Tom Savage: Introduction, June 1, 2018

NOAA Teacher at Sea

Tom Savage

NOAA Ship Fairweather

August 6 – 23, 2018

 

Mission: Southeast Alaska Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska

Date: June 1, 2018

Introduction

Greetings from Western North Carolina.  My name is Tom Savage, and I am a high school Science teacher at the Henderson County Early College on the campus of Blue Ridge Community College in Flat Rock, NC.  I currently teach Chemistry, Earth Science, Physical Science and coach our Science Olympiad Team. This is my fourteenth year teaching and ninth year teaching at the early college.

Science Olympiad team

Science Olympiad team placed first this year at UNC – Asheville, NC !

 

Exactly three years ago, I was preparing for my first NOAA Teacher at Sea voyage aboard NOAA Ship Henry Bigelow. During that mission, we conducted a cetacean (whale) inventory off the coast of New England in a region called Georges Bank. It was a trip of a lifetime and it had a profound impact on my teaching and my students.  As a result, students in my physical science classes are now identifying whales species based on their sound acoustics. In addition, I began a new elementary outreach program, “Young Scientist.”  Through activities, elementary children are exposed to the many sounds marine mammals produce for communication. Embedded within these lessons is the the marine mammals that reside in our oceans and NOAA’s mission in safe guarding these fragile ecosystems. Collaboration continues today with acoustician scientist Genevieve Davis, from NOAA’s Northeast Fisheries Science Center, located in the small scientific community of Woods Hole on Cape Cod.

Stickers for the Drifter Buoy

“Sounds of the Sea” ~ elementary children designing stickers to be attached to the drifter buoy.

I was very excited and honored to be chosen for another “once in a lifetime adventure,” two in one lifetime! This year I will be assisting with a hydrographic survey in and around the inside passages of southeast Alaska on NOAA Ship Fairweather! The goal of the survey is to map the ocean floor through the use of SONAR for the purpose of updating nautical charts. Using sound waves for mapping will compliment my marine mammal lesson plans. On this mission, we will be deploying a drifter buoy in which students will be tracking during the year as it will be transmitting realtime locations.

I have always had a fascination with the oceans. During the summer of 2013,  I spent a week with eighteen other science teachers from across the county, scuba diving within the Flower Garden Banks National Marine Sanctuary. This week long program was sponsored by the Gulf of Mexico Foundation and NOAA.  This exceptional professional development provided an opportunity to explore, photograph and develop lesson plans with a focus on coral reefs. I also learned about how important the Gulf of Mexico is to the oil industry. I had the opportunity to dive under an abandoned oil platform and discovered the rich, abundant animal life and how these structures improve the fish population.

Prior to becoming a teacher, I worked for six years in the GIS (Geographic Information System) field collecting, developing and designing maps for many purposes; ocean floor mapping is not on the list. I also worked for five years as a park ranger at many national parks including the Grand Canyon, Glacier and Acadia. Working at these national treasures was wonderful and very beneficial to my teaching.

Discover SCUBA

Providing young adults with as many experiences and career possibilities is the hallmark of my teaching. During the year, I arrange a “Discover SCUBA” at the local YMCA. Students who have participated in this have gone on to become certified. In the fall I have offered “Discover Flying” at a local airport, sponsored by the “Young Eagles” program. Here students fly around our school and community witnessing their home from the air. A few students have gone on to study various aviation careers.

Preparing for flight

Preparing for flight !

The most difficult part of being at sea for such a long time is missing my family.  They all enjoy the ocean! I have been diving with my son since he was 12 and this summer my daughter will earn her junior certification.

MacKenzie and Julianna

My children, MacKenzie and Julianna

I look forward to sharing this adventure with you!  Please send any questions that you may have and I will respond in a timely manner.

Until next time; happy sailing!

 

Jennifer Petro: Finding the Fish, July 7, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA Ship Pisces
July 1 — 14, 2013 

Mission: Marine Protected Area Surveys
Geographic area of cruise: Southern Atlantic
Date: July 7, 2013

Weather Data
Air temperature: 27.°C (81.5°F)
Barometer: 1022.50 mb
Humidity: 73%
Wind direction: 195°
Wind speed: 6.1 knots
Water temp: 26.6° C (79.3°F)
Latitude: 34 44.62 N
Longitude: 75 91.98 W

Science and Technology Log

Today we find ourselves off of the coast of northern North Carolina where we will be for the next few days.  An exciting aspect about this cruise is that we will be multi-beam mapping (a blog about that very soon) and sending the ROV down for surveys in new areas off of North Carolina.  For the past few days I have been working with the team from the Panama City Southeast Fisheries Science Center identifying fish.  This can sometimes be a very difficult prospect when the ROV is flying over the fish at 2 knots.  The team from SEFSC consists of Andy David, Stacey Harter and Heather Moe.  David is a 23 year veteran of NOAA and has been working on the MPA project since 2004.  Stacey has been working on this project since its inception as well.  Heather is new to the team and is just coming off of a 1 year assignment with the NOAA Corps at the South Pole.
There are several major objectives of this survey cruise.

There are several major objectives of this survey cruise.

(1)  To survey established MPAs to collect data to compare to previous years’ surveys.

An important aspect of these cruises is to establish the effectiveness of an MPA.  In some MPAs there is usually no fishing allowed.  This includes trolling. bottom fishing (hook and line) as well as all commercial methods of fishing.  The MPAs we are studying are Type II MPAs where trolling is permitted.  They are looking for seven specific target species.

According to Andy, these species have been chosen due to their commercial value.  During each dive a record is taken as to the type of species seen.  We are specifically looking for the target species but we are keeping track of ALL the species that we see.  I think it is fantastic to see scientists get excited about seeing something new.  So far we have seen Oceanic Sunfish (2), Redband Parrotfish, Tautog (a more northerly found fish), Longsnout Butterflyfish and one fish species that we have not identified yet.  There is an emphasis on Lionfish counts to assist in gauging how the introduction of this invasive species is affecting the overall fish populations.  In some areas the Lionfish numbers have increased dramatically over the years.  Today we actually saw one try to eat a smaller fish!  They are very abundant in some locations and not in others but they have been present in 95% of our dives.

A Speckled Hind seen inside the North Florida MPA.

A Speckled Hind seen inside the North Florida MPA.

A Warsaw Grouper seen inside the North Florida MPA.

A Warsaw Grouper seen inside the North Florida MPA.

Stacey Harter, LT JG Heather Moe and I watching the big monitor and calling out the fish that we are seeing to be recorded.

Stacey Harter, LT JG Heather Moe and I watching the big monitor and calling out the fish that we are seeing to be recorded.

(2) Survey outside of the MPAs.

You may ask “Why survey outside the area?”  We want to know if the MPAs are indeed doing what they were designed to do: protect fish species.  That was very evident in Jacksonville where the numbers and size of Gag Grouper and Scamp far exceeded the numbers and size outside the MPA.

Andy David recording for the ROV video log species of fish we are seeing on the dive.

Andy David recording for the ROV video log species of fish we are seeing on the dive.

(3)  Survey new sites for possible MPA designation.

There is a process that is followed when determining if an area is a suitable MPA candidate.  What we are doing on this cruise is both mapping and surveying new areas that have been proposed as MPA sites.  This is the ground level stage.  The MPAs in the region that we are in are ultimately determined by the South Atlantic Fishery Management Council.

A Gray Triggerfish protecting a nest of eggs.  Seen in the Edisto MPA as well as in a proposed site off of North Carolina.

A Gray Triggerfish protecting a nest of eggs. Seen in the Edisto MPA as well as in a proposed site off of North Carolina.

Data during the dives is collected in a few ways.  There are several video monitors that we watch and we call out species that we see.  A data keyboard, like the one Harbor Branch uses for invertebrates counts, is used to keep track of types and number of each species seen.  During every dive a video from the camera on the ROV is recorded and species are highlighted and recorded on to the DVD.  This data will be analyzed thoroughly back at the lab and then sent to the South Atlantic Fishery Management Council.

Personal Log

I am happy to announce that I have finally gotten my sea legs.  It wasn’t as bad as I had envisioned but I was definitely concerned that it would be a major issue.  We had some weather on Thursday, July 4 and that was the worst of it for me.  I now hardly feel the vessel move.  It has been fun over the past several days.  We are in the lab most of the days so we only get to really see the crew at mealtimes and after dinner.  The crew, from the CO to the engineers, are all great people.  They are happy to answer questions, point you in the right direction and are quick to say hi and ask you about your day.  Yesterday afternoon one of the engineers, Steve, gave us a tour of the engine room.  All of the ship’s infrastructure is supported by this room.  The engines run the generators for power, support the a/c, house the desalination filters (all the fresh water on board comes from salt water) as well as getting the boat from point A to point B.  I was impressed!

One of the 4 Caterpillar engines that keep Pisces running ship shape.

One of the 4 Caterpillar engines that keep Pisces running ship shape.

Today after our last ROV dive, a school of Mahi mahi followed it (the ROV) up to the surface.  The fishing was on!  The crew brought out rods, reels and bait and the fishing commenced.  Collectively we managed to land one bull or male and 2 smaller Mahi mahi.  It was a nice diversion for all of us, scientists and crew, as we were back to work all too quickly.  Fish tacos for dinner!

Hoping I can land this one!

Hoping I can land this one!

Fair weather and calm seas.

Jennifer

Did you know that…

Some grouper can grow to be so huge that when they open their mouths to feed, they create a suction that is powerful enough to inhale small prey.

Sue Cullumber: Reflections – From the Atlantic to Arizona, June 26, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/26/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

1stgroup

Our first group for the EcoMon Survey. Kat, Kevin, Holly, Chris, Tom, Sue, Chris, and Cristina.

Personal Log: Well I’m back in my home state of Arizona.  It is really hot, the forecast is for it to be above 110º, and I miss the cool breezes of the Atlantic Ocean.  I am happy to be back in Arizona, but I will miss all the people, the marine creatures and the beauty of the Atlantic Ocean.  I will remember  this experience for the rest of my life and look forward to sharing this exciting adventure with my students, friends and family.

2ndgroup2

Our 2nd group for the EcoMon Survey. Tom, Kris, Cristina, David, Sue, Chris, Kevin and Sarah.

On the last two days onboard we finished up our EcoMon Survey and had time to add 23 more Bongo Stations.  These were completed in two areas with the first just east of Maryland and the second off the coast of North Carolina. As we headed east of North Carolina we went into the Gulf Stream and the water temperature started to increase. At these stations our samples contained more larval fish than previously. We even brought up some deep-sea fish in two of these samples. One was a species of Gonostoma and the second a Hatchet fish. Both were fairly small and black with iridescent colors and had large mouths with many teeth.

deepseafish6_22

A fish, from the species Gonostoma, that was brought up in our Bongo net.

deepseahatchet6_22

A Hatchet fish in our Bongo net sample.

Our drifter buoy, WMO # 44932,  has been showing some movement since being deployed (to track movement, put GTS buoy for data set and WMO # for platform ID).  Currently it is at latitude/ longitude:  38.73ºN, 73.61ºW.  It does appear to be moving inland, but hopefully it will catch the current and start moving further into the Atlantic.  We will be tracking it at Howard Gray over the next year.

margaretcrablegs

Margaret Coyle, our chief steward, serving Alaskan crab legs.

Last day on the Gordon Gunter, Margaret, the chief steward, prepared a special meal for all of us.  The spread included: Alaskan crab legs, roast duck with plum sauce, NY loin strip Oscar, grilled salmon, asparagus, red potatoes, Italian rolls, cream of potato and bacon soup (which I had at lunch, delicious) and cranberry cheesecake.  I choose the crab, duck, asparagus, potatoes, and cheesecake – heavenly!!!  I probably shouldn’t have had the cheesecake as well,  but it was just delicious!  Margaret always had so many great choices it was really hard to make up your mind.

dolphinbottlenose

Bottlenose Dolphin at the bow of the Gordon Gunter.

Our last night on the Gordon Gunter was amazing. We had another unbelievable sunset with fantastic colors.  A friend of mine from Arizona said, “It makes our Arizona sunsets look very bland and I think they are some of the best I’ve seen.”  Then a group of Bottlenose dolphins visited the bow of the ship, so it was truly a remarkable night I will always remember.

sunsetfinal

Our final sunset on the Gordon Gunter.

sueongunter6_24

Enjoying the cool breezes of the Atlantic Ocean.

Question of the day? :  Why do you think the deep-sea fish have such large mouths?

Kaitlin Baird: Some Essential Tools! September 14, 2012

NOAA Teacher at Sea
Kaitlin Baird
Aboard NOAA Ship Henry B. Bigelow
September 4 – 20, 2012

Mission: Autumn Bottom Trawl Survey with NOAA’s North East Fisheries  Science Center
Geographical Area: Off the Coast of Cape Hatteras, North Carolina
Date: September 14th
.

Location Data:
Latitude: 35′ 10.67
Longitude:  75’33.60     

Weather Data:
Air Temperature: 23.40 (approx.74 °F)
Wind Speed: 2.17 kts
Wind Direction:  Southwest
Surface Water Temperature:2 7.61 °C (approx. 82°F)
Weather conditions: Sunny and fair

Science and Technology Log

One of the things I was curious about was the deployment of these large instruments and the technology that supports it. One of the keys to the deployment of things like the BONGO nets, Continuous Depth Recorders (CTD’s) and the trawl net itself are winches. A winch spools the wire cable that is hooked to all of the instruments and allows them to move up, down and out into the water column. With some of the instruments, like the BONGO’S and CTD casts, a retractable A-Frame is used to lower the cable from the winch. You can see the A-Frame on the right and the winch on the left in the photo below. This winch in particular controls the deployment of the net and connects to two winches on the stern that roll out the net to open up the mouth. The wire is constantly monitored from the bridge on the screen below and is automatically adjusted to maintain equal tension on both sides.

Winch for fishing nets, Tension monitor on winches from the bridge and A-frame

Winch for fishing nets, Tension screen for winches from the bridge and retractable A-frame

Once the net is run out with the aid of the winches, it is constantly monitored for its shape during the tow with a number of different censors attached to the net. There is an autotrawl system that sets the depth of the trawl and the tension of the wires. A Global Positioning System (GPS) plots the position of the net for each trawl so that it can be associated with all organisms caught in the tow. At the end of the tow the winches reel back the cable and a crane brings the net with the catch over to the “checker” where the net is unloaded!

Monitoring the position and shape of the trawl in the water

Monitoring the position and shape of the trawl in the water

Personal Log:

The fun part begins when the net opens and all the animals enter the checker. When all of the catch goes into the checker the scientists take a look at the catch, and remove anything too large to go up the conveyor belt. If a fish dominates the catch it will “run”. This means, as it goes down the conveyor belt it won’t be taken off and it will be weighed by the basketful and then a subsample will be taken for further analysis.

The fish are all divided up by species and electronically coded in the FSCS system to be measured. After they are measured, the system will prompt for further analysis for that particular species. If extra sampling of the fish is required,  it is labeled with a printed sticker for the species with a unique barcode that can be scanned to retrieve its record in the database.

tag for the organisms to designate its ID and what is to be done with it

Tag for the organisms to designate its ID and what is to be done with it

I thought I’d share some photos with you of some of the unique things we have seen so far fishing today. We are off the coast of Carolina and finishing up our Southern stations today into early morning!

Fish caught off of North Carolina

Fish caught off of North Carolina

Catch of the day! Thanks for reading!

Shark caught off of Carolina coast

Atlantic Sharpnose Shark caught off of Carolina coast

Tara Treichel, April 27, 2008

NOAA Teacher at Sea
Tara Treichel
Onboard NOAA Ship Nancy Foster
April 15-27, 2008

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: April 27, 2008

Weather data from the bridge 
Visibility: 10 n.m.
Wind: 11 knots
Waves: 1-2 feet
Ocean swells: 3-4 feet
Sea temperature: 23.0
Air temperature: 23.0

At 120 feet, the water has absorbed red, yellow and green wavelengths of light, muting the brilliant colors of these Lionfish and other reef organisms (the Lionfish in the foreground is partially illuminated by the video camera)

At 120 feet, the water has absorbed red, yellow and green wavelengths of light, muting the brilliant colors of these Lionfish and other reef organisms (the Lionfish in the foreground is partially illuminated by the video camera)

Science and Technology Log 

I wanted to explain a little more about the purpose of the Lionfish study. The technical name of the study is Assessment of Lionfish Ecosystem and Fisheries Impacts. The Principal Investigator/Chief Scientist is Paula Whitfield, who works out of the NOAA Lab in Beaufort, North Carolina. Several years ago, Paula had heard reports of Lionfish seen off the coast of North Carolina. A recreational diver, Paula visited these sites to see for herself; what began as a casual observation turned into the guiding question for a complex Lionfish ecosystem study that is now in its seventh year. As I understand, the guiding questions framing the study are:

  1. Initially the scientists needed to understand, to what extent Lionfish have invaded the coastal waters of the eastern US. Under this broad question fall many sub-questions: Are they successfully reproducing? How large is their population? Are they expanding their geographic range, and is their population growing? Finally, what biological and physical factors may limit their survival (i.e. what environmental conditions do they need to survive)?
  2. After the initial research results revealed a widespread and well-established presence of Lionfish, researchers refined their objectives to better understand the fisheries and ecosystem impact of Lionfish. This is a very broad question and includes many sub-questions such as: What species are they eating? Is the number of “conspicuous fish” species (large and easy to see and count) decreasing in areas where Lionfish are present? Are the number of “cryptic fish” species (small typically prey species that hide within the habitat) decreasing in areas where Lionfish are present?
  3. The scientists also seek to better understand how Lionfish impacts may be further complicated by other variables such as overfishing and climate change. Examining this question requires looking at many other aspects of the marine ecosystem as indicators of ecological health. Sub-questions are: How are the physical and chemical ocean parameters changing over time (e.g. sea temperature, ocean currents, chemical composition)? How are algal populations changing over time? How are invertebrate and soft-bottom communities changing over time?

Initial results of the study were eye-opening. Everywhere the research team went, they found Lionfish. From 20042007, the data across the sampling sites showed an increase in population of well over 300%. Considering that these fish have no known predators, and females release 30,000 eggs at a time, it is not hard to imagine the severe impact that these fish could potentially have on the marine food web and ecosystem. In addition, Lionfish are tropical reef fish, which require warm water to survive and reproduce. As climate change occurs, it is conceivable that Lionfish could expand their range in response to rising sea temperatures or a shift in Gulf Stream currents.

Paula Whitfield (right), Chief Scientist of the study, and I enjoy the sunshine.

Paula Whitfield (right), Chief Scientist of the study, and I enjoy the sunshine.

Tara Treichel, April 26, 2008

NOAA Teacher at Sea
Tara Treichel
Onboard NOAA Ship Nancy Foster
April 15-27, 2008

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: April 26, 2008

One of the Survey Technicians operates the Multi-Beaming mapping system.

One of the Survey Technicians operates the Multi-Beaming mapping system.

Weather Data from the Bridge 
Visibility: 10 n.m.
Wind: 11 knots
Waves: 1-2 feet
Ocean swells: 2-4 feet
Sea temperature: 23.5
Air temperature: 22.0

Science and Technology Log 

In addition to the Lionfish survey, the other research that is being conducted while aboard the NANCY FOSTER is benthic habitat mapping of the ocean floor. This is accomplished using highly sophisticated, computerized multi-beam SONAR technology. Two survey technicians aboard the ship are responsible for running and monitoring the system, which is run all through the night. The operators make sure that the system is recording data properly and that the ship stays on course (within about 5 meters), and process the data as it is recorded. The course is set and followed, lawnmower style, back and forth along long narrow parallel lines, producing a beautiful rainbow colored map coded for “depth by color,” where red is high and blue is low. After five nights of mapping, the white digital nautical chart contains five tiny rainbow swatches, each one representing about 10 square miles of mapped space. Each year the research team adds to the swatches, until one day perhaps the entire bay floor will be mapped. Scientists later use the maps to support their research; in this case, Paula used them to determine where to dive. With countless miles of ocean floor (much of which is sand, or poor fish habitat) and limited time and research budgets, the maps are a critical part of the research effort. 

Tara holds up a specimen that some of the scientists said was the biggest Spiny Lobster they had ever seen!

Tara holds up a specimen that some of the scientists said was the biggest Spiny Lobster they had ever seen!

There are a lot of variables such as temperature and salinity that can  influence the transmission of the sound waves produced by the multi-beam sonar to measure seafloor depth.  In order for the data to be as accurate as possible the survey technicians need to measure these variables throughout the water column using a CTD (conductivity (salinity), temperature and depth). They conduct three CTD ‘casts’ a night by first lowing and raising the CTD on a long cable that is controlled by a winch.

Personal log 

Today, the Chief Engineer caught a Wahoo off the stern of the boat. Wahoo! Can you think of a fish with a cooler name? It’s a cool fish, too, sleek and streamlined, with large jaws and a loud stripy pattern on blue gray skin. It was perfect timing, since a barbeque was planned for our last afternoon at sea. The fish is nearly all muscle, and yielded 25 steaks, almost enough for each one of our full ship of 35 people aboard. How was it, you ask? Delicious! The scientists also caught several large Spiny Lobsters, a Scamp (a Grouper), Hogfish, Sea Bass, and of course, many Lionfish. In addition, they saw a Mola Mola (Sunfish) and several Loggerhead Turtles. 

Tara Treichel, April 25, 2008

NOAA Teacher at Sea
Tara Treichel
Onboard NOAA Ship Nancy Foster
April 15-27, 2008

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: April 25, 2008

The diver support boat NF-4 waits for the dive team to surface.

The diver support boat NF-4 waits for the dive team to surface.

Weather Data from the Bridge 
Visibility: 10 n.m.
Wind: 2 knots
Waves: 1 foot
Ocean swells: 2-3 feet
Sea surface temperature: 23.4
Air temperature: 21.5

Science and Technology Log 

Today the morning dive at Lobster Rocks went to 125 feet. The report was that it was an excellent dive, and the video showed this to be true. The visibility was excellent and the habitat looked rich. Among the Amberjacks, Grouper, Blue Angelfish, and Hogfish, were tons of Lionfish! They were everywhere, lurking around every ledge and rock. They look like princes of their domain, regal in their showy capes of red and white, brandishing lances to keep out intruders. Neither aggressive nor fearful, as they have few if any predators, they hover in place, guarding their territory from other lionfish.

NOAA Teacher at Sea, Tara Treichel, has just taken length and fin ray measurements from this large lionfish, and has removed gonads and a gill sample for lab analysis.

NOAA Teacher at Sea, Tara Treichel, has just taken length and fin ray measurements from this large lionfish, and has removed gonads and a gill sample for lab analysis.

The morning divers brought a small collection of creatures back for further study, including a sample of bryozoans (a form of attached invertebrates that looks a lot like algae), a large spiny lobster (carapace at least 5 inches in diameter), a handful of fish for the cryptic fish survey, and about a dozen Lionfish. I helped Wilson take basic measurements from the Lionfish, and dissected them to remove gonads and gill samples for DNA analysis. The fish ranged in size from 150 to 380 mm, from mouth to end of tail. Next, dorsal and anal fin rays are counted, to help determine species classification (lionfish are of Indo-Pacific origin, and are classed in two subspecies based on number of fin rays). On the fish sampled, dorsal fin rays varied between 10 and 11.5, but anal fin rays consistently numbered 7.5. After I had removed the gill section and gonads, I gave the fish to Brian, who opened up their stomachs to take a cursory look at what the fish had been eating. In one, he found a small spiral shell about the size of a shirt button. In another, the stomach was bulging full, and contained four small fish, whole but partially digested and terribly stinky. All in a day’s work of a scientist! After this initial information was collected, the fish were labeled in zip-lock bags and frozen for later study. 

The stomach of this small Lionfish contained four partially digested whole fish.

The stomach of this small Lionfish contained four partially digested whole fish.

Personal log 

Today I had the fortune—and the misfortune—of getting out in one of the small boats. I say fortune because the conditions were ideal: calm seas and sunny blue skies. It was a great day to be out on the water, and I expressed an interest in going for a swim. We were responsible for shuttling the safety diver to assist the dive team, and transporting the dive team back to the NANCY FOSTER. The misfortune occurred toward the end of the dive, as the safety diver was trying to reboard the boat. To make it easier for him to enter the boat, the skipper removed the side door of the craft, a routine task. Under normal circumstances, the bilge pumps purge any water that splashes into the boat, but on this day, for reasons unknown the bilge was already full of water, and the water that surged into the open door space quickly filled the stern of the boat. We tried to replace the door, but the water was spilling in too quickly, and the boat slowly overturned. So, I got my wish to swim faster than I’d expected! Fortunately, as I mentioned, it was a fine day for a swim. Minutes later, two rescue boats were deployed from the NANCY FOSTER, and shortly after we picked up the dive team and were safely onboard the mother ship again. The ship had quite a challenge getting the overturned boat back onboard and into its cradle, but with skilled use of the crane, the boat was recovered in little over an hour. It was the sort of adventure I had least expected when going out to sea. I was happy that no one got hurt, and impressed with the response of the NANCY FOSTER crew.