Kaitlin Baird: Did You Know? September 25, 2012

NOAA Teacher at Sea
Kaitlin Baird
Aboard NOAA Ship Henry B. Bigelow
September 4 – 20, 2012

Mission: Autumn Bottom Trawl Survey with NOAA’s Northeast Fisheries  Science Center
Geographical Area: Back in port! Newport Rhode Island
Date: September 21st
.

Location Data:
Latitude: 41’53.04
Longitude: 71’31.77

Weather Data:
Air Temperature: 13.8 (approx.57°F)
Wind Speed: 10.01 kts
Wind Direction:  North
Surface Water Temperature: 19.51 °C (approx. 67°F)
Weather conditions: overcast

Science and Technology Log:
I thought I would end my trip on the Henry B. Bigelow with some fun facts!
.
Did you know?
The Fisheries Scientific Computer System (FSCS) is able to prompt the data recorders with all actions needing to be performed for a particular species. It is coded with unique barcodes for every sample taken. Back in the laboratory all scientists receiving samples can receive all the information taken about the given organism by scanning this unique barcode!
.
barcoding for species caught on cruise for further analysis

Barcoding for species caught on cruise for further analysis

Did you know?
Science crew operating on the back deck are required to wear an Overboard Recovery Communications Apparatus (ORCA). This system if it is activated sends a signal by way of radio frequency to a receiver on the ship’s bridge. This system responds immediately to the ship receiver and has a direction finder to help locate the man overboard.

Me getting ready to head to the back deck with my positioning system around my neck

Me getting ready to head to the back deck with my ORCA around my neck

Personal Log:
It would take me hours to go through all of the amazing creatures we caught and surveyed on this trip, so I thought I would write some fast facts about some of my favorites! Enjoy!
.
Did you know?
The male spoon arm octopus has a modified arm that passes spermatophores into the oviducts of the female. Pretty neat stuff!
spoonarrm octopus

Spoon arm octopus

Did you know?
Stargazers, like this one, have an electric organ and are one of few marine bony fish species that are able to produce electricity.  This is known as Bioelectrogenesis. They also hide beneath the sand with just their eyes sticking out and ambush their prey!

Stargazer

Stargazer

Did you know?
This fish, the Atlantic midshipman, has bioluminescent bacteria that inhabit these jewel–like photophores that emit light! It also interestingly enough uses this function in fairly shallow waters!

midshipman photophores

Midshipman photophores

Did you know?
Sea spiders like this one have no respiratory organs. Since they are so small gasses diffuse in and out of their bodies, how cool is that!

sea spider

Sea spider

Did you know?
The flaming box crab, Calappa flammea, uses its scissor-like claws that act as a can opener. It has a special modified appendage to open hermit crabs like a can opener!

flaming box crab

Flaming box crab

Did you know?
A female Atlantic angel shark like this one can have up to 13 pups!

angel shark

Angel shark

Did you know?
Seahorses suck up their food through their long snout, and like the flounders I talked about at the beginning of the cruise, their eyes also move independently of each other!!

seahorse

Seahorse

Did you know?
Horseshoe crabs, like this one, have blue blood. Unlike the blood of mammals, they don’t have hemoglobin to carry oxygen, instead they have henocyanin. Because the henocyanin has copper in it, their blood is blue!

horseshoe crab

Horseshoe crab

Last but NOT least, Did you know?
According to the Guiness Book of World Records the American Lobster has been known to reach lengths over 3 ft (0.91 m) and weigh as much as 44 lb (20 kg) or more. This makes it the heaviest marine crustacean in the world! This one was pretty large!!

American Lobster

American Lobster

A big farewell to everyone on the Henry B. Bigelow! Thanks so much, i had a great time and learned a lot! Thanks for reading!

Kaitlin Baird: The Importance of Sound, September 16, 2012

NOAA Teacher at Sea
Kaitlin Baird
Aboard NOAA Ship Henry B. Bigelow
September 4 – 20, 2012

Mission: Autumn Bottom Trawl Survey with NOAA’s Northeast Fisheries  Science Center
Geographical Area: Off the Coast of Maryland
Date: September 16th
.

Location Data:
Latitude: 37’72.10
Longitude: 75′ 17.02

Weather Data:
Air Temperature: 21.0 (approx.70°F)
Wind Speed: 8.71 kts
Wind Direction:  West
Surface Water Temperature: 22.99 °C (approx. 73°F)
Weather conditions: overcast

Science and Technology Log:

It’s day 13 aboard the Henry B. Bigelow and we have made the turn at our southern stations off the coast of North Carolina and are working our way back to port at some of our inshore stations off the coast of Maryland. You may wonder how each of the stations we sample at sea are chosen? The large area of Cape May to Cape Hatteras are broken into geographic zones that the computer will assign a set amount of stations to, marking them with geographic coordinates. The computer picks a set number of stations within each designated area so all the stations don’t end up all being within a mile of each other. Allowing the computer system to pick the points removes human bias and truly keeps the sampling random. The vessel enters the geographic coordinates of the stations into a chartplotting program in the computer, and uses GPS, the Global Positioning System to navigate to them.  The GPS points are also logged on a nautical chart by the Captain and mate so that they have a paper as well as an electronic copy of everywhere the ship has been.

You may wonder, how does the captain and fishermen know what the bottom looks like when they get to a new point? How do they know its OK to deploy the net? Great question. The Henry B. Bigelow is outfitted with a multibeam sonar system that maps the ocean floor.  Some of you reading this blog might remember talking about bathymetry this summer. This is exactly what the Bigelow is doing, looking at the ocean floor bathymetry. By sending out multiple pings the ship can accurately map an area 2.5-3 times as large as its depth. So if the ship is in 20 meters of water it can make an accurate map of a 60 meter swath beneath the boats track. The sonar works by knowing the speed of sound in water and the angle and time that the beam is received back to the pinger . There are a number of things that have to be corrected for as the boat is always in motion. As the ship moves through the water however, you can see the projection of the bathymetry on their screen below up in the wheelhouse. These images help the captain and the fisherman avoid any hazards that would cause the net or the ship any harm.  A good comparison to the boats multibeam sonar, is a dolphins ability to use echolocation. Dolphins send their own “pings” or in this case “echos” and can tell the location and the size of the prey based on the angle and time delay of receiving them back. One of the main differences in this case is a dolphin has two ears that will receive and the boat just has one “receiver”. Instead of finding prey and sizing them like dolphins, the ship is using a similar strategy to survey what the bottom of the sea floor looks like!

bathymetric data being collected by multibeam sonar technology on the Bigelow

Bathymetric data being collected by multibeam sonar technology on the Bigelow

Bigelow multibeam sonar (NOAA)

echolocation schematic courtesy of the Smithsonian Institute

Echolocation schematic courtesy of the Smithsonian Institute

Personal Log:

The last few days I have been trying my hand at removing otoliths from different species of fish. The otoliths are the ear bones of the fish. Just like the corals we have been studying in Bermuda, they are made up of calcium carbonate crystals. They are located in the head of the bony fish that we are analyzing on the cruise. A fish uses these otoliths for their balance, detection of sound and their ability to orient in the water column.

If you remember, at BIOS, we talk a lot about the precipitation of calcium carbonate in corals and how this animal deposits bands of skeleton as they grow. This is similar in bony fish ear bones, as they grow, they lay down crystalized layers of calcium carbonate. Fisheries biologist use these patterns on the otolith to tell them about the age of the fish. This is similar to the way coral biologists age corals.

I have been lucky enough to meet and learn from scientists who work specifically with age and growth at the Northeast Fisheries Science Center Fishery Biology Program. They have been teaching about aging fish by their ear bones. These scientist use a microscope with reflected light to determine the age of the fish by looking at the whole bone or making slices of parts of the bone depending on what species it is. This data, along with lengths we have been recording, contribute to an age-length key. The key allows biologists to track year classes of the different species within a specific population of fish. These guys process over 90,000 otoliths a year! whew!

The information collected by this program is an important part of the equation because by knowing the year class biologists can understand the structure of the population for the stock assessment.  The Fishery Biology program is able to send their aging and length data over to the Population Dynamics Branch where the data are used in modeling. The models, fed by the data from the otoliths and length data,  help managers forecast what fisheries stocks will do. It is a manager’s job to the take these predictions and try to balance healthy fish stocks and the demands of both commercial and recreational fishing. These are predictive models, as no model can foresee some of the things that any given fish population might face any given year (ie food scarcity, disease etc.), but they are an effective tool in using the science to help aid managers in making informed decision on the status of different fish stocks. To learn more about aging fish please visit here.

otoliths (fish ear bones) that i removed from a Butterfish

Otoliths (fish ear bones) that I removed from a Butterfish

You can see here is an otolith that is 1+ years old. It was caught in September and that big 1st band is its Year 0. You can see that the black dot demarks the fish turning 1. You can then see the Summer growth but not yet the winter growth. This fish has not yet turned 2, but it will Jan 1st of the next year.

You can see here an otolith that is 1+ years old. It was caught in September and that big 1st band is its Year 0. You can see that the black dot demarks the fish turning 1. You can then see the Summer growth but not yet the winter growth. This fish has not yet turned 2, but it will be Jan 1st of the next year.

I have to end with a critter photo! This is a Cobia (Rachycentron canadum).

Me and a Cobia caught off the coast of Maryland

Cobia caught off the coast of Maryland

Thanks for reading!

Kaitlin Baird: All Ashore Who Are Going Ashore, September 6, 2012

NOAA Teacher at Sea
Kaitlin Baird
Aboard NOAA Ship Henry B. Bigelow
September 4 – 20, 2012

Mission: Autumn Bottom Trawl Survey with NOAA’s North East Fisheries  Science Center
Geographical Area: Atlantic Ocean steaming to south New Jersey coast
Date: September 6, 2012

Location Data:
Latitude: 41 ° 18.70’   N
Longitude: 71 ° 42.11’  W       

Weather Data:
Air Temperature: 20.5°C (approx. 69°F)
Wind Speed: 4.97 kts
Wind Direction: from N
Surface Water Temperature: 22.2 °C (approx. 72°F)
Weather conditions: Sunny and fair

Science and Technology Log

The purpose of our mission aboard the Henry B. Bigelow is the 1st leg of groundfish surveys from Cape May all the way down to Cape Hatteras with the Northeast Fisheries Science Center. The scientists aboard the ship are interested in both the size and  frequency of fish at different targeted geographic locations. We will be sampling using a trawl net at about 130 different stations along the way, some inshore and some offshore. We will be using a piece of technology called the Fisheries Scientific Computer System (FSCS). This system will allow us to accurately take baskets of different species of fish and code them for their lengths into a large database. This will give us a snapshot of fisheries stocks in the Northeast Atlantic by taking a subsample. The computer system also allows us to see if any other things need to be done with the fish once they are measured. Tasks like otolith (I’ll tell you about these later!) and gonad removal, fin clips or whole organisms sampling may also be done. The computer system will allow us to label each of these requests and assign it a code for scientists requesting samples from this cruise. Additionally, there are scales along with the system for recording necessary weights. We will be sorting fish first by species, and then running them all through the coded FSCS which you can see in the photo below.

Measuring board for fish

Board for magnetically measuring fish

We are currently on full steam to get our first tow in early tomorrow morning. You can track our ship using NOAA’s ship tracker system. Here we are positioned currently passing Block Island.

Ship Tracker with Current Location

NOAA Ship Tracker

Can’t wait to tell you more about the FSCS system when we start using it tomorrow!!

Personal Log

We have just pushed off the dock at 0900 and are headed South to start our first  trawl tomorrow morning. Everyone is getting used to the ship and some swells with a few storms in the Atlantic. I am really excited to get to see what comes up in our first tow. I have been assigned to the day watch which means that my shift runs from Noon-Midnight. The two other ladies that share our room will be on the night watch, so there will be a changing of the guard and some fresh legs and recorders.

Darcy and Caitlin

Darcy and Caitlin two other volunteers learning the ropes

All ready to go

Helly Hansen gear to keep us all dry.

I am looking forward to bringing you some cool fish photos soon! Hello to everyone back  in Bermuda! Stay safe..

Bye for now!!

Barbara Koch, October 2, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, October 2, 2010

Weather Data from the Bridge
Latitude 41.31
Longitude -71.40
Speed 6.50 kts
Course 192.00
Wind Speed 11.29 kts
Wind Dir. 246.00 º
Surf. Water Temp. 18.81 ºC
Surf. Water Sal. 31.87 PSU
Air Temperature 15.90 ºC
Relative Humidity 57.00 %
Barometric Pres. 1014.52 mb
Water Depth 35.81 m
Cruise Start Date 10/2/2010

Stacy Rowe, of the Northeast Fisheries Science Center

Stacy Rowe, of the Northeast Fisheries Science Center

Science and Technology Log

Stacy Rowe, of the Northeast Fisheries Science Center, in Woods Hole, Massachusetts is the Chief Scientist for our cruise. I had a chance to talk with her about her background, experiences, and job while we were waiting to leave port today.

When working onshore, Rowe is responsible for pre-cruise preparations, such as ordering supplies for the trip and coordinating the collection of special samples for in-house and out-of-house scientists. She also works on testing a new version of FSCS (Fisheries Scientific Computer System), which is the system we are using to collect data about the fish populations.

During the cruise, when serving as Chief Scientist, Rowe shoulders a lot of responsibility. She schedules the watch teams, works with both watch teams, and acts as a liaison between the scientists and the ship’s personnel on the bridge (the room from which the boat is commanded). Although the sampling stations are randomly selected via computer before the cruise, Rowe works with the bridge to determine in which order stations will be sampled. On this cruise she has consulted with the bridge often because the weather has impacted our travel so much. Rowe relates that the job of chief scientist is mentally tiring because she is really on call the entire cruise. After the cruise, Rowe works with post-cruise management. She makes sure the samples collected are distributed to the scientists, and she audits data to make sure there were no errors in data collection.

Rowe grew up in Florida and attended the University of Florida where she earned a BS in Natural Resource Conservation with a minor in Wildlife Ecology. During her undergraduate program, she studied sampling, and uses this information extensively in her job now. After she graduated from college, Rowe joined the Peace Corps. She spent over one year working in Congo, Africa on a fresh water project. Then, she spent two years on Palau in Micronesia working in marine resource management. Rowe has been with NOAA for eight years, now. She goes on five to six research cruises a year, which adds up to about sixty days for the entire year. She serves as Chief Scientist on the majority of her cruises, but still enjoys the rare cruise when she works as a scientist processing catches.

Rowe has some advice for young people thinking they might like a career like hers. First, get a degree in any science area. A marine science degree isn’t really necessary. Work experience is the really important key. Second, volunteer as much as you can. Volunteering to work on research cruises not only builds a resume, but it allows students to try it out early on in their school career to see if they like it.

Stacy Rowe has strong interpersonal and organizational skills that are important for her leadership position, and I’ve enjoyed working as a volunteer scientist under her direction.

Personal Log

Newport, Rhode Island is a great place to visit. It was a center for shipbuilding and trade during colonial times, and is the birthplace of the U.S. Navy. Some of the United States’ wealthiest families built summer homes overlooking the bay, and these homes are open for tours today. I spent a nice afternoon on the “Cliff Walk” which is a trail that skirts around the edge of the estates just above the water. I had been there twenty five years ago, so it was fun to revisit the area.

Narragansett Bay

Narragansett Bay.

After two days in port, we are heading back out to sea. It’s a beautiful day. The sun is shining, and the waters are pretty calm. It’s hard to believe that we will be in rough waters once we leave Narragansett Bay. I’m riding up on the weather deck as we leave the bay, and I see many sailboats, two commercial cruise liners, Fort Adams (which has guarded Narragansett Bay since Colonial Times), Clingstone (a famous house built on a rock in the water), and the Newport (Pell) Bridge. I’m definitely putting Newport on my list of places to revisit.

In the Wet Lab

Processing an Atlantic Spicy Dogfish

Processing an Atlantic Spicy Dogfish

Processing an Atlantic Spicy Dogfish

Processing an Atlantic Spicy Dogfish

We have processed Atlantic Spiny Dogfish in the lab this week. This fish isn’t very popular for food in the United States, but it is exported to Europe for “fish and chips.” In 1998, this species was overfished, therefore, there were limits placed on the numbers fisheries could catch. Since that time, catch levels have been rebuilt.

The Atlantic Spiny Dogfish lives a long time: females up to 40 years and males up to 35 years. Females are larger than males and give birth to between two and fifteen live pups. During gestation (18-24 months) the pups have a yellow sack at their necks called a “yolk.” The Spiny Dogfish, processed here by TK, was a female with six pups. You can see the yolk on the two pups in the picture at right.