Solar Knight III racing at the Texas Motor Speedway
At South Plantation High, I am the sponsor of our Solar Knights Racing Team that has won 1st place in the nation twice in the past six years at the high school level Solar Car Challenge (see video below)! We have been building and racing solar cars at the high school level for six years! Two of the races we have competed in were cross-country, the latest of which went from Fort Worth, Texas to Boulder, Colorado over 7 days in July 2010. Last year’s race was a track race at the Texas Motor Speedway.
Here I am with students helping deploy reef balls in south Florida.
I also sponsored our school’s Project ORB (Operation Reef Ball) and deployed thirty 500-1,500 lb concrete reef balls off the coast of
South Florida to encourage coral colonization and propagation to offset some of the damage done to our beautiful South Florida coral reefs. Recently, I had the privilege of presenting a poster session about our Project ORB at the European Geophysical Union conference in Vienna, Austria!
One of my students, Carson Byers, takes the solar kayak out for a test drive.
One of my favorite senior projects was a solar-powered kayak, which would improve accessibility to the Florida Everglades as well as other coastal environments for persons with disabilities. I really enjoyed this project as it blended my passion for alternative energy with my love for getting out on the water. This project won the WOW Award at the Florida Solar Energy Center’s Energy Whiz Olympics!
Now, I am incredibly excited about the opportunity to sail aboard the NOAA Ship Oscar Dyson out of Dutch Harbor, Alaska! This will officially be the furthest north I have ever traveled! As we experience climate change, particularly in areas near the poles where the effects of climate change are more dramatic, it is important to study these changes and how they affect economically important species such as the Alaskan or Walleye Pollock (Theragra chalcogramma). Walleye Pollock is said to be the largest remaining supply of edible fish in the world, and is the fish used in high quality breaded and battered fish products, fish sticks, and surimi(also known as “imitation crabmeat”). Many fast food restaurants commonly use Walleye Pollock in their fish sandwiches. It is important that this fishery be monitored and maintained so that harvest remains sustainable. I hope that I may enlighten my students about their impacts on the environment when they decide what they will eat so they may become more conscientious consumers.
What’s Next?
I am getting ready to head out to sea and am really looking forward to working with the scientists on board the NOAA Ship Oscar Dyson! While my blog will be geared towards my AP Environmental Science students, I hope that people of all ages will follow me along my journey as I learn about the science behind maintaining a sustainable fishery. I also hope to inspire my own students, and others, about the career opportunities in STEM associated with NOAA. Stay tuned!
NOAA Teacher at Sea Andrea Schmuttermair Aboard NOAA Ship Oregon II June 22 – July 3
Mission: Groundfish Survey Geographical area of cruise: Gulf of Mexico Date: June 26, 2012
Ship Data from the Bridge: Latitude: 2805.26N
Longitude: 9234.19W
Speed: 10mph
Wind Speed: 5.86 knots
Wind Direction: E/SE
Surface Water Salinity: 35.867 PPT
Air Temperature: 28.8 C
Relative Humidity: 86%
Barometric Pressure: 1010.51 mb
Water Depth: 96.5 m
Science and Technology Log
Sunrise on the Oregon II
Opisthonema oglinum, Lagadon rhomboides, Chloroscombus chrysurus…..yes, I have officially started dreaming about taxonomic names of our fish. It’s day 4 and I now have a much better grasp at identifying the variety of critters we pull up in our trawls. I am always excited to be out on deck when they bring up the trawl to see what interesting critters we catch. Surprises are great!
Do you want to know where the Oregon II is headed?
If you click on the link above, you can see the path that our ship is taking to hit all of our stations for the survey. We often have station after station to hit- meaning as soon as we are done sorting and measuring, we have to bring in the next catch. Because some stations are only 3-5 miles apart, we sometimes have to do “double dips”, where we put in the trawl for 30 minutes, pull it up, and put it right back in again.
It’s been interesting to note the variety of our catches. Croakers, bumperfish, and shrimp have been in high abundance the last 2 days as we were in shallower water. Before that we had a couple of catches that had a high abundance of pinfish. When we take our subsample, we typically enter data for up to 20 of that particular species. We take length measurements on each fish, and on every fifth fish. We will also weigh and sex it (if sexing is possible).
A comparison of the various sizes of shrimp we pull up from our trawls.A relatively small catch in comparison to the 200+ we’ve been pulling up recently.
When we were in shallower waters, we had a significant increase in the number of shrimp we brought up. Tuesday morning was the first catch that did not have well over 200 shrimp (this is because we’ve been moving into deeper waters). For the 3 commercial shrimp, white (farfantepenaeussetiferus), pink (farfantepenaeusduorarum), and brown (farfantepenaeusaztecus), we take 200 samples, as opposed to our high-quantity fish, where we will only take 20 samples. For each of the commercial shrimp we catch, we measure, weigh and sex each shrimp. I’ve gotten very good at identifying the sex of shrimp- some of the fish are much more difficult to tell. The information we get from this survey will determine the amount of shrimp that boats can take during the shrimping season in Louisiana and Mississippi. During the first leg of the groundfish survey, the data collected determined the amount of shrimp that could be caught in Texas. The groundfish survey is crucial for the shrimping industry and for ensuring that shrimp are not overfished.
Students- think of the food chain. What would happen if we overfished and took out too many shrimp? (Hint: Think of predators and prey.)
The trawl net at sunrise
We’ve now started doing 2 different tows in addition to our trawls. Some of the stations are trawl stations, whereas others are plankton stations.
Alex, Alonzo and Reggie unloading the trawl net.
At a trawl station, we lower the trawl from the stern down to the ocean floor. The trawl net is meant for catching larger critters that live at the bottom of the ocean. There is a chain, also known as a “tickler”, which moves lightly across the ocean floor to lure fish to leave their hiding spots and swim into our net. The trawl is down for 30 minutes, after which it is brought back on deck to weigh the total catch, and then brought back into the wet lab for sorting.
Another important mission of the groundfish survey is to collect plankton samples. To do this, we use a Neuston tow and a bongo tow.
The Neuston tow about to pick up a lot of Sargassum- oh no!
The Neuston tow has a large, rectangular frame with a fine mesh net attached to it. At the end of the net is a large cylindrical bucket, called a codend, with a mesh screen meant for catching the organisms. In comparison to the trawl net, which has openings of 41.4mm , the Neuston’s mesh is only 0.947mm. This means the mesh is significantly finer, meant for catching some of the smaller critters and plankton that would otherwise escape the trawl net. The Neuston tow is put on the surface of the water and towed for 10 minutes. Half the tow is in the water while half is out. We end up picking up a lot of Sargassum, or, seaweed, that is found floating at the water’s surface. When we gather a lot of Sargassum, we have to sift through it and spray it to get out any of the organisms that like to hide in their protective paradise.
The bongo tow on deck waiting to be sent down to about 3m from the ocean floor.
After we’ve completed the Neuston tow, we do the bongo tow. The bongo’s mesh is even finer than the Neuston tow’s mesh at only 0.333mm. The bongo has 2 parts- a left and a right bongo (and yes they do look a little like bongo drums- hence their name). The top part of the bongo is a large cylinder with an open bottom and top. The net is attached to this cylinder, and again at the bottom of each side is cylindrical tube called codends meant to catch the plankton. The bongo tow is meant to take a sample from the entire water column. This means that instead of riding on the surface of the water, it gets sent down to about 3 meters from the ocean floor (there is a sensor at the top that is 2m from the bottom of the net) and brought back up immediately.
The remnants from our Neuston tow. This is the sieve we use to weed out what we want and don’t want.Here are our 2 samples from the bongo tow. The left one is preserved in ethanol and the right is preserved in formaldehyde (10% formalin and sea water)Here is a sample from the Neuston tow. Carefully camouflaged are thousands of crab megalops, aka juvenille crabs.
For both tows, it is important to rinse the nets to get any lasting organisms we might not see with our own eyes into our sample. Once we’ve done this, we bring the tubes back into the wet lab where we continue to rinse them through a sieve so that only certain items are leftover. In the Neuston, we often find small fish (usually less than 3mm), baby shrimp, crabs and Jessica’s favorite, the Sargassum fish. Most recently a few flying fish got caught in our Neuston tow. Prior to pulling it up, I was enjoying watching them flit across the water- they were about all we could see in the water in the middle of the night. After being rinsed thoroughly through the sieve, we preserve them by placing the sample in a glass jar with either ethanol or formaldehyde solutions. They are preserved in ethanol for DNA work and in formaldehyde for long-term preservation. These samples are then saved to send to a lab in Poland, which is the sorting center for the SEAMAP samples.
Flying fish we pulled up in our Neuston tow at nighttime.
Personal Log
My sleeping quarters (top bunk), also known as a stateroom. My roommate is Kristin, one of the scientists on board.
Well, I think I am finally getting used to the schedule of working the night shift. I am thankful that my bunk is on the bottom floor of the ship- which means it is completely dark- so that I can sleep during the daytime. Yesterday was probably one of the least busy days we’ve had so far, and because we were in deeper waters, our trawls were much smaller. This means I had a little more time to work on my blogs, which at times can be hard to fit in. It amazes me that we have internet access on the ship, and it’s not even as slow as I expected. It goes down from time to time, especially when the waters are rough. We’ve been fortunate to have pretty calm waters, aside from the first day.
You may have heard about Hurricane Debby on the news as it prepared to hit the Gulf. On Sunday, we were heavily debating heading back to Galveston to “bunker down” and ride out the storm. However, the storm that was forming seemed to dissipate and head in a different direction, thank goodness. I was not thrilled about the possibility of heading back to port!
We had our first drills the day after we set sail. The drills- fire and abandon ship are distinguished by different types of bells, similar to using Morse code. The abandon ship drill was fun. We got to put on our survival suit, which is like a big orange Gumby suit. It not only protects you in cold water, but also makes you highly visible. I remember reading some of the former TAS blogs, and this picture was always in. Of course, I’ve got to add mine as well.
Here I am in my survival suit. Judd also decided to be in the picture. 🙂
I’ve been having fun exploring different areas of the ship, even though there is only so far you can go on the ship. Yesterday, I went up to the bridge, which is the front of the ship where the captain or the NOAA Corps officers steer the ship from. You can think of it like a control center of an airplane. There are navigation charts (both computerized and paper) and radars that help guide the ship so it knows what obstacles are out there. There is a great view from the bridge that you don’t get anywhere else on the ship. It’s also fun to watch the folks down on deck when they are deploying the CTD or either of the 2 tows.
We’ve caught such an abundance of critters, I thought I’d share some of my favorite catches thus far:
Here I am holding a cownose ray (Rhinoptera bonasus)- my favorite catch yet. He weighed about 25lbs! This one was the highlight of my day as rays are some of my favorite ocean critters!
–
One of the 4 Atlantic sharpnose sharks (Rhizoprionodon terraenovae) we’ve caught so far.
A sharksucker (Echeneis naucrates)- these guys hang onto sharks to catch a ride- he’s still alive so is able to hang onto my arm!
Critter Query Time!
Critter Query #1: What is a fathom (in your own words please)?
Critter Query #2: What are the differences between skates and rays?
NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oregon II
June 22 – July 3, 2012
Mission: Groundfish Survey
Geographical area of cruise: Gulf of Mexico (between Galveston TX and Pascagoula, MS)
Date: June 7, 2012
Personal Log (pre-cruise)
What does
++ = ?
That’s right! Ms. Schmuttermair is heading to sea this summer as a participant in NOAA’s Teacher at Sea Program!
Me and my forever hiking pal, Wesson
Hi! My name is Andrea Schmuttermair, and I am a 3-6 grade science teacher at The Academy in Westminster, CO. I just finished up my first year in this position, and absolutely love engaging my students in important science concepts. Outside of the classroom, I can be found hiking, biking, and exploring the mountains of beautiful Colorado with my dog, Wesson.
Growing up in San Diego, CA, I would definitely consider myself an “ocean lover”. I grew up spending countless hours at the beach, checking out the sea life that washed up in the tide pools and snorkeling in La Jolla Cove. When I heard about the Teacher at Sea program, I knew it was right up my alley. Living in land-locked Colorado, I strive to bring both my love and knowledge of the ocean to my students. One of the most memorable teaching moments for me this year was seeing my 3rd graders have that “Aha!” moment when they realized what we do here in Colorado greatly affects our oceans, even though they are hundreds of miles away.
Now, in just a couple short weeks, I will don my sea legs, leave dry land behind, and set sail on the Oregon II. The Oregon II, one of NOAA’s 11 fishery vessels, conducts fishery and marine research to help ensure that our fish population in the ocean is sustainable. Fishery vessels work with the National Marine Fisheries Service to provide important information about fish populations and what regulations about fishing practices need to be in place.
This summer, we will be conducting the summer groundfish survey, a survey that has been conducted for the past 30 years. This particular survey is conducted during the summer months between Alabama and Mexico. On this second leg of the survey, we will be sailing from Galveston, TX to the Oregon II’s home port of Pascagoula, MS.
What exactly is a groundfish survey, you ask? When I first received my acceptance letter, they informed me that this was the “critter cruise”, and I, being the critter lover, was thrilled! The main goal of this survey is to determine the abundance and distribution of shrimp by depth. In addition to collecting shrimp samples, we may also collect samples of bottomfish and crustaceans. It will also be important to collect meteorological data while out at sea. I am excited to see what kind of critters we pull up!
Ms. Schmuttermair LOVES critters, as seen here with Rosy the scorpion.
How will we be catching all of these critters and collecting data while out at sea? The Oregon II has a variety of devices to help collect information about the ocean, including bottom trawls and a CTD. The bottom trawl is a large net that is towed to collect shrimp and other bottom dwellers that will be sorted once the catch is brought aboard. A CTD (stands for Conductivity, Temperature, and Depth) is an instrument that can collect a wide variety of data, including temperature, salinity and oxygen content. I can’t wait to learn how some of these tools are operated!
What are my goals while out at sea?
To learn as much about the environment I am in as possible.
To ask the scientists plenty of questions about their research, and why collecting data is so important.
To take many pictures to bring back to my students
To get to know the crew on board, and how they came to work on the Oregon II
Not getting seasick!
Now it’s your turn: What would YOU like to know more about? Is it more about the animals we bring up in our trawls? Maybe it’s to learn more about life on the Oregon II, and specifications about this ship. Perhaps you’d like to know how to become a scientist with NOAA and work on board one of their many ships. Leave your questions in the “Comments” section below (you are welcome to do this in any of my entries), and I’ll do my best to answer them!
Don’t forget to keep an eye out for the challenge questions, which from this point forward I will refer to as the “Critter Query”.