comes to the zoo every Tuesday. For example, I am in the process of creating a hands on fishing trip that will teach students about the research I have done aboard the Oscar Dyson and why that research is important. Homeschool students will not just benefit from this experience in Oceanography, but also in physics (when we look at sound and sonar) and other subjects as well from the technical aspects that I have learned during the course of the trip.

Scouts are another group that will greatly benefit from this experience as well. The Girl Scout council wishes to see a greater emphasis in the future on having the girls do science and getting real world experiences. While the girls are still going to desire the animal knowledge that the zoo can bring, they will also expect to do the science as well as learn about it. My experience aboard the Dyson will allow me to create workshops that can mimic a real world animal research experience, as I can now explain and show how research is done in the field.

The same can be said of the boy scouts.

In addition, one of the most common badges that is taught to boy scout groups that come in is the fish and wildlife merit badge. In the past, the badge has primarily focused on the wildlife aspect of this topic. However, I now have the knowledge to write and teach a fisheries portion for that merit badge, as opposed to quickly covering it and moving on. This will enrich future scouts who visit the zoo for this program.

A major focus for all scouts is the concept of Leave No Trace, where scouts are supposed to leave an area the way they found it. The fisheries research being done aboard the Dyson is focused toward that same goal in the ocean, where we are attempting to keep the pollock population as we found it, creating a sustainable fishery. The goal aboard the Dyson is similar to the goal in scouting. We need to be sustainable, we need to be environmentally friendly, and we need to leave no trace behind.

School children on field trips will greatly benefit, especially students in the adaptations section. There are some bizarre adaptations that I never knew about! For example, sleeper sharks slow, deliberate movement coupled with their fin and body shape basically make them the stealth fighter of the fish world. They can catch fish twice as fast as they are! Lumpsuckers are neat critters too! This knowledge will enhance their experience at the zoo during field trip programs.

Finally, I can pass the knowledge from this experience on to my coworkers. This will not only better the experience of my students, but it will also improve the outreach programs, the bedtime programs, the camps, and other programming done at the zoo.

Q. Are you old enough to be on a ship? You look like you’re 13???!!!!
A. SHHHHHHH!!!! You weren’t supposed to tell them my real age! They think I’m 24!