David Madden: Calm Seas, Flying Fish, and Bananas, July 16, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: Southeast Fishery Independent Survey

Geographic Area:
Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35º30’ N, 75º19’W) to St. Lucie Inlet, FL (27º00’N, 75º59’W)

Pisces Location 7-16-19
Here’s a picture of where we have traveled today. You can see lots of zig zags, dropping fish traps and circling back to retrieve them.


Date: July 14, 2019


Science and Technology Log

I’ve now been on Pisces for 24 hours, and I’m amazed by the complexities and logistics of this ship. 

There are 32 souls on board; including 5 on deck, 6 engineers, 1 survey, 1 electronics, 7 NOAA Corps Officers, 2 stewards, and 10 scientists. It takes a well-coordinated, highly-trained group to keep things ship-shape.  We have had two safety and drill meetings so far – highlighting the importance of preparedness while at sea.  The three divisions on our emergency station bill are: Fire and Emergency, Man Overboard, and Abandon Ship.  So far we have done an abandon ship drill, where I tried on my survival suit.  Oh boy.  It fit just fine.  Except the hands and gloves part.  For the life of me I could not get my hands to fit through the openings.  Perhaps it’ll take a life or death situation.  See for yourself:

survival suit
TAS David Madden tries on a survival suit

During the Abandon Ship exercise we gathered next to our Life Rafts.  We discussed situations and protocols and how to get the raft over the side and our bodies into the raft.  We also learned about some of the survival gear within; including fishing gear (to keep folks occupied), knife, sea anchor, flares, and sea sickness pills to be taken immediately. Number one lesson – head into a real Abandon Ship well-fed and well-hydrated; you won’t be getting any water for the first 24 hours (to avoid throwing it back up, and to allow the body to acclimate to its new conditions, and because heck, you can probably go the first day without water, so why not save it?) It all reminded me of a book I read years ago called, “Adrift: Seventy-six Days Lost at Sea” by Steven Callahan. 

Life boat instructions
Life boat instructions

My day consists of helping out the scientists with their fish count.  This means baiting the fish traps with menhaden, dropping them off the back of the ship at the prescribed locations, circling back around 75-90 minutes later to scoop them back up.  This is followed by chronicling the different fish caught – some are tossed back to the sea, others are kept for all sorts of further data collection (more soon).  There’s so much crazy cool data being collected on this ship.  I thought you’d like to see some of it.  Here’s a diagram I made and I’ll try to include each post that highlights the fish counts.  I redrew fish diagrams based off of the fish in the handy book, “Reef Fish Identification” by Paul Humann and Ned Deloach.  I thought you’d also like to see what these fish look like.  *Keep in mind that this first day was pretty low in fish count due to our location. 

Fish Count day 1
NOAA Pisces SEFIS Fish Count, July 16, 2019



Personal Log

This is now my fourth day on the ship.  My journey began around 9:20 am Sunday with a ride to the airport.  From there I jumped on a flight from TLH to Charlotte. Followed by a steamy flight to New Bern, NC and a 45 minute drive to Morehead City, NC.  There I met up with NOAA scientist, Nate Bacheler who showed me around the ship and introduced me to everybody on board.  Starting Monday morning the rest of the crew, including all of the scientists, started showing up.  I’ve been getting used to life aboard a research vessel and loving the view!

General Updates:

  1. The seas have been calm, and so far, no seasickness. 
  2. The food has been delicious – thank you Dana and Rey. 
  3. So far my favorite animal is the flying fish.  I’ve seen dozens – my next task is to figure out how to get some epic footage. 
  4. The science team is very dedicated, interesting, diverse, hardworking, and super smart!  Stay tuned for interviews. 

Neato Facts =

NOAA Ship Pisces can travel at speeds up to 18.4 mph (16 knots). How fast is that?  Let’s compare it to two famous marine organisms.

Pisces vs Great White and Jelly Fish
Pisces vs Great White and Jelly Fish


Yesterday I ate a banana.  No big deal, right?  Wrong.  Even though I didn’t buy the banana or bring the banana onboard, some folks looked at me sideways.  They said, “Do you know what it means to have a banana on a boat?!” and “Be sure to ask your students why it’s a bad idea to have bananas on a boat”.  So I got to asking around and turns out that bananas and boats don’t mix well in the land of the superstitious.  Supposedly, bananas cause bad luck, and many seasoned sailors refuse to let them on their boats.  So far no bad luck… but then again, today has been a low fish count day (see diagram above).  Might be my fault!

It’s only been two day and already my mind is spinning with interesting information, undecipherable acronyms, and new nautical terms.  Stay tuned for: interviews, fish count background and techniques, swim bladder chemistry, tour of the ship, and survey science.  What else would you like to learn about?  Coming up:  What’s a knot?!  Please post questions and comments below!

David Madden: Preparing for Pisces 2019, July 11, 2019

NOAA Teacher at Sea

David Madden

Preparing to Board NOAA Ship Pisces

July 15 – 29, 2019


Mission: South East Fisheries Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35º30’ N, 75º19’W) to St. Lucie Inlet, FL (27º00’N, 75º59’W)

Date: July 11, 2019

NOAA Ship Pisces
NOAA Ship Pisces. Photo by National Oceanic and Atmospheric Administration.

Introductory Post

Personal Log:

Hello friends,

My name is David Madden. I am a high school science teacher at Maclay School in Tallahassee, FL, and I’m getting ready to go on my NOAA Teacher at Sea cruise! I recently completed my 21st year teaching – it’s been a super fun journey. I am as excited heading into year 22 as I was in years 1-5. I’ve been in love with nature since I can remember.

Madden Science logo
Madden Science logo

Over the course of my career I’ve taught: AP Biology, regular Biology, Physics, Integrated Science (bio, chem, phys combined), and Marine Biology. This upcoming year I will also be teaching AP Environmental Science. I’ve loved every minute of my job – teaching and learning with students, challenging myself and being challenged by my friends and colleagues, and exploring new adventures – like NOAA Teacher at Sea. Along the way I’ve also been a coach, helping kids learn the value of sports, including: volleyball, basketball, tennis, and track.

Over the last few years I’ve started making educational videos for my students – as a way for them to further develop their love of science and grow their scientific literacy: Madden Science on YouTube and www.maddenscience.com.

Madden family
The hardest part of the trip will be missing these two!

Starting on July 15th, 2019, I will be aboard NOAA Ship Pisces as part of the Southeast Fishery-Independent Survey (SEFIS). The mission of the cruise will be to conduct “applied fishery-independent sampling with chevron fish traps and attached underwater video cameras, and catch rates and biological data from SEFIS are critical for various stock assessments for economically important reef fishes along the southeast US Atlantic coast.” It’s an amazing opportunity for me to participate in important scientific research. I have the opportunity to work alongside and learn from some of the best scientists in the world.

Pisces Picture Wikipedia
NOAA Ship Pisces. Photo by National Oceanic and Atmospheric Administration.

There are so many things about NOAA Teacher at Sea that I’m looking forward to. Here’s a few:

  1. Spending time out on the ocean, experiencing the energy and power of the wild sea.
  2. Working with and learning from some of the world’s leading oceanic and atmospheric scientists.
  3. Learning about fish and marine biodiversity in the Atlantic.
  4. Asking tons of questions and hopefully learning more about the ocean and its central importance in our changing world.
  5. Sharing my experience with you; my family, friends, students, and the public.   I’ll share this adventure via this blog and also via videos I hope to create while on NOAA Ship Pisces. My goal is for these blog posts and videos to serve as a real-time record of the cruise, to be helpful and interesting right now, and also to help serve as resources for my classes and other classrooms around the world.

Neato Fact:

NOAA Ship Pisces is 209 feet (64 meters) long. To give you an idea, that’s basically 70% of a football field. That’s longer than two blue whales (~90 feet), the largest and longest animal to ever live! Usain Bolt can run that far in 6.13 seconds (assuming 9.58 s for 100 m). A starfish, traveling at 60 feet/hour, would take about 3.5 hours to travel the length of Pisces.

Madden Pisces diagram
NOAA Ship Pisces is 209 ft long.

I’d love it if you could join in with me on this adventure – please comment and ask questions. I’ll do my best to respond in a helpful and interesting way!

David Knight: Musings from Mission Viejo, July 28, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

 

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 28, 2018

Weather Data from Mission Viejo, California:

Latitude: 33.64°
Longitude: 117.62°
Sea wave height: 1-2 ft
Wind speed: 4 kts
Wind direction: 90
Visibility: 10 nm
Air temperature: 29.0
°C
Barometric pressure: 758 mm Hg
Sky: Clear

The past few days back home have given me a chance to share my experiences as a NOAA Teacher at Sea with family and friends and to enjoy some slime and scale free days in southern California. I no longer have the picturesque sunrises and sunsets, but I don’t have to climb down a ladder to get out of bed anymore. I am so grateful that I was selected to be a Teacher at Sea this season and that I had an opportunity to learn from and work with some fantastic people.

SEFIS 2018 Leg 2 Track Line

NOAA Ship Pisces route for SEFIS Survey, July 10 – 23, 2018 (image from Jamie Park)

My experience as a NOAA Teacher at Sea greatly exceeded my expectations and has reinvigorated me as a teacher. From the first full day on NOAA Ship Pisces, I was having fun learning about and collecting data that are used to create models of fish populations.  The techniques the NOAA scientists taught me not only allowed me to contribute to their research in a small way, but it gave me an opportunity to collect data that I can immediately integrate into my classroom.  My students will be able to analyze salinity, temperature, and pressure changes as depth changes, as well as biological data such as fish length, weight and age using tissue samples I was able collect while a Teacher at Sea.  Furthermore, I was also able to learn about the men and women that serve as officers in the NOAA Corps, engineers, and deck crew, without whom the scientists would be unable to gather the necessary data. Meeting these dedicated men and women and learning about the mission of NOAA will allow me to help my own students know about career opportunities in marine biology and STEM fields. Every day was an opportunity to learn and I am eager to share my experience and knowledge with my future students as well as my colleagues in Irvine.

 

This slideshow requires JavaScript.

I want to thank Nate Bacheler and the entire NOAA science group for not only teaching me how to extract otoliths and ovaries, but for answering my many questions and including me in everything. Whenever I asked if I could help out in some way I always got a, “Sure, let’s show you how to get that done.” I truly had a blast getting slimed by flopping fish.  I also would not have learned so much about the NOAA Corps and the mission of NOAA without being able to freely go to the bridge and engage with the officers on duty. They too were willing to tell me the story of how the came to be NOAA Corps officers and answered my questions ranging from navigating and the propulsion of NOAA Ship Pisces to college majors and family-life.

IMG_6706

View from a bow hawsehole. (photo by David Knight)

 

 

 

 

David Knight: Work Out and Work Up: Part II, July 18, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 18, 2018

Weather Data from the Bridge:

Latitude: 29° 45.3′

Longitude: 80° 22.5′

Sea wave height: 1-3 ft

Wind speed: 5 kts

Wind direction: 241

Visibility: 10 nm

Air temperature: 28 °C

Barometric pressure: 1014.9 mb

Sky: Scattered Clouds


Science and Technology Log

Part II. DNA, Gonads, and Diet

DNA Samples.

Certain fish that we collect have samples of their fins collected for DNA testing. For example, if a Spotfin Butterflyfish (Chaetodon ocellatus) is brought up in a trap, a small pair of scissors are used to clip a portion of its anal fin in order to obtain a sample that is then place in a micro-test tube containing a buffer. Back in the on-shore lab, technicians will obtain the DNA, which is then used to determine the genetic make-up of the population in a particular area.

Fin clip

Fin clip sample from Spotfin Butterfly fish. (photo by David Knight)

One may assume that the genetic make-up of a population is uniform across the east coast, after all, fish can swim, right? However, that is not necessarily the case. Changes in the frequency of particular alleles create spatial differences in some stocks of fish over a broad area. In other words, there may be slight genetic differences in a population of Gray Triggerfish off of the coast of North Carolina compared to those found in the waters of Florida.

Why does this matter? Currently, the management of most fish occurs over a broad area, often including many states. By understanding the slight differences that may be present in a smaller subset of a population, scientists can create better, more accurate management plans instead of a “one size fits all” model.

Gonads.

As written in an earlier blog, many fish in this region are sequential hermaphrodites and change sex during their life-time, starting off as females, then changing to males.  By taking the gonads of certain species, scientist can determine if the fish is male or female, and taken together with size and age, it is possible to estimate when these fish are transitioning from one sex to another.

Ovaries from a Vermilion Snapper

Ovaries from a Vermilion Snapper – I made a small incision so you can the eggs. (photo by David Knight)

By sampling the ovaries of fish, it is possible to estimate the fecundity of the species. Fecundity is the reproductive potential an organism possesses. The number of eggs in an ovary can be estimated and then, taking the age and size data of the specimen, it is possible to predict the potential a population has for growth. Many factors, such as the number of males in a population and the season, can influence the reproductive behaviors of fish, so sampling the gonads provides an additional pieces of data.

Finally, sampling the gonads of fish can help determine the sex ratio in the population. In fish that display sequential hermaphroditism, such as the Black Sea Bass, the number of males in the populations increase with age.

Question: Fisherman will be able to get more money for larger fish, so naturally they will want to “select for” larger fish, potentially decreasing the number of reproductive males in the population. If the number of large, reproductive males in a population decreases, then more females will transition to become male.

What may happen to the average age of sex transition in sequential hermaphrodites?

Diet.

A select few species have their stomach contents sampled. If we know what a particular species is eating, then we are able to understand the trophic interactions within the ecosystem much better. An ecosystem-based management plan will look at the interactions taking place between the many prey and predator species, whom are often competing for the same resources.  Because the diverse species in an ecosystem are inextricably linked, an increase in one species is likely to affect the other. If one species is over-fished or not reproducing at its potential, this may create a ripple effect throughout the ecosystem.

 

 

Personal Log

The food on board the NOAA Ship Pisces has been great. The Stewards, Rey and Dana, have kept us well fed with a variety of great meals. We’ve had everything from hot dogs and hamburgers to bacon wrapped filet mignon and shrimp, and a crew favorite, Taco Tuesday! Meal time is very important because not only is the crew refueling for work, but it affords them a chance to sit down, talk, and to catch up on Chip and Joanna Gaines’ newest “Fixer Upper” on the TV that runs continuously. The first day on board, Operations Officer, Lieutenant Jamie Park, told me that any NOAA ship runs on two very important things: 1) diesel fuel, and 2) COFFEE.  The galley is open 24-7 with snacks and drinks always available since crew members are working in shifts, with some getting off at midnight or 4 a.m.. And…., I recently found the freezer that contains Klondike Bars, popsicles, ice cream, and Hot Pockets.

 

This slideshow requires JavaScript.

Did You Know?

The Red Snapper (Lutjanus campechanus) gets its name from its enlarged canine teeth. According to the 2016 stock assessment of South Atlantic red snapper, the stock is overfished and subject to overfishing, but is rebuilding.  Management plans in the South Atlantic and Gulf of Mexico place annual catch limits on both commercial and recreational fisherman to decrease the pressure on the fish, as well as minimum size restrictions to protect young and juvenile snapper. Red Snapper can live over 50 years and are of reproductive age as early as two.

range of red snapper

Range of Red Snapper-South Atlantic (NOAA)

Site Map

Sites where traps were set. 32 nautical miles southeast of Cape Fear, North Carolina. Blue indicates deep water, Red indicates more shallow water. (image by Nate Bacheler)

snapper_red2_locationmap

Range of Red Snapper-Gulf of Mexico (NOAA)

Reference:

NOAA Fisheries. https://www.fisheries.noaa.gov/species/red-snapper

 

 

 

 

 

David Knight: Work Out and Work Up: Part I, July 17, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

 

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 17, 2018

Weather Data from the Bridge:

Latitude: 30° 30.2 N
Longitude:
80° 15.6 W
Sea wave height:
1-2 ft
Wind speed:
15 kts
Wind direction:
187°
Visibility:
10 nm
Air temperature:
30.1 °C
Barometric pressure:
1014.7 mB
Sky:
Broken Clouds

Science and Technology Log

Warning!!! Great Science Ahead…


Part I.

Waiting to see

Waiting to see what the traps have brought up this time… (photo by David Knight)

As fish traps begin to be brought up by the deck crew, scientist wait to see what may be in the trap. I’ve actually found that I am looking over the deck in anticipation of new fish that may have been caught, or to see how many fish will need to be “worked up.” Once the fish have been removed from the trap and emptied into a large bin, they are then sorted by species into 17-gallon bins to determine the total weight of all fish.  Moving 17 gallons worth of fish up to the lab bench to the scale can be quite a “work out.” There have been a couple of hauls that have captured so many fish of a particular species that more than one bin has to be used. After the fish have been weighed, the total length of each fish is determined to get a length frequency of the entire catch.  For species like Tomtate (Haemulon aurolineatum), every fish is measured and then returned to the ocean. For some species, a pre-determined percentage are kept for a more detailed work up that may include the extraction of otoliths, removal of gonads, or a collection of stomach contents. The data collected from each fish will then be used by scientists in a number of different agencies and in different states to better understand the growth and reproduction of the particular species. All of this data is then used to create management plans for economically and ecologically important fish as well as to gain a better understanding of its life history.

Work Up

Length.

Measuring fish

Measuring the length of each, individual fish. (photo taken by Nate Bacheler)

One may assume that a very long fish is also very old, but that is not necessarily the case. The length of a fish is not a good way to determine the age of a fish because factors such as temperature and food availability may alter the growth rate. Many fish grow very rapidly early on, but then slow their growth, so it is possible that a fish that is twelve years old is the same size as a fish that is three years old. Because many fish demonstrate logistic growth rates in terms of length, it is important to use additional pieces of data to determine their age.

Otolith.

In the head of ray-finned fish, one can find small, bone-like structures called otoliths. These structures have a variety of sensory functions that include detection of sound vibrations in water, movement, and its orientation in the water. As fish age, calcium carbonate will be added to the otolith, forming ring-like structures that can be used to determine the age of a fish, much like a tree will add new tissue each season forming tree rings.  Otoliths are the best way to determine the actual age of a fish.

IMG_6677

Otoliths. [left to right: Black Sea Bass, Red Snapper, Jackknife fish] (photo by David Knight

For the fish that we were sampling, we remove the sagittal otoliths which are located beside the brain just about level with the eyes. To extract them, a cut is made on the dorsal side of the fish with a sharp knife to gain access to the skull case.  To extract otoliths from some very “hard-headed” fish, a saw is used, while others take little effort. After a few hours of otolith extraction, I feel as though I am getting the hang of it, although I am nowhere near as fast as the biologist on board! I’ve been collecting otoliths from Black Sea Bass (Centropristis striata) and Vermillion Snapper (Rhomboplites aurorubens) to bring home with me to create a lab for my class and to post on the NOAA Teacher-at-Sea website.

Extracting otolith

Looking for a perfect extraction of otolith from Vermilion Snapper. (photo taken by Nate Bacheler)

Be sure to check back for Part II. Gonads, Diet and DNA


Personal Log

The motion of the ship has not been a problem so far and I stopped taking any motion sickness pills after the first day. As I have been removing otoliths from fish, I cannot help but think about the similarities in how both fish and humans perceive their spatial environment and maintain balance. In our vestibular system, we too have otoliths that help to sense acceleration in a vertical and horizontal direction. Of course my thoughts then go to a dark place…what if someone were removing my otoliths to determine my age?

 

Did You Know?

The longest known life span in vertebrates is found in the Greenland Shark (Somniosus microcephalus). It is estimated that the Greenland shark grows less than 1 cm per year. Since sharks do not have otoliths, scientist have to analyze proteins found in the lens of their eye.  In 2016, scientist from the University of Copenhagen collected a 5 m shark that was estimated to be about 392 years old, but may be anywhere from 272 to 512 years old.

Reference: Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science  12 Aug 2016: Vol. 353, Issue 6300, pp. 702-704

David Knight: Getting to Know the Pisces, July 16, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 16, 2018

Weather Data from the Bridge:

Latitude: 32° 49.6
Longitude: 78
° 52.4
Sea wave height: 1-2 ft
Wind speed: 10 kts
Wind direction: 59
Visibility: 10 nm
Air temperature: 28.7
°C
Barometric pressure: 1016.9 mb
Sky: Clear

An Interview with Ensign Luke Evancoe

Pisces logo

NOAA Ship Pisces Seal

My first day on NOAA Ship Pisces I was introduced to about 300 different people. Well, maybe it was more like 30, but it sure seemed like a lot of people were aboard.  NOAA vessels have civilian personnel that perform a myriad of important duties, scientists that assist in planning and carrying out the various missions of the ship, and commissioned NOAA Corps Officers that ensure the mission of NOAA is carried out.

Engineers are responsible for making sure that all of the systems on the ship are operating properly.  The engineers must be able to fix and maintain all mechanical, electrical, and plumbing systems on the ship.  It’s this important group that makes sure the A/C is working in our cabins and that the propulsion system gets us from one trap site to the next.  Members of the deck department use equipment to lower CTD units, bring up traps, deploy and retrieve buoys, and maintain watches throughout the day.  These men and women are responsible for making sure very expensive equipment is safely and effectively used. As a research vessel, the Survey department’s role in the acquisition and processing of oceanographic and survey data is crucial. These individuals operate and analyze data from a number of different pieces of equipment including the CTD and the multibeam echosounder.  And finally, there are the Stewards. The stewards are the ones responsible for making sure everyone is well fed and comfortable. They prepare and plan all meals, ensure the pantry is stocked and ready for each mission, and that all of the common areas are clean and sanitary.

Soon after boarding, I met Ensign Luke Evancoe, the newest NOAA Corps Officer to join the NOAA Ship Pisces. After talking to him briefly and learning about his varied background and the circuitous route that brought him to NOAA, I decided I wanted to interview him and find out more about his role as a NOAA Corps Officer.

IMG_6592

Ensign Luke Evancoe, NOAA Ship Pisces newest NOAA Corps Officer

Where are you from and what did you do before coming to NOAA?

I grew up in Pittsburgh and have a B.S. in Biology and Masters in Teaching from Virginia Commonwealth University in Richmond, Virginia. After high school and two years of college, I decided to join the United States Marine Corps and become an Infantryman. While in the Marine Corps I was a member of the USMC Silent Drill Platoon, a 24-member team that are ambassadors of the USMC that perform at sporting events and parades. I was then deployed to Afghanistan for seven months. I was a vehicle commander for an MRAP (Mine-Resistant Ambush Protected) vehicle.

After the Marine Corps, Mr. Evancoe went back to VCU and then became a sixth grade science teacher at the Franklin Military Academy in Richmond, Virginia where he taught for two and one half years. While at a research symposium, he learned about the work of NOAA and the NOAA Corps and decided to apply to the program and once he was accepted, left teaching to train to become an NOAA Corps Officer.

What was a memorable experience while you were teaching?

My most memorable experience teaching was when I successfully executed an experiment to see whether the myth that if someone moves while stuck in quicksand, they sink faster than if they remained motionless was true or not. Using Hexbugs, which are tiny robot bugs, my students tested whether the Hexbugs which were turned on and “squirming” sank into a cornmeal mix (the quicksand) at a faster or slower rate than Hexbugs that were turned off. It was a simple, yet fun way to demonstrate the basics of the scientific method to middle school children.

Tell us about your training with NOAA Corps.

The NOAA Corps training lasts 19 weeks and is held at the US Coast Guard Academy in New London, Connecticut. Our training is called Basic Officer Training Class (BOTC) and is carried out alongside the Coast Guard Officer Candidates.

The training is similar to the military academies in that we wear a uniform, start our day at about 5 a.m., go to classes and are expected to carry out other duties when we are not in class. It is very regimented, but it is also rewarding.

25501_0

Ensign Evancoe (on the left, 5th from the bottom)

How is training for NOAA Corps similar to your Marine Corps training that you received?

They are really incomparable. What is similar, however, is the training you receive in leadership and discipline and how to best represent yourself as a member of a uniformed service for the United States.

What types of things do you learn during your BOTC training?

As I mentioned, we learn a lot about leadership, but we also learn about the goals and mission of NOAA and the role of officers in fulfilling that mission. Obviously, we also learn about skills that will allow us to be good seamen.  We have to know about all of the different operations of a NOAA ship like propulsion, navigation, and communication and we also learn the skills of each of the departments like engineering and the deck crew. We learn different nautical skills and about maritime regulations.  Obviously, we learn how to handle both large ships and small vessels.

The training program involves a lot of hands on opportunities beside the classroom sessions we have. It is similar to how you would teach science with some lecture time and then lab time.

You are currently an ensign, what are your duties right now?

I am considered a Junior Officer of the Deck (JOOD). I am assigned two 4-hour watches on the bridge. During this time, I am driving the ship as we transit from one location to another or as we drop and pick up traps. You have to multi-task very well. I have to be listening to the radios as the crew relays information to the bridge, the scientists also communicate with the bridge as traps are being deployed or retrieved, I have to know our speed, pay attention to the strength of the current, wind direction and its speed, I have to watch for other vessels in the area, there’s a whole lot going on. Fortunately, I am being mentored by a senior officer when I am on the bridge. All of the training I am currently doing will allow me to become an Officer of the Deck (OOD) which will allow me to be unsupervised on the bridge.

What is the most difficult aspect of driving the ship?

The most difficult aspect of driving the ship would have to be maintaining an understanding of the current state of the wind, currents, and swell, while realizing that these variables can change multiple times over the course of a watch; a strategy that I was using to pick up fish traps the first hour of watch may not work at all with how the sea state has changed an hour later.

NOAA Ship Pisces in port

NOAA Ship Pisces in port

In addition to my shifts on the bridge, I have collateral duties that I am learning. For instance, I am learning the duties of the Navigation Officer who is responsible for ensuring that all of the navigation charts are up to date, that the navigation equipment is working properly, and that upcoming tracklines are laid out on our charts and approved by the CO.  The Imprest Officer is responsible for managing some of the ship’s funds and making sure the wage mariners are paid when required. I am also learning about the duties of the Movie Officer. We have a large inventory of movies from the US Navy that have to be cataloged and replaced. We get movies that are still playing in theaters so crew members can use their time when they are not on duty to relax. It’s important that people can relax.  Finally, I am coming up to speed with the duties of the Property Officer, who maintains inventory of all of the ship’s electronically-based and sensitive property and accounts for assets that must be properly disposed of.

What is the OOD workbook?

It is like on-the-job training. The work that I do in the workbook helps me put into practice the things I learned at BOTC, and once I have completed the workbook and it has been approved, it will allow me to stand watch on the bridge without supervision.

The workbook assesses my knowledge of the mission and maintaining the safety and security of the ship.

What didn’t you realize before you became a NOAA officer that you discovered since joining the NOAA Corps?

I guess I did not realize that, as an officer, you have to know everyone else’s job in addition to yours. An officer is ultimately responsible for all aspects of the ship, so I have to be knowledgeable in not just navigating or driving the ship, but I also have to know about all the other departments. It’s a lot to know, but I find it very rewarding.

What are your goals with NOAA?

My commitment as a NOAA Officer is three years, but I plan on making this my career.  After my two years on NOAA Ship Pisces I will then spend time at my land based assignment.  I enjoy my job because I am involved in collecting valuable data for the scientists to analyze, there is a lot of responsibility and you have to constantly be 100% engaged in your work, and you get to see and experience amazing things while at sea.

Personal Log

There is always work to be done on the NOAA Ship Pisces, but at the end of a day there may be time to relax and to play a little Corn Hole. Sunday evening the scientific team cleared the back deck for a little tournament. Playing Corn Hole on a moving ship is quite a bit different than playing in your back yard! Just as you are getting ready to release the bag a swell will move the ship and cause your bag to miss the board—-at least that’s my story and I’m sticking to it!

Did You Know?

Pisces is the Latin word for “fish”. In Greek mythology, Aphrodite and Eros were transformed into fish to escape the monster, Typhon.

David Knight: Summer Adventures, June 26, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

 

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: June 26, 2018

 

Weather Data from my patio in Mission Viejo, California

Latitude: 33.64
Longitude: -117.62
Sea wave height: 0 m
Wind speed: 13 mph
Wind direction: East
Visibility: 8.6 nm
Air temperature: 24 C
Barometric pressure: 1014 mb
Sky: Clear

Personal Log and Introduction

What a summer I am having! I just got back from an eight-day adventure to Belize with sixteen of this year’s AP Biology students. During our trip we hiked in the rainforest both during the day and at night, snorkeled the meso-American reef at South Water Caye, went tubing in a limestone cave, visited the Mayan site of Xunantunich, hiked into the Actun Tunichil Muknal cave system to see Mayan artifacts and remains, and zip-lined above the rainforest in the Mayflower Bocawina National Park. Now I begin preparations for my Teacher at Sea adventure aboard NOAA Ship Pisces. What a life I lead… I sometimes feel as though I am living in a mashup episode of “Dora the Explorer”, “Where in the World is Carmen Sandiego”, and “The Secret Life of Walter Mitty”.

TAS David Knight in Belize

El Castillo temple at Xunantunich. Behind me is Belize and Guatemala. (photo by David Knight)

I have been teaching at University High School in Irvine, California since 1990. UNI was my first and will be my only teaching position—I’ve found a great place and intend to teach there my entire career. The teachers in my department are not only my colleagues, they are my friends. I have so much respect for the staff at UNI because we all work hard to teach and serve the students and share a passion for investing in the lives of kids. The students at the school are motivated to learn, are respectful and encouraging of one another, and are supported by parents that value education. I frequently tell people, “when I got hired at UNI 28 years ago, I won the lottery!”

Throughout my career I have taught all levels of life science, from remedial biology to AP Biology and everything in between. My current teaching schedule includes Marine Science and AP Biology. I began teaching Marine Science four years ago and love the class. In Marine Science we get to study Oceanography and Marine Biology throughout the year so I get a chance to practice some of my physical science skills along with my love of biology. Teaching this class has reinvigorated me and has given me a chance to teach a diverse range of students. I know that my experience as a Teacher at Sea will benefit both Marine Science and AP Biology, but I also hope it will benefit my colleagues at UHS and in the Irvine Unified School District.

As previously mentioned, I just got back from a trip to Belize with my AP Biology students. For the past fifteen years I have been taking groups of AP Biology students outside the United States to see and experience the natural world first-hand. On our trips we have learned about tropical rainforest and coral reef systems, plants and animal diversity, and geology as well as many different cultures and customs in countries like Belize, Costa Rica, Peru, Ecuador, Honduras, Guatemala, and Iceland. My former students tell me that these trips have played an integral part of their high school experience and have given them opportunities to challenge themselves physically and mentally as well as a great appreciation for the world in which we live.

Me and my students

Me and my students on South Water Caye, Belize. (photo by David Knight)

As a Teacher at Sea I will be working with Dr. Nate Bacheler of the NOAA Southeast Fisheries Science Center aboard NOAA Ship Pisces.  The NOAA Ship Pisces is a 208 ft. ship that was designed specifically for fisheries studies. The ship is designed to sail quietly through the water in order to better collect samples using a variety of collection methods including hook and line, traps, and video systems.  During my cruise on NOAA Ship Pisces I will be helping scientists survey snapper and grouper to better understand their distribution and abundance for better management of these economically important species. Additionally, we will be collecting bathymetric and water quality data at various sample sites.