Ragupathy Kannan: Petrels to Pilot Whales, August 30, 2019

NOAA Teacher at Sea

Ragupathy Kannan

Aboard NOAA Ship Gordon Gunter

August 15-30, 2019


Mission: Summer Ecosystem Monitoring

Geographic Area of Cruise: Northeast U.S. Atlantic Ocean

Date: August 30, 2019


Weather Data from the Bridge

Latitude: 40.72218
Longitude: -69.45301
Water temperature: 19.8 degrees Celsius
Wind Speed: 5.25 knots
Wind Direction: 87.06 degrees
Air temperature: 23.2 degrees Celsius
Atmospheric pressure: 1006.85 millibars
Sky: Cloudy


Science and Technology Log

We’ve had a flurry of whale sightings as we passed over the famous Stellwagen Bank National Marine Sanctuary.  It’s a small underwater plateau in Massachusetts Bay flanked by steep drop offs.  Nutrients from the depths rise up by upwelling along the sides, feeding phytoplankton in the shallow light-abundant waters, and this creates perfect feeding habitat for whales.

Much of my time aboard this ship has been on the flying bridge (the highest point of access for us on the ship) scanning the seas for marine vertebrates.  I have basically been an extra pair of eyes to assist my colleagues Chris Vogel and Allison Black, the seabird observers on board.  From nearly 50 feet high above the water, the flying bridge gives nearly unimpeded 360° views of the horizon all around.  I call out any vertebrate animal seen—fish, birds, reptiles, or mammals.  Chris and Allison enter all of our data in a specific format in a software program called SeaScribe. 

To calculate densities of each species, we need an estimate of how far the animal is from the ship for each sighting.  For that we use a rather low tech but effective piece of equipment.  The pencil! 

Pencil as observation tool
Pencil as observation tool

This is how it works. The observer holds the pencil (photo above) upright with arm outstretched, aligning the eyes and tip of the eraser to the horizon (see photo below), and simply reads the distance band (Beyond 300m, 300-200, 200-100, or 100-50m) in which the animal is seen.  Thanks to some fancy trigonometry, scientists found a way to estimate distance by using the height of the observer’s eyes from the water surface, the distance from the observer’s eyes to the eraser tip of the pencil when it’s held upright with arm outstretched, and the distance to the horizon from the height of observer’s eyes above water.  I’ll spare you the trigonometric details but those curious to learn more can find the paper that introduced the technique here.

Kannan and range finder
Here I am using the range finder

Seabirds are a challenge for a rain forest biologist like me.  They move fast and vanish by the time you focus the binoculars! And the fact that the deck heaves up and down unexpectedly adds to the challenge.  But slowly I got the hang of it, at least the very basics.  I’ve recorded hundreds of shearwaters, storm-petrels, boobies, gannets, jaegers, and skuas.  Whales (sea mammals) seen include Finbacks, Humpbacks, Minkes, and Pilots.  I am hoping to see a Right Whale but I know that the odds are against me.  Time is running out, both for our voyage, and for them.  Unfortunately, only a few 100 are left and the ocean is huge—the proverbial needle in the haystack.  Chief Scientist Harvey Walsh tells me that this year so far, 8 Right Whales have died due to accidental collisions or net entanglements.  Sadly, the future looks bleak for this magnificent animal.  (More on Right Whales at the end of this blog).

Great Shearwater ebird
Great Shearwater is one of the most common seabirds we have recorded. This bird nests only in a few islands in the South Atlantic Ocean and wanders widely. Photo by Derek Rogers, from ebird.org

I note that marine vertebrate biologists are good at extrapolating what little they can see.  Much of their subjects are underwater and out of sight.  So they have become good at identifying species based on bits and pieces they see above water.  All they need often is a mere fleeting glimpse.  Sharks are told by the size, shape, and distance between the fins that stick out, sea turtles by the shape and pattern on their carapace (top shell–see photos below); whales based on their silhouette and shape of back; and Molas based simply on the fact that they lazily wave one large fin in and out of the water as they drift by.  (I thought it was the pectoral fin they waved, but it’s actually the massive dorsal fin.  I’ve noted that the pectoral is rather small and kept folded close to the body). 

leatherback sea turtle A. Black
A fleeting glimpse is all that is needed to identify a Leatherback Sea Turtle, thanks to its diagnostic longitudinal ridges (Photo by Allison Black).
shark fins
We’ve had several shark sightings such as this. The size, shape, and the relative locations of the fins indicate that this could be a whale shark (Photo by Allison Black)

Scientists can identify individual humpbacks based solely on the indentations and color patterns on their tail flukes.  In effect, each individual animal’s tail fluke is its unique fingerprint. Since the tail fluke is often seen when the animal dives from the surface, scientists have a huge photographic database of humpback tail flukes (see photo below).  And they track individuals based on this.  My ecology students should know that scientists also estimate populations based on a modification of the capture-recapture method because each time an individual’s fluke is photographed, it is in effect, “tagged”.  We do a nice lab exercise of this method by using marked lima beans masquerading as whales in my ecology lab.

humpback tail flukes
Researchers use variation on humpback whale flukes to identify and track whales (from Wildwhales.org)
Finback whale
Finback Whales are easily identified by the fin on the back (From aboutanimals.com)


Career Corner

I spoke with Allison Black, one of our seabird observers on board.

Q. Tell us something about yourself

A. I really love seabirds.  I’m fortunate to have been able to do my Master’s work on them and observe them in their natural habitat.  I have an undergrad degree in zoo and wildlife biology from Malone University in Canton, Ohio. 

Q. You’re a graduate student now in which university?

A. Central Connecticut State University

Q. What’s your research project?

A. I conducted a diet study of Great Black-backed and Herring Gulls on Tuckernuck and Muskeget Islands, Massachusetts.

Q. You have done these NOAA seabirds surveys before?

A. Yes, this is my third.

Q. What happens next, now that you are close to finishing your Masters?

A. I’m looking for full time employment, and would like to work for a non-profit doing conservation work. But until the right opportunity arises you can find me on a ship, looking for seabirds and marine mammals!

Q. What’s your advice to anyone interested in marine science?

A. I had a major career change after I did my undergrad.  I thought I’d always be a zoo keeper, which I did for about two years until I decided that birds are really my passion, and I needed to explore the career possibilities with them.  To focus on that avenue I decided to return to graduate school.  So I would encourage undergrads to really find what drives them, what they’re really passionate about.  I know it’s hard at the undergraduate level since there are so many fields and avenues under the Biology umbrella.  And it’s OK if you haven’t figured that out for a while.  I had a real change in direction from captive wildlife to ornithology, and I’m here at sea in a very different environment.  I’m so glad I did though because following my passion has opened up some exciting avenues.  I’m lucky to be getting paid to do what I really love right now.  So grab any opportunity that comes by. It’s never too late to evaluate your career path.

Allison Black
Allison Black entering our observations in SeaScribe


Personal Log

My feelings are bitter-sweet as this wonderful 16-day voyage nears its end.  My big thanks to NOAA, the ship’s wonderful command officers and staff, our Chief Scientist Harvey Walsh, and my colleagues and student volunteers aboard for making the past 2 weeks immensely absorbing.  Above all, kudos to the ship’s designers, who have clearly gone out of their way to make life aboard as easy as possible.  In addition to the unexpected luxuries covered in my previous blogs, there is even a movie lounge on board with an impressive DVD collection of over 700 movies! Yesterday I saw our student volunteers play bean bag toss on the winch deck. Yes, you can throw darts too.  The ship’s command even organized a fun sea animals-bingo game one evening, with winners getting goodies from the ship store (see below).

movie lounge
The movie lounge on board
The ship’s store
The ship’s store


The engine rooms tour

As part of our grand finale, we were given a tour of the engine rooms (which are usually off bounds for non-crew members) by our genial First Engineer, Kyle Fredricks.

engine room
A glimpse of the intricate innards of the ship. To the right is the massive shaft that ties the two rudders together.
sensors and monitors
Sensors and monitors keep tabs on engine function 24/7
1st E Kyle Fredricks
First Engineer Kyle Fredricks explains the desalination system on board. It works by reverse osmosis. All explanations are done by gestures or written notes because of noise in the background. Note ear plugs on all of us!


Did You Know?

NOAA has strict policies to avoid collision with whales, especially the highly endangered Right Whale.

right whale ship strick reduciton rule
This poster is prominently displayed on board. Vessels have to comply with rules to avoid accidental strikes with Right Whales

Interesting Animals Seen Lately

South Polar Skua

Great Skua

Pomarine Jaeger

Black Tern

Manx Shearwater

Sooty Shearwater

Leach’s Storm-petrel

Northern Gannet

Brown Booby

Great Black-backed Gull

Humpback Whale

Pilot Whale

Ocean Sunfish

Kimberly Gogan: Science Spot Light – Marine Mammal Observing, April 12, 2014

NOAA Teacher at Sea
Kim Gogan
Aboard NOAA Ship Gordon Gunter
April 7 – May 1, 2014

MissionAMAPPS & Turtle Abundance Survey Ecosystem Monitoring
Geographical Area of Cruise:  North Atlantic Ocean
Date: April 12, 2014

Weather Data from the Bridge
Air Temp: 10.3 degrees Celsius
Wind Speed: 10.5 knots
Water Temp: 8,2 degrees Celsius
Water Depth: 145.65 meters

 

Jen Gatzke, Chief Scientist of AMAPPS Leg 2 aboard the NOAA Ship Gordon Gunter.

Jen Gatzke, Chief Scientist of AMAPPS Leg 2 aboard the NOAA Ship Gordon Gunter.

Science and Technology Log

In the last blog I talked about all the different scientists who are working on Gordon Gunter. Today I am going to explain why. First, all of the scientists are here working under a program called the  Atlantic Marine Assessment Program for Protected Species, or AMAPPS for short. It is a multi-year project that has a large number of scientists from a variety of organizations whose main goal is “to document the relationship between the distribution and abundance of cetaceans, sea turtles and sea birds with the study area relative to their physical and biological environment.” The scientists are here working under the AMAPPS because of several government acts: the Marine Mammal Protection Act and the Endangered Species Act require scientists to do periodic checks of the populations of the protected species and the ecosystems they live in to make sure there have been no major human activities that have affected these species.

The National Environmental Policy Act also requires scientists to evaluate human impacts and come up with new plans to help the protected and endangered species. Finally the Migratory Bird Treaty requires that counties work together to monitor and protect migratory birds.  The project has a variety of activities that need to be conducted which is why all the different scientists are needed from the different groups like NOAA, Fish and Wildlife, Bureau of Ocean Energy Management (BOEM), Navy, and NOAA Northeast  and Southeast Fisheries Science Centers.  The variety of activities that are being done over multiple years under the AMAPPS include: aerial surveys, shipboard surveys, tag data, acoustic data, ecological and habitat data,  developing population size and distribution estimates, development of technology tools and modes, as well as development of a database that can provide all the collected data to different users. The AMAPPS project is also collecting  in depth data at a couple of areas of  special interest to NOAA & BOEM where there are proposed Offshore Wind Farms  to be built in the ocean.

 

Two of the Observer Team working their shifts on the Fly Bridge in on the "

Two of the Observer Team members working their shifts on the Fly Bridge in on the “Big Eyes”

Science Spot Light

Let me introduce the Chief Scientist, Jen Gatzke and the Marine Mammal Observer Team. Chief Scientist Jen works with the Protected Species Branch at the Northeast Fisheries Science Center (NEFSC). She primarily studies right whales.

Her main job here on the ship is to coordinate the teams of scientists so that each team is able to accomplish what it needs most efficiently while meeting the goals of the research mission. In this case the goal is to survey a large number of transect lines in a variety of marine habitats, both inshore and offshore.

She started sailing on NOAA ships 24 years ago in Pascagoula, Mississippi! Even thought Jen oversees all the science going on here on the Gordon Gunter, she is also part of the Marine Mammal Observer Team that does a rotating watch for mammals. The observer team starts its day at 7AM and works until 7PM except  for the 1 hour break at lunch when the daytime Oceanography team can conduct some of their sampling.

When they start their day observing it is called “on effort.” This means that the observer team and NOAA Corps are all ready to conduct the shipboard surveys the way they have determined would be best. This means a group of scientists that are all at their stations are ready to go and the NOAA Corps makes sure the ship stays on a particular designated course for a particular amount of time. When the team is “on effort” they have 4 rotating stations. There are two on the very upper deck, called the fly deck that watches with 2 very large (25×150) binoculars they call the “big eyes” on each side, port (left) and starboard (right) of the ship  Then there is another station on the lower starboard (right)  side deck that also use the “big eyes”  to scan for marine mammals as well. The last  station is the recorder who is located on the Bridge, or wheelhouse, where the NOAA Corps man the ship. The recorder is entering valuable data into a computer program designed specifically for this activity. Not only is the recorder keeping track of the different mammals that are spotted on the “big eyes,” they are also keeping track of important information about the weather, glare of the sun, and conditions of the ocean.

I learned the teams use some cool nautical terms during their observations and recordings. The first one is  the Beaufort Scale for sea state, or basically how calm or rough the seas are. Beaufort is measured by a numerical system with 0 being very calm and with no ripples to a 5 which is lots of white caps with foamy spray. Beaufort numbers go higher but it is very difficult to spot any sort of mammal evidence in seas that are rougher than a Beaufort 5. The team also measures the distance of the sighting using another measurement tool called a Reticle. The reticle is a mark on the inside of the “big”eye” binoculars. Its scale goes from 0 -20 and the 0 is always lined up with the horizon and allows the observer to give a quick reference number that can be used in a hurry to provide distance with a simple geometry equation.

The head shot of' "Thorny" the Right a whale taken by observer Todd Pusser on the Gordon Gunter AMAPPS Leg 2.

The head shot of’ “Thorny” the Right Whale taken by observer Todd Pusser on the Gordon Gunter AMAPPS Leg 2.

Although there are several other pieces of information the observers are looking for and giving to the recorder, the positive identification of the particular species of mammal is the most important. There are some species like the North Atlantic Right Whale, that is of particular interest to the team because they are the most endangered large whale in the North Atlantic Ocean. Not only is it exciting for the team and the rest of the ship as well to see sightings of them, their detected presence in particular areas could mean the implementation of tighter rules, like speed limits for ships that might be in the areas these animals are seen frequently. When the teams sights one of these whales, the ship is allowed to go “off effort” and follow the swim direction of the whales in order to get pictures with very large cameras that will allow the scientist to positively identify the particular whale.  Some of the other species seen frequently are humpback whales, fin whales, sei whales, minke whales, pilot whales, striped dolphins, common dolphins, Risso’s dolphins, gray seals, harbor seals, loggerhead sea turtles, sharks and ocean sunfish.

Me on the Fly Bridge watching for whales and seals.

Me on the Fly Bridge watching for whales and seals.

Personal Log

So far for the first leg of the trip we have taken one very rough trip offshore and because of the weather we have been doing a string of transect lines that are close to the shore off Martha’s Vineyard, which is one of the areas of special interest to NOAA due to the projected offshore wind farm.

The day before yesterday, at just about dusk, the Chief Scientist Jen was the first to spot one of the North Atlantic Right Whales. I was in the lab at the time that Jen came running through yelling “we have right whales!”

She very quickly came back with a huge case which held the team’s camera used for close-ups of the whales. By the time I was on deck, so were many of the off duty scientists and the ship’s crew. Everyone was very excited and joined the frenzy of following, tracking and getting some good shots of the group of right whales. There ended up being 4 whales in all, which mean that there are enough to trigger a Dynamic Management Area (DMA), a management zone designed to provide two weeks of protection to three or more right whales from ship collisions. Ships larger than 65 ft are requested to proceed through the designated area at no more than 10 knots of speed.

One of the observers, Todd Pusser also had a large camera and was able to get a good head shot of one of the whales to send back to the lab. Allison Henry, another right whale biologist at NEFSC, was able to positively identify the whale as an adult male known as “Thorny”, aka EGNO (Eubalaena glacialis number) 1032, who has been seen only in the northeast since the 1980s! (click on “Thorny” to see the New England Aquarium Right Whale Catalog which houses and handles the identifications for all North Atlantic right whales.) It’s pretty cool that I actually got to see him too. Even thought it’s not the warmest job, it makes it all worth it just to see something as amazing as that!

Genevieve & I  up on the Fly Bridge on the "Big Eyes!"

Genevieve & I up on the Fly Bridge on the “Big Eyes!”

Did you know?

Did you know you can listen to Right Whale sounds and see where Right Whales are on the East Coast? Check out this page!  Click on this link for The Right Whale Listening Network.  NEFSC even has an Apple APP for seeing where the Right Whales are on the east coast and explains how to avoid them 🙂 Go to the app store – its free!

Me all dressed up in the "Mustang' suit helping the team keeping an eye out for whales.

Me all dressed up in the “Mustang” suit helping the team keep an eye out for whales.