Susan Dee: Ten Minutes to Bongo: Bongo, Bongo, Bongo, May 30, 2018

NOAA Teacher at Sea

Susan Dee

Aboard NOAA Ship Henry B. Bigelow 

May 23 – June 7, 2018

Mission:  Spring Ecosystem Monitoring Survey

Geographic Area of Cruise: Northeaster Coast of U.S.

Date:  May 30, 2018

Weather From Bridge

Latitude:  40° 42′
Longitude:  072° 35′
Sea Wave Height:  1-2 feet
Wind Speed:  calm
Wind Direction:  calm
Visibility:  overcast
Air Temperature:  15.5°C
Sky: overcast

Science and Technology Log

At Day 5, I am getting acclimated to life on the sea.  Days are filled with data collection at randomly selected stations.  One of the collections is of plankton, phytoplankton, zooplankton and ichthyoplankton. Plankton sampling has occurred since the early 19th century with simple collecting devices.  In early ocean sampling, it was believed that plankton were evenly distributed throughout the ocean, so a sample taken anywhere would be a good representation for a large area.  This idea is no longer supported. The belief is that there are large scale spatial variations in concentrations of plankton populations, which has lead to random sampling methods using bongo nets. Widely used since the 1970’s, bongo nets are named from their side by side configuration which makes them look like a set of bongo drums.

There are two sets of bongo nets the ship is using: a regular bongo with a diameter of 61 cm and 333 micron mesh and two different sets of baby bongos, 22 cm in diameter, and one set with 333 micron mesh and the other with 165 micron mesh for smaller organisms.  As the station to sample is approached, the bridge announces “Ten minutes to Bongo!” and all scientists and crew get prepared to deploy bongos.  They are lowered into the water with a crane and winch system  and towed for 8 to 25 minutes, depending on the depth, at a speed of 1-2 knots  There is an important communication between the bridge and the scientists during bongo deployment. The ship gets to the correct GPS and slows down for the tow. See video for deployment procedure:

A video of bongo deployment (no dialogue)

Bongo Deployment

Bongos being lowered into the water

When nets are retrieved, the bongos are rinsed to collect all the samples to the cod-end of the net. The baby bongo samples are preserved in ethyl alcohol to be sent to the Narraganset Lab to look for fish eggs and larvae and to the University of Connecticut to get a census of marine zooplankton. The large bongo samples are preserved in formaldehyde to be sent to a lab in Poland to identify species  and count numbers.

Bongo catch

Samples collected in cod-end of bongo net

After nets are washed they are prepared for next station. The cod-ends are tied with the “Taylor” knot shown below. After many attempts and a very patient teacher, I finally learned how to tie this knot.

Taylor knot

The “Taylor” cod-end knot

 

Washing out sieve

Washing out sieve to capture sample to be put into jar

 

Sample jar

Sample preserved and ready to be sent to lab to identify species

The questions scientists are trying to answer with the data from these samples are:

  1. What living plankton organisms does the sea contain at a given time?
  2. How does this material vary from season to season and year to year?

As scientist Chris Taylor reminded me, no sample is a bad sample. Each sample contributes to the  conclusions made in the end.  After samples are examined by the labs, I look forward to seeing the results of this survey.

Personal Log:

I am enjoying every second of this cruise.  We did hit rough seas but I had no effect due to wearing the patch. Hopefully, we will have calm seas as we head to the Gulf of Maine. The food is great. Chef Dennis prepares awesome meals.  I am eating a lot!! Even had an ice cream bar set up last night.  Life is very comfortable on the ship.

 

INTERVIEW: Andrew Harrison and Maddie Armstrong

I choose to interview ship members Andrew Harrison and Maddie Anderson because they are in the process of earning their mariner licenses.  Also, the perspective from a female in a male dominated career is of interest.  I often get questions from students about opportunities in the marine science field.  The marine science field has many paths to take. One path is research and another is earning a Merchant Mariner license.  There are several ways to obtain a Merchant Mariners USCG license. The two most common paths are the hawsepiper and Maritime academy.  The hawsepiper path begins with accumulating sea hours, taking training courses, completing board assessment and passing the USCG exam.  This path can take up to 14 years to complete. In the Maritime college route,  requirements for Merchant Mariner license can be complete in 4 years and earn a college diploma.  The interviews below give some direction to pursuing a career on a ship.

Interviewees role on ship:

Andrew Harrison- assignment on ship- Crew Able Body

Maddie Armstrong –assignment on ship- student and science party volunteer

The connecting link between Maddie and Andrew is they both are affiliated with Maine Maritime Academy.  Andrew graduated in 2015 and Maddie is presently a student.  What interested me the most is that a Maritime degree could be granted through college studies. I had no idea this was an option for students interested in maritime careers. There are 7 Maritime academies across the US. https://www.edumaritime.net/usa/top-maritime-programs, each with their unique specialty.  All programs are USCG approved and students earn license upon graduation through the US Coast Guard.  From talking to Andrew and Maddie I feel attending college to earn a merchant mariners license prepares one better for life at sea.

What degree do you hold?

Andrew: I have a BA Vessel Operations and Technology and a 500 Ton license.

Maddie: I will graduate with double major BA in Marine Science / Vessel Operations and Technology. Presently I have a 200 ton license but the plan is to graduate with a 500 Ton and 3rd Mate license.

Where did your interest in marine science stem from?

Andrew:  Since I was 14, I have been sailing and love the ocean

Maddie: Growing up in the middle of Maine, it was difficult to experience the ocean often.  My parents would take me to the ocean as a reward or holiday gift.

What experiences do students at Maine Maritime Academy get to prepare for maritime license?

Maddie:  The academy has a ship, The State of Maine, which is a moving classroom. Students practice navigation on the ship. There is also the Pentagoet Tug to practice barge pulling. Smaller vessels are available to practice to practice navigation on.  At the academy you can practice on real ships.

Andrew: The Academy gives students a faster way to obtain license than a non collegiate Hawsepiper route. Through a maritime college you also earn a college degree and graduate with a license. The academy route is faster but also more expensive. To obtain a similar license without going to an academy would take up to 15 years. Plus the academy has connections to job opportunities after graduation.

What other ships have you worked on over the years?

Andrew:  I was a deck hand on Spirit of South Carolina; worked on yachts out of Charleston; Space X barge AD- collected rocket after launch

Maddie: I have had some experience on a lot of different vessels through the academy. I started working on the Schooner Bowdoin and Brig Niagara for a summer. Then moved on to charter boats and small cruise ships.

What advice would you give a student who is interested in pursuing a Merchant Mariners license?

Andrew: Volunteer on ships as much as you can. Experience on a Schooner is invaluable.  Be prepared to put in the time.

Maddie: You have to be self driven and want to be on the water. You also have to be self confident and willing to give it your all at a moments notice.

How much time can a merchant mariner expect to spend at sea each year?

Andrew: It varies with the vessel and cruise.  It can be 9 months at sea and 3 months off; 60 days at sea; and 69 days off; 5-7 weeks on and 3-5 off. The bottom line is to be prepared to be away from home for long periods of time.

What are your interests and hobbies when you are on shore?

Andrew:  Fishing, sailing, scuba, reading and video games.

Maddie: I like to read, hike and learn to play instruments. Now I am learning to play a didgeridoo- a wind instrument developed by indigenous Australians.

Where do you see yourself working in 10 years?

Maddie: Working on a research vessel with ROV exploration.

Andrew:  In 10 years, I plan to be a 1600 Ton Master Captain working for NOAA or another cruise company.

 

John Sammons, August 4, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 4, 2005

Screen shot 2014-02-02 at 10.26.11 PMWeather Data from the bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Question of the Day: Last day at sea

Yesterday’s Answer: Scallops are categorized as invertebrates. Scallops belong to the animal kingdom.

Science and Technology Log

On Thursday, we got word that our ship would be back in port by early Friday morning between 4 and 7 a.m. Once we complete the last 20 or so stations, it will be time to clean up and prepare the ship for docking. A large spider crab was brought in at station 454.

The chart below shows a selected number of species and the total and average catch weights from July 25–August 3.

LOGGED_SPECIES_NAME

TOTAL # CAUGHT

TOTAL MASS (grams)

AVERAGE MASS (grams)

OBJECTS WITH SIMILAR MASS

HAGFISH ATLANTIC

41

3230

79

SPINY DOGFISH

1

1560

1560

BARNDOOR SKATE

31

35342

1140

WINTER SKATE

183

196116

1072

LITTLE SKATE

1,628

638483

392

SMOOTH SKATE

19

9517

501

THORNY SKATE

32

7739

242

ATLANTIC HERRING

3

402

134

SILVER HAKE

1,018

117103

115

COD

32

11498

359

HADDOCK

348

64742

186

WHITE HAKE

9

8180

909

RED HAKE

2,941

407185

138

SPOTTED HAKE

2

310

155

FOURBEARD ROCKLING

23

296

13

AMERICAN PLAICE

102

30261

297

FLUKE

18

28240

1569

FOURSPOT FLOUNDER

798

126633

159

YT FLOUNDER

463

111390

241

WINTER FLOUNDER

61

48560

796

WITCH FLOUNDER

47

18300

389

WINDOWPANE FLOUNDER

126

27576

219

GULF STREAM FLOUNDER

344

9189

27

BLACKBELLY ROSEFISH

1

8

8

SCULPIN UNCL

6

18

3

MOUSTACHE SCULPIN

31

33

1

LH SCULPIN

571

88391

155

SEA RAVEN

29

21468

740

ALLIGATORFISH

4

2

1

NORTHERN SEAROBIN

1

47

47

CUNNER

2

493

247

ROCK GUNNEL

18

75

4

NORTHERN SAND LANCE

26

37

1

OCEAN POUT

290

71883

248

FAWN CUSKEEL

11

382

35

GOOSEFISH

389

1046990

?

AMERICAN LOBSTER

22

34552

1571

CANCER CRAB UNCL UNSEXED

1,138

123203

108

STARFISH UNCL

78,925

161850

2

ASTERIAS BOREAL

36,851

243218

7

ASTROPECTEN SP

2,833

15623

6

ICELAND SCALLOP LIVE

18

447

25

SCALLOP ICELAND CLAPPER

3

56

19

CONGER EEL UNCL

1

200

200

SEA SCALLOP CLAPPER

1,980

227126

115

SEA SCALLOP LIVE

114,868

20960122

?

SNAKE EEL UNCL

5

59

12

ILLEX SQUID

12

1442

120

LOLIGO SQUID

3

186

62

SPOONARM OCTOPUS

8

201

25

SCORPIONFISH AND ROCKFISH

1

4

4

1) Use a calculator to find the average masses of the goosefish and sea scallops. You can find these averages by dividing the total mass by the total number caught.
2) Which species had the most average mass?
3) Which species had the least average mass?
4) Which two or three species have about the same mass?
5) Complete the last column in the table by finding everyday objects that have similar masses. Choose at least ten.
6) Select the top ten heaviest species and create a bar graph comparing their masses.

Personal Log

A Fond Farewell 

The time has come to say goodbye to all our friends for now,
The night watch worked from 12 til six, it’s time to take a bow.
Larry crunched the numbers and helped it make more sense,
Vic was the head scientist who made things seem less tense.
KB shared her knowledge in a very caring way,
While Lara measured up the scallops quickly every day.
Erin took the sign and camera to the pile to pose,
It was Kris who was in charge and kept us on our toes.
Nikolai had a funny way of helping us all learn,
And with that said I, John, must conclude, it’s over, let’s adjourn!

Ode to the ALBATROSS IV 

By John Sammons

Arrived on early Sunday eve to find the ship was docked,
Passing through the metal gate that I only thought was locked.
Resting from her recent trip, she makes a humming sound,
Waiting for her crew to board and get a look around.
The sun reflects and sparkles in the ever choppy sea,
I wonder what this exciting adventure will bring to me.

The waves come toward the ALBATROSS and into the lengthy side,
Feel the rocking back and forth, so hold on for the bumpy ride.
Prepare the dredge and send it forth to bring up another load,
Bring out the baskets and buckets and pads to get in a sorting mode.
Place the containers on the scale then measure the scallop’s shell,
Soon the shift will come to an end with only stories left to tell.

Steaming forward to the station that is just right up ahead,
Six hours is up, and our shift will end, so it’s time to go to bed.
Before I rest and take a nap, some chow I would like to eat,
It will be good to rest a little while and get off from my feet.
The food is great, so many choices that we are able to choose,
Just fill ‘er up and head to bed and settle for a snooze.

Time to muster and be alert for another shift begins,
Shells and starfish wait for us, along with things with fins.
Pull up a bucket and a pad to sample and to sort,
It’s been three days since ALBATROSS steamed from the distant port.
Ouch! I bellowed as a scallop clamped onto my finger,
Upon the deck you sort and scoop, but dare not stand and linger.

Let me stop and ponder now about the time I’ve spent,
It seems like days and nights have passed, they’ve come, they’ve gone, they went!
Zigging left and zigging right, we have sailed right out to sea,
It seems so wide and open, such an awesome sight for me.
There’s so much to learn from everyone who works upon this ship,
It’s hard to think that soon we’ll be halfway through our trip.

Stand in awe as the sun begins to finally set,
Awash in orange and red and yellow, it is hard to forget.
What a lasting beauty as the sky begins to glow,
Its splendor in the many colors that it will show.
Waiting for its lasting blaze of light to end the day,
Now I lay me down to sleep, I ask of Him, I pray

The heavy dredge is ready for another timely tow,
Expect to catch the scallops, to the surface they will go.
Dropping to the bottom where its 80 meters deep,
Spending fifteen minutes dragging and bringing in the keep.
Then they’re sorted on the surface while hiding in their shell,
The aging/growth ridges on their outside’s what they tell.

Working two shifts makes it hard to fully stay awake,
But ignoring the wakeup call could be a big mistake.
So much to choose from when it’s finally time for us to eat,
Better be there when it is your time to get a decent seat.
Take a minute or two to rest while the ship is on a steam,
When it’s time to go to bed, enjoy that time to dream.

Ten minutes to go before it’s time for another CTD,
When the crew will set and drop it down into the sea.
It only takes a moment for the thing to take a dash,
To the bottom it will go, watch that it doesn’t crash.
Then it’s time to drop the dredge and ready for the tow,
Soon you’ll hear them haul it in, and it’ll be time to go.

With just a few days left before we enter the home port,
We still continue to collect and sample and we sort.
The number of each species catch continues to go up,
We even brought a dogfish in that was only just a “pup”.
What more can we expect to find within the capture net,
From this station to the next one, we’ll take what we can get.

The time has come to say goodbye to all our friends for now,
The night watch worked from 12 til six, it’s time to take a bow.
Larry crunched the numbers and helped it make more sense,
Vic was the head scientist who made things seem less tense.
KB shared her knowledge in a very caring way,
While Lara measured up the scallops quickly every day.
Erin took the sign and camera to the pile to pose,
It was Kris who was in charge and kept us on our toes.
Nikolai had a funny way of helping us all learn,
And with that said I, John, must conclude, it’s over, let’s adjourn!

John Sammons, August 3, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 3, 2005

Weather Data from the Bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Questions of the Day: In what group is the scallop categorized – vertebrates or invertebrates? What kingdom does the scallop belong – monerans, protests, fungi, plants, or animals?

(You may need to use a dictionary to look up these words before deciding the correct answer.)

Screen shot 2014-02-02 at 10.25.09 PM

Yesterday’s Answer: If the sea scallop population were to change drastically, then the population of starfish and crabs might change, too. Other organisms that are in the same community as the scallop are little skate, red hake, yellow tail flounder, and goosefish.

Science and Technology Log:

On Wednesday, the ALBATROSS IV began surveying the western edge of Georges Bank. Typically dense fog, cool temperatures, low visibility dominate the scene. We are currently about 55 miles offshore as we continue to meander between stations and conduct a sampling of the various strata. This morning we caught a dogfish shark in the dredge and took a photo opportunity. It is exciting when a new species (one we have not seen yet on this survey) appears in the dredge. The biggest excitement came when hagfish started to appear in the dredge. These snake-like fish tried to squirm their way off the deck. Several adjustments were made in the trackline (or stations we will visit) to account for time and problems with the tow.

The chart below shows a selected number of species and the total catch weights from July 25 – August 2.

Species Names

Catch Weight (grams)

HAGFISH ATLANTIC

3,230

SPINY DOGFISH

1,560

BARNDOOR SKATE

33,462

WINTER SKATE

152,976

LITTLE SKATE

608,663

SMOOTH SKATE

5,303

THORNY SKATE

6,199

ATLANTIC HERRING

402

SILVER HAKE

116,339

COD

11,498

HADDOCK

59,354

WHITE HAKE

7,140

RED HAKE

399,512

SPOTTED HAKE

310

FOURBEARD ROCKLING

191

AMERICAN PLAICE

30,250

FLUKE

27,660

FOURSPOT FLOUNDER

124,973

YT FLOUNDER

108,054

WINTER FLOUNDER

46,980

WITCH FLOUNDER

15,660

WINDOWPANE FLOUNDER

27,576

GULF STREAM FLOUNDER

9,189

BLACKBELLY ROSEFISH

8

SCULPIN UNCL

18

MOUSTACHE SCULPIN

33

LH SCULPIN

80,691

SEA RAVEN

21,468

ALLIGATORFISH

2

NORTHERN SEAROBIN

47

CUNNER

493

ROCK GUNNEL

75

NORTHERN SAND LANCE

40

OCEAN POUT

68

FAWN CUSKEEL

382

GOOSEFISH

933,330

AMERICAN LOBSTER MALE

34,550

CANCER CRAB UNCL UNSEXED

122,684

STARFISH UNCL

161,477

ASTERIAS BOREAL

242,902

ASTROPECTEN SP

15,623

ICELAND SCALLOP LIVE

450

SCALLOP ICELAND CLAPPER

56

CONGER EEL UNCL

200

SEA SCALLOP CLAPPER

222,600

SEA SCALLOP LIVE

19,863,690

SNAKE EEL UNCL

59

ILLEX SQUID

1,313

OCTOPUS SPOONARM

109

SPOONARM OCTOPUS

200

SCORPIONFISH AND ROCKFISH UNCL

4

UNKNOWN 01

19

1) Order the 10 highest amounts from greatest to least.
2) Order the 10 lowest amounts from least to greatest.
3) Which species has a total with a 9 in the millions place?
4) Which species has a total with a 6 in the ten thousands place?
5) Which species has a total with a 9 in the hundred thousands place?
6) Choose a species to research. Why do you think their numbers are higher or lower than the others are?

Personal Log

A Few Days Left 

With just a few days left before we enter the home port,
We still continue to collect and sample and we sort.
The number of each species catch continues to go up,
We even brought a dogfish in that was only just a “pup”.
What more can we expect to find within the capture net,
From this station to the next one, we’ll take what we can get.

John Sammons, August 2, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 2, 2005

Weather Data from the bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Questions of the Day: Explain what might happen if the sea scallop population were to change drastically. What other organisms are in the same community as the scallop?

(You may want to look at the Day 8 food web and the graph below.)

Yesterday’s Answer:

Scallops are predators because they eat something else, that is phytoplankton and zooplankton. They are primarily herbivores. Scallops are mostly prey to, or eaten by, sea stars and crabs.

Science and Technology Log

Screen shot 2014-02-02 at 10.24.04 PM*CTD = Conductivity, Temperature, Depth instrument is used to measure salinity, temperature, and depth at selected stations. This is important because different species of marine animals (including the sea scallop) have tolerances for certain temperatures and depths.

On Tuesday, the ALBATROSS IV continued surveying the northern edge of Georges Bank as it makes its way west toward Woods Hole. The weather has been very cooperative with a ridge of high pressure overhead, despite the routine early dense fog. Scallop counts are very low while other newer species are being observed, including various species of sea stars and the hagfish. The chart below shows a selected number of species and the stations in which they were found.

Sea Scallop Survey Leg II: Stations Where Species Were Found

Screen shot 2014-02-02 at 10.24.16 PM

Questions:

1) Which of these species was caught at the most stations?

2) Which of these species was caught at the least number of stations?

3) At how many more stations were the sea scallops caught than the red hake?

4) What might explain why sea scallops were found at the most number of stations on this survey?

5) What is the difference between the number of stations that the yellow tail flounder were located and the sea scallop?

Personal Log

Measuring Up 

Ten minutes to go before it’s time for another CTD,
When the crew will set and drop it down into the waiting sea.
It only takes a moment for the thing to take a dash,
To the bottom it will go, but watch that it don’t crash.
Then it’s time to drop the dredge and ready for the tow,
Soon you’ll hear them haul it in, and it’ll be time to go.

 

John Sammons, August 1, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 1, 2005

Weather Data from the bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Questions of the Day: What makes a scallop a predator? Is a scallop a carnivore, herbivore, or omnivore?  What is the scallop prey to?

Screen shot 2014-02-02 at 10.23.14 PM

Yesterday’s Answer:

Scallop Answers

Science and Technology Log

Facts About Sea Scallops* 

  • Largest wild scallop fishery in the world
  • Most valuable fishery in Northeast US
  • 2004 landings were about 28,000 meats (63 million lbs) worth over $300 million
  • Most landings come from about 300 vessels with “limited access” permits
  • Principal ports are New Bedford MA, Cape May NJ, Hampton Roads VA
  • Typical vessel is 70-90’ and uses two 15’ dredges
  • Most fishing occurs in the Mid-Atlantic area (Virginia to Long Island) and on Georges Bank
  • Sea scallops have an upper temperature tolerance of about 21 C.
  • Most important scallop predators are: sea stars, crabs and other decapods
  • Because they are filter-feeders, their main source of food is phytoplankton in the floor to surface water column.

*Thanks to Dvora Hart, Northeast Fisheries Science Center, for supplying the scallop information. 

On Monday, the ALBATROSS IV began surveying more open areas. Sunday’s 6 – midnight watch experienced very large catches as they sampled the closed areas from the Canada line westward. I got an opportunity to operate on a Goosefish in order to take a vertebrate sample. This will be used to determine the age of the fish. The catches are significantly small since we entered an open area for fishing.  With beautiful weather ahead of us, we should be able to continue to enjoy the sorting time as well as time on deck to relax. The weekly fire and abandon ship drills were held today.

Personal Log

Life at Sea 

Working two shifts makes it hard to fully stay awake,
But ignoring the wakeup call could be a big mistake.
So much to choose from when it’s finally time to eat,
Better be there when it is your time to get a decent seat.
Take a minute or two to rest while the ship is on a steam,
When it’s time to go to bed, enjoy that time to dream.

John Sammons, July 31, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 31, 2005

Weather Data from the Bridge

Latitude: 41° 26’ N
Longitude: 66° 34’ W
Visibility: <1 mile
Wind direction: NW (306 degrees)
Wind speed: 7 knots
Sea wave height: 1’
Swell wave height: 1’
Sea water temperature: 15°C
Sea level pressure: 1023.3 millibars
Cloud cover: 90% fog, haze, dust

Screen shot 2014-03-01 at 8.35.50 AM

Question of the Day: Predict the mass and size of each scallop pictured above. Match them with the masses and lengths shown below.

Scallops Masses and Lengths

Yesterday’s Answer: Answers may be different.

  1. flat body allows it to lay camouflaged on the bottom
  2. tail fin allows it to move through the water
  3. spiny back and tail protect it from predators
  4. long, slender body allows it to move faster through the water
  5. strong muscle allows it to close the shell to keep out predators
  6. strong arms allow it to pry open shells for food

Science and Technology Log

“Scallops are a family of bivalve mollusks; there are several hundred species of scallops, found in marine environments all over the world.  Like most other bivalves, they consume phytoplankton and other small particles by filter-feeding. Unlike many bivalves (e.g., clams, which bury in the sediments), they live on the bottom surface, and can move by swimming. Atlantic sea scallops (Placopecten magellanicus, also known giant scallops or deep sea scallops) live only in the northwest Atlantic from Cape Hatteras to Newfoundland and the Gulf of St. Lawrence. Sea scallops usually spawn in late summer or early fall, though spring spawning may also occur. After hatching, larvae stay in the water column for 4-6 weeks. At settlement, they attach to a hard object by means of byssal threads produced by a gland at the end of their foot.”

*Thanks to Dvora Hart, Northeast Fisheries Science Center, for supplying the scallop information. 

On Sunday, I was able to operate the Conductivity, Temperature, and Depth instrument by myself. This instrument is lowered into the water at every third designated stations. Data is collected as the instrument descends to the bottom. This data includes salinity (saltiness), temperature, and depth of the water. This is important since various marine animals require ideal temperatures to survive. Today’s CTD went down to 80 meters (think 80 meter sticks deep) and recorded a temperature of about 5 °C. That ‘s cold!

Personal Log

Scallop Catch 

The heavy dredge is ready for another timely tow,
Expect to catch the scallops, to the surface they will go.
Dropping to the bottom where its 80 meters deep,
Spending fifteen minutes dragging and bringing in the keep.
Then they’re sorted on the surface while hiding in their shell,
The aging/growth ridges on their outside’s what they tell.

 

John Sammons, July 30, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 30, 2005

Weather Data from the Bridge

Latitude: 41° 26’ N
Longitude: 66° 34’ W
Visibility: <1 mile
Wind direction: NW (306 degrees)
Wind speed: 7 knots
Sea wave height: 1’
Swell wave height: 1’
Sea water temperature: 15°C
Sea level pressure: 1023.3 millibars
Cloud cover: 90% fog, haze, dust

Question of the Day: What physical adaptations help the animals pictured in numbers 1 – 6 above survive in their environment? Give at least three.

 

Screen shot 2014-03-01 at 8.32.02 AM

Photos 7, 8, 9: Evening Sunset

 

Yesterday’s Answer: The cloud types shown in yesterday’s pictures are: 1) cirrus and stratus 2) stratus (fog) 3) cirrus 4) cirrus 5) cumulus 6) cirrus and stratus 7) stratus (fog)  8) stratus 9) cumulus (alto-or cirro-cumulus) There were no cumulonimbus (thunderstorm) clouds (which is a good thing). The crew on the Albatross IV was experiencing FAIR weather.

Science and Technology Log

Animal adaptations fall into two general categories – behavioral and physical. The physical adaptations are the structures on the animal that help in survive, while the behavioral adaptations are the actions the animal takes in order to survive. The structures may include fins, body shape, beaks, mouth parts, legs, gills, etc. that are important to the animal’s ability to endure within the habitat. For example, scallops have a hard shell that helps them survive by keeping out predators. The actions that animals may take in order to survive include playing dead, showing teeth, and licking your face. For example, scallops squirt water in order to push themselves away from their predators.

On Saturday we moved into Canadian waters and are now operating in an open area. We essentially have the same tasks to perform at each station, including taking a picture of the catch before it is sorted, weighing and measuring selected species, tagging and bagging requested species, cleaning the workstations after each station, and operating the CTD. More information about the Conductivity, Temperature, and Depth instrument will be shared in tomorrow’s log. Several whales, dolphins, sharks, and porpoises have been spotted. They are difficult to photograph because I never have a camera ready, and they are breaking the surface at unpredictable time.

The table below shows the amount of some of the marine species collected since our survey began.

Sammons Day 6 Table

  1. Can you tell which species was the most populated in the areas surveyed?
  2. Which species was the least populated?
  3. Are there any that have the same or close to the same amount?
  4. What’s the difference between the number of the most and least populated totals?

Personal Log

Ocean Sunset 

Stand in awe as the sun begins to finally set,
Awash in orange and red and yellow, it is hard to forget.
What a lasting beauty as the sky begins to glow,
Its splendor in the many colors that it will show.
Waiting for its lasting blaze of light to end the day,
Now I lay me down to sleep. . ., I ask of Him, I pray.