Jenny Gapp: Reporting to 551.46 (Oceanography), July 19, 2023

NOAA Teacher at Sea

Jenny Gapp (she/her)

Aboard NOAA Ship Bell M. Shimada

July 23 – August 5, 2023 

Mission: Pacific hake (Merluccius productus) Survey (Leg 3 of 4)
Geographic Area of Cruise: Pacific Ocean off the coast of Newport, Oregon
Date: July 19, 2023 (pre-cruise)

Weather Data from Newport, Oregon
NOAA Weather Service forecast for Wednesday, July 19th as of 7/17/23 6:35pm:
Mostly sunny, then sunny and breezy, with a high of 61 degrees. Wednesday night’s low around 55 degrees.

“Weather” is what it’s doing today. “Climate” is what it did today in 1942. Climate equates to the prevailing weather trends for a particular region. Having been born and raised in Oregon I know that you always dress in layers when going to the Oregon Coast. I know that sunburn is possible in March (anytime really) and balmy 60-degree weather is possible in February. Historically, the average temperature for the month of July in Lincoln County has remained between 60 and 63 degrees with a slight trend upward. I imagine it is a bit chillier out on the Pacific. I have packed accordingly!

A week from departure (July 16th) I was looking south from the cliffs on Cape Lookout near Tillamook, Oregon. The breeze was visible in shimmering white flashes across the surface of the ocean even as the tidal swells plowed steadily into shore beneath the gusts. The infamous summer fog shrouded much of the cape’s seaward view due to temperature and pressure differences between the coast and inland.

view of Cape Lookout from the cliffs. Beyond dirt cliffside and conifer trees, we can see the water is a vivid blue-teal color. A mountain range marks the far side of the cape. The sky is blue, but fog rises off the water.

As air heats up it ascends (rises), leading to low pressure at the earth’s surface. As air cools down it descends (sinks), leading to high pressure at the surface. Hot summer air rises inland and creates low pressure. Since the temperature of the ocean is much colder, high atmospheric pressure is formed. Higher-pressure air tends to move into lower-pressure regions, so the moist marine layer (caused by evaporation) gets pulled off the top layer of the water and moves inland. All that moisture creates low-flying clouds, known as “fog” when it touches the ground. Marine fog moves eastward (inland) and usually clings to the shoreline. Sometimes it moves further depending on the topography of the coast range. Summer winds on the Oregon Coast are caused by temperature-driven atmospheric pressure disturbances where the two pressure systems collide.

Listening to the weather forecast was something of a ritual in my childhood home. Mom would tune in to WKL96 at 162.475 and we’d dutifully hush up when the familiar “ding!” occurred to signal the top of the broadcast. To this day she still writes down the short-term forecast and puts it on the fridge. (Mom is an old-fashioned gal and doesn’t use the internet.) Find your local station here.

I got to tour my local National Weather Service office –home of the “ding!”– in Portland, Oregon during a DataStreme Climate class I took in 2016. Sponsored by the American Meteorological Society, I also took their DataStreme Oceans course. I highly recommend these classes to educators.

I’m a bit of a NOAA snob when it comes to the forecast. My old Subaru had a channel entirely devoted to NOAA Weather Radio. My new (used) one doesn’t, and I miss it! Friends and family look at a variety of weather apps, but I will always check their predictions against what NOAA says. When you visit National Park Visitor Centers around the country it’s usually the short-term NOAA forecast that is posted on visitor information boards. It is possible to access NOAA Weather from your phone. Go to the following website to learn how to add a bookmark to your phone’s home screen.

the cover of the book A Crack in the Sea by H. M. Bouwman.

Librarian at Sea

“Traditionally, a few people from Raftworld would decide to stay on the island; and a few from the Islands would elect to join Raftworld. These were volunteers, and they were celebrated for their choosing, for some people were simply happier living on land, and others happier at sea.” 
~H. M. Bouwman, A Crack in the Sea
(G.P. Putnam, 2017)

A Crack in the Sea is a middle-grade novel that blends fantasy with historical fiction, including characters who flee a slave ship, and those fleeing post-war Vietnam. One character also has a special skill: talking to fish. My special skill is talking to children about books…but I do much more than that. 

Introduction & Background

I have reported to 551.46 many times over my 18 years as a school librarian, but this will be my first reporting to its physical manifestation. Despite growing up near the coast I have never been out on the open ocean in a boat. I have visited the nonfiction shelves (organized by Melvil Dewey) countless times. You’ll find oceanography topics at 551.46. You’ll find my school, Peninsula Elementary, on an earthen finger of Portland, Oregon bordered by the Willamette River to the west and the mighty Columbia River to the north. Peninsula has been my anchor as an educator for the past 12 years. I call myself a “teacher librarian” in order to emphasize that my priority is to design and deliver lessons to students on top of managing a small library. My profession has state and national standards that cover information literacy, reading engagement, and social responsibility. One of the things I love most about being a school librarian is the academic freedom that I have. I can teach my standards by using the story of the haenyo mermaids of Korea, by analyzing infographics of the water cycle, and by playing truth or lie with shark facts. Cross-curricular approaches to learning are what get me excited about teaching. Science in particular is a subject I have long gravitated towards. 

My career in a, er, clamshell: As an undergraduate with a BA in Comparative Literature I said, what next? I promptly got a seasonal job as a Ranger Aide for Silver Falls State Park. What next? I applied to permanent ranger jobs…and my old school district (where I graduated high school) was looking for a school librarian. My alma mater hired me with zero experience on a restricted transitional license–which means I promised to go back to school and get certified. So, I got my teaching license, then a Master’s in Library Science–two distinct programs. While in graduate school I began branding myself as a “Ranger Librarian.” While working for the same junior high I once attended, I had the odd experience of working with colleagues who were formerly my teachers. A beloved high school social studies teacher still worked next door on our shared campus. He encouraged me to seek out opportunities for educators that provided residencies, travel opportunities, and hands-on learning. So, when I saw a brochure in the staff lounge for an Outward Bound course designed just for teachers I applied. What next? I applied for a Cultural Resources Internship at Grand Teton National Park where, among other things, I created an information package for prospective researchers to help them navigate the application process and eliminate research redundancy. I learned, for example, there is such a thing as collecting too many voles. I applied for a “Teacher Ranger Teacher” position at Grand Canyon National Park. I applied to be a seasonal ranger again, this time in the Columbia River Gorge. I applied for a Comparative Mountain Geography Institute with the Center for Geography Education in Oregon. I did all those things in the margins of my life as a teacher librarian. What next? I applied to be a NOAA Teacher at Sea! 

As the others in NOAA TAS Class of 2022 and 2023 will confirm, I then played the pandemic waiting game while the world figured out how to function with COVID. TAS candidates have to pass a medical clearance within a year of sailing so I even gave blood not once, but twice, while time and tide marched on. I have yet to sweat, and yet to cry, but the salt swims at the ready.   

we see only Jenny's and her husband's bare feet on the sand. The beach stretches well ahead of their feet to the ocean, a dark teal green lined with whitecaps where the waves are breaking. a vessel is only just visible on the horizon.
Getting a sunburn in March 2023 near Manzanita, Oregon with my husband. You can see a fishing boat in the distance.

Science, Technology & Career Log
You can track the location of NOAA Ship Bell M. Shimada as well as other vessels here.  Alternatively, you can try this tracker.  Marine traffic includes all ships at sea such as tankers, military vessels, passenger ships, and fishing boats. An automatic identification system, or AIS technology, is used to follow traffic locations. The International Maritime Organization (a branch of the United Nations) launched the development of AIS as a collision avoidance tool for large vessels at sea that were not within range of tracking systems based on shore.

The IMO decided that all vessels over 300 gross tonnages on international voyages must have AIS aboard. A gross tonnage is calculated by measuring a ship’s volume. AIS allows ships to “see” each other and improves situational awareness before visual contact is possible. AIS is considered by some to be the most significant improvement to navigational safety since the development of radar. However, AIS is considered an enhancement and not a replacement for radar and other traffic services. Using a broadcast transponder system, AIS operates in the VHF (very high frequency) radio waves mobile maritime band. A complete system includes a transmitter and a receiver with data displayed on a screen (revealing the bearing and distance of nearby vessels). Originally, AIS made broadcasts from ships to land and had a capacity of 20 miles or so. Today, satellite-detected AIS allows us to “see” ships no matter how far away.

screenshot from Marine Traffic website marking the position of NOAA Ship Bell M Shimada with a tiny aqua-blue triangle just west of San Francisco. many other markers of different colors and shapes mark the positions of other vessels or buoys.
Position of NOAA Ship Bell M. Shimada not long after the departure of Leg 2. Destination: Newport, Oregon
another screenshot from Marine Traffic, with a large arrow pointing offscreen to Bell M Shimada's marker off the coast of Oregon. an inset popup window shows a photo of the ship and shares its navigation status, speed/course, and draught.
Location as of 7/17/23 just coming into view at the bottom of the screen and headed for smiling Newport. Cruising Earth ship tracker.

Radio waves are one type of electromagnetic radiation–in the same family as X-rays, visible light, microwaves, infrared, and ultraviolet. Naturally occurring radio waves include lightning and objects in space including Jupiter and The Sun. It is possible to turn information like text, sound, and images into electrical signals. These signals are combined with radio waves–energy that moves–to send information across long distances. High-frequency waves have a shorter wavelength and send more wavelengths per second than low-frequency waves. In general, higher frequencies do not travel as far, which is why satellites have proven so useful to AIS. (Further reading)

physics diagram comparing high frequency waves (with short wavelengths) to low frequency waves (with long wavelengths)
Electromagnetic Spectrum: Radio Waves (BestOfScience)

Career feature

I am excited to meet all the people behind the research and ship operations. Prior to sailing, I checked out the professional mariner hiring portal facilitated by NOAA’s Office of Marine and Aviation Operations.  Current fleet vacancies included able seaman, oiler, and first assistant engineer. Reading the job descriptions brought to mind two things. One is my maternal grandfather. He was a World War Two Navy Veteran who worked as a motor machinist and drove a Higgins Boat on D-Day during the invasion of Normandy. He did not die in the war, but lived to age 89 and passed away in 2012. Among the family archives are records of his completion of a diesel mechanics course. This association made me think about encouraging students to make personal connections to whatever we are learning about.  After reminiscing about Grandpa, my train of thought spitballed keywords like boat, engine, ship, sailor, mechanic, and Titanic–which served as a bridge to thought number two. The fleet vacancies prompted a daydream about the next time I am helping a student interested in library books on one of these tangential ocean topics. In addition to a forthcoming lesson on NOAA careers, I should remember to mention a related career during book shopping and plant a seed. “Hey Johnny, I see you are interested in ships. Did you know that being a sailor is an actual job that you could do one day?”

a WWII-era headshot of a sailor in uniform
My maternal grandfather, Leroy Bowers. WWII Navy Veteran.

NOAA Fisheries has its own job opening portal. Openings at the time of my website visit included a statistician, IT Specialist (systems administrators are needed everywhere!), fish biologist, physical science technician, grants management specialist, budget analyst, enforcement technician, and acquisition management specialist. Fish biologist was an obvious choice but I had to click on enforcement technician to find out more. It appears to be an entry-level position related to NOAA’s Office of Law Enforcement (see video insert).  

Holy mackerel, this initial career investigation blew my mind with how many employment opportunities there are within NOAA. I think my students will be impressed with the broad scope of career choices as well. 

Floating Facts

NOAA Ship Bell M. Shimada (in service since 2010) serves the entire West Coast and furthers the NOAA Fisheries mission to be “responsible for the stewardship of the nation’s ocean resources and their habitat.” The imperative of NOAA Fisheries is to maintain healthy ecosystems, safe sources of seafood, productive and sustainable fisheries, as well as the recovery and conservation of protected resources. NOAA’s parent agency is the U. S. Department of Commerce and so relates to economic growth and opportunity. Bell M. Shimada is known as a “quiet” ship, using technology to decrease its noise signature and increase scientists’ abilities to study fish without disturbing them. 

Bell M. Shimada, the man, was known for his studies of Pacific tuna stocks important to the development of commercial fisheries post-World War Two.  His name was chosen by a group of California high school students in a contest to name a new ship in the NOAA fleet. Born to Japanese immigrants in Seattle, Washington, he was imprisoned at Minidoka War Relocation Center in 1942 during the mass internment of Americans with Japanese ancestry. He was 20 years old at the time. He was able to leave the camp by enlisting in the U. S. Army. Shimada began as an infantryman, then an interpreter, translator, and radio traffic monitor, then compiled data on the impact of bombings in Japan. He ended up in Tokyo during its occupation and remained after the war in a civilian position where he analyzed the activities of Japanese fisheries. He returned stateside to finish a college degree that had been interrupted by internment. He went on to earn a Master’s and moved to Honolulu to work for the Fish and Wildlife Service. He worked with an influential fisheries scientist pioneering a holistic approach to fish management, blending fish biology with oceanography and meteorology. While in Honolulu he also began work on a Ph.D. The tuna research he is most well known for occurred when he was transferred to the Inter-American Tropical Tuna Commission in La Jolla, California. 
His scientific pursuits were cut short in a plane crash en route to Mexico City on a return trip from a scientific cruise to Clarion Island off the west coast of Mexico. Shimada was just 36 years old. Think of this remarkable scientist next time you open a can of tuna…

Hook, Line, and Thinker

As a part of my interdisciplinary approach to learning in the library, I often use philosophical questioning in order to inspire dialogue among my students. Something to think about…Is taking a creature’s life justified when it benefits the greater good? Many hake have given their bodies to science in order to not only benefit human activity but their own species as well.

Hmm, I made a Freudian slip just now. I originally wrote, “when it benefits the greater food.” I guess I’ve outed myself as a meat eater and a utilitarian when it comes to the sacrifice of creaturely bodies–within reason (remember the voles)–in the name of science. 

A Bobbing Bibliography

Books I currently use in the classroom to further ocean literacy with elementary students.

Books I use with grades K-2:

  • Inky’s Amazing Escape: How a very smart octopus made his way home, by Sy Montgomery (Simon & Schuster, 2018)
  • Inky the Octopus, by Erin Guendelsberger (Sourcebooks Wonderland, 2020)
  • Octopuses One to Ten, by Ellen Jackson (Beach Lane Books, 2016)
  • Whale in a fishbowl, by Troy Howell & Richard Jones (Schwartz & Wade, 2018)
  • Deep in the Ocean, by Lucie Brunelliere (Abrams Appleseed, 2019)
  • In the Sea, by David Elliott and Holly Meade (Candlewick, 2012)
  • Alien Ocean Animals, by Rosie Colosi (National Geographic Kids, 2020)
  • Ocean! Waves for All, by Stacy McAnulty (Henry Holt and Co., 2020)

Books I use with grades 3-5:

  • The Brilliant Deep: Rebuilding the World’s Coral Reefs: The Story of Ken Nedimyer and the Coral Restoration Foundation, by Kate Messner (Chronicle Books, 2018)
  • Science Comics: Coral Reefs: Cities of the ocean, by Maris Wicks (First Second 2016)
  • Otis & Will Discover the Deep: The record-setting dive of the bathysphere, by Barb Rosentock (Little, Brown Books for Young Readers, 2018)
  • The Mess That We Made, by Michelle Lord (Flashlight Press, 2020)
  • The Ocean Calls: A Haenyeo Mermaid Story, by Tina Cho (Kokila, 2020)
  • Manfish: Jacques Cousteau, by Jennifer Berne (Chronicle Books, 2008)
  • Ocean Speaks: How Marie Tharp revealed the ocean’s biggest secret, by Jess Keating
  • Shark Lady: The True Story of How Eugenie Clark Became the Ocean’s Most Fearless Scientist (Sourcebooks Explore, 2017)
  • Marine Science for Kids: Exploring and Protecting Our Watery World, by Josh & Bethanie Hestermann (Chicago Review Press, 2017)

During the three years I was sailing through the rough waters of the pandemic I took a hard look at the ocean-themed books in our school library collection. Library acquisition budgets are always tight, so I wrote a Donors Choose grant to purchase about 50 new titles. Since this occurred while I taught remote classes, my thank you package was also virtual. Students did a lovely job documenting their thanks using the tools they had available to them. I believe my NOAA experience will help me further promote the content of 551.46!

Kaitlin Baird: All Ashore Who Are Going Ashore, September 6, 2012

NOAA Teacher at Sea
Kaitlin Baird
Aboard NOAA Ship Henry B. Bigelow
September 4 – 20, 2012

Mission: Autumn Bottom Trawl Survey with NOAA’s North East Fisheries  Science Center
Geographical Area: Atlantic Ocean steaming to south New Jersey coast
Date: September 6, 2012

Location Data:
Latitude: 41 ° 18.70’   N
Longitude: 71 ° 42.11’  W       

Weather Data:
Air Temperature: 20.5°C (approx. 69°F)
Wind Speed: 4.97 kts
Wind Direction: from N
Surface Water Temperature: 22.2 °C (approx. 72°F)
Weather conditions: Sunny and fair

Science and Technology Log

The purpose of our mission aboard the Henry B. Bigelow is the 1st leg of groundfish surveys from Cape May all the way down to Cape Hatteras with the Northeast Fisheries Science Center. The scientists aboard the ship are interested in both the size and  frequency of fish at different targeted geographic locations. We will be sampling using a trawl net at about 130 different stations along the way, some inshore and some offshore. We will be using a piece of technology called the Fisheries Scientific Computer System (FSCS). This system will allow us to accurately take baskets of different species of fish and code them for their lengths into a large database. This will give us a snapshot of fisheries stocks in the Northeast Atlantic by taking a subsample. The computer system also allows us to see if any other things need to be done with the fish once they are measured. Tasks like otolith (I’ll tell you about these later!) and gonad removal, fin clips or whole organisms sampling may also be done. The computer system will allow us to label each of these requests and assign it a code for scientists requesting samples from this cruise. Additionally, there are scales along with the system for recording necessary weights. We will be sorting fish first by species, and then running them all through the coded FSCS which you can see in the photo below.

Measuring board for fish
Board for magnetically measuring fish

We are currently on full steam to get our first tow in early tomorrow morning. You can track our ship using NOAA’s ship tracker system. Here we are positioned currently passing Block Island.

Ship Tracker with Current Location
NOAA Ship Tracker

Can’t wait to tell you more about the FSCS system when we start using it tomorrow!!

Personal Log

We have just pushed off the dock at 0900 and are headed South to start our first  trawl tomorrow morning. Everyone is getting used to the ship and some swells with a few storms in the Atlantic. I am really excited to get to see what comes up in our first tow. I have been assigned to the day watch which means that my shift runs from Noon-Midnight. The two other ladies that share our room will be on the night watch, so there will be a changing of the guard and some fresh legs and recorders.

Darcy and Caitlin
Darcy and Caitlin two other volunteers learning the ropes

All ready to go
Helly Hansen gear to keep us all dry.

I am looking forward to bringing you some cool fish photos soon! Hello to everyone back  in Bermuda! Stay safe..

Bye for now!!

Heather Haberman: Science and Life at Sea, July 16, 2011 (post #5)

  • NOAA Teacher at Sea
    Heather Haberman

    Onboard NOAA Ship Oregon II
    July 5 — 17, 2011

Mission:  Groundfish Survey
Geographical Location:  Northern Gulf of Mexico
Date:  Saturday, July 16, 2011

Weather Data from  NOAA Ship Tracker
Air Temperature: 28.5 C   (83 F)
Water Temperature: 27.2 C  (81 F)
Relative Humidity: 82%
Wind Speed: 9.58 knots

Preface:  Scroll down the page if you would like to read my blog in chronological order.  If you have any questions leave them for me at the end of the post.

Science and Technology Log

Question of the day:  When I view your travels aboard the Oregon II on NOAA’s Ship Tracker website it looks as though you go as far as the continental shelf and then turn back towards the shore again.  Why don’t you go into the deep water?

Our groundfish survey course.

Answer:  If you were studying animals in the rainforest you would want to make sure to stay in that specific area.  You wouldn’t want to include Arctic animals in your report which are from a completely different biome.  The same goes for ocean life.  As depth, temperature, and amount of light change in the ocean so do the habitats and the animals that live in them.  On this groundfish survey we are focusing on offshore species that live in “shallow” waters up to 60 fathoms (361 feet).  If we were to go out into the deep water then our reports wouldn’t be as accurate.

Topic of the Day:  Science

What is science?  Can you come up with a good definition?  Difficult isn’t it.  There are many definitions that refer to science as the study of the natural world, systematic knowledge, etc. but something that’s often left out of the definition is that it can be used to make predictions.

We have all been conducting scientific experiments since we were old enough to formulate questions about our environment: “Will this ball bounce?”,  “Can I get it to bounce higher?”,  “Will ball #1 bounce higher than ball #2?”  The knowledge we have collected from these experiments allow us to make accurate predictions.  “I think ball #2 would be better for playing tennis than ball #1.”  Now keep in mind, the more we know about a subject, the better our predictions will be.

The more information we have the better our predictions become. Image: http://www.exploratorium.edu/baseball/bouncing_balls.html

Did you know that the ocean covers over 70% of the Earth’s surface but more than 95% of it remains unexplored.  This means we have a lot to learn if we want to accurately predict the relationships between the ocean, the atmosphere and the living things on our planet. To address these gaps in our knowledge, thousands of people working for the government, universities and private industries, are trying to collect the information we need to make the most accurate predictions possible.  Perhaps by expanding our knowledge we will be better equipped to formulate some solutions to the problems we have created in the seas such as  pollution (particularly plastics), climate change and overfishing.  These issues are drastically changing oceanic ecosystems which in turn affect the life on our planet.

The beautiful Pacific Ocean. Image: Universe Today

A new venture into deep ocean exploration. Image: ZD Net

One thing that sets science apart from other arenas is that is it based on verifiable evidence.  We are not talking about video footage of bigfoot or pictures of UFO’s here, we are talking about evidence that is easily confirmed by further examination or research.  I don’t think many people consider all of the expertise that goes into collecting this kind of scientific data–it’s not just scientists.

Not all evidence is verifiable.

Onboard the Oregon II there are engineers that make sure the ship and all its parts are functional, skilled fishermen that operate the cranes and trawling equipment, officers from the NOAA Corps that navigate and assist the captain in commanding the ship, cooks that feed a hungry crew and the scientists.  Conducting scientific research is a team effort that requires a variety of skilled personnel.

NOAA Corps member Ensign Brian Adornado with a nautical chart that's used for navigating our ships course.

Too often people underestimate the amount of time and labor that actually goes into collecting the information we have about our planet and its inhabitants.  In fact, many people dismiss scientific evidence as unimportant and trivial when in actuality it is based on the most technologically advanced methods that are available.  Scientific data, and conclusions derived from the data, are peer-reviewed (looked at by others in the field) before it is published or presented to the general public.

This is why it is so important to take heed to the reports about the changes taking place in the ocean’s waters. Without the data from NASA’s satellites in the sky,  NOAA’s ships on the sea and other sources too numerous to mention, we wouldn’t know the extent of the damage that’s being done to the ocean.

Chlorophyll concentrations in the ocean. Image: NASA satellite SeaWIFS

NOAA’s Teacher at Sea program has clearly demonstrated how good science is done.  I experienced first hand the importance of random sampling, scientific classification of organisms, repeating trials to ensure the accuracy of results, team work, safety, publishing data for the public to review and always having backup equipment.  I’m looking forward to sharing these experiences with my students.  Thank you NOAA!

Personal log:

My time aboard the Oregon II is coming to an end.  We have finished up our last stations and cleaned up the workrooms.  Now its back to Pascagoula, Mississippi.  It has been a wonderful experience!  For those of you that are wondering what I did each day on the ship it was pretty routine.

9:00 AM : Go to the galley for some juice and coffee.  Hot breakfast ends at 8:00 AM but they always have cereal and fresh fruit to eat.  In the galley there are two tables that each seat six people.  At the end of each table is a small TV so we can watch the news, our anything else that happens to be on DirectTV.

This is a picture of my room. I have the bottom bunk and my roommate sleeps on the top. The curtains are very nice for privacy since we work different shifts.

There is a bathroom (head) that my roommate and I share with our two neighbors. Each room has its own entry door to the bathroom.

This is the galley where all of our meals are served. It's also stocked with lots of yummy snacks and drinks!

9:30 AM:  After some coffee, juice and conversation I head upstairs to the lounge so I can check my e-mail and work on my blog.  The lounge has some comfortable seats, a big TV, lots of 8mm movies, two computers for the fishermen, and an internet cord for laptops.  Usually David, the ornithologist (bird scientist), is here working when I arrive so we usually chat for a while.

This is the lounge.

11:00 AM:  Lunch time!  everyday the chefs make amazing food for us to eat.  They’ve served bbq ribs, prime rib, turkey, quail, crab cakes, shrimp, mahi-mahi, ham, crab legs, pork loin, steaks and lots of other amazing side dishes and desserts.  Both chefs are retired from the Navy where they were also cooks.

12:00 noon: Head to the dry lab to start my shift.  At the start of every shift Brittany, our team leader, writes down all of the stations we will be going to as well as how many miles it takes to get there.

This is the "dry lab" where we spend our time waiting for the next trawl or plankton station. In this room there are computers dedicated to navigation, depth imagery and fisheries data.

5:00 PM:  Supper time!  Back to the galley for some more excellent food!

12:00 midnight:  Night crew comes in to relieve us from our 12 hour shift.  I quietly enter my room so I don’t wake up my roommate and hit the shower.  Then it’s to the rack (my bunk bed) with some ear plugs to block out the sounds of the engine.  The slow rocking of the waves makes a person fall asleep quickly after a long day at work.