David Madden: Waves – Dolphins, Flying Fish, Sea to Sky, August 19, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019 


Mission: South East Fisheries Independent Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

Date: August 19, 2019

WAVES: Aboard NOAA Ship Pisces: Dolphins, Flying Fish (video has no dialogue, only music)

This video was captured during my NOAA Teacher at Sea cruise aboard NOAA Ship Pisces. During the cruise I spent lots of time outside on the deck gazing into the blue seascape. Here’s some of the footage I collected.

David Madden: Tiger Shark! Fish Trap Footage, August 19, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fisheries Independent Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

Date: August 19, 2019

Tiger Shark! NOAA Ship Pisces Underwater Camera Action (video has no dialogue, only music)

This video is a collection of fish trap camera footage recorded during my NOAA Teacher at Sea adventure aboard NOAA Ship Pisces. Very special thanks to the NOAA science team: Zeb Schobernd – chief scientist and especially Mike Bollinger and Brad Teer – camera and gear experts.

David Madden: All Hands on Deck, August 8, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fisheries Independent Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

Date: August 8, 2019

All Hands on Deck (video has no dialogue, only music)

I made this video while aboard NOAA Ship Pisces as part of NOAA’s Teacher at Sea program. I thought it might be cool to capture the different kinds of work the crew, NOAA Officers, and scientists were doing. Pretty much everyone thought I was a little weird when asking to video just their hands. Oh well. I think it turned out kinda cool.

Special thanks to the folks aboard Pisces. Keep in mind – if anyone in this video gets a hand modeling contract, I get 40%. Thank you. The NOAA science team was particularly helpful: Zeb Schobernd – chief scientist, Todd Kennison, Brad Teer, Mike Bollinger, Zach Gillum, Mike Burton, Laura Bacharach, Dave Hoke, and Kevan Gregalis.

David Madden: Land Ho! Return Home, August 2, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15 – 29, 2019

Back on land, in Tallahassee, FL

Mission: South East Fisheries Independent Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

Weather report in Tallahassee
Conditions early on Friday morning, Tallahassee, FL

Date: August 2, 2019

sunset over aft deck
Sunset aboard Pisces on my last night.

Gratitude Log:

My time on NOAA Ship Pisces is complete. Huge thanks to the folks who made it possible. I am grateful for the grand opportunity and grateful to the many people who helped me along the way. Starting with Emily and Jennifer at NOAA Teacher at Sea. They made everything smooth and easy on my end. Special thanks for allowing me to participate in Teacher at Sea this year, considering I was originally assigned to go last year. I was unable to go last year because my Dad got diagnosed with cancer right before the trip, and I elected to stay home with him during surgery and treatment. Emily, and the NOAA scientists involved, Zeb and Nate, made this year’s trip preparation a breeze. Thank you. Additionally, my Dad is doing well (and even back on the golf course)!

Processing fish
Processing fish with Mike B (the elder) and Todd K. photo by Mike B (the younger)

In some sense I was the little brother tag along on this cruise. “Aww come on, can I play?” was basically what I was saying each day to the scientists and NOAA officers. They were happy to oblige. Thank you for being patient and supportive while I learned how to work on your team.

  1. Zeb, Todd K, Todd W, and Brad were particularly helpful and knowledgeable and patient – thanks, guys!  * Thanks, Brad, for your rocks of the day.  Our minds and our chakras benefited.
  2. Thanks to my roommate, Mike B – for being a great roommate and for helping me out with a ton of things (including excellent slow mo footage of the XBT!)
  3. Thanks to the NOAA officers who were always happy to chat and tell me about how things work and about their careers. Thank you CO, XO, Jamie, Luke, Dan, and Jane. * Did you know that all NOAA officers have a college degree in a STEM field?
  4. And thank you to the scientific team of all stars: Dave H for always being hilarious, Zach for being hardworking and friendly to talk with, Mike B for being so wise and having good taste in music, Kevan, for lots of good chats during meal times, and Lauren, for making Oscar the octopus and being so friendly!
Engine Room
Just hanging out in the engine room one more time with Steve. Thanks to Steve and Garet!

Science and Technology Log

Todd W is the Senior Survey Technician. He works on Pisces full time and helped out the science team with running the CTD (conductivity, temperature, depth). Todd also helped me run a few experiments, and was overall real cool with helping me find random stuff during the cruise.

In particular, Todd and I, with Mike B’s help, tricked out the CTD to investigate how colors change with depth. We arts-and-crafted a few color strips and secured them to the CTD along with some GoPros to record video. We wanted to see what happened to various colors as the CTD descended to depth (~90m). See what it looked like at the top vs. the bottom (image below). You can see clearly that indeed the red color disappeared soonest while most everything took on a blue tone. This is because red is the longest wavelength on the visible spectrum and therefore the lowest energy (~ 700 nm); it’s the most easily absorbed by the water. Conversely, blue light has a shorter wavelength (~400 nm), and this means higher frequency and higher energy. I made a video with the footage we collected – coming soon. When it comes out you can see for yourself the reds disappear and the colors shift to blue. We also secured a Styrofoam cup to the CTD in order to watch what happens as the pressure increases on the way down. *See here for my pressure video covering similar topics. The CTD only went down to around 90 meters, but that was still enough to increase the pressure from 1 atm to around 9 atm. This nine fold increase shrunk the cup around 12%. Todd tells stories of taking Styrofoam manikin heads down to 300 + meters and watching them shrink to the size of a shot glass.

testing color and pressure
Science lab aboard the CTD – testing color and pressure.

In addition to CTD excitement, Todd let me conduct an XBT launch. XBT stands for Expendable Bathythermograph. * This cruise had the highest density of acronyms of any experience in my life. Geez. Here’s a link from NOAA describing XBTs.  And my pictures below.

 

This slideshow requires JavaScript.

Bravo, Todd & NOAA Ship Pisces – you got me!!

XBT certificate
Don’t worry, my XBT bravery and expertise didn’t go unrewarded.

Neato Fact:

We stopped by the NOAA Beaufort Lab shortly after we docked in Morehead City. Todd K was awesome and showed me around and introduced me to a series of interesting characters – it was nice to see the lab and see what everyone had been talking about. I spent a short time walking near the sea wall outside the lab. I ran into Larisa who pointed out two cute baby green sea turtles. She said that recently they’ve started coming into the inlet to feed.  Related neato fact: Hawksbill sea turtles have been shown to exhibit biofluorescence.

Baby green sea turtle.
Baby green sea turtle.

Personal Log

It’s good to be back on land, and fun to trade the breezy blue ocean seascape for the hot humid green treescape of Tallahassee. I’m busy trying to process the information from the trip and figure out ways to incorporate it into my teaching and lesson plans. Surely it’ll take two forms – a little bit of distilling and planning now, and a slow seep of info from memories later. I’m hoping the trickle of revisited memories pop up at opportune times during the school year for me to take advantage. We’ll see.

I’m back to school in a few days.  This is the last full blog. Coming up I’ll post some quick hit blogs with links to some videos. Stay tuned.

Sunset
Until we meet again!

David Madden: Otolithia and The Tragedy of the Commons, July 27, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fishery-Independent Survey (SEFIS)

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

On board off the coast of North Carolina – about 45 miles east of Wilmington, NC (34°18’ N, 77°4’ W)

Pisces Route
Pisces Route as of July 27, 2019


Date: July 27, 2019

Weather Data from the Bridge:

Latitude: 34°18’ N
Longitude: 77°4’ W
Wave Height: 3-4 feet
Wind Speed: 6.68 knots
Wind Direction: 42°
Visibility: 10 nm
Air Temperature: 28.0°C 
Barometric Pressure: 1022.4 mb
Sky: Partly cloudy


Science and Technology Log

Today, with the help of friends Zeb and Todd, I’d like to take a deep dive into the mission of this cruise.  Starting with the fish work up process aboard Pisces, first explained in blog #3.  Below is a picture flowchart I drew up to help visualize what’s going on. 

NOAA Fish Protocol (color)
NOAA SEFIS Fish Survey Protocol

This sequential process is rather straight forward following steps 1-8, rinse (the gear) and repeat. It’s the before and after; what comes before step 1 and after step 8, that’s important; How and where is the data used.  If you follow along into steps 9, 10, 11… you start with the laboratory analysis of the biological samples – otoliths and gonads – used to age the fish, and determine reproductive activity and spawning seasons, respectively.  This information is vital to proper management of fisheries.  Here’s why. 

This cruise, and SEFIS in general, originally came into existence because of red snapper.  Scientists determined around 2009 that the red snapper population in the SE Atlantic was at historically low levels.  Strict regulations were put in place to help the species rebound.  This on its own was a good measure, but only one step.  In order to assess the effect of the regulations, scientists would have to monitor the abundance of red snapper in the region.  However, charting changes in abundance would not be enough with this species (or with many others) due to the nature of its life cycle and reproduction.  See, all populations have a natural age structure balance.  This includes species specific traits – like its survivorship curve (how likely it is for an individual to die at different points in their life – for red snapper and many other reef-associated species it’s incredibly high at their larval and juvenile stages).  It also includes pertinent developmental characteristics such as when the species is reproductively mature.  Like many similar fish, older, mature red snapper have greatly increased reproductive potential, also known as fecundity.  So while the population has been bouncing back in terms of numbers, the number of older, mature, more fecund fish is still considerably lower than historical levels; thus the population is still recovering.  *this information is gathered from the data collected by scientist here on our SEFIS mission, and others like them. 

SEFIS survey site locations
SEFIS survey site locations.

The next step is to share this data with other scientists who will then, in conjunction with other information on the species, analyze the data and bring the results and conclusions of their analyses to policy makers (FYI, the government is moving towards making governmentally gathered scientific data available to the public).  Discussion ensues, and climbs the political decision-making-ladder until allowable catch regulations are determined.  Florida fishers, check here for your current snapper regulations or maybe this Fish Rules app will help.  Fish safe, my friends!

Morning Crew
Morning crew: Mike, Dave, Brad, Me, Todd, Oscar the Octopus, Mike, Zeb
gear
Macabre medieval cutlery? Or otolith extraction gear?

Ultimately this is a tricky and tangled issue of sustainability.  Commercial fishermen are understandably upset, as this can threaten their livelihood.  Although real, this concern is inherently short sighted, as their long term earnings depend on healthy and robust populations, and ecosystems.  The difficult part is to gather the necessary scientific data (very challenging, especially for marine organisms) and marry that to the many financial, social, and political concerns.  Comment below with thoughts and suggestions.  And while you’re at it, here’s a lovely and quick (fish-related) tutorial overview of this situation in general – the tragedy of the commons – and the challenges of managing our resources. 

A quick note about otoliths.  Within the fish processing protocol (above) – the most satisfying part is otolith extraction.  On board competitions abound: people vie for first chair (the spot in the lab that’s the coolest and best lit) and for the sharpest knives and scissors.  Much like a wild west showdown, most important is fastest extraction times.  Dave H opts for the classic chisel-through-the-gills technique, while the rest of us opt for the saw-through-the-skull-with-a-knife-and-crack-the-head-open-just-behind-the-eyes technique.  While Brad looks to perform the “double-extraction” – both otoliths removed in the tweezers at the same time, I look to perform the please-don’t-slice-my-hand-open extraction.  The quest for otoliths is usually straight forward.  But sometimes an ill-sliced cut can leave you digging for the tiny ear bones forever. 

This leaves us with: Why otoliths?  These tiny little ear bones help function in the fish’s vestibular system.  That’s a fancy way of saying the balance and orientation system of the fish.  They help vertebrates detect movement and acceleration, and they help with hearing.  These little bones help you determine your head and body orientation – turn your head sideways, it’s your otoliths who will send the message.  All vertebrates, including you, gentle reader, have them.  This makes me wonder if folks with exceptional balance and proprioception and court awareness have bigger otoliths?  Fish requiring more balance, those that sit and wait to hunt vs. those that swim predominantly in straight lines, have bigger otoliths. 

Otoliths are made of layered calcium carbonate (side question – does ocean acidification impact otolith formation?  Like it does with other calcium carbonate structures in the ocean?)  The fish secretes new layers as it ages: thicker layers during good times, thinner layers during lean times – correlated with summer and winter seasonality – just like with tree rings.  Once you dig out the otoliths, they can be analyzed by on-shore scientists who slice ‘em in half and take a really thin slice, deli-meat-style.  Voila! You can then count up the rings to tell how old the fish is. 

Fish Otolith
From Andrews et al 2019, published in the Journal of Marine and Freshwater Research: Illustration of a red snapper (top right), a photo of a red snapper otolith (top left), and an image of a cross-section of that otolith (bottom) http://www.publish.csiro.au/MF/fulltext/MF18265
cod otolith
From Hardie and Hutchings 2011, published in the journal Arctic: A cross-section of the sagittal otolith of an Atlantic cod.

Retrieved from https://www.researchgate.net/publication/255711740_The_Ecology_of_Atlantic_Cod_Gadus_morhua_in_Canadian_Arctic_Lakes

Black sea bass otoliths
Black sea bass otoliths with fingers for size comparison. Photos from Dave Hoke
Fish Count July 25th
Yesterday’s Fish Count.


Personal Log:

I’ve been continuing my work aboard the Pisces.  Lately the focus has been on conversations with scientists and ship personnel.  The source of most of today’s blog came primarily from conversations with Zeb and Todd.  They were both super helpful and patient in communicating the goals and mission of this cruise and SEFIS.  I’m also trying to contribute some things that might be useful to the NOAA scientists after the cruise is completed, and things that will be helpful to my students now and during the school year – like the drawings and diagrams, along with some upcoming videos (topics include: CTD color and pressure, Underwater footage featuring a tiger shark and hammerhead shark, Waves, All Hands on Deck, and a general cruise video). 

The food and mood of the cruise continues to be good.  * note: my salad eating has taken a hit with the expiration of spinach and leafy greens – it’s amazing they lasted as long as they did – the stewards, Rey and Dana, are amazing! 

General Updates:

  1. The other night I had my first bit of troubled sleeping.  The seas were roaring!  Actually, just about 6 feet.  But it was enough to rock the boat and keep me from falling asleep.  It was almost a hypnic jerk every time the ship rolled from one side to the other.  Special sensations for when my head dipped below my feet. 
  2. Two more book recommendations:  a. Newberry Book Award Winner: Call it Courage, by Armstrong Sperry.  I loved this book as a little boy.  I did a book report on it in maybe the 2nd or 3rd grade.  I spent more time drawing the cover of the report than I did writing it.    B.  A few years ago I read The Wave, by Susan Casey.  Great book about the science of waves and also the insane culture of big wave surfers. 
  3. I haven’t seen all that much lately in terms of cool biodiversity.  The traps did catch some cute swimming crabs, a lionfish, and a pufferfish.   * more below.
  4. Zeb won the Golden Sombrero Award the other day.  This is a momentous achievement awarded to a chief scientist after six consecutive empty fish traps!
  5. Lauren crafted us an extra special tie-dye octopus named Oscar.  He’s wearing the Golden Sombrero in the photo above.     
  6. Only 2.5 days till I’m back home.  Can’t wait to see my family. 

 

Neato Facts =

Back to general update #3 and today’s neato fact.  Both lionfish and pufferfish are toxic.  But are they poisonous? Or venomous?  Wait.  What’s the difference?  Both poisons and venoms are characterized as toxins, and often they are used interchangeably.  The distinction lies in the means of entry into your body.  Venoms get into you via something sharp – you’re either bitten with fangs or stung with stingers or spines.  Examples include our friend the lionfish, snakes, and bees.  Poisons, conversely, get into you when you eat it.  Examples include pufferfish, poison dart frogs,

Here’s a simple way to remember: Injection = Venom, Ingestion = Poison.  Click these links for interesting lists of poisonous animals, poisonous plants, and venomous animals

Pufferfish
Pufferfish from today’s fish trap.
Lionfish and Pufferfish
Lionfish (Venomous) and Pufferfish (Poisonous). Injection = Venom, Ingestion = Poison http://www.peakpx.com/487337/lion-fish-and-blue-puffer-fish

Please let me know if you have any questions or comments. 

David Madden: Engines, Dolphins, and Sharksuckers, July 24, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fishery-Independent Survey (SEFIS)

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

On board off the coast of South Carolina – about 50 miles east of Charleston (32°50’ N, 78°55’ W) – after a slight change of plans last night due to the approaching tropical depression.

Date: July 24, 2019

Weather Data from the Bridge:
Latitude: 32°50’ N
Longitude: 78°55’ W
Wave Height: 3-4 feet
Wind Speed: 15 knots
Wind Direction: Out of the North
Visibility: 10 nm
Air Temperature: 24.6°C 
Barometric Pressure: 1011.8 mb
Sky: Cloudy

Sunset over the Atlantic Ocean
Sunset over the Atlantic Ocean
NOAA Pisces Full Track 7-20-19
This is a map from the other day outlining the path of the ship. The convoluted pattern is the product of dropping off and picking up 24 (6 x 4) fish traps per day, along with the challenges of navigating a 209 foot ship in concert with gulf stream currents and winds.



Science and Technology Log

Life and science continue aboard NOAA Ship Pisces.  It seems like the crew and engineers and scientists are in the groove.  I am now used to life at sea and the cycles and oddities it entails.  Today we had our first rain along with thunderstorms in the distance.  For a while we seemed to float in between four storms, one on the east, west, north, and south – rain and lightning in each direction, yet we remained dry.  This good thing did indeed come to an end as the distant curtains of rain closed in around us.  The storm didn’t last long, and soon gathering the fish traps resumed. 

Dave with red grouper
Processing fish: measuring length and weight of a red grouper, Epinephelus morio.
Fish Count for July 23, 2019
Yesterday’s fish count. Compare to other day’s catches: Tons of vermillion snapper, tomtate, and black sea bass. And one shark sucker (read on for more). Thank you, Zeb, for tallying them up for me. 


The highlight of yesterday (and tied for 1st place in “cool things so far”) was a tour of the engine room lead by First Assistant Engineer, Steve Clement.  This tour was amazing and mind-blowing.  We descended into the bowels of the ship to explore the engine rooms and its inner workings.  I think it rivals the Large Hadron Collider in complexity. 

I kept thinking, if Steve left me down here I would surely get lost and never be found.  Steve’s knowledge is uncanny – it reminded me of the study where the brains of London cab drivers were scanned and shown to have increased the size of their hippocampus.  (An increase to their memory center apparently allows them to better deal with the complexities of London’s tangled streets.)  And you’re probably thinking, well, running a massive ship with all its pipes and wires and hatches and inter-related, hopefully-always-functioning, machinery is even harder.  And you’re probably right!  This is why I was so astounded by Steve’s knowledge and command of this ship.  The tour was close-quartered, exceptionally loud, and very hot.  Steve stopped at times to give us an explanation of the part or area we were in; four diesel engines that power electric generators that in turn power the propeller and the entire ship.  The propeller shaft alone is probably 18 inches in diameter and can spin up to 130 rpm. (I think most of the time two engines is enough juice for the operation).  Within the maze of complexity below ship is a smooth running operation that allows the crew, scientists, and NOAA Corps officers to conduct their work in a most efficient manner. 

Dave and Steve and engines
First Assistant Engineer Steve Clement and TAS Dave Madden in the Engine Room

I know you’ve all been wondering about units in the marine world.  Turns out, students, units are your friend even out here on the high seas!  Here’s proof from the bridge, where you can find two or three posted unit conversion sheets.  Makes me happy.  So if you think that you can forget conversions and dimensional analysis after you’re finished with high school, guess again!

conversions
Posted unit conversion sheets

Speaking of conversions, let’s talk about knots.  Most likely the least-understood-most-commonly-used unit on earth.  And why is that?  I have no idea, but believe me, if I were world president, my first official action would be to move everyone and everything to the Metric System (SI). Immediately. Moving on. 

Back to knots, a unit used by folks in water and air.  A knot is a unit of speed defined as 1 nautical mile/hour.  So basically the same exact thing as mph or km/hr, except using an ever-so-slightly-different distance – nautical miles.  Nautical miles make sense, at least in their origin – the distance of one minute of longitude on a map (the distance between two latitude lines, also 1/60 of a degree).  This works well, seeing as the horizontal lines (latitude) are mostly the same distance apart.  I say mostly because it turns out the earth is not a perfect sphere and therefore not all lines are equidistant.  And you can’t use the distance between longitude lines because they are widest at the equator and taper to a point at the north and south pole.  One nautical mile = 1852 meters.  This is equal to 1.15 miles and therefore one knot = 1.15 miles/hour. 

This next part could double as a neato fact: the reason why this unit is called a “knot” is indeed fascinating.  Old-time mariners and sailors used to measure their speed by dropping a big old piece of wood off the back of the boat.  This wood was attached to some rope with knots in it, and the rope was spun around a big spool.  Once in the water the wood would act kind of like a water parachute, holding position while the rope was let out.  The measuring person could then count how many evenly spaced knots passed by in a given amount of time, thus calculating the vessel’s speed. 



Personal Log

The scientists on board have been incredibly helpful and patient.  Zeb is in charge of the cruise and this leg of the SEFIS expedition.  Brad, who handles the gear (see morning crew last post), is the fishiest guy I’ve ever met.  He seriously knows everything about fish!  Identification, behavior, habitats, and most importantly, how extract their otoliths.  He’s taught me a ton about the process and processing.  Both Zeb and Brad have spent a ton of time patiently and thoroughly answering my questions about fish, evolution, ecology, you name it.  Additionally, NOAA scientist Todd, who seeks to be heroic in all pictures (also a morning crew guy), is the expert on fish ecology.  He has been exceptionally patient and kind and helpful. 

The fish we’re primarily working with are in the perches: Perciformes.  These fish include most of your classic-looking fish.  Zeb says, “your fish-looking fish.”  Gotcha!  This includes pretty much all the fish we’re catching except sharks, eels, and other rare fish. 

For more on fish evolution here are two resources I use in class.  Fish knowledge and evolution: from Berkeley, A Fisheye View of the Tree of Life.

Fish Tree of Life Berkeley
Fish Tree of Life, from University of California-Berkeley

And check out Neil Shuban’s Your Inner Fish series.


General Updates:

  1. Plenty of exciting animals lately.  Here’s a picture of those spotted dolphins from the other day.
  2. The weather has been great, apart from yesterday’s storm.  Sunrises and sunsets have been glorious and the stars have been abundant. 
  3. We found a common octopus in the fish trap the other day.  The photo is from crew member Nick Tirikos.      
  4. I’m missing home and family. I can’t wait to see my wife and son. 
  5. That tropical depression fizzed out, thankfully. 
spotted dolphins
Spotted Dolphins
common octopus
Common Octopus (Photo by crewmember Nick Tirikos)


Neato Facts =

Yesterday we caught a shark sucker in the fish trap.  I was excited to see and feel their dorsal attachment sucker on top of their head. 

Hold on.  I just read more about these guys and turns out that sucking disc is their highly modified dorsal fin!  That is the most neato fact so far.  What better way to experience the power of this evolutionarily distinct fish than to stick it to your arm?!  The attachment mechanism felt like a rubber car tire that moved and sealed against my skin. (Brad calls them sneakerheads).

Shark sucker
Shark Sucker on Dave’s Arm

Consider all the possible biomimicry innovations for the shark sucker’s ability to clasp onto sharks and fish and turtles while underwater.  This grasp and release adaptation surely has many cool possible applications.  Here are a few: Inspiring New Adhesives.  Robotic Sticky Tech.   Shark Sucker biomimicry

I’d love to hear your questions and comments!

David Madden: Calm Seas, Flying Fish, and Bananas, July 16, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: Southeast Fishery Independent Survey

Geographic Area:
Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35º30’ N, 75º19’W) to St. Lucie Inlet, FL (27º00’N, 75º59’W)

Pisces Location 7-16-19
Here’s a picture of where we have traveled today. You can see lots of zig zags, dropping fish traps and circling back to retrieve them.


Date: July 14, 2019


Science and Technology Log

I’ve now been on Pisces for 24 hours, and I’m amazed by the complexities and logistics of this ship. 

There are 32 souls on board; including 5 on deck, 6 engineers, 1 survey, 1 electronics, 7 NOAA Corps Officers, 2 stewards, and 10 scientists. It takes a well-coordinated, highly-trained group to keep things ship-shape.  We have had two safety and drill meetings so far – highlighting the importance of preparedness while at sea.  The three divisions on our emergency station bill are: Fire and Emergency, Man Overboard, and Abandon Ship.  So far we have done an abandon ship drill, where I tried on my survival suit.  Oh boy.  It fit just fine.  Except the hands and gloves part.  For the life of me I could not get my hands to fit through the openings.  Perhaps it’ll take a life or death situation.  See for yourself:

survival suit
TAS David Madden tries on a survival suit

During the Abandon Ship exercise we gathered next to our Life Rafts.  We discussed situations and protocols and how to get the raft over the side and our bodies into the raft.  We also learned about some of the survival gear within; including fishing gear (to keep folks occupied), knife, sea anchor, flares, and sea sickness pills to be taken immediately. Number one lesson – head into a real Abandon Ship well-fed and well-hydrated; you won’t be getting any water for the first 24 hours (to avoid throwing it back up, and to allow the body to acclimate to its new conditions, and because heck, you can probably go the first day without water, so why not save it?) It all reminded me of a book I read years ago called, “Adrift: Seventy-six Days Lost at Sea” by Steven Callahan. 

Life boat instructions
Life boat instructions

My day consists of helping out the scientists with their fish count.  This means baiting the fish traps with menhaden, dropping them off the back of the ship at the prescribed locations, circling back around 75-90 minutes later to scoop them back up.  This is followed by chronicling the different fish caught – some are tossed back to the sea, others are kept for all sorts of further data collection (more soon).  There’s so much crazy cool data being collected on this ship.  I thought you’d like to see some of it.  Here’s a diagram I made and I’ll try to include each post that highlights the fish counts.  I redrew fish diagrams based off of the fish in the handy book, “Reef Fish Identification” by Paul Humann and Ned Deloach.  I thought you’d also like to see what these fish look like.  *Keep in mind that this first day was pretty low in fish count due to our location. 

Fish Count day 1
NOAA Pisces SEFIS Fish Count, July 16, 2019



Personal Log

This is now my fourth day on the ship.  My journey began around 9:20 am Sunday with a ride to the airport.  From there I jumped on a flight from TLH to Charlotte. Followed by a steamy flight to New Bern, NC and a 45 minute drive to Morehead City, NC.  There I met up with NOAA scientist, Nate Bacheler who showed me around the ship and introduced me to everybody on board.  Starting Monday morning the rest of the crew, including all of the scientists, started showing up.  I’ve been getting used to life aboard a research vessel and loving the view!

General Updates:

  1. The seas have been calm, and so far, no seasickness. 
  2. The food has been delicious – thank you Dana and Rey. 
  3. So far my favorite animal is the flying fish.  I’ve seen dozens – my next task is to figure out how to get some epic footage. 
  4. The science team is very dedicated, interesting, diverse, hardworking, and super smart!  Stay tuned for interviews. 

Neato Facts =

NOAA Ship Pisces can travel at speeds up to 18.4 mph (16 knots). How fast is that?  Let’s compare it to two famous marine organisms.

Pisces vs Great White and Jelly Fish
Pisces vs Great White and Jelly Fish


Yesterday I ate a banana.  No big deal, right?  Wrong.  Even though I didn’t buy the banana or bring the banana onboard, some folks looked at me sideways.  They said, “Do you know what it means to have a banana on a boat?!” and “Be sure to ask your students why it’s a bad idea to have bananas on a boat”.  So I got to asking around and turns out that bananas and boats don’t mix well in the land of the superstitious.  Supposedly, bananas cause bad luck, and many seasoned sailors refuse to let them on their boats.  So far no bad luck… but then again, today has been a low fish count day (see diagram above).  Might be my fault!

It’s only been two day and already my mind is spinning with interesting information, undecipherable acronyms, and new nautical terms.  Stay tuned for: interviews, fish count background and techniques, swim bladder chemistry, tour of the ship, and survey science.  What else would you like to learn about?  Coming up:  What’s a knot?!  Please post questions and comments below!

David Madden: Preparing for Pisces 2019, July 11, 2019

NOAA Teacher at Sea

David Madden

Preparing to Board NOAA Ship Pisces

July 15 – 29, 2019


Mission: South East Fisheries Independent Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35º30’ N, 75º19’W) to St. Lucie Inlet, FL (27º00’N, 75º59’W)

Date: July 11, 2019

NOAA Ship Pisces
NOAA Ship Pisces. Photo by National Oceanic and Atmospheric Administration.

Introductory Post

Personal Log:

Hello friends,

My name is David Madden. I am a high school science teacher at Maclay School in Tallahassee, FL, and I’m getting ready to go on my NOAA Teacher at Sea cruise! I recently completed my 21st year teaching – it’s been a super fun journey. I am as excited heading into year 22 as I was in years 1-5. I’ve been in love with nature since I can remember.

Madden Science logo
Madden Science logo

Over the course of my career I’ve taught: AP Biology, regular Biology, Physics, Integrated Science (bio, chem, phys combined), and Marine Biology. This upcoming year I will also be teaching AP Environmental Science. I’ve loved every minute of my job – teaching and learning with students, challenging myself and being challenged by my friends and colleagues, and exploring new adventures – like NOAA Teacher at Sea. Along the way I’ve also been a coach, helping kids learn the value of sports, including: volleyball, basketball, tennis, and track.

Over the last few years I’ve started making educational videos for my students – as a way for them to further develop their love of science and grow their scientific literacy: Madden Science on YouTube and www.maddenscience.com.

Madden family
The hardest part of the trip will be missing these two!

Starting on July 15th, 2019, I will be aboard NOAA Ship Pisces as part of the Southeast Fishery-Independent Survey (SEFIS). The mission of the cruise will be to conduct “applied fishery-independent sampling with chevron fish traps and attached underwater video cameras, and catch rates and biological data from SEFIS are critical for various stock assessments for economically important reef fishes along the southeast US Atlantic coast.” It’s an amazing opportunity for me to participate in important scientific research. I have the opportunity to work alongside and learn from some of the best scientists in the world.

Pisces Picture Wikipedia
NOAA Ship Pisces. Photo by National Oceanic and Atmospheric Administration.

There are so many things about NOAA Teacher at Sea that I’m looking forward to. Here’s a few:

  1. Spending time out on the ocean, experiencing the energy and power of the wild sea.
  2. Working with and learning from some of the world’s leading oceanic and atmospheric scientists.
  3. Learning about fish and marine biodiversity in the Atlantic.
  4. Asking tons of questions and hopefully learning more about the ocean and its central importance in our changing world.
  5. Sharing my experience with you; my family, friends, students, and the public.   I’ll share this adventure via this blog and also via videos I hope to create while on NOAA Ship Pisces. My goal is for these blog posts and videos to serve as a real-time record of the cruise, to be helpful and interesting right now, and also to help serve as resources for my classes and other classrooms around the world.

Neato Fact:

NOAA Ship Pisces is 209 feet (64 meters) long. To give you an idea, that’s basically 70% of a football field. That’s longer than two blue whales (~90 feet), the largest and longest animal to ever live! Usain Bolt can run that far in 6.13 seconds (assuming 9.58 s for 100 m). A starfish, traveling at 60 feet/hour, would take about 3.5 hours to travel the length of Pisces.

Madden Pisces diagram
NOAA Ship Pisces is 209 ft long.

I’d love it if you could join in with me on this adventure – please comment and ask questions. I’ll do my best to respond in a helpful and interesting way!

David Knight: Musings from Mission Viejo, July 28, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

 

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 28, 2018

Weather Data from Mission Viejo, California:

Latitude: 33.64°
Longitude: 117.62°
Sea wave height: 1-2 ft
Wind speed: 4 kts
Wind direction: 90
Visibility: 10 nm
Air temperature: 29.0
°C
Barometric pressure: 758 mm Hg
Sky: Clear

The past few days back home have given me a chance to share my experiences as a NOAA Teacher at Sea with family and friends and to enjoy some slime and scale free days in southern California. I no longer have the picturesque sunrises and sunsets, but I don’t have to climb down a ladder to get out of bed anymore. I am so grateful that I was selected to be a Teacher at Sea this season and that I had an opportunity to learn from and work with some fantastic people.

SEFIS 2018 Leg 2 Track Line
NOAA Ship Pisces route for SEFIS Survey, July 10 – 23, 2018 (image from Jamie Park)

My experience as a NOAA Teacher at Sea greatly exceeded my expectations and has reinvigorated me as a teacher. From the first full day on NOAA Ship Pisces, I was having fun learning about and collecting data that are used to create models of fish populations.  The techniques the NOAA scientists taught me not only allowed me to contribute to their research in a small way, but it gave me an opportunity to collect data that I can immediately integrate into my classroom.  My students will be able to analyze salinity, temperature, and pressure changes as depth changes, as well as biological data such as fish length, weight and age using tissue samples I was able collect while a Teacher at Sea.  Furthermore, I was also able to learn about the men and women that serve as officers in the NOAA Corps, engineers, and deck crew, without whom the scientists would be unable to gather the necessary data. Meeting these dedicated men and women and learning about the mission of NOAA will allow me to help my own students know about career opportunities in marine biology and STEM fields. Every day was an opportunity to learn and I am eager to share my experience and knowledge with my future students as well as my colleagues in Irvine.

 

This slideshow requires JavaScript.

I want to thank Nate Bacheler and the entire NOAA science group for not only teaching me how to extract otoliths and ovaries, but for answering my many questions and including me in everything. Whenever I asked if I could help out in some way I always got a, “Sure, let’s show you how to get that done.” I truly had a blast getting slimed by flopping fish.  I also would not have learned so much about the NOAA Corps and the mission of NOAA without being able to freely go to the bridge and engage with the officers on duty. They too were willing to tell me the story of how the came to be NOAA Corps officers and answered my questions ranging from navigating and the propulsion of NOAA Ship Pisces to college majors and family-life.

IMG_6706
View from a bow hawsehole. (photo by David Knight)

 

 

 

 

David Knight: Work Out and Work Up: Part II, July 18, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 18, 2018

Weather Data from the Bridge:

Latitude: 29° 45.3′

Longitude: 80° 22.5′

Sea wave height: 1-3 ft

Wind speed: 5 kts

Wind direction: 241

Visibility: 10 nm

Air temperature: 28 °C

Barometric pressure: 1014.9 mb

Sky: Scattered Clouds


Science and Technology Log

Part II. DNA, Gonads, and Diet

DNA Samples.

Certain fish that we collect have samples of their fins collected for DNA testing. For example, if a Spotfin Butterflyfish (Chaetodon ocellatus) is brought up in a trap, a small pair of scissors are used to clip a portion of its anal fin in order to obtain a sample that is then place in a micro-test tube containing a buffer. Back in the on-shore lab, technicians will obtain the DNA, which is then used to determine the genetic make-up of the population in a particular area.

Fin clip
Fin clip sample from Spotfin Butterfly fish. (photo by David Knight)

One may assume that the genetic make-up of a population is uniform across the east coast, after all, fish can swim, right? However, that is not necessarily the case. Changes in the frequency of particular alleles create spatial differences in some stocks of fish over a broad area. In other words, there may be slight genetic differences in a population of Gray Triggerfish off of the coast of North Carolina compared to those found in the waters of Florida.

Why does this matter? Currently, the management of most fish occurs over a broad area, often including many states. By understanding the slight differences that may be present in a smaller subset of a population, scientists can create better, more accurate management plans instead of a “one size fits all” model.

Gonads.

As written in an earlier blog, many fish in this region are sequential hermaphrodites and change sex during their life-time, starting off as females, then changing to males.  By taking the gonads of certain species, scientist can determine if the fish is male or female, and taken together with size and age, it is possible to estimate when these fish are transitioning from one sex to another.

Ovaries from a Vermilion Snapper
Ovaries from a Vermilion Snapper – I made a small incision so you can the eggs. (photo by David Knight)

By sampling the ovaries of fish, it is possible to estimate the fecundity of the species. Fecundity is the reproductive potential an organism possesses. The number of eggs in an ovary can be estimated and then, taking the age and size data of the specimen, it is possible to predict the potential a population has for growth. Many factors, such as the number of males in a population and the season, can influence the reproductive behaviors of fish, so sampling the gonads provides an additional pieces of data.

Finally, sampling the gonads of fish can help determine the sex ratio in the population. In fish that display sequential hermaphroditism, such as the Black Sea Bass, the number of males in the populations increase with age.

Question: Fisherman will be able to get more money for larger fish, so naturally they will want to “select for” larger fish, potentially decreasing the number of reproductive males in the population. If the number of large, reproductive males in a population decreases, then more females will transition to become male.

What may happen to the average age of sex transition in sequential hermaphrodites?

Diet.

A select few species have their stomach contents sampled. If we know what a particular species is eating, then we are able to understand the trophic interactions within the ecosystem much better. An ecosystem-based management plan will look at the interactions taking place between the many prey and predator species, whom are often competing for the same resources.  Because the diverse species in an ecosystem are inextricably linked, an increase in one species is likely to affect the other. If one species is over-fished or not reproducing at its potential, this may create a ripple effect throughout the ecosystem.

 

 

Personal Log

The food on board the NOAA Ship Pisces has been great. The Stewards, Rey and Dana, have kept us well fed with a variety of great meals. We’ve had everything from hot dogs and hamburgers to bacon wrapped filet mignon and shrimp, and a crew favorite, Taco Tuesday! Meal time is very important because not only is the crew refueling for work, but it affords them a chance to sit down, talk, and to catch up on Chip and Joanna Gaines’ newest “Fixer Upper” on the TV that runs continuously. The first day on board, Operations Officer, Lieutenant Jamie Park, told me that any NOAA ship runs on two very important things: 1) diesel fuel, and 2) COFFEE.  The galley is open 24-7 with snacks and drinks always available since crew members are working in shifts, with some getting off at midnight or 4 a.m.. And…., I recently found the freezer that contains Klondike Bars, popsicles, ice cream, and Hot Pockets.

 

This slideshow requires JavaScript.

Did You Know?

The Red Snapper (Lutjanus campechanus) gets its name from its enlarged canine teeth. According to the 2016 stock assessment of South Atlantic red snapper, the stock is overfished and subject to overfishing, but is rebuilding.  Management plans in the South Atlantic and Gulf of Mexico place annual catch limits on both commercial and recreational fisherman to decrease the pressure on the fish, as well as minimum size restrictions to protect young and juvenile snapper. Red Snapper can live over 50 years and are of reproductive age as early as two.

range of red snapper
Range of Red Snapper-South Atlantic (NOAA)

Site Map
Sites where traps were set. 32 nautical miles southeast of Cape Fear, North Carolina. Blue indicates deep water, Red indicates more shallow water. (image by Nate Bacheler)

snapper_red2_locationmap
Range of Red Snapper-Gulf of Mexico (NOAA)

Reference:

NOAA Fisheries. https://www.fisheries.noaa.gov/species/red-snapper

 

 

 

 

 

David Knight: Work Out and Work Up: Part I, July 17, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

 

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 17, 2018

Weather Data from the Bridge:

Latitude: 30° 30.2 N
Longitude:
80° 15.6 W
Sea wave height:
1-2 ft
Wind speed:
15 kts
Wind direction:
187°
Visibility:
10 nm
Air temperature:
30.1 °C
Barometric pressure:
1014.7 mB
Sky:
Broken Clouds

Science and Technology Log

Warning!!! Great Science Ahead…


Part I.

Waiting to see
Waiting to see what the traps have brought up this time… (photo by David Knight)

As fish traps begin to be brought up by the deck crew, scientist wait to see what may be in the trap. I’ve actually found that I am looking over the deck in anticipation of new fish that may have been caught, or to see how many fish will need to be “worked up.” Once the fish have been removed from the trap and emptied into a large bin, they are then sorted by species into 17-gallon bins to determine the total weight of all fish.  Moving 17 gallons worth of fish up to the lab bench to the scale can be quite a “work out.” There have been a couple of hauls that have captured so many fish of a particular species that more than one bin has to be used. After the fish have been weighed, the total length of each fish is determined to get a length frequency of the entire catch.  For species like Tomtate (Haemulon aurolineatum), every fish is measured and then returned to the ocean. For some species, a pre-determined percentage are kept for a more detailed work up that may include the extraction of otoliths, removal of gonads, or a collection of stomach contents. The data collected from each fish will then be used by scientists in a number of different agencies and in different states to better understand the growth and reproduction of the particular species. All of this data is then used to create management plans for economically and ecologically important fish as well as to gain a better understanding of its life history.

Work Up

Length.

Measuring fish
Measuring the length of each, individual fish. (photo taken by Nate Bacheler)

One may assume that a very long fish is also very old, but that is not necessarily the case. The length of a fish is not a good way to determine the age of a fish because factors such as temperature and food availability may alter the growth rate. Many fish grow very rapidly early on, but then slow their growth, so it is possible that a fish that is twelve years old is the same size as a fish that is three years old. Because many fish demonstrate logistic growth rates in terms of length, it is important to use additional pieces of data to determine their age.

Otolith.

In the head of ray-finned fish, one can find small, bone-like structures called otoliths. These structures have a variety of sensory functions that include detection of sound vibrations in water, movement, and its orientation in the water. As fish age, calcium carbonate will be added to the otolith, forming ring-like structures that can be used to determine the age of a fish, much like a tree will add new tissue each season forming tree rings.  Otoliths are the best way to determine the actual age of a fish.

IMG_6677
Otoliths. [left to right: Black Sea Bass, Red Snapper, Jackknife fish] (photo by David Knight
For the fish that we were sampling, we remove the sagittal otoliths which are located beside the brain just about level with the eyes. To extract them, a cut is made on the dorsal side of the fish with a sharp knife to gain access to the skull case.  To extract otoliths from some very “hard-headed” fish, a saw is used, while others take little effort. After a few hours of otolith extraction, I feel as though I am getting the hang of it, although I am nowhere near as fast as the biologist on board! I’ve been collecting otoliths from Black Sea Bass (Centropristis striata) and Vermillion Snapper (Rhomboplites aurorubens) to bring home with me to create a lab for my class and to post on the NOAA Teacher-at-Sea website.

Extracting otolith
Looking for a perfect extraction of otolith from Vermilion Snapper. (photo taken by Nate Bacheler)

Be sure to check back for Part II. Gonads, Diet and DNA


Personal Log

The motion of the ship has not been a problem so far and I stopped taking any motion sickness pills after the first day. As I have been removing otoliths from fish, I cannot help but think about the similarities in how both fish and humans perceive their spatial environment and maintain balance. In our vestibular system, we too have otoliths that help to sense acceleration in a vertical and horizontal direction. Of course my thoughts then go to a dark place…what if someone were removing my otoliths to determine my age?

 

Did You Know?

The longest known life span in vertebrates is found in the Greenland Shark (Somniosus microcephalus). It is estimated that the Greenland shark grows less than 1 cm per year. Since sharks do not have otoliths, scientist have to analyze proteins found in the lens of their eye.  In 2016, scientist from the University of Copenhagen collected a 5 m shark that was estimated to be about 392 years old, but may be anywhere from 272 to 512 years old.

Reference: Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science  12 Aug 2016: Vol. 353, Issue 6300, pp. 702-704

David Knight: Getting to Know the Pisces, July 16, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 16, 2018

Weather Data from the Bridge:

Latitude: 32° 49.6
Longitude: 78
° 52.4
Sea wave height: 1-2 ft
Wind speed: 10 kts
Wind direction: 59
Visibility: 10 nm
Air temperature: 28.7
°C
Barometric pressure: 1016.9 mb
Sky: Clear

An Interview with Ensign Luke Evancoe

Pisces logo
NOAA Ship Pisces Seal

My first day on NOAA Ship Pisces I was introduced to about 300 different people. Well, maybe it was more like 30, but it sure seemed like a lot of people were aboard.  NOAA vessels have civilian personnel that perform a myriad of important duties, scientists that assist in planning and carrying out the various missions of the ship, and commissioned NOAA Corps Officers that ensure the mission of NOAA is carried out.

Engineers are responsible for making sure that all of the systems on the ship are operating properly.  The engineers must be able to fix and maintain all mechanical, electrical, and plumbing systems on the ship.  It’s this important group that makes sure the A/C is working in our cabins and that the propulsion system gets us from one trap site to the next.  Members of the deck department use equipment to lower CTD units, bring up traps, deploy and retrieve buoys, and maintain watches throughout the day.  These men and women are responsible for making sure very expensive equipment is safely and effectively used. As a research vessel, the Survey department’s role in the acquisition and processing of oceanographic and survey data is crucial. These individuals operate and analyze data from a number of different pieces of equipment including the CTD and the multibeam echosounder.  And finally, there are the Stewards. The stewards are the ones responsible for making sure everyone is well fed and comfortable. They prepare and plan all meals, ensure the pantry is stocked and ready for each mission, and that all of the common areas are clean and sanitary.

Soon after boarding, I met Ensign Luke Evancoe, the newest NOAA Corps Officer to join the NOAA Ship Pisces. After talking to him briefly and learning about his varied background and the circuitous route that brought him to NOAA, I decided I wanted to interview him and find out more about his role as a NOAA Corps Officer.

IMG_6592
Ensign Luke Evancoe, NOAA Ship Pisces newest NOAA Corps Officer

Where are you from and what did you do before coming to NOAA?

I grew up in Pittsburgh and have a B.S. in Biology and Masters in Teaching from Virginia Commonwealth University in Richmond, Virginia. After high school and two years of college, I decided to join the United States Marine Corps and become an Infantryman. While in the Marine Corps I was a member of the USMC Silent Drill Platoon, a 24-member team that are ambassadors of the USMC that perform at sporting events and parades. I was then deployed to Afghanistan for seven months. I was a vehicle commander for an MRAP (Mine-Resistant Ambush Protected) vehicle.

After the Marine Corps, Mr. Evancoe went back to VCU and then became a sixth grade science teacher at the Franklin Military Academy in Richmond, Virginia where he taught for two and one half years. While at a research symposium, he learned about the work of NOAA and the NOAA Corps and decided to apply to the program and once he was accepted, left teaching to train to become an NOAA Corps Officer.

What was a memorable experience while you were teaching?

My most memorable experience teaching was when I successfully executed an experiment to see whether the myth that if someone moves while stuck in quicksand, they sink faster than if they remained motionless was true or not. Using Hexbugs, which are tiny robot bugs, my students tested whether the Hexbugs which were turned on and “squirming” sank into a cornmeal mix (the quicksand) at a faster or slower rate than Hexbugs that were turned off. It was a simple, yet fun way to demonstrate the basics of the scientific method to middle school children.

Tell us about your training with NOAA Corps.

The NOAA Corps training lasts 19 weeks and is held at the US Coast Guard Academy in New London, Connecticut. Our training is called Basic Officer Training Class (BOTC) and is carried out alongside the Coast Guard Officer Candidates.

The training is similar to the military academies in that we wear a uniform, start our day at about 5 a.m., go to classes and are expected to carry out other duties when we are not in class. It is very regimented, but it is also rewarding.

25501_0
Ensign Evancoe (on the left, 5th from the bottom)

How is training for NOAA Corps similar to your Marine Corps training that you received?

They are really incomparable. What is similar, however, is the training you receive in leadership and discipline and how to best represent yourself as a member of a uniformed service for the United States.

What types of things do you learn during your BOTC training?

As I mentioned, we learn a lot about leadership, but we also learn about the goals and mission of NOAA and the role of officers in fulfilling that mission. Obviously, we also learn about skills that will allow us to be good seamen.  We have to know about all of the different operations of a NOAA ship like propulsion, navigation, and communication and we also learn the skills of each of the departments like engineering and the deck crew. We learn different nautical skills and about maritime regulations.  Obviously, we learn how to handle both large ships and small vessels.

The training program involves a lot of hands on opportunities beside the classroom sessions we have. It is similar to how you would teach science with some lecture time and then lab time.

You are currently an ensign, what are your duties right now?

I am considered a Junior Officer of the Deck (JOOD). I am assigned two 4-hour watches on the bridge. During this time, I am driving the ship as we transit from one location to another or as we drop and pick up traps. You have to multi-task very well. I have to be listening to the radios as the crew relays information to the bridge, the scientists also communicate with the bridge as traps are being deployed or retrieved, I have to know our speed, pay attention to the strength of the current, wind direction and its speed, I have to watch for other vessels in the area, there’s a whole lot going on. Fortunately, I am being mentored by a senior officer when I am on the bridge. All of the training I am currently doing will allow me to become an Officer of the Deck (OOD) which will allow me to be unsupervised on the bridge.

What is the most difficult aspect of driving the ship?

The most difficult aspect of driving the ship would have to be maintaining an understanding of the current state of the wind, currents, and swell, while realizing that these variables can change multiple times over the course of a watch; a strategy that I was using to pick up fish traps the first hour of watch may not work at all with how the sea state has changed an hour later.

NOAA Ship Pisces in port
NOAA Ship Pisces in port

In addition to my shifts on the bridge, I have collateral duties that I am learning. For instance, I am learning the duties of the Navigation Officer who is responsible for ensuring that all of the navigation charts are up to date, that the navigation equipment is working properly, and that upcoming tracklines are laid out on our charts and approved by the CO.  The Imprest Officer is responsible for managing some of the ship’s funds and making sure the wage mariners are paid when required. I am also learning about the duties of the Movie Officer. We have a large inventory of movies from the US Navy that have to be cataloged and replaced. We get movies that are still playing in theaters so crew members can use their time when they are not on duty to relax. It’s important that people can relax.  Finally, I am coming up to speed with the duties of the Property Officer, who maintains inventory of all of the ship’s electronically-based and sensitive property and accounts for assets that must be properly disposed of.

What is the OOD workbook?

It is like on-the-job training. The work that I do in the workbook helps me put into practice the things I learned at BOTC, and once I have completed the workbook and it has been approved, it will allow me to stand watch on the bridge without supervision.

The workbook assesses my knowledge of the mission and maintaining the safety and security of the ship.

What didn’t you realize before you became a NOAA officer that you discovered since joining the NOAA Corps?

I guess I did not realize that, as an officer, you have to know everyone else’s job in addition to yours. An officer is ultimately responsible for all aspects of the ship, so I have to be knowledgeable in not just navigating or driving the ship, but I also have to know about all the other departments. It’s a lot to know, but I find it very rewarding.

What are your goals with NOAA?

My commitment as a NOAA Officer is three years, but I plan on making this my career.  After my two years on NOAA Ship Pisces I will then spend time at my land based assignment.  I enjoy my job because I am involved in collecting valuable data for the scientists to analyze, there is a lot of responsibility and you have to constantly be 100% engaged in your work, and you get to see and experience amazing things while at sea.

Personal Log

There is always work to be done on the NOAA Ship Pisces, but at the end of a day there may be time to relax and to play a little Corn Hole. Sunday evening the scientific team cleared the back deck for a little tournament. Playing Corn Hole on a moving ship is quite a bit different than playing in your back yard! Just as you are getting ready to release the bag a swell will move the ship and cause your bag to miss the board—-at least that’s my story and I’m sticking to it!

Did You Know?

Pisces is the Latin word for “fish”. In Greek mythology, Aphrodite and Eros were transformed into fish to escape the monster, Typhon.

David Knight: Summer Adventures, June 26, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

 

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: June 26, 2018

 

Weather Data from my patio in Mission Viejo, California

Latitude: 33.64
Longitude: -117.62
Sea wave height: 0 m
Wind speed: 13 mph
Wind direction: East
Visibility: 8.6 nm
Air temperature: 24 C
Barometric pressure: 1014 mb
Sky: Clear

Personal Log and Introduction

What a summer I am having! I just got back from an eight-day adventure to Belize with sixteen of this year’s AP Biology students. During our trip we hiked in the rainforest both during the day and at night, snorkeled the meso-American reef at South Water Caye, went tubing in a limestone cave, visited the Mayan site of Xunantunich, hiked into the Actun Tunichil Muknal cave system to see Mayan artifacts and remains, and zip-lined above the rainforest in the Mayflower Bocawina National Park. Now I begin preparations for my Teacher at Sea adventure aboard NOAA Ship Pisces. What a life I lead… I sometimes feel as though I am living in a mashup episode of “Dora the Explorer”, “Where in the World is Carmen Sandiego”, and “The Secret Life of Walter Mitty”.

TAS David Knight in Belize
El Castillo temple at Xunantunich. Behind me is Belize and Guatemala. (photo by David Knight)

I have been teaching at University High School in Irvine, California since 1990. UNI was my first and will be my only teaching position—I’ve found a great place and intend to teach there my entire career. The teachers in my department are not only my colleagues, they are my friends. I have so much respect for the staff at UNI because we all work hard to teach and serve the students and share a passion for investing in the lives of kids. The students at the school are motivated to learn, are respectful and encouraging of one another, and are supported by parents that value education. I frequently tell people, “when I got hired at UNI 28 years ago, I won the lottery!”

Throughout my career I have taught all levels of life science, from remedial biology to AP Biology and everything in between. My current teaching schedule includes Marine Science and AP Biology. I began teaching Marine Science four years ago and love the class. In Marine Science we get to study Oceanography and Marine Biology throughout the year so I get a chance to practice some of my physical science skills along with my love of biology. Teaching this class has reinvigorated me and has given me a chance to teach a diverse range of students. I know that my experience as a Teacher at Sea will benefit both Marine Science and AP Biology, but I also hope it will benefit my colleagues at UHS and in the Irvine Unified School District.

As previously mentioned, I just got back from a trip to Belize with my AP Biology students. For the past fifteen years I have been taking groups of AP Biology students outside the United States to see and experience the natural world first-hand. On our trips we have learned about tropical rainforest and coral reef systems, plants and animal diversity, and geology as well as many different cultures and customs in countries like Belize, Costa Rica, Peru, Ecuador, Honduras, Guatemala, and Iceland. My former students tell me that these trips have played an integral part of their high school experience and have given them opportunities to challenge themselves physically and mentally as well as a great appreciation for the world in which we live.

Me and my students
Me and my students on South Water Caye, Belize. (photo by David Knight)

As a Teacher at Sea I will be working with Dr. Nate Bacheler of the NOAA Southeast Fisheries Science Center aboard NOAA Ship Pisces.  The NOAA Ship Pisces is a 208 ft. ship that was designed specifically for fisheries studies. The ship is designed to sail quietly through the water in order to better collect samples using a variety of collection methods including hook and line, traps, and video systems.  During my cruise on NOAA Ship Pisces I will be helping scientists survey snapper and grouper to better understand their distribution and abundance for better management of these economically important species. Additionally, we will be collecting bathymetric and water quality data at various sample sites.

 

Jennifer Dean: Departures and Deep-Sea Devotion, May 22, 2018

NOAA Teacher at Sea
Jennifer Dean
Aboard NOAA Ship Pisces
May 12 – May 24, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC

Date: May 22nd, 2018

Weather Data from the Bridge

Latitude: 32°54.0440 ’ N
Longitude: 78° 12.3070’ W
Sea Wave Height: 1-2 feet
Wind Speed: 10.29 knots
Wind Direction: 196.7°
Visibility: 10 nautical miles
Air Temperature: 25.5°C
Sky: Scattered clouds

Science and Technology Log

Interdependence and Energy Pyramids
Every ecology unit from elementary to high school incorporates these 2 essential learnings: matter cycles and energy flows. This flux of energy through biotic factors is depicted in diagrams like the one below. This survey work involving an inventory of biotic and abiotic factors in and outside the MPAs (Marine Protected Areas), reminds me of the relationships and connections between the organisms in these pyramids and food webs. Organisms with their niches (role or position in the environment) need to be counted and understood. These marine creatures play important jobs in a complex ecosystem of our oceans. I decided to dedicate this last blog to highlighting some of these underappreciated marine organisms and their contributions to both the marine ecosystems and mankind.

energy pyramid PHOTO CREDIT: https://www.sciencelearn.org.nz/resources/143-marine-food-webs

Seeing the beauty underneath the waves convinces me of my obligation to educate, protect and recruit the next generation of stewards for this fragile environment. Below are images of some of my favorite organisms photographed during the ROV (Remotely Operated Vehicle) dives and an explanation of a fraction of their significance to a healthy marine ecosystem. I insist that my students approach their labs in class with background research that addresses why we should care about any given topic of scientific study. So here are only a handful of the many reasons we should care about these critters of the sea.

Phylum Porifera – Sponges
What are they?
Phylum Porifera, considered one of the oldest animal groups, may have existed as far back as the Pre-Cambrian period (577-542 millions years ago). This group derive their name from a Latin root meaning “pore bearer”. These animals are filter feeders that have a unique body design made up of asymmetrical bodies of specialized cells. Although multicellular sponges do not have tissues, they are comprised of two layers of cells, epithelia and collar cells, with a jelly-like substance in between. Sponges are covered with tiny pores (ostia) that bring water into canals and that empty out to larger holes (oscula).

Why we should care?
Research indicates that sponges play huge roles in filtering the water column, recycling 10 times as much organic matter than bacteria and producing nutrition for both corals and algae. Studies have traced the matter from shed dead cells (choanocytes) of a certain species of sponge that appear (after ingestion) within 2 days in the tissue of snails and other invertebrates.

If their valuable ecosystem services are not enough, remember that over 5000 different excretions from sponges have demonstrated medical uses from fighting cancers to arsenic detoxification.

Phylum Cnidaria – Anemones, jellyfish, corals, and more
What are they?
Very diverse group with over 9000 species. Unlike the sponges, with their asymmetry, anemones possess radial symmetry and the ability to sting. Cnidarians includes organisms such as the jellyfish, box jellies, hydras, moon jellies, purple jellies, Portuguese man-of-war, corals and sea anemones. Their stinging cells (nematocysts) have Greek roots, “cnidos” means stinging nettle. Some of these organisms have nematocytes (stinging cells) that eject poison infused barbed threads when touched. Organisms of this phylum generally have a central gut surrounded by tentacles, but take on one of two body forms, either a medusa (free-floating with mouth down), or a polyp (attached to a surface with mouth up). Cnidarians in the polyp stage can live in colonies made up of many similar individual organisms (called zooids). In the case of corals, these zooids are connected by an exoskeleton of calcium carbonate which form coral reefs in the tropics. Cnidarians are diverse in form and function, serving as both predators and prey within many food webs and establishing critical habitat, like coral, for innumerable species.

 

Why we should care?
They provide homes for other organisms, such as shrimp and reef fish. Sea anemone venom has been found to have biomedical importance in treating conditions such as Multiple Sclerosis, other autoimmune conditions, gastrointestinal disorders and even chronic pain. Toxins from sea anemone are often bioactive compounds that interfere selectively with certain ion-channels in cell membranes. This specificity makes them good potential tools for therapeutic treatments for a variety of human ailments. Their physiology, and use of a nematocyst, is being studied as a potential drug delivery method. Scientists are studying the biomechanical method that Cnidarians evolved millions of years ago to deliver poison to their prey. Recently, Cnidarians role as biological indicator species has also made them a valuable tool for use in monitoring contaminants in aquatic environments.

Phylum Echinodermata – Sea Cucumbers, Starfish, Sea Urchins
What are they?
This phylum includes the sea cucumbers, sand dollars, brittle stars, crinioids, sea stars, and sea urchins and derives its name from Greek roots meaning spiny (echino) skin (derm). 8000 species make up this radial symmetrical group. All members have an internal skeleton made up of ossicles below a layer of skin that can possess pigment cells or mucus and toxin secreting cells. A water vascular system in starfish acts like a hydraulics system using canals networked though muscles and valves to control pressure to provide movement, respiration and the ability to deliver nutrients to tissues and remove waste products. Many starfish are featured in environmental science textbooks as keystone species. A keystone species is one that if removed, the ecosystem could change significantly or collapse.

Why we should care?
Echinoderms are used for food, from making certain soups to being considered a delicacy in some southeastern Asian countries. Echinoderms skeletons are even used in farming to provide lime for soils. The ability of the species for regeneration of muscle tissue is a feat of intense interest in the biomedical world. Echinoderm musculature most closely resembles human smooth muscle tissue (such as lining arteries, veins, and intestines) than skeletal muscles. Not to be out done by Cnidarians and Porifera, sea cucumbers also release toxins that have been demonstrated to slow the growth rate of tumors. Other bioactive compounds isolated from echinoderms have demonstrated potential anti-coagulant (blood clotting) properties.

These species of the marine world possess information that could be critical for the survival of humans and for the health of marine ecosystems. The United Nations Environment Programme reports that “Today’s massive loss of species and habitat will be slowed only when the human community understands that nature is not an inferior to be exploited or an enemy to be destroyed but an ally requiring respect and replenishment. We are part of the web of life. Many strands already have broken. We must act quickly to repair what we can. Our lives and livelihood depend on it.” I do hope we act quickly and that we can be dedicated and devoted to their protection for future generations.

Phylum Arthropoda – (Marine) Crabs, Shrimp, Sea Spiders
What are they?
Greek arthron meaning ‘joint’ and pous meaning ‘foot’ representing their segmented bodies and appendages. Fossils of some of the simplest jointed animals date back to the Cambrian (545 million years ago). Arthropods have a hard exoskeleton made of chitin (nitrogen-rich polysaccharide). This body armor protects the soft body, and provides attachment sites for muscles. Their bodes are made of 2 or 3 sections, the head (cephalum), chest (thorax), and an abdomen. This phylum is incredibly diverse and has the most individuals and number of species of animals on the planet. 10% of the roughly 1 million species are found in the marine environment. Subphyla include Crustacea (crabs and shrimp), Phycnogonida (sea spiders) and Merostomata (horseshoe crabs). In this blog I am going to focus on only a small subset of this phyla seen on the dives, like the especially creepy looking sea spider and squat lobster (found in a glacial scour area at a depth of 250 meters among phosphoric rock boulders on ROV dive 2 on 5/21/2018).

Why we should care?
First, many people find some species of this phylum very tasty, such as some of my favorites – shrimp, lobster and crab, which belong to the subphylum Crustacea. Crustaceans are considered an important link in the marine food web that provides a connection between the benthic (bottom) and pelagic (open sea). Some species filter water, others break down organic matter, while others are critical in the food chains of fish such as cod, eels and herring. Research shows that chitin particles in clam, lobster and shrimp shells may have anti-inflammatory properties. In the future, shellfish waste could be turned into medical ingredients for products that could reduce suffering from conditions such as inflammatory bowel disease.

For teaching about this Phyla check out the link to this
Arthropoda Lesson Plan.

Other Cool Creatures Caught On Camera:

This slideshow requires JavaScript.

Personal Log

After looking through the photos of the organisms of these deep coral ecosystems I couldn’t help but want students and society at large to care about the protection of these biological communities. Not just because of the aesthetic value but for their roles in food webs, medical value and economic significance to our food industry. One major theme in environmental science is this idea of interdependence and interconnected systems. We are part of this system, but we also have a unique ability and obligation to preserve the stability and diversity of these areas.

What pictures I chose not to share on this farewell blog have another message, disturbing images and captions that could have spoken to fishing lines, trawl nets, coral rubble remnants (from shrimp trawling), red Solo cups, water bottles and plastic sheets that are scattered in even these deep reaches of the ocean floor. I like to hope these found their way to these deep locations because of ignorance not ambivalence. I hope to hear stories from my students on how they develop technologies to clean up our mess and lead their generation in establishing as a priority putting in place protections for these habitats.

A spotted dolphin A spotted dolphin

On break between dives these spotted dolphins put on a 15 minute show playing in the waves at the bow of the ship. It is easy to love these larger charismatic megafauna, performing their leaps and turns in the waves. But just like us, they are part of a complex food web and a delicate system of interdependence. I am reminded of the quote by John Muir, “when we try to pick out anything by itself, we find it hitched to everything else in the Universe.” We need to limit how much we are picking out of systems and through scientific knowledge assure our children and grandchildren inherit a healthy planet where these marine environments recover to their original thriving communities of marine organisms.

My time at sea passed quickly. I am thankful for the opportunity to experience jobs of those at sea that are collecting the information that contributes to better protections for these habitats. I appreciate all the lessons and stories that crew members and scientists shared throughout the trip. This experience awakens the scientist in me and inspires action in my classroom and community. I am extremely thankful for such an amazing experience.

What can you do to protect Marine Ecosystems?

Donate and participate in organizations that work for preservation and conservation

Know and follow the fishing and other marine life regulations

Seafood watch
Ocean Biogeographic Information System
https://www.fisheries.noaa.gov/rules-and-regulations
https://www.fisheries.noaa.gov/topic/laws-policies

Educate others – use your voice and your vote
A Census of Marine Life

To learn more: Habitat conservation for Deep-sea coral

Advice for other Teachers at Sea Aboard the NOAA Ship Pisces

Print a copy of all crew members full names, titles, emails (if possible) and pictures
For the first few days take your seasickness medicine early and keep your stomach full
Read a few of the articles or scientific studies published by the scientists on the cruise
Recheck that you packed your reusable water bottle and coffee mug

Did You Know?
Certain species of sea cucumber have a type of fish, a pearlfish, that have found a happy home inside the cucumber’s bum (cloaca).
You can determine the validity to this statement by checking out this video clip:

Fact or Fiction?
Certain species of fiddler crabs use a wave of their larger claw to entice the female crabs, and if you don’t have the right wave, you don’t get the girl.
Sexual selection for structure building by courting male fiddler crabs: an experimental study of behavioral mechanisms

What’s My Story? Andrew David

Andy Andrew David, Research Fish Biologist

The following section of the blog is dedicated to explaining the story of one crew member on Pisces.

What is your specific title and job description on this mission? Research Fisheries Biologist. For this study he is the co-principal investigator.

How long have you worked for NOAA? 28 years.

What is your favorite and least favorite part of your job? His favorite part of the job is getting to see things that most people never get to see in their life. Not many people get to see the fish and other invertebrates that live at 800 feet. His lease favorite part of the job is the government bureaucracy involved in being able to perform his job.

When did you first become interested in this career and why? In middle school, he also was inspired from watching the documentaries created by Jacques Cousteau. The discovery and adventure presented within the ocean in this series appealed to this son of a Navy diver. Growing up in central and northwest Florida, the ocean was always part of his life.

What science classes or other opportunities would you recommend to high school students who are interested in preparing for this sort of career? He recommends students take chemistry, biology and anything with math in it. He also stressed that English is important in his career or any STEM related job, so that you are able to express your science in writing.

What is one of the most interesting places you have visited? He found Australia, due to its unique flora and fauna, to be very interesting as evolution has allowed the adaptation of totally different species to fill niches found in other reef habitats. There are fishes which have evolved the same body plan to take advantage of certain feeding opportunities which are completely unrelated to fishes in other parts of the world that utilize those same feeding opportunities.

Do you have a typical day? Or tasks and skills that you perform routinely in this job? Half of his job involves being the diving officer for NOAA Fisheries and this always brings up unexpected action items. As a manager for diving supervisors, he makes suggestions to avoid accidents and incidents that arrive randomly and so there is a level of uncertainty to any given day. If a diving related issue arises he may spend a portion of his day on the telephone. With the diving officer duties he deals with situational incidents that aren’t written into policy already that need oversight and decision-making. He makes suggestions and recommendations in novel situations that are diving related. From the science side his time is involved in working on paper publications and the data analysis from ROV dives such as this one.

Has technology impacted the way you do your job from when you first started to the present? He mentioned that when he began this career he was using floppy disks and a 4 color monitor, now he has computing power that is incomparable. Internet and email did not exist when he began. The speed of data transfer and the ability to communicate information now occurs at a rapid rate. The science side with that of the ROV sophistication has improved with the ability to capture details with the high definition cameras, for example the ability to count tentacles on a polyp. These technical advances have allowed much more precise identifications and observations of the animals they study.

What is one misconception or scientific claim you hear about how the ocean and atmosphere works and/or NOAA’s mission that you wished the general public had a greater awareness of? On the broader scientific community, there are very few issues which foster a consensus of opinions. The public may think scientists all see the world from a liberal perspective, but there are many conservative scientists as well – they just don’t get as much media attention. From the fisheries perspective, he encounters the misconception that there are only 3 groups studied in fisheries; sharks, dolphins/whales, and turtles. The vast majority of fisheries work is done outside of these groups.

Jennifer Dean: Extra Operations and Daily Duties, May 19, 2018

NOAA Teacher at Sea

Jennifer Dean

Aboard NOAA Ship Pisces

May 12 – May 24, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC

Date: May 19, 2018

Weather from the Bridge
Latitude: 29°55.8590’ N
Longitude: 80°16.9468’ W
Sea Wave Height: 2-4 feet
Wind Speed:  18.1 knots
Wind Direction: 210.6°
Visibility:  1 nautical mile
Air Temperature: 25.3°C
Sky: Overcast

Science and Technology Log

Extra Operations- Zodiac Hurricane Fast Rescue Boat:
Occasionally these Fast Rescue Boats are used for more than real emergencies and drills, practicing the pick-up of a man-overboard and rescue diver missions, in the case of day 2 of my trip on NOAA Ship Pisces, a camera replacement part became necessary.  When a small crew change is needed or to pick up a repair part for an essential item, instead of bringing the ship to dock, the FRB (Fast Rescue Boat)  is sent in.

coxswain
Lead Fishermen, Farron “Junior” Cornell was the FRB coxswain (driver/operator of a ship’s boat

The LF or Lead Fishermen,  Farron “Junior” Cornell was the FRB coxswain (driver/operator of a ship’s boat).  His navigation skills were developed by working in the hydrographic division that performs regular bathymetry readings using these vessels on NOAA Ship Thomas Jefferson, making him a very capable pilot of this small watercraft in the NOAA fleet.  The FRB has seating for 6, with 2 aft of console, 1 forward of engine cover, 2 sitting on foredeck on engine cover and 1 prone on deck by stretcher.

Some other specs on the boat includes the following:
Length overall=6.81 meters including jet
Beam overall=2.59 meters
Fuel capacity=182 litres (48 US Gal)
Bollard Pull ~600 kg/5884 N
Endurance (hours @ 20 knots)~6.75 hours
Max  Horse Power=235kW, 315 hp
At Light Load Operation Displacement = 2150 kg/4750 lbs
Full Speed ~32 knots
Fuel System =48 US gallon tank

 

Engine Room Tour Pictures and Learnings:

Daily Duties: Freshwater NeedsReverse Osmosis and Evaporators
Freshwater is necessary for a variety of reasons beyond drinking water for the crew.  It is used for laundry, cooking, showers and on NOAA Ship Pisces, to fill the ballast water tanks.  Approximately 31 gallons of freshwater is used on average per person per day, with 29 people on board for 12 days, totaling nearly 11,000 gallons by the end of the trip.   One method to supply this freshwater supply is through reverse osmosis.  Osmosis is the diffusion of water across a membrane.

 

Normally water moves, without an energy input from high to low concentrations.  In reverse osmosis, water is moved in the opposite direction of its natural tendency to find equilibrium.  The force at which water wants to move through the membrane is called its osmotic pressure.  To get water to move against the osmotic pressure another force must be applied to counteract and overcome this tendency.  Sea water is found in abundance and can be forced across a semi-permeable membrane leaving the ions on one-side and the freshwater to be collected into containment chambers on the other side.  Technology has impacted this process by discoveries of better semi-permeable membranes that allow for faster and larger amounts of sea-water to be moved through the system.  Pisces uses reverse osmosis and a back-up freshwater system of 2 evaporators.  When the temperatures are high (as they were in the first few days of the cruise) the evaporators are the go-to system and make for tasty drinking water.

Evaporators take in sea water and distill the liquid water using waste heat collected from the engines that raises the temperature of water in the pipes.  This temperature provides the energy that forces the liquid freshwater to vaporize and enter its gaseous phase, then under pressure this vapor is condensed and can be collected and separated from the brine that is removed and discharged.

 

Wastewater:  There are different types of water that can be used for different tasks aboard a ship.  Typically gray water (which is relatively clean wastewater from showers and sinks but may contain soaps, oils, and human hair/skin)  is placed in the MSD (Marine Sanitation Device), which is similar to a septic system.  Black water is wastewater from toilets, or any water that has come into contact with fecal matter and may carry potential disease carrying pathogens. Black water is also treated in the MSD.  This black water sewage is first subjected to a macerator pump that breaks the fecal matter into smaller pieces, enzymes are added to further decompose and before disposal a bit of chlorine is added to ensure no bacteria remain alive.  This water can be disposed of into the ocean if the ship is over 12 miles offshore.  If the ship is within 12 miles the sewage must be either stored in containment system on board the vessel or taken to dock and disposed of by an in-shore treatment facility. For more information on the regulations for wastewater disposal while at sea see the  Ocean Dumping Act.

Valves for ballast water tanks
Valves for ballast water tanks on NOAA Ship Pisces that are filled with freshwater to prevent the spread of nonnative species

Ballast Water and New Regulations:  Ballast water tanks are compartments used to hold water to provide stability for the ship.  This balance is necessary for better maneuverability and improved propulsion through the water.  It can allow the crew to compensate and adjusts for changes in the ships cargo load or fuel/water weight changes over the course of a trip.  Historically this water has been drawn up from the surrounding sea water to fill the tanks.  Unfortunately, in the not so distant past, the ballast water from one location on the globe has been deposited into another area along with it, all of it foreign plants, animals and microbiota.  This act led to the introduction of a host of exotic and non-native species to this new area, some of which became invasive and wreaked havoc on the existing ecosystems.  Today there are a host of case studies in my students’ textbook like the Zebra Mussels (Dreissena polymorpha) and the European Green Crabs (Carcinus maenas) that were introduced in this way that resulted in devastating impacts both environmentally and economically to the invaded area.

The International Maritime Organization (IMO) passed new regulations in September of 2017 calling for better management of this ballast water exchange.  Ballast Water Management Convention 2017.

Another high tech approach to this problem has been the development of a sea-water filtration systems, but these carry a heavy price tag that can range anywhere from  $750,000 to $5 million.

The engine room area is staffed by 7 crew members.  Back-up systems and  the amount of en route repair necessary to keep the ship running and safe was apparent in the engine room.  There were redundancies in the engines, HVAC, hydraulics, and fuel systems.  Spare parts are stored for unexpected breaks or other trouble-shooting needs.  The control panels throughout the tour had screens that not only allowed a check of every level of function on every system on the ship, there was another screen that demonstrated the electrical connections on how all these monitoring sensors were wired, in case a reading needed to be checked back to its source.

Engine 4
One of the 4 NOAA Ship Pisces CAT engines

Pictured here is a diesel engine on NOAA Ship Pisces. Pisces has 4 of these on board: 2 bigger engines that are CAT model 3512 vs. 2 smaller engines that are CAT 3508. When the ship is going at full steam they use 3 of 4 to provide power to turn the shaft, and when they need less power, they can modify their engine choices and power, therefore using less fuel.  CAT engines are models 3512 and 3508 diesel driven at provide 1360 KW and 910 KW, respectively.  There is also an emergency engine (CAT model 3306) on board as well providing 170 kw of power.

Control panels in engine room
Control panel of screens for monitoring and controlling all mechanical and tank/fluid functions

 

hydraulics
Steven Clement, first assistant engineer, is showing me some of the hydraulics in the engine room.

The pressurized fluid in these pipes are used to move devices.  Pisces is in the process of converting certain hydraulic systems to an organic and biodegradable “green” oil called Environmentally Acceptable Lubricants (EALs).

The Bridge

panopic bridge
NOAA Ship Pisces’ Bridge

This area is command central.  I decided to focus on only a few features for this blog from a handful of screens found in this room that monitor a variety of sensors and systems about both the ships conditions and the environmental factors surrounding the ship.   Commanding Officer CDR Nicholas Chrobak, NOAA demonstrated how to determine the difference on the radar screen of rain scatter vs. another vessel.  In the image the rain gives a similar color pattern and directionality, yet the ship appeared more angular and to have a different heading then those directed by wind patterns.  When clicking on the object or vessel another set of calculations began and within minutes a pop-up reading would indicate characteristics such as CPA (closest point of approach) and TCPA (Time of Closest Point Approach) as seen in the image.

 

These safety features let vessels avoid collisions and are constantly being calculated as the ship navigates.  GPS transponders on the ships send signals that allow for these readings to be monitored.    ECDIS (Electronic Chart Display and Information System) charts provide a layered vector chart with  information about the surrounding waters and hazards to navigation.  One screen image displayed information about the dynamic positioning system.

ECDIS
ECDIS (Electronic Chart Display and Information System)

Paths and positions can be typed in that the software then can essentially take the wheel, controlling main propulsion, the bow thruster and rudder to keep the ship on a set heading, and either moving on a desired course or hold in a stationary position.  These computer-based navigation systems integrate GPS (Global Positioning System) information along with electronic navigational charts, radar and other sailing sensors to ensure the ship can navigate safely while effectively carrying out the mission at hand.

The Mess Deck and Galley:

This location serves up delicious and nutritious meals.  Not only do the stewards provide the essential food groups, they provide vegetarian options and make individual plates for those that may miss a meal during shift work.

mess deck
The mess

Dana Reid, who I interviewed below, made me some amazing omelets on the trip and had a positive friendly greeting each time I saw him. I decided a few days into the cruise to start taking pictures of my meals as proof for the nature of how well fed the crew is on these adventures.

 

 

dana and ray
Steward CS Ray Mabanta and 2C Dana Reid in the galley of NOAA Ship Pisces

Each day a new screen of menus appeared on the ship’s monitors, along with other rotating information from quotes, to weather to safety information.

Personal Log

Today a possible shipwreck is evident on the sonar maps from the previous night’s multibeam readings.  If weather permits, the science team plans to check out the unknown structure en route to the next MPA. This scientific study reminds me of one of the reasons I fell in love with science.  There is that sense of discovery.  Unlike pirates and a search for sunken gold, the treasure to be found here is hopefully a diversity of fish species and thriving deep coral communities.  I found myself a bit lost during the discussions of fishing regulations for these areas designated as MPAs (Marine Protected Areas).  I had always thought ‘protected’ would mean prohibitive to fishing.   So I did a little research and will share a little of the basics learned.  And I hope someday these regulations will become more restrictive in these fragile habitats.

The MPA , “marine protected area”  definition according to the implementation of an Executive Order 13158 is “…any area of the marine environment that has been reserved by federal, state, territorial, tribal, or local laws or regulations to provide lasting protection for part or all of the natural and cultural resources therein.” But what that actually means in terms of the size of the area and approach to conservation, or the level protection and the fishing regulations seems to vary from location to location.  The regulations are governed by a variety of factors from the stakeholders, agencies and scientists to the population numbers and resilience of the habitat to distances offshore.
For more information on MPAs visit
https://oceanservice.noaa.gov/facts/mpa.html

Did You Know?
Some species of coral, like Ivory Tree Coral, Oculina varicosa, can live without their zooxanthellae.

Oculina varicosa
Oculina varicosa

Very little is known about how they do this or how their zooxanthellae symbiotic partners return to their coral home after expulsion.

Fact or Fiction?
Oculina varicosa can grow to up to 10 feet high and have a growth rate of ½ inch per year. Check out the scientific validity of this statement at one of the following links:

http://www.sms.si.edu/irlspec/oculin_varico.htm

What’s My Story? Dana Reid
The following section of the blog is dedicated to explaining the story of one crew member on Pisces.

Dana in scullery
Dana Reid pictured here in the scullery, the ship’s kitchen area for cleaning dishes

What is your specific title and job description on this mission?  Second Cook. His job description includes assisting the Chief Steward in preparing meals and maintaining cleanliness of the galley (kitchen), mess deck (tables picture where crew eats), scullery (part of the kitchen where dishes get washed) fridge/freezer and storage areas.

How long have you worked for NOAA?  5th year

What is your favorite and least favorite part of your job? His favorite part of this job is getting a chance to take care of people, putting a smile on people’s faces and making them happy.  His least favorites are tasks that involve standing in the freezer for extended periods of time to stock and rotate foods.  In addition he mentioned that he isn’t too fond of waking up very early in the morning.

When did you first become interested in this career and why?  His initial food as a career-interest started when he was in high school working for Pizza Hut.  He later found himself working for 2 years cooking fried chicken for Popeyes.  His interest in the maritime portion of his career also began right after high school when he joined the Navy.  In the Navy he worked in everything from the galley to a plane captain and jet mechanic.  During his time in the Navy he worked on 5 different carriers and went on 9 different detachments including Desert Storm. After hurricane Katrina in 2006 he found himself interested in finding another job through government service and began working on a variety of NOAA’s vessels.

What is one of the most interesting places you have visited?  He found the culture and terrain of Oahu one of his most interesting.  He enjoys hiking and Hawaii, Alaska and Seattle have been amazing places to visit.

Do you have a typical day? Or tasks and skills that you perform routinely in this job? He spends the majority of his time prepping  (washing and chopping)  vegetables and a majority of his time washing dishes.  In addition he is responsible for keeping beverages and dry goods stocked. 

Questions from students in Environmental Science at Camas High School

  • How is cooking at sea different from cooking on land?
    He said that he needs to spend more effort to keep his balance and if in rough weather the ship rocks. This impacts his meal making if he is trying to cook an omelet and if mixing something in keeping the bowl from sliding across the prep table.  He mentioned that occasionally when baking a cake that it might come out lopsided depending upon the angle of the ship and timing of placement in the oven.
  • What do you have to consider when planning and cooking a meal?
    He plans according to what meal of the day it is, breakfast, lunch or dinner.  The number of people to cook for, number of vegetarians and the part of the world the cruise is happening in are all factored in when planning and making meals. For example, when he has been in Hawaii he’d consider cooking something more tropical – cooking with fish, coconut and pineapple; if in the Southeast they tend to make more southern style cooking, sausage/steak lots of greens; if in the Northeast more food items like lobster and clam chowder make their way onto the menu.
  • What is the best meal you can make on the ship, and what is the worst? He said he makes a pretty good Gumbo. He said one of his weakness is cooking with curry and said that the Chief Steward is more skilled with dishes of that flavor.
  • How many meals do you make in a day? 3; In addition he hosts occasional special events like ice cream socials, banana splits or grilling party with smoker cooking steaks to hamburgers on the back deck.

————————————————————————————————————————————–

 

Jennifer Dean: Data Analysis and Downward Dog, May 17, 2018

NOAA Teacher at Sea

Jennifer Dean

Aboard NOAA Ship Pisces

May 12 – May 24th, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC

Date: May 17th, 2018

Weather Data from the Bridge
Latitude:  23° 29.6290’ N
Longitude: 80° 09.6070’ W
Sea Wave Height: 2-3 feet
Wind Speed:  18.2 knots
Wind Direction: 199.3°
Visibility: 89 nautical miles
Air Temperature: 25.3°C
Sky: Scattered clouds

Science and Technology Log

Software: ArcGIS and Microsoft Access
Data processing may be seen by some to be a less glamorous role compared to ROV operators and their joysticks.  But data management is essential for communicating and validating findings of the ROV dives.  Huge data sets are created on each dive.  24,000 records were created on just 2 dives that needed to be inventoried and processed.

Processing Photos
Stephanie Farrington processing the photo grabs taken every 2 minutes from the dive

Stephanie Farrington, Biological Research Specialist with Harbor Branch Oceanographic Institute at Florida Atlantic University, gave me a crash course on data management that may be better explained through some of the pictures and activities I was involved in below.  Two types of software seemed of particular significance, ArcGIS and Microsoft Access.

 

 

ArcGIS screen
ArcGIS (Geographic Information System) provides layers of information

ArcGIS (Geographic Information System) provides layers of information, anything from land use patterns, topography to local data for an area on water quality or hurricane patterns.  The software allows you to stack this information on top of each other geographically to look for patterns or to make graphic and visual displays of complex data sets.  On May 16th the dive gathered footage at two sites where barges were dropped to the ocean floor in 2014, one at approximately 80 meters and the other at 100 meters.  After seeing that the structure had undergone considerable changes in its integrity, a question arose about the potential impact a hurricane could have made with these barge structures.  The photo above is an example of a layer of information on hurricane travel patterns and how GIS might be used to make predictions on whether this sort of event could have impacted the barge wreck sites integrity.

Access is a Relational Database and is used as an information and storage management tool for larger data sets. It is less prone to errors compared to Excel and better for managing “big data”.  One skill Stephanie demonstrated to me was her code writing abilities that, once written, allow the keyboard and the database to communicate with each other.  As I typed in the key for “new note,” the image below with the heading on the right saying “Site Number” would pop up ready for me to enter information about the type of bottom substrate, the slope and other features of the sample site. Each of these button choices immediately populated the database and created a running record of the dive’s key features.  Microsoft Access is built using SQL and uses VBA script to create macros (repeated, automatic behaviors).

X-Keyboard
Keyboard programmed to automatically communicate information into a database for quick counts and standard methods of habitat classifications

The X-Keyboard was purchased from a company called P.I. Engineering and comes with its own GUI (Graphical User Interface) for programming the individual keys.

In the image below is an example of a portion of one of John Reed’s notes taken during the dive to record times, observations and coral reef communities observed.  Notice that Weather, Salinity, Wind Direction and Depth are all added into the notes as well as discrepancies or issues that arise.  Notes on this page demonstrate a point early in the dive when it became clear the map features between the ROV operator and Stephanie’s screen were off by many meters, this was because an incorrect Geographic Datum (the screen displaying in WGS 1984 but the ROV feed was being sent to the screen in NAD 1983 causing a false skew in the visualized data stream).

The bathymetric data collected by NOAA is available here for anyone to download;
https://maps.ngdc.noaa.gov/viewers/bathymetry/ 

The following links provides more information on the differences between Excel and Access and the advantages and disadvantages.  And additional information on the uses of GIS.
https://www.weather.gov/gis/
https://webgis.wr.usgs.gov/globalgis/tutorials/arcview.htm
https://www.opengatesw.net/ms-access-tutorials/What-Is-Microsoft-Access-Used-For.htm

Personal Log

How many people can say that one of their first yoga experiences happened on the flying bridge on a NOAA ship in an offshore location in the Atlantic?  LT Felicia Drummond, a newly certified yoga instructor, introduced us to Ashtanga yoga philosophy and techniques, and I finally know what the pose downward dog should look like.  Ashtanga yoga philosophy focuses on breathing and balanced movements to build the strength of your core and muscles.

yoga
Forward fold = Uttanansana

Classes held on the ship’s deck like this would certainly tone one’s body and improve your focus. There are standing, sitting and finishing poses.   I considered myself lucky if I didn’t fall on my face or crash into the pillars with anything but a sitting pose.  But it reminded me of the balance needed in life- both in the physical and mental demands we put on ourselves.  Even at sea there is a need to search for these moments of time to quiet our mind.

Today I am reminded of the different ways of knowing.  I have always been a bit of a bookworm, introverted and learning through textbook study.  But learning through experience on this ship is a whole different level in the depth of comprehension. I am immersed in both the history and story-telling of the original discovery of these reefs by watching 1970’s footage of Professor John Reed’s first “Lock-Out” dives within Florida’s Deep-Water Oculina Reefs.  At the same time I am witnessing and participating first-hand in the collection of new data in similar locations.  Although it is sad to see some of the trawling devastation of the past, the regrowth of these areas and the dedication to their protection brings a positive message for me to share with my students.  I am excited to share the video I watched today with them when I return and the story about a Warsaw grouper, Hyporthodus nigritus, that tried to steal calipers during Professor Reed’s coral measurements many years ago.  To read more about some of  Reed’s work click on the hyperlink.

Did You Know?

fireworm
Hermodice carunculate, Bearded Fireworm

Hermodice carunculate, the Bearded Fireworm, bristle out their setae upon touch and those setae act like hypodermic needles to inject a powerful neurotoxin into the offending predator or careless tourist.  The injury can give a sensation that feels like a fire burning for hours.  It reminded me of a fuzzy underwater centipede. This creature was spotted on an ROV dive near a sunken barge at around 100 meters.  Others were clustered along the walls of the barge that were encrusted with oysters and a few purple sea urchins.  Seen in this image next to the Fireworm are hermit crabs.
https://www.scienceandthesea.org/program/201701/fireworm

Fact or Fiction?

NOAA ships never leave port on Fridays.   Check the links below for more information  about marine operations and for Fisheries superstitions.
https://www.omao.noaa.gov/learn/marine-operations/ships
https://nmssanctuaries.blob.core.windows.net/sanctuaries-prod/media/archive/education/voicesofthebay/pdfs/superstitions.pdf

What’s My Story?     Jason White

Jason White at the ROV controls.
Jason White at the ROV controls.

The following section of the blog is dedicated to explaining the story of one crew member on NOAA ship Pisces.

What is your specific title and job description on this mission?  ROV Pilot/Technician.  He assists in keeping the ROV running efficiently and safely.   His job includes taking turns on this mission with Eric Glidden to pilot the ROV and deploy and recovery of the ROV from the ship.

How long have you worked for University of North Carolina? He has worked for University of North Carolina for almost 5 years.

What is your favorite and least favorite part of your job? Troubleshooting computer problems is his least favorite part of the job. His favorite part of the job is getting to work with different scientists from all around the United States and world on different types of scientific projects.

When did you first become interested in this career (oceanography) and why?  He grew up watching the weather channel and surfing in North Carolina.  Dr. Steve Lyons on weather channel and predicting surf inspired his original interest in the study of meteorology/oceanography.

What science classes or other opportunities would you recommend to high school students who are interested in preparing for this sort of career? He said if you are a student interested in the technical aspect of the study of oceanography you should look for a marine technology program at a university or community college.  He uses a lot of math and physics and recommends at the high school level to take a full course load in bothHe also recommends taking any available electronic classes and stay proficient in computers.

What is one of the most interesting places you have visited?  His most interesting trip was in the Philippines where he ate white rice for 2 weeks straight and people were on the back deck of the ship fishing for the very same fish he was collecting video footage on.  He mentioned that the Philippines had the most beautiful coral he had ever seen.

Questions from my Environmental Science Students in Camas, WA 

How heavy is the ROV? With the skid on it, approximately 800 lbs

How tough is it? Moderately –you can run the ROV into things but don’t want to run into a steel ship or you break things.

How expensive is it? If it somehow broke, what would you have to do?  Try and repair it on the ship with spare parts?  A half-million dollars.  Yes.  They have spares for most everything except the high definition video camera and digital stills camera, which cost $27,000 and $32,000 respectively.

How many cameras are on the ROV and how easy is it to maneuver? 5. One main video camera to navigate the ROV, digital still camera, 3 lipstick cameras on the skid to collect samples and see with the manipulator.  If there is no current then the ROV is fairly easy to maneuver but when conditions decrease by, murkiness, current (more than ½ knot)  or terrain is in high relief it becomes more difficult.  Ship wrecks with steel debris are also especially difficult to maneuver around.

What is the ROV like to control, does it respond quickly or is there a lag time from when you control it to when it responds? It instantaneously responds. 

Do you have to have training to be able to operate it? It is on the job training however there are a few ROV specific training schools around the country.

Labelled image of ROV
A labeled diagram of an ROV

————————————————————————————————————————————–

 

 

 

 

 

Jennifer Dean: Scientists and Surveys, May 16, 2018

NOAA Teacher at Sea

Jennifer Dean

Aboard NOAA Ship Pisces

May 12 – May 24, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC

Date: May 16th, 2018

Weather Data from the Bridge
Latitude: 32° 05.2647’ N
Longitude: 79°13.2777’ W
Sea Wave Height: 1-3 feet
Wind Speed:  9.2 knots
Wind Direction: 166.61°
Visibility: 7-8 nautical miles
Air Temperature: 21.7 °C
Sky:  Overcast, rainy and lightning

Science and Technology Log
Scientists- A Team of Diverse Skills:

Swiftia exerta
Swiftia exerta identified and photographed prior to collection by the ROV

After the ocean floor has been mapped with multibeam sonar, ROV (Remotely Operated Vehicle) dives are made to ground truth the maps and to describe the benthic habitat and fauna and flora.  In order to identify the taxonomy of what we see in the video and photos, we often need to sample the macrobiota.  Many species of sponges, gorgonians and black corals are very difficult to identify from photos alone, and some are even new species.  Taxonomist, specializing in deep-coral ecology, Professor John Reed, works in this field of science that involves an understanding of organisms by using a variety of features both on the macroscopic and microscopic level for identification.   The red arrow in the picture is pointing to one of the target species in these dives, the gorgonian coral, Swiftia exerta.  Gorgonian octocorals are often called by their common names of sea fans and sea whips.  They are characterized generally by being sessile (attached to the bottom), colonial (composed of hundreds of individual animals called polyps) and belonging to the phylum Cnidaria. For more information about corals see the link below.
https://oceanservice.noaa.gov/education/kits/corals/coral01_intro.html

ROV collects coral
Manipulator used to sample the Swiftia before depositing into a sampling bottle or drawer.

Once the coral is identified through visual inspection with the ROV’s high-definition video, Andrew David uses the robotic arm (called the “manipulator”) to get the sample into a collection bin. The ROV brings the sample to the surface to be processed by the scientists.  And yes — this picture with the red arrow pointing at a book below the monitor screen is for my students — they still use field guides!

Field guides help in confirming identification and to confirm key features on those species that may be spotted that are less common- or for science teachers who are trying to do a quick cram study.

Field Guide
Scientists still use field guides!

 

The calyces contain many calcareous sclerites that can interfere with the PCR reaction.  PCR selectively can amplify codes of DNA that then can be sequenced and its DNA compared in a nucleotide database program like BLAST (Basic Local Alignment Search Tool).  These samples will serve as an outgroup for phylogenetic analysis of Swiftia in the Gulf of Mexico. The captions of the pictures explain the actions of each of the scientific team members seen in the images and a listing below gives their names, titles, associated organization and a very brief description of a portion of their skill sets brought for this expedition at sea.

Stephanie Farrington, biological research specialist from Harbor Branch Oceanographic Institute at Florida Atlantic University. She not only has ability to identify the marine biota but also manages, analyzes and tracks the enormous amounts of data collected during the trip.

Elizabeth Gugliotti, graduate student at the University of Charleston.
She collects and processes the coral samples for future phylogenetic analysis. Her thesis advisor is Dr. Peter Etnoyer, a marine biologist and lead scientist for NOAA’s Deep Sea Coral Ecology Lab. In addition, on this adventure, she is my state room bunk mate.

Jason White, ROV technician, to be featured in the next blog.  University of North Carolina Wilmington Undersea Vehicles Program.  Piloting the ROV underwater to capture photo/video images and samples, bringing the ROV on and off the ship using a winch and pulleys.

Eric Glidden, ROV technician, University of North Carolina Wilmington Undersea Vehicles Program.  Piloting the ROV underwater to capture photo/video images and samples, bringing the ROV on and off the ship using a winch and pulleys.

Stacey Harter, research ecologist, NOAA National Marine Fishery Service, Panama City Laboratory.  See her featured in earlier blog under What’s My Story.

Andrew David, research fisheries biologist at Panama City Lab in Panama City, Florida.
He makes a running commentary on habitat and species recording with the live video footage, as well as operating the robotic arm to collect samples.

John Reed, Research Professor at Harbor Branch Oceanographic Institute, featured below.  He specializes in taxonomy of invertebrate and deep-sea coral ecology.  Featured below in What’s My Story.

LT Felicia Drummond, research scientist and NOAA corps member.  She assists in fish identification and brought the additional bonus skill set as a yoga instructor and volunteered to lead us in yoga on the Skybridge on breaks.

Personal Log

I am enjoying my crash course in fish and invertebrate identification.  LT Drummond in this image offered to identify species out loud for my benefit, filling the background noise of habitat readings and descriptions with shout-outs about Spotted Goatfish and Graysby.  My favorite, so far, has to be the Sharpnose Puffer.

Sharpnose Puffer
Sharpnose Puffer

Everyone on board Pisces is extremely helpful and friendly.  I can’t overstate this point enough, I continue to feel welcome and included in all aspects of the operations of this expedition.

Learning common names
LT Drummond teaching me the common names of a variety of fish species during live video stream during ROV dive

It is interesting to watch how many mini-lessons occur between the crew to help each other. From the database tutorial between a graduate student and the data manager to explanations by the ROV operator to the fisheries biologist on how to operate the joystick and other control buttons on the video equipment.

I could not have possibly anticipated moments like today, May 15th, when Prof. John Reed shared a video made about a deep dive in a manned submersible.  Witnessing the creatures of the deep from people who captured this footage themselves and are making novel discoveries in both the past and present continues to amaze me.

Morning view
Morning view from the porthole of my stateroom on Pisces

 I’m also surprised at the ease to which I am able to sleep on a bunkbed on the Pisces rocking in the Atlantic Ocean.  There is something calming at night about the motion or maybe it is my exhaustion after a full day of activity.  Whichever it might be, my basic needs have been met and exceeded for shelter, food and sleep.  I do miss my family and friends–and even my nonbiological kids (aka my students). I am thankful for my oldest daughter sending me emails that keep me in touch with the happenings at home.   There is so much to tell and words/photos don’t do justice to the experiences I am having.

Did You Know?
Certain species of Scamp or Mycteroperca phenax, have a coloration differential that distinguishes the dominant male in the group from lesser males and females.  And if the dominant male dies or is fished from the group, the most dominant female within 2 months can change sex and become the new leader for the school of females.  For the extra curious read about the research on this phenomenon, authored by R. Grant Gilmore and Robert S. Jones, Color Variation and Associated Behavior in the Epinepheline Groupers, Mycteroperca microlepis (Goode and Bean) and M. Phenax Jordan and Swain in the Bulletin of Marine Science  51(1): 83-103,1992.

Fact or Fiction?
A majority of corals reproduce by asexual reproduction and are considered r-strategist.
To learn more about their reproductive habits of sending out a larval form called a planula (after egg and sperm combine) visit NOAA’s link below.
https://oceanservice.noaa.gov/education/kits/corals/coral06_reproduction.html

What’s My Story? Professor John Reed
The following section of the blog is dedicated to explaining the story of one crew member on Pisces.

What is your specific title and job description on this mission?  Research Professor, Deep Sea Coral Program at Harbor Branch Oceanographic Institute

How long have you worked for Harbor Branch Oceanographic Institute and in this field?  42 years

What is your favorite and least favorite part of your job? Favorite part is going to sea and all parts of fieldwork, whether it is on land or sea.  His least favorite is the administrative paperwork and bureaucratic forms and processes that go along with the job.

When did you first become interested in this career and why?  He always knew he wanted to do something outside, and in middle school was interested in careers of such as a forest ranger or archaeologist.  In high school he started watching The Undersea World of Jacques Cousteau TV series and began following the travels of this family in the documentary type series as they visited underwater coral reefs and original marine habitat never explored and shared with the public before.  After that he was hooked.

What science classes or other opportunities would you recommend to high school students who are interested in preparing for this sort of career? He commented that students should take their basic STEM curriculum, but emphasized it is equally important to have a broad background of the arts, civics and humanities and studies outside the STEM focus.  In high school and undergraduate school students will need to develop their basic foundations of essential understandings of biology, chemistry, genetics, and mathematics including statistics, , and in his field to learn some basic anatomy/physiology of organisms.

What is one of the most interesting places you have visited?  He is by far a world traveler with 60 expeditions around the world, visiting 50 different countries and he considers himself extremely fortunate to have the opportunities to go down to 3000 feet deep in a submersible to see things that have never been seen before. He mentioned Papua New Guinea as one of his favorites, and that during one submersible dive off Granada, they accidentally dropped down into a volcano and then subsequently got blown out by the hot water plume.  In another exciting submersible dive in the Florida Keys, they were the first to dive into giant sink holes, 1000 ft deep and some ½ mile in diameter. On one of the sink hole dives, they got attacked by an eight foot swordfish which hit the plexiglass sphere in which they were sitting in the Johnson-Sea-Link submersible, which was rather unnerving. So in a pitch black environment, except for the lights provided by the sub he said it feels a bit like being in a fish bowl with a 380 degree field of view.

Do you have a typical day or skills and tasks you perform? A typical year involves 2-3 months at sea or in the field and then a return to the lab or office, where his work involves primarily computer work.  Following a typical 2 week cruise an additional 2-3 months is required to analyze the ROV photos and videos, to proof all the notes and data that has been recorded, and then write up the cruise report.  After that, then trying to publish manuscripts and write grants to do the fieldwork takes up the remainder of a typical year.  100% “soft” money is used to support this sort of research. “Soft” money means that they must get grants to support all aspects of the study, paying the principle investigator salary and his/her team, and 48% or more overhead is typically paid to the investigators home institution.

What are some other careers or divisions of study at the Harbor Branch Oceanographic Institute? The engineering division is developing AUVs (Automated Underwater Vehicles), and wave gliders, equipment used on submersibles, acoustics, and software the is used for tracking on the ROV.  Another division is their biomedical unit where chemists are looking at bioactive products from the sponges and other creatures found in the marine environment.  Their aquaculture program is developing a closed circulation system, trying to address the pollution created by some aquaculture programs.. And the division that Prof. Reed works for is the Deep Coral Biology Program that studies corals and fishes, and is  also studying  the genetics and bioinformatics of marine systems.

Why does your research matter?  He views his primary mission in the realm of basic science, discovering and researching new reefs and then trying to protect them.  His research and discoveries resulted in the first deep-water coral Marine Protected Area (MPA) in the world, the Oculina Coral Habitat Area of Particular Concern (HAPC) in 1984; and in 2010, a 16,000 sq. mile Deep-water Coral HAPC which extends from Florida to North Carolina. He is asking scientific questions such as, what kind of fish community do you see on a high relief vs. low relief bottom? How well are the MPAs working–are they providing spawning and breeding grounds, protecting from destructive fishing procedures?  How does the dive footage compare outside and inside the MPA area for human impacts?  In the long run he views his research helping the fishing community and providing protections for sustaining these habitats and food webs for future generations.

————————————————————————————————————————————–

 

 

Jennifer Dean: Sampling the Sea Floor, May 15, 2018

NOAA Teacher at Sea

Jennifer Dean

Aboard NOAA Ship Pisces

May 12 – May 24, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC 

Date: May 15, 2018

Weather from the Bridge
Latitude: 32° 23.3070’ N
Longitude: 79°02.4555’ W
Sea Wave Height: 2-3 feet
Wind Speed:  10.7 knots
Wind Direction: 131.42°
Visibility:  10 nautical miles
Air Temperature: 25.1°C
Sky:  Scattered Cloud Cover

Science and Technology Log

Multibeam Bathymetry
Lieutenant Jamie Hart (seen on the bridge in the picture below) explained how sonar pings allow software to paint a picture of the ocean floor.

Communication between the bridge, the technicians and the scientists are continuous to keep the mission coordinated and progressing.

With GPS that determines the latitude and longitude, the sonar determines the last piece of information to gain a three-dimensional view.  Adjustments have to be made below deck by Mr. Todd Walsh, Hydrographic senior technician (see previous post for additional information). The echo of return waves are detected downstream and calibrated to adjust for time, salinity, depth and a host of other factors to create the images used by the scientist to choose a path for sampling.

Images like the ones above are being used to determine locations for the ROV (Remotely Operated Vehicle) dives and to aid in navigation during the collection of samples and observations when running transects for inventory of the fish, coral and habitat.

Robotic Arms and Taking Samples of Coral and Sponges

Screen displays in front of the ROV operator, Eric Glidden, includes information on the sea floor gathered from the multibeam sonar technology. Other screens include information coming in from a still camera, cameras that are set to view the sampling bottles and drawers, as well as high definition images of the live ocean floor feed ahead of the ROV and images from cameras directly on the robotic arm.  The blue image in the picture is Pisces, another smaller red image not visible on this photo is the location of the ROV. The ROV operator ensures that there are no collisions, even if there is a loss of power or other malfunction, the ROV floats to the surface for recovery.

Two modes of sampling with ROV attachments visible in this image; on the left a suction hose and on the right is the robotic claw, used both to maneuver the hose and to grab samples for removal from the ocean floor by twisting and rotating the claw device. Using this arm reminds me a bit of those arcade area claws where one attempts to grab that coveted stuffed animal prize to have it ultimately not clasp or drop the treasure.  Unlike these games, the ROV operator and the claw expertly grasp and deposit coral and sponges with a 5 function arm system.

For a fun engineering activity that models these robotic systems visit this activity https://oceanexplorer.noaa.gov/okeanos/edu/collection/media/hdwe-URRobot56.pdf

After samples are recovered topside they are brought inside the wet lab for processing, barcoding, photographing and for those samples needing genetic analysis, placed in vials and test tubes filled with ethanol for longer term storage and preservation of the coral’s tissues.

John K. Reed (Biologist/Taxonomist) discusses the sampling of a recovered sponge with Felicia Drummond (LT NOAA Corps).  Dr. Reed explains to me the octagonal polyps to look for when identifying this particular type of coral.

Caribbean Spiny lobster
Caribbean Spiny lobster, Panulirus argus. One of the many biotic factors observed on this ROV dive.

Other highlights this day were observations of two sandbar sharks and a stout moray eel, spotted on May 14th dive, and May 13th respectively.

Personal Log

May 13th, day 2 on the ship, I had one of the most surreal experiences of my life. I found myself playing corn hole off the back of a ship in the Atlantic ocean with Navy officers, deckhands, stewards, engineers and scientists at sunset. For those of you that may not have heard of such a game, it involves throwing 4 bean bags at a hole.  Landing on the board seen in the pictures without sliding off, is a point.  Getting the bean bag into the hole is 3 points.  First team to 12 wins.  I enjoyed the additional challenge of being on a swaying ship, keeping one’s balance and making the toss, all at the same time.

This was a fun and an amazing day with a fire hose dose of information coming at me.  There are so many interesting directions of study pulling for my attention.  I am curious about the formation of the ocean floor that gives the appearance of ancient Mayan formations.  The evolution of these block-like limestone formations created from water erosion and the laying down of sediment layers makes for beautiful habitat for a diversity of creatures seen during the dives.  Yet the biotic factors are equally fascinating to study with their adaptations of form, corals with polyps that have 6 tentacles, belonging to a subclass of Hexacoralia to 8 tentacles, from another subclass Octacoralia.  What advantages and disadvantages do these differences in form provide to these creatures in their marine environment?  Some of these hard corals we are observing and collecting evolved back in the Miocene.  To learn more about coral and for ideas and activities for teaching about coral evolution visit this site:  https://oceanservice.noaa.gov/education/kits/corals/coral04_reefs.html

Last, but not least, I was on this adventure during Mother’s Day, so I not only want to thank my own mother for helping to get my daughters to school and looking after pets and plants during my absence, but for being a constant and committed pillar of support for me growing up and now into my adult life.  I wouldn’t be living the dream without her guidance and not to mention those brutal critiques of my writing over the decades.  Thanks to my mom and all the others mom’s out there reading this blog!  Happy Belated Mother’s Day.

Did You Know?
Scientists make observations about not only a sponges’ appearance but also its texture and smell.  Some are very stinky giving off odors similar to that of a rotten egg and vomit while others can emit a spicy aroma!

Fact or Fiction?
Excretions from certain sponges are demonstrating pancreatic cancer fighting properties.  Additional information can be found at this link for the extra curious:
http://www.fau.edu/newsdesk/articles/marine-sponge.php

What’s My Story?  Stacey Harter
The following section of the blog is dedicated to explaining the story of one crew member on Pisces.

What is your specific title and job description on this mission?  Chief Scientist and Fisheries Ecologist

Stacey Harter
Stacey Harter, Chief Scientist and Fisheries Ecologist, posing after emergency training

How long have you worked for NOAA?  16 years

What path did you take to get to your current position?  Undergraduate at Florida State University with a degree in Biology;  As an undergraduate, she did an internship at the Panama City lab and fell in love with the research side of marine science. She got her Master’s degree in marine science at the University of South Alabama and at the end of her Master’s she took a position as a contractor for 5 years before becoming a staff member with NOAA as a federal employee.

What is your favorite and least favorite part of your job? She enjoys going to the South Atlantic Fishery Management Council meetings and giving them information on what they have learned about the MPAs and then seeing that data being used to make management decisions.
Reading all the ROV data is quite time consuming and can become monotonous at times.

When did you first become interested in this career and why? Even though Stacey grew up in landlocked New York, her passion for marine science started early on with visits to Sea World and watching the Discovery channel as a kid. In high school she realized that she could take this interest in the marine world and make a career out of it.

What science classes or other opportunities would you recommend to high school students who are interested in preparing for this sort of career?  She recommends as much math and science as one can take.  She highly recommends students participate in internships.  She has witnessed many times over the years that these internship opportunities later turn into long-term employment. In addition she recommends students volunteer in research labs and try to experience as many aspects of the different parts of the career as possible.

What is one of the most interesting places you have visited for work?Around 2009 she went down in a manned submersible and explored the unique deep ocean communities at 2500 feet. She was blown away by the incredible different and original biota found in this environment.

Do you have a typical day? Or tasks and skills that you perform routinely in this job? Her typical day involves identifying fish species on video footage collected during and after dives. Another task she regularly performs is using software programs like Access and Excel for data analysis. She shared that about every couple of years she communicates their research by attending both scientific meetings and delivering information to the South Atlantic Fisheries Management Council.

Has technology impacted the way you do your job from when you first started to the present? Definitely.  When she first started, pad and paper were used for recording dive information and species observed which was later entered after a dive into Excel.  Now everything is done digitally and directly into computer software as the dive occurs.  In addition to the approach to data collection, media storage has changed with how video footage is stored into hard drives rather than on mini-DV tapes.

What is one misconception or scientific claim you hear about how the ocean and atmosphere works and/or NOAA’s mission that you wished the general public had a greater awareness of? She doesn’t spend all of her time on boats doing field work. While field work is a fun, it is actually a very small portion of the job. She actually spends about 90% of her time at a desk in front of her computer analyzing data and writing reports.

————————————————————————————————————————————–

 

Jennifer Dean: Routine and Regulations, May 13, 2018

NOAA Teacher at Sea

Jennifer Dean

Aboard Pisces

May 12 – May 24th, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC

Date: May 13th, 2018

Weather Data from the Bridge

Latitude: 30°25.170’ N
Longitude: 80°12.699’ W
Sea Wave Height: 1-2 feet
Wind Speed: 8.4 knots
Wind Direction: 55°
Visibility: 10 nautical miles
Air Temperature: 25.9°C
Sky:  Scattered Cloud Cover

Science and Technology Log

A team on deck working to get the Mohawk, a Remotely Operated Vehicle ready to deploy
A team on deck working to get the Mohawk, a Remotely Operated Vehicle ready to deploy

It isn’t real science if it works the first time.  Isn’t this what we try to get our students to understand as they start an original long-term project or design their first experiment?  I hope as a teacher to give my students opportunities to experience set-backs, struggles, even occasional failures and develop characteristics of resilience and persistence.  Today I got the privilege to see collaboration in action, between scientists, NOAA corps officers, engineers and deck hands to overcome problems and do science. On Saturday I observed how a team worked to get the Mohawk, a Remotely Operated Vehicle, in the water and tracking correctly.  After a quick recovery from the tracking issue, the flash on a camera system became temperamental on the next deployment. These challenges reminded me that, in real science, additional troubleshooting is an on-going part of the adventure.  I watched firsthand how working on a team with multiple skill sets and ideas can make the difference in the success or failure of a mission’s goals.

 

Mohawk, the Remotely Operated Vehicle

Mohawk, the Remotely Operated Vehicle
Mohawk, the Remotely Operated Vehicle

This ROV carries on it both a high definition camera for video footage as well as a low definition camera that is used to overlay information about the site such as water depth, latitude/longitude and the time a photo is taken.  There is the capability to take still shots from one meter up that capture an area of approximately 7 square meters every 2 seconds.  For additional information on this ROV and to see what kind of video the instrument can capture visit the links provided. 
https://sanctuaries.noaa.gov/news/features/1213_mohawk.html
https://oceanservice.noaa.gov/caribbean-mapping/rov-video.html 

Stacey Harter, the chief scientist and fisheries ecologist, along with LT Felicia Drummond, seen from behind in this image, monitored the video footage and recorded and observed species such as barracuda, lionfish and gag fishes.
Stacey Harter, the chief scientist and fisheries ecologist, along with LT Felicia Drummond, seen from behind in this image, monitored the video footage and recorded and observed species such as barracuda, lionfish and gag fishes.

As the video footage streamed in the fisheries ecologists worked to identify fish species, corals and sponges.  I  liked these special keyboards that were modified for quicker entry of more commonly found species.  As the ROV dropped onto the ocean floor a variety of fish from Gags to Scamps to angelfish came into view.  While two scientists identified fishes others distinguished between corals and sponges. Names were being called out like “Red Finger Gorgorian” coral, “Clathrididae” and “Tanacetipathes.”

 

 

IMG_5999
these special keyboards that were modified for quicker entry of more commonly found species

Stacey Harter, the chief scientist and fisheries ecologist, along with LT Felicia Drummond, seen from behind in this image, monitored the video footage and recorded and observed species such as barracuda, lionfish and gag fishes.  I was amazed by the clarity and color in the images.

 

 

 

Personal Log

My first day on Pisces began with a beautiful sunrise and a chance to take a quick picture before we left the dock.  I was also able to explore the Skybridge and spotted several pods of dolphins on our way out to the Marine Protected Areas.  Images below are captioned to explain the Welcome Aboard meeting and other events of the morning and early afternoon on my first day at sea.  Most of the morning involved learning some of the safety features of the ship including practicing for three types of emergencies- fire, abandon ship and man over-board.  Although I have a smile on my face in the picture, I realize the serious nature of practicing for the unexpected and it reminded me of our school shooting drills; that although rare and unlikely to happen, are still a necessary drill to routinely engage in and practice for, in order to expect quick responses that can make the difference in saving lives later.

The canister I am holding provides enough air for two to three minutes to escape from a situation that involves fumes from fire.  I now know where my survival suit, life jacket and my assigned life boat is located and have practiced getting into both my life jacket, survival suit and can quickly navigate to the location of my assigned life boat.  This task may seem simple, but I still find myself confused on whether to turn right or left after coming down stairs and looking at doors and walkways that all resemble each other.

 

IMG_5977
LT Jamie Park delivers the Welcome Aboard meeting in the Galley on Pisces

IMG_5988
Safety training involves finding and putting on your assigned survival suit and finding a life boat

 

IMG_5931
Sunrise at Mayport Naval Station, May 12th

IMG_5928
Pisces at Mayport Naval Station May 12th right before departure

 

Fact or Fiction?

Lionfish consume over 50 other species of fish and have spines that can sting releasing a venom into a person’s bloodstream that can cause extreme pain and even paralysis.

To find out more and the answer visit the link below
https://oceanservice.noaa.gov/facts/lionfish-facts.html

IMG_6028
Mr. Todd Walsh explains how the multibeam bathymetry works

What’s His Story?  Mr. Todd Walsh

The following section of the blog is dedicated to explaining the story of one crew member on Pisces.

What is your specific title and job description on this mission?
Hydrographic Senior Survey Technician

How long have you worked for NOAA?  What path did you take to get to your current position?
10 years. Todd took classes that gave him a strong background in math and science in high school. This foundational work allowed him to continue into college in the medical field.  He later became interested in land management and dendrology which led him to take more STEM related classes at night school exposing him to a variety of engineering content and hydrology.  Later he was recruited by NOAA and accepted his first position with NOAA out of Alaska.

What is your favorite and least favorite part of your job?
He likes being able to integrate a group’s (like scientists) needs with his ability to satisfy their aims and missions.  His least favorite is being away from his family.

What science classes or other opportunities would you recommend to high school students who are interested in preparing for this sort of career?  Todd recommends being strong in your physical sciences and that taking your math classes are key to doing well in this sort of career.

What is one of the most interesting places you have visited?
Midway Island, Johnston Atolls and being up on the Arctic circle

Has technology impacted the way you do your job from when you first started to the present?
He gets to play with fun tools.  He noted that automation has really changed the requirements and skills needed for the job.

I want to say a big thank you to Todd for answering all my questions and even playing some classic rock and roll during my mapping lessons that went till midnight.

————————————————————————————————————————————–

 

Jennifer Dean: Getting Ready, April 23, 2018

 

NOAA Teacher at Sea

Jennifer Dean

Aboard NOAA Ship Pisces

May 12 – May 24, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC

Date: April 23rd, 2018

Personal Log

Welcome to my first blog entry as I prepare for an amazing opportunity with the NOAA Teacher at Sea program.  I am a science teacher at Camas High School, a public school of a little over 2000 students.  Camas is a rapidly growing suburb of Vancouver, located across the Columbia River from Portland, Oregon.  In my 22nd year of teaching, my current assignments include environmental science, anatomy and physiology and forensic science.  I love to involve my students in authentic investigations, from building a sustainable farm on school property to designing and building solar ovens. I incorporate project-based learning opportunities and authentic long-term investigations whenever possible.  I helped develop and implement our STEM-based magnet program, and I continue to help guide improvements to the program. To be sure I am teaching relevant and up-to-date content and skills, I need to have my own experiences with authentic scientific research.

Jennifer Dean and family
My daughters, Emma and Kalena, enjoying an early morning walk at Mike’s Beach Resort at Hood Canal

I applied to this program because of my love for the process of scientific investigations and my desire to share this unique experience with students.  I want to increase my knowledge of fisheries and am especially interested in bringing to my classroom new learnings about STEM career opportunities at NOAA.   My goal with all my students is to teach the tools for scientific literacy, how to use evidence and reasoning in evaluating claims and to be able to communicate science

Jennifer and poster
Sharing science at the annual Partners in Science January conference in San Diego

to others.

I am currently in full list-making mode, trying to make sure I will remember the Dramamine, several layers of clothing and a dozen other things.  However, my mind drifts back to wondering about what science knowledge and technology skills I will be called upon to use

I love the water.  I love scuba diving, kayaking and the paddle boarding I tried with my daughters for the first time this summer.  I have four children—2 boys in college and 2 girls still at home.  During vacations, we often migrate toward the water to explore a stream bed or the sandy shores of the Pacific.

Jennifer in wet suit
I need 7 mm layers to stay in the water long on our coast

On May 12th I will be boarding NOAA Ship Pisces off the coast of Florida to assess the efficacy of the marine protected areas (MPAs) in protecting species of the snapper grouper complex and Oculina coral.  ROV and multibeam sonar surveys will be used inside and outside the MPAs and in the Oculina Experimental Closed Area (OECA) in the south Atlantic to gather data on habitat and fish resources.  This research will help fishery managers make decisions on the areas future use and how to best protect these valuable resources.

Did You Know?

President Theodore Roosevelt established the first MPA and the first National Wildlife Refuge in the United States, Pelican Island National Wildlife Refuge in 1903.

Fact or Fiction?

Aquaculture uses more wild fish than it produces.

To find out the evidence that rejects or supports that claim visit NOAA Fisheries site at the following link

https://www.fishwatch.gov/sustainable-seafood/faqs

————————————————————————————————————————————–

 

Dana Kosztur: Cruising with Camera Arrays, April 8, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18, 2018

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 8, 2018

Weather Data from the Bridge

Lat: 29o 20.6309′ N      Long: 087o 46.1490′ W
Air Temperature: 18.1oC (64.5oF)
Water Temperature: 22.29oC (72oF)
Wind speed: 10.81 knots (12.4 mph)
Conditions: cloudy,  1 to 2 ft seas

Science and Technology Log

The most important equipment on this mission are the camera arrays. Most of the data collected are dependent on these cameras.  I mentioned in my last entry the two types of camera arrays used in this survey are the SatCam and the RIOT.  The video taken from these camera arrays is stitched together in a five-panel single view. The videos are reviewed and each species that appears is counted and recorded.  Images help the scientist determine the population of fish at a given site. The RIOT is a two-stacked spherical camera housing unit that contains 5 horizontal cameras and one upward facing camera.  The RIOT is the more expensive of the two arrays, but it gives the scientist a greater ability to measure fish when they are captured in the dual videos.  

 

IMG_0759
deploying the RIOT

 

Over the past few days, we have caught several species of fish on the bandit reels. We have caught red snapper, vermilion snapper, and red porgy. These lines have 10 baited hooks and they are dropped into the water on a randomly selected site.  In order to obtain a proper sample of the fish, very little human interaction is made with the reel or the line. This leaves out any fisherman bias and allows for natural sampling of species on the site.  The hook sizes are rotated with each drop. The hooks sizes are 8, 11, and 15. If reel 1 starts with size 8 hook, it will have size 11 on the next drop, and then 15 on the third. Each reel has a different rotating pattern.  This allows each hook size to be in the water over the same site. The data will help determine if a certain hook type is favored by a species of fish.

 

IMG_07742
recording red snapper data

 

IMG_0756
class mascot

 

Personal Log

My students will return to school tomorrow from spring break.  I am a little sad I am not there with them.  They wrote letters for me to read while I was away. I have read some of these already and they are pretty funny.  I want to reassure them that I will not fall overboard and that I am eating well.  I will answer student questions on the bottom of my blogs.

We are in the Gulf of Mexico about 70 to 80 miles offshore, on the Mississippi-Alabama Continental shelf.  I have not been this far out in the gulf before today. It is pretty humbling to look out and just see blue water. The sunrises and sunsets are spectacular. You can’t always see them though. The weather has been pretty gloomy the last two days, so I was unable to see last night’s sunset or this morning’s sunrise.   We had a storm yesterday followed by the much cooler weather today.  I hope this is the only cold snap we get.  I am not a fan of cold boat work.

Did You Know?

Turbidity is how cloudy the water is based on the suspended solids. The higher the turbidity the more sediment, algae and other solids are suspended in the water.  Clear water has low turbidity.

Questions from students:

What is hydrography? The science that measures and describes the physical features of bodies of water and land close to these bodies of water.  Multibeam echosounders are used to obtain hydrographic data.

New species that I have seen:  Red Porgy:  Pagrus pagrus

                           Vermilion Snapper:  Rhomboplites aurorubens

 

IMG_0773
Red Porgy teeth

 

Dana Kosztur: Sailing on the Gulf of Mexico, April 5 & 6, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-19, 2018

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 5 & 6, 2018

Weather Data from the Bridge

Lat: 29o 22.895′ N      Long: 087o 59.992′ W
Air Temperature: 22.9oC (73oF)
Water Temperature: 22.83oC (73oF)
Wind speed: 14.89 knots (17.13 mph)
Conditions: partly cloudy skies and the seas are pretty smooth

Science and Technology Log

I have been aboard Pisces for over 24 hours.  I have learned a lot about the technology used on the ship.  This vessel has a Simrad ME70 multibeam echo sounder. This device will create a bathymetric map of the survey areas that have been randomly selected for this mission.

The crew is on the third leg of a four leg reef fish survey.  This SEAMAP survey will use cameras as its primary instrument to study the population of fish in the survey area. There are two types of camera arrays the scientist use.   The SatCam has 7 cameras that allow a 360-degree view of the ocean floor.  The RIOT is a double-stacked version with 12 cameras. The RIOT allows the same visuals as the SatCam but can also be used for fish measurement.

 

IMG_0661_resized
RIOT (Reef Information Observation Tower) on deck

 

IMG_0633_resized
SatCam ready to deploy

The SatCam and RIOT are rotated, one is deployed each site. The boat is positioned over the sampling site and the cameras are released into the water. The cameras free fall to the bottom and are buoyed. They are left to soak for 30 minutes before they are picked back up.  The camera begins recording 5 minutes after it hits the bottom to allow the sediment to settle, it then records for the remaining 25 minutes.

After the camera is sent into the water, the ship moves away and a CTD is released into the water in much the same way.  The CTD is an electronic instrument package that sends back real-time data of water conditions such as salinity, temperature, density, and light filtration versus water depth.

 

IMG_0618_resized
CTD tests the water column for conductivity, temperature, and depth

 

Bandit reels are also used in this survey.  There are three of these reels mounted on the starboard side of the boat. The line on each has 10 baited hooks.  This leg of the trip we are only fishing every other stop. The first round of fishing with the bandit reels yielded no fish. The second time the stern bandit reel caught silky sharks.  Three sharks made it to the deck to be weighed, measured and then safely released. The next time we used the reels two large red snappers were caught. They were weighed and measured. The otoliths and gonads were removed from each specimen.  These will be used to determine age and reproductive abilities.

 

IMG_0640_resized
Bandit Reel 1

 

 

 

IMG_0687_resized
Red Snapper caught on Bandit Reels

 

 

I think I am getting adjusted to life aboard the ship. We are only working during daylight hours so I won’t have to change my sleeping schedule. I am working with a team of 4 scientists and they are doing a great job explaining everything and answering my questions. There is so much to learn about and I want to know it all.

I am taking medication to keep from getting seasick and it is working, but I was so exhausted yesterday that I went to bed after watching the sunset.  I hope that will get better in the coming days. I haven’t lost my excitement about being here.  Everything out here is interesting.

Did You Know?

A snapper otolith can tell the age of the fish.  The otolith is an ear bone. When removed from the fish and cut in half, the rings can be counted.

  • Animals Seen Today

Bottlenose Dolphin (Tursiops truncatus)

Silky Shark (Carcharhinus falciformis)

Red Snapper (Lutjanus campechanus)

Dana Kosztur: Introduction, March 23, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA ship Pisces

April 5-18, 2018

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: Friday, March 23, 2018

Personal Log

IMG_0140[1]
Ocean Springs, MS
Hello from the Mississippi Gulf Coast.  I am a 7th grade science teacher at St. Martin Middle School in Ocean Springs.  This is my 5th year as a St. Martin Yellow Jacket and my 17th year as an educator. I currently teach science to over 100 seventh graders every day.  This is most definitely a challenge, but one I enjoy taking on. Teachers are always looking for ways to improve classroom instruction and grab student interest.  I applied to NOAA’s Teacher at Sea program hoping to accomplish both of those tasks. Because we live so close to the Gulf of Mexico, it is a big part of my students’ lives.  I will use the experience and knowledge I gain at sea to link our curriculum to something they see every day. This will give real value and relevance to the content they learn in class. I have already spent some time explaining my trip and NOAA’s mission to my students.  They are interested and excited about my adventure. Most of them have written questions that they want me to answer in my future blogs. Students, keep checking back to see if your question is posted or just to make sure Mrs. K hasn’t fallen overboard.

I am eager to spend two weeks on the NOAA ship Pisces. I love the Gulf of Mexico and I can’t wait to learn more about it. My husband and I spend every possible weekend, on our on boat usually heading to one of Mississippi’s beautiful barrier islands. We spend most of our vacation days on Gulf beaches and we even got married on the beach in Orange Beach, AL.  IMG_0137[2]

In just a few weeks I will board Pisces in Pascagoula, MS, and join the crew on Leg 3 of a 4 Leg reef fish survey. I will be at sea for 14 days and disembark in Tampa, Florida. I am thrilled I have the opportunity to be on a fishing vessel.  I really enjoy fishing and I love seeing marine life. I feel like this is going to be very interesting and I am excited to do this type of hands-on research.

The next time I write I will be officially at sea. I know it won’t be easy to be away from home.  I will certainly miss my family, friends, and SMMS.  My students wrote me letters to read while I am on the boat to help combat homesickness.  I can’t wait to read them.  I am very grateful for the opportunity to take this trip and I look forward to sharing what I am learning along the way.

Don’t forget to check back in 13 days.

IMG_0138[1]
paddleboarding          MS barrier islands
IMG_0139[1]
My husband and I with Katie Bug
Did You Know?

The Pisces has a multi-beam echo sounder (MBES) that allows scientist to measure and count fish by the reflection of sound off their bodies. It projects a fan-shaped beam of sound that can also be used to map the seafloor.

Kimberly Scantlebury: Returning Home, May 25, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 25, 2017

Weather Data from the Bridge

Greetings again from New Hampshire! It seems fitting that my NOAA Teacher at Sea blogs are bookended at home in cooler 55 F rainy weather. The garden is in and looking forward to the hot sun that will follow.

Science and Technology Log

IMG_2995
The CTD array coming in on NOAA Ship Pisces

Part of the NOAA Teacher at Sea program is creating two lesson plans, one about science & technology, and the other about careers. I am looking forward to writing and improving those lessons based on student feedback. My 9th graders began this process by analyzing data I took home from one of the CTD sites. NOAA scientist Kevin was generous with his time. He gave me data binned by meter and took the time to make sure all of the information was clear. Since the CTD array collects data eight times a second, the dataset would have been a little unruly otherwise. Back in the classroom, my students created a list of questions that could be looked at based on the data available. They then created data stories that explored questions such as:

  • Is there a correlation between oxygen and fluorescence?
  • How does depth correlate to sound velocity?
  • How big are the differences in temperature?
  • What is the variability of fluorescence?
  • How does the temperature change as you go deeper in the water?
  • How does salinity between shallow and deeper parts vary?
  • Is there a correlation between pressure and salinity?
  • Is there a correlation between depth and density?
  • Does oxygen vary?

The amount of data out there can feel overwhelming sometimes. There is a greater need than ever before to know how to sift through information and critique it. Giving students constant opportunities to practice how to interpret data is important. This process also connected the information they learned from the blog posts to the next step in science research. Once the data is collected, it needs analysis and interpretation. The ability to critically analyze information is vital to an informed citizenry.  

Personal Log

I’ve been back home for almost two weeks and it’s been back to the end-of-school groove. Sometimes it feels surreal that recently I was on a real working fisheries vessel. I have taken solo trips before so I know the feeling of going through a unique experience only to return home to everyone just normally moving forward as life does. It can feel a little jarring. This one felt even more so even though I was in contact the whole time.   

It was great getting questions and comments in person. I was happy to hear people from age 6 to 96 were following along when I was away. I am not naturally a journaler, but I appreciate the ability to reread my own experiences later. It will also provide a tool for my teaching.

unnamed
Arrrrr you ready for Spirit Week

The week I returned to school was Spirit Week. It happened to be character day when I was asked to speak to the School Board about my NOAA Teacher at Sea experience. Not everyone can say they have talked to their School Board about their time at sea, while dressed as a pirate. Of course, the experience is not over. I still have those lesson plans in the works and there are other loose ends to tie up (such as this final post). I also look forward to continuing through the network of NOAA Teacher at Sea alumni. NOAA is such a rich resource for science and science learning. I am very thankful for the opportunities NOAA Teacher at Sea has afforded me as a science educator and to the crew and science team from my time on NOAA Ship Pisces.  

Did You Know?

Teacher at Sea has accepted teachers from all 50 states, American Samoa, Puerto Rico, and Guam since 1990. Interested? Any full time pre-K-12 teacher; community college, college, or university teacher; museum or aquarium educator; or adult education teacher may apply.

Kimberly Scantlebury: The Night Shift, May 10, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 10, 2017

Weather Data from the Bridge

Time: 15:36

Latitude: 2804.2177  N, Longitude: 9042.0070 W

Wind Speed: 10.2 knots, Barometric Pressure: 1016.8 hPa

Air Temperature: 26.1 C, Water Temperature: 24.89 C

Salinity: 36.49 PSU, Conditions: Some cloud, light wind, 2-4 foot waves

Science and Technology Log

Research vessels do not just work during the day. It is a 24/7 operation. Tonight I checked in with the night shift to learn more about the sonar mapping that has been done in the dark ever since I boarded NOAA Ship Pisces.

IMG_3081
Algebra I level math in action!

The first thing I noticed entering the dry lab was a pad of paper with math all over it. Todd, the survey technician I interviewed earlier, had noticed the the picture the ship’s sonar was producing had a curved mustache-like error in the image. Details like temperature need to be taken into account because water has different properties in different conditions that affect how sound waves and light waves move through it. He used the SOH-CAH-TOA law to find the speed of sound where the face of the transducer head was orientated. He found a six meter difference between the laser angle and what the computer was calculating. Simple trigonometry on a pad of paper was able to check what an advanced computer system was not.

NOAA Ship Pisces is also equipped with an advanced multibeam sonar. (Sonar stands for SOund NAvigation and Ranging.) In fact, there are only eight like it in the world. One of Todd’s goals before he retires from NOAA is to tweak it and write about it so other people know more about operating it. Since they are so few and you need to go to them, there are fewer publications about it.

Another mapping device is the side scan sonar. It is towed behind the vessel and creates a 300 meter picture with a 50 meter blind spot in the center, which is what is underneath the device. Hydrographic vessels have more sonars to compensate for this blind spot. The purpose of the mapping is to identify new habitat areas, therefore expanding the sampling universe of the SEAMAP Reef Fish Surveys.

This slideshow requires JavaScript.

Up on the bridge looks much different. The lights are off and monitors are covered with red film to not ruin the crew’s night vision. Everything is black or red, with a little green coming from the radar displays. This is to see boats trying to cross too close in front of NOAA Ship Pisces or boats with their lights off. Lieutenant Noblitt and Ensign Brendel are manning the ship.

Ensign Brendel noted to me that, “We have all of this fancy equipment, but the most important equipment are these here binoculars.” They are always keeping a lookout. The technology on board is built for redundancy. There are two of most everything and the ship’s location is also marked on paper charts in case the modern equipment has problems.

There are international rules on the water, just like the rules of the road. The difference is there are no signs out here and it is even less likely you know who is following them. Each boat or ship has a series of lights that color codes who they are or what they are doing. Since NOAA Ship Pisces is restricted in maneuverability at night due to mapping, they have the right of way in most cases. It is also true that it takes longer for larger vessels to get out of the way of a smaller vessel, especially in those instances that the smaller one tries to pass a little too close. This did happen the night before. It reminds me of lifeguarding. It is mostly watching, punctuated with moments of serious activity where training on how to remain calm, collected, and smart is key.

Personal Log

It has been a privilege seeing and touching many species I have not witnessed before. Adding to the list of caught species is bonito (Sarda sarda) and red porgy (Pagrus pagrus). I always think it is funny when the genus and species is the same name. We have also seen Atlantic spotted dolphins (Stenella frontalis) jumping around. There are 21 species of marine mammals indigenous to the Gulf of Mexico, most in deep water off of the continental shelf. I also learned that there are no seals down here.

One of the neatest experiences this trip was interacting with a sharksucker (Echeneis naucrates). It has a pad that looks like a shoe’s sole that grips to create a suction that sticks them to their species of choice. The one we caught prefers hosts like sharks, turtles…and sometimes science teachers.

This slideshow requires JavaScript.

Did You Know?

Fishing boats use colored lights to indicate what kind of fishing they are doing, as the old proverb goes red over white fishing at night, green over white trawling tonight. Vessels also use international maritime signal flags for communication during the day.

Kimberly Scantlebury: It’s All About the Little Things, May 8, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 8, 2017

Weather Data from the Bridge

Time: 18:00

Latitude: 2755.757 N, Longitude: 9200.0239 W

Wind Speed: 14.21  knots, Barometric Pressure: 1015.3 hPa

Air Temperature: 24.56  C, Water Temperature: 24.4  C

Salinity: 36.37  PSU, Conditions: 50% cloud cover, light wind, seas 2-4 feet

Science and Technology Log

IMG_2969
The CTD

The CTD (conductivity, temperature, depth) array is another important tool. It goes down at each station, which means data is captured ten-twelve times a day. It drops 50 m/min so it only takes minutes to reach the bottom where other winch/device systems can take an hour to do the same. This array scans eight times per second for the following environmental factors:

  • Depth (m)
  • Conductivity (converts to salinity in ppt)
  • Temperature (C)
  • Dissolved oxygen (mg/mL)
  • Transmissivity (%)
  • Fluorescence (mg/m^3)
  • Descent rate (m/sec)
  • Sound velocity (m/sec)
  • Density (kg/m^3)

There are two sensors for most readings and the difference between them is shown in real time and recorded. For example, the dissolved oxygen sensor is most apt to have calibration issues. If the two sensors are off each other by 0.1 mg/L then something needs to be done.

Software programs filter the data to cut out superfluous numbers such as when the CTD is acclimating in the water for three minutes prior to diving. Another program aligns the readings when the water is working through the sensors. Since a portion of water will reach one sensor first, then another, then another, and so on, the data from each exact portion of water is aligned with each environmental factor. There are many other sophisticated software programs that clean up the data for use besides these two.

These readings are uploaded to the Navy every twelve hours, which provides almost real-time data of the Gulf. The military uses this environmental data to determine how sound will travel through sound channels by locating thermoclines as well as identifying submarines. NOAA describes a thermocline as, “the transition layer between warmer mixed water at the ocean’s surface and cooler deep water below.” Sound channels are how whales are able to communicate over long distances.

NOAA Ocean Explorer: Sound in the Sea 2001
This “channeling” of sound occurs because of the properties of sound and the temperature and pressure differences at different depths in the ocean. (NOAA)

The transmissometer measures the optical properties of the water, which allows scientists to track particulates in the water. Many of these are clay particles suspended in the water column. Atmospheric scientists are interested in particulates in the air and measure 400 m. In the water, 0.5 m is recorded since too many particulate affects visibility very quickly. This affects the cameras since light reflecting off the clay can further reduce visibility.   

Fluorescence allows scientists to measure chlorophyll A in the water. The chlorophyll molecule is what absorbs energy in photosynthetic plants, algae, and bacteria. Therefore, it is an indicator of the concentration of organisms that make up the base of food chains. In an ecosystem, it’s all about the little things! Oxygen, salinity, clay particles, photosynthetic organisms, and more (most we can not actually see), create a foundation that affects the fish we catch more than those fish affect the little things.  

The relationship between abiotic (nonliving) and biotic (living) factors is fascinating. Oxygen is a great example. When nitrates and phosphates wash down the Mississippi River from the breadbasket of America, it flows into the Gulf of Mexico. These nutrients can make algae go crazy and lead to algae blooms. The algae then use up the oxygen, creating dead zones. Fish can move higher up the water column or away from the area, but organisms fixed to the substrate (of which there are many in a reef system) can not. Over time, too many algae blooms can affect the productivity of an area.

Salt domes were created millions of years ago when an ancient sea dried up prior to reflooding into what we have today. Some salt domes melted and pressurized into super saline water, which sinks and pools. These areas create unique microclimates suitable to species like some mussels. A microclimate is a small or restricted area with a climate unique to what surrounds it.

IMG_3032
The ship’s sonar revealing a granite spire a camera array was deployed on.

Another great example is how geology affects biology. Some of these salt domes collapsed leaving granite spires 30-35 meters tall and 10 meters across. These solid substrates create a magical biological trickle down effect. The algae and coral attach to the hard rock, and soon bigger and bigger organisms populate this microclimate. Similar microclimates are created in the Gulf of Mexico from oil rigs and other hard surfaces humans add to the water.

Jillian’s net also takes a ride with the CTD. She is a PhD student at Texas A&M University studying the abundance and distribution of zooplankton in the northern Gulf of Mexico because it is the primary food source of some commercially important larval fish species. Her net is sized to capture the hundreds of different zooplankton species that may be populating the area. The term zooplankton comes from the Greek zoo (animal) and planktos (wanderer/drifter). Many are microscopic, but Jillian’s samples reveal some translucent critters you can see with the naked eye. Her work and the work of others like her ensures we will have a deeper understanding of the ocean.   

This slideshow requires JavaScript.

Personal Log

Prior to this I had never been to the Gulf of Mexico other than on a cruise ship (not exactly the place to learn a lot of science). It has been unexpected to see differences and parallels between the Gulf of Mexico and Gulf of Maine, which I am more familiar. NOAA scientist, John, described the Gulf to me as, “a big bathtub.” In both, the geology of the area, which was formed millions of years ago, affects that way these ecosystems run.   

Quote of the Day:
Jillian: “Joey, are we fishing at this station?”
Joey: “I dunno. I haven’t had my coffee yet.”
Jillian: “It’s 3:30 in the afternoon!”

Did You Know?

Zooplankton in the Gulf of Mexico are smaller than zooplankton in the Gulf of Maine. Larger species are found in colder water.  

why_zoo
Zooplankton under microscope (NOAA)

Kimberly Scantlebury: Our Neighbors Downstairs, May 6, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

IMG_3017
The whale legging were good luck.

Geographic Area of Cruise: Gulf of Mexico

Date: May 6, 2017

Weather Data from the Bridge

Time: 19:00

Latitude: 2821.0766 N, Longitude: 09228.2796 W

Wind Speed: 3 knots, Barometric Pressure: 1013.0 hPa

Air Temperature: 19.3 C, Water Temperature: 24.13  C

Salinity: 35.6184  PSU, Conditions: 25% cloud cover, little to no wind or waves

Science and Technology Log

This slideshow requires JavaScript.

When the Bandit reel lines go down, it becomes a fun game to guess what, if anything, is going to come up. Even at their shallowest, we are dropping thirty baited hooks (ten per reel) down 50 meters, deep enough to not see any action going on. Many times these vertical long lines are dropping over 100 meters to the seafloor.

There is a lot more radio communication than you might expect when we fish. Today, scientists Joey and Kevin swapped jobs and Kevin ran controls inside the dry lab. That person chooses what locations we are fishing and runs the operations when we do. He tells the people outside when to drop their baited lines, when there is a minute left before reeling them back, and when to “take them home.” Each of the three reels has a deckhand who radios when each step is complete such as attaching each hook to the line and lowering it to the bottom. The bridge is also in radio communication. There can also be some playful banter about who is not catching fish lately.

Sometimes you know a fish or two are on. The arc on top of the Bandit reel bends down under the stress of whatever is fighting and the orange top buoy bobs up and down against the normal flow of the waves. James, the deckhand I fish with, usually says, “I hope it ain’t no shark.” (Today we did indeed get three sharks attacking out bait when it hit the water). My reel also got seven fish the first time we tried today. This is much better than how we were doing earlier in the week. Each fish gets a numbered tag that correlates to the hook on its reel and each reel has different colored tags. Everything is written down. So far we have caught the following fish species:

IMG_3040
11.83 kg (26 lb.), female Amberjack

  • Red snapper (Lutjanus campechanus)
  • Vermilion snapper (Rhomboplites aurorubens)
  • Greater amberjack (Seriola dumerili)
  • Gray triggerfish (Balistes capriscus)
  • Goldface tilefish (Caulolatilus chrysops)
  • Spinner shark (Carcharhinus brevipinna)
  • Sharksucker (Echeneis naucrates)

According to the NOAA Fisheries Economics of the United States (2014) commercial fishermen in the Gulf of Mexico Region landed 1.1 billion pounds of finfish and shellfish, earning $1 billion for their harvest that year. In 2013, the red snapper fishery alone brought in a value of over $21 million dockside. On top of that, approximately 2.9 million recreational anglers fished in the Gulf of Mexico Region in 2014 as well. There are also fish-related industries that compound the economic effects of fisheries in the Gulf. The work that is being done is more than just understanding the ecology. Our gilled neighbors downstairs of NOAA Ship Pisces affect a lot of human lives too. It is refreshing to remember everything that is connected to our dinner.

Personal Log

IMG_3063
Practice rescue in action.

Today was a beautiful day on NOAA Ship Pisces. The wind was slight and the water was as close to mirror as I expect to see. Kevin told me that the geography of the Gulf makes for fast changing weather. It may storm up quickly, but it also means it calms down overnight too. No queasiness for anyone today!

After another delicious and varied dinner by the talented stewards we were treated to a Man Overboard drill. It was entertainment to us, but serious practice for the crew. Lieutenant Noblitt and deckhand Junior were lowered in the ship’s Zodiac boat. On the other side of the vessel Ensign Rock was suited in a wetsuit & snorkel and jumped overboard as the person to rescue. After the lookouts on the Zodiac found her, Ensign Brendel jumped in for the practice rescue.  

IMG_3069
Zodiac and crew getting back on the ship.

Quote of the Day:
Kevin: “Joey, don’t go too far.”
Joey: “Where am I going to go!?!”
Life on a boat summed up…

Did You Know?

Sometimes we get other neat things on board. Rhodolith (from the Greek “rhodo=red” and “lithos=stone”) are red algae colonies that build up upon older, dead rhodoliths over time.  We also got dead man’s fingers. This is the common name for Codium sp. 

IMG_3011
Dead man’s fingers.

IMG_3031
Rhodolith. a.k.a. My pet rock

Kimberly Scantlebury: Getting Ready to Ship Out. April 26, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 26, 2017

Weather Data from the Bridge

16806786_610426269901_2847107978351918522_n
At home in New England, where you can enjoy the mountains and the sea all in a day.

Greetings from New Hampshire! Our variable spring weather is getting me ready for the coolness at sea compared to hot Galveston, Texas, where I will ship off in a few days.

It is currently 50 F and raining with a light wind, the perfect weather to reflect on this upcoming adventure.

Science and Technology Log

I am excited to soon be a part of the 2017 SEAMAP Reef Survey. The National Oceanic and Atmospheric Administration (NOAA) writes the objective of these surveys is, “ to provide an index of the relative abundances of fish species associated with topographic features (banks, ledges) located on the continental shelf of the Gulf of Mexico in the area from Brownsville, Texas to Dry Tortugas, Florida.” The health of the Gulf is important from an ecological and economic perspective. Good science demands good research.

We will be working 12 hour shifts aboard the NOAA Ship Pisces. I expect to work hard and learn a lot about the science using cameras, fish traps, and vertical long lines. I also look forward to learning more about life aboard a fisheries research vessel and the career opportunities available to my students as they think about their own futures.

Personal Log

I’ve been teaching science in Maine and New Hampshire for eight years and always strive to stay connected to science research. I aim to keep my students directly connected through citizen science opportunities and my own continuing professional development. Living in coastal states, it is easier to remember the ocean plays a large role in our lives. The culture of lobster, fried clams, and beach days requires a healthy ocean.

I love adventure and have always wanted to “go out to sea.” This was the perfect opportunity! I was fortunate to take a Fisheries Science & Techniques class with Dave Potter while attending Unity College and look forward to revisiting some of that work, like measuring otoliths (ear bones, used to age fish). I have also benefited from professional development with The Bigelow Laboratory for Ocean Sciences and other ocean science experiences. One of the best parts of science teaching is you are always learning!

11264902_575518814721_8101743023779813565_n
Science teachers benefit from quality professional development to stay informed in their content areas.

There was a lot of preparation involved since I am missing two weeks of school. I work at The Founders Academy, a public charter school in Manchester, New Hampshire. We serve students from 30 towns, but about a third come from Manchester. The school’s Vision is to: prepare wise, principled leaders by offering a classical education and providing a wide array of opportunities to lead:

  • Preparing students to be productive citizens.
  • Teaching students how to apply the American experience and adapt to become leaders in today’s and tomorrow’s global economy.
  • Emphasis on building ethical and responsible leaders in society.

I look forward to bringing my experiences with NOAA Teacher at Sea Program back to school! It is difficult to leave my students for two weeks, but so worth it. It is exciting to connect with middle and high school students all of the lessons we can learn from the work NOAA does. My school community has been very supportive, especially another science teacher who generously volunteered to teach my middle school classes while I am at sea.

13417611_591938624291_8919445317025949442_n
I am grateful for the support at home for helping me participate in the NOAA Teacher at Sea Program.

My boyfriend too is holding down the fort at home and with Stone & Fire Pizza as I go off on another adventure. Our old guinea pigs, Montana & Macaroni, prefer staying at home, but put up with us taking them on vacation to Rangeley, Maine. I am grateful for the support and understanding of everyone and for the opportunity NOAA has offered me.

Did You Know?

NOAA Corps is one of the seven uniformed services of the United States.

NOAA is the scientific agency of the Department of Commerce. The agency was founded in 1970 by consolidating different organizations that existed since the 1800’s, making NOAA’s scientific legacy the oldest in the U.S. government.

IMG_0993
As a science teacher, it is funny that I really do have guinea pigs. Here is our rescue pig Montana, who is 7-8 years old.

Denise Harrington: Tenacity – May 7, 2016

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Pisces (In Port)
May 04, 2016 – May 17, 2016

Mission: SEAMAP Reef Fish Survey

Geographical Area of Cruise: Gulf of Mexico

Date: Saturday, May 7, 2016

Tenacity helps NOAA manage our seafood supply.

P1050630

Tenacity, otherwise known as perseverance or stamina, is a required skill at the National Oceanic and Atmospheric Administration (NOAA). Aboard NOAA Ship Pisces, we are all anxious to head out to collect data about the type and abundance of reef fish along the continental shelf and shelf edge of the Gulf of Mexico.  However, things don’t always go as planned. Much like the animals we study, scientists must rapidly adapt to their changing circumstances. Instead of waiting for a problem to be solved, fisheries biologists of all ages and experience work in the lab, using the newest, most sophisticated technology in the world to meet our demand for seafood.

As I ate dinner tonight in the mess (the area where the crew eats), I stared at the Pisces’ motto on the tablecloth, “patience and tenacity.”

P1050609

The Pisces is a “quiet” ship; it uses generators to supply power to an electric motor that turns the ship’s propeller. The ship’s motor (or a mysteriously related part) is not working properly, and without a motor, we will not sail. This change of plans provides other opportunities for me, and you, to learn about many fascinating projects developing in the lab. Sound science begins right here at the Southeast Fisheries Science Center Laboratory in Pascagoula, Mississippi.

P1050488

Kevin Rademacher, a fishery biologist in the Reef Fish Unit, meets me at the lab where he works when he isn’t at sea. As he introduces me to other biologists working in the protected species, plankton, and long line units, I begin to appreciate the great biodiversity of species in the Gulf of Mexico. I get a glimpse of the methods biologists use to conduct research in the field, and in the lab.

While it looks like a regular old office building on the outside, the center of the building is filled with labs where fish are taken to be discovered.  Mark Grace, a fisheries biologist in the lab, made one such discovery of a rare species of pocket shark on a survey in the gulf. The only other specimen of a pocket shark was found coast of Peru in 1979. Mark’s discovery raises more questions in my mind than answers.

When I met Mark, he explained that capability of technology to gather data has outpaced our ability to process it. “Twenty years ago, we used a pencil and a clipboard. Think about the 1980s when they started computerizing data points compared to the present time… maybe in the future when scientists look back on the use of computers in science, it will be considered to be as important as Galileo looking at the stars” he said. It’s important because as Mark also explains,  “This correspondence is a good example.  We can send text, website links, images, etc…and now its a matter of digital records that will carry in to the future.”

How do fishery biologists find fish?

P1050731
Charlie McVea, a retired NOAA marine biologist, and his trusty assistant Scout, pictured above, learned they may need more sophisticated equipment to locate fish.

Earth has one big connected ocean that covers the many features beneath it. Looking below the surface to the ocean floor, we find a fascinating combination of continental shelves, canyons, reefs, and even tiny bumps that make unique homes for all of the living creatures that live there.  Brandi Noble, one of 30-40 fishery biologists in the lab, uses very complicated sonar (sound) equipment to find “fish hot spots,” the kinds of places fish like to go for food, shelter and safety from predators. Fisheries sonar sends pulses of sound, or pings, into the water.  Fishery biologists are looking for a varied echo sound that indicates they’ve found rocky bottoms, ledges, and reefs that snapper and grouper inhabit.

The sonar can also survey fish in a non-invasive way. Most fish have a swim bladder, or a gas filled chamber, which reflects sonar’s sound waves.  A bigger fish will create a returning echo of greater strength. This way, fisheries biologists can identify and count fish without hurting them.

sonar fish
The circular image shows a three-dimensional map NOAA scientists created from the sonar data they collected about the seafloor and a school of fish.

Ship Pisces uses a scientific methods to survey, determining relative abundance and types of fish in each area. They establish blocks of habitat along the continental shelf to survey and then randomly sample sites that they will survey with video cameras, CTD (measures temperature, salinity, and dissolved oxygen in the water), and fishing. Back in the lab, they spend hours, weeks, and years, analyzing the data they collect at sea. During the 2012 SEAMAP Reef Fish Survey, the most common reef fish caught were 179 red snapper (Lutjanus campechanus), 22 vermillion snapper (Rhomboplites aurorubens), and 10 red porgy (Pagrus pagrus).  Comparing the 2012 data with survey results from 2016 and other years will help policy makers develop fishing regulations to protect the stock of these and other tasty fish.

How do fishery biologists manage all the information they collect during a survey?

Scientists migrate between offices and labs, supporting each other as they identify fish and marine mammals from previous research expeditions.

P1050572
Kevin Rademacher, at work in the lab.

Our mission, the SEAMAP Reef Fish Survey has been broken into four parts or legs.  The goal is to survey some of the most popular commercially harvested fish in the Gulf of Mexico.  Kevin Rademacher is the Field Party Chief for Leg 1 and Leg 3 of the survey.

Last week, he showed me collections of frozen fish, beetle infested fish, and fish on video. At one point the telephone rang, it was Andrew Paul Felts, another biologist down the hall. “Is it staying in one spot?” Kevin asks. “I bet it’s Chromis. They hang over a spot all the time.”

We head a couple doors down and enter a dark room.  Behind the blue glow of the screen sits Paul, working in the dark, like the deep water inhabitants of the video he watches. Paul observes the physical characteristics of a fish: size, shape, fins, color.  He also watches its behavior. Does it swim in a school or alone?  Does it stay in one spot or move around a lot?  He looks at its habitat, such as a rocky or sandy bottom, and its range, or place on the map.

As you watch the video below, observe how each fish looks, its habitat, and its behavior.

To learn about fisheries, biologists use the same strategies students at South Prairie Elementary use.   Paul is using his “eagle eyes,” or practiced skills of observation, as he identifies and counts fish on the screen.   All the scientists read, re-read and then “read the book a third time” like a “trying lion” to make sense out of their observations.  Finally, Paul calls Kevin, the “wise owl,” to make sure he isn’t making a mistake when he identifies a questionable fish. paul screen

Using Latin terminology such as “Chromis” or “Homo” allows scientists to use the same names for organisms. This makes it easier for scientists worldwide, who speak different languages, to communicate clearly with each other as they classify the living things they study.

I appreciate how each member of the NOAA staff, on land and at sea, look at each situation as a springboard to more challenging inquiry.  They share with each other and with us what they have learned about the diversity of life in the ocean, and how humans are linked to the ocean.  With the knowledge we gain from their hard work and tenacity, we can make better choices to protect our food supply and support the diversity of life on Earth.

 

This slideshow requires JavaScript.

 

P1050551
Spined Pygmy Shark Jaw (Squaliolus laticaudus)

Personal Log

Crew members tell me that every day at sea is a Monday.  In port, they are able to spend time with family and their communities.  I have been able to learn a bit about Pascagoula, kayak with locals, and see many new birds like the least tern, swallow tailed kite, eastern bluebird and clapper rail.  Can you guess what I ate for dinner last night?P1050747

 

 

 

 

Denise Harrington, Getting Ready for an Adventure, April 23, 2016

NOAA Teacher at Sea
Denise Harrington
(Almost) aboard NOAA Ship Pisces
May 04, 2016 – May 17, 2016

Greetings from Garibaldi, Oregon. My name is Denise Harrington and I teach Second Grade at South Prairie Elementary School in Tillamook, Oregon, along the north Oregon coast. There are 300 amazing second and third graders at our school who can prove to you that no matter how young you are, you can be a great scientist.  Last year they were caught on camera by Oregon Field Guide studying the diversity of life present in our ocean.

 

I applied to become a NOAA Teacher at Sea because I wanted to work with scientists in the field. I seem to learn best by doing.  In 2014, I joined the crew of NOAA ship Rainier, mapping the ocean floor near Kodiak Island, Alaska.  I learned how vast, connected, and undiscovered our oceans are. Students watched in disbelief after we discovered a sea floor canyon.  I learned about the technology and skills used to map the ocean floor. I learned how NOAA helps us stay safe by making accurate nautical charts.  It was, for our students and myself, a life changing experience.

As an avid sea kayaker, I was able to share my deeper understanding of the ocean with fellow paddlers. Photo courtesy of Bill Vonnegut

Now, I am fortunate enough to participate in another NOAA survey. On this survey aboard NOAA ship Pisces, scientists will be collecting data about how many fish inhabit the area along banks and ledges of the Continental Shelf of the Gulf of Mexico.
NOAA believes in the value of sharing what they do with the public, and students in particular. The crew of Pisces even let fifth grader students from Southaven, Mississippi name the ship after they won a writing contest. Maybe you can name the next NOAA ship!

On May 3, 2016, Ship Pisces will begin Leg 3 of their survey of reef fish. I have so many questions.  I asked Chief Scientist Kevin Rademacher why the many survey partners chose snapper and grouper to survey. He replied “Snapper and grouper are some of the most important commercial fisheries here in the Gulf of Mexico. There are 14 species of snapper in the Gulf of Mexico that are good to eat. Of those the most commercially important is the red snapper. It is also currently over-fished.”   When I hear “over-fished” I wonder if our second graders will have many or any red snapper to eat when they they grow up. Yikes!

Another important commercial catch is grouper.  My brother, Greg, who fishes along the Kenai River in Alaska understands why grouper is a focus of the survey. “It’s tasty,” he says. I can’t believe he finds grouper tastier than salmon.  NOAA is making sure that we know what fish we have and make sure we save some for later, so that everyone can decide which fish is the tastiest when they grow up.

I have so many questions keeping me up at night as I prepare for my adventure. What do I need to know about fish to do my job on the ship?  Will I see evidence of the largest oil spill in U.S. history, the Deepwater Horizon spill? How crowded will we all be aboard Ship Pisces? If I dissect fish, will it be gross? Will it stink?  Will I get sea sick? With my head spinning with questions, I know I am learning. Yet there is nothing more I can do now to prepare myself for all that I will learn, except to be early to the airport in Portland, Oregon, and to the ship in Pascagoula, Mississippi, on May 3rd.

I will get home in time to watch my daughter, Elizabeth, graduate from high school.  Ever since I returned from the NOAA cruise in Alaska, she has been studying marine biology and even competed in the National Ocean Sciences Bowl.

liz with a crab

 

During research in the Gulf of Mexico with the crew of Ship Pisces, I will learn about the many living things in the Gulf of Mexico and about the technology they use to protect and manage commercial fisheries.  Soon, you will be able to watch me collect data about our ocean critters. Hope for fair winds and following seas as I join the crew on Ship Pisces, “working to protect, restore, and manage the use of our living ocean resources.”

Leah Johnson: Physical and Chemical Properties of Ocean Water (There’s More Here Than Just Fish!) , July 26, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Sunday, July 26, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 34.24389
Longitude -76.6625
Water Temperature 23.75 °C
Salinity –No Data-
Air Temperature 28.6 °C
Relative Humidity 68 %
Wind Speed 12.6 knots
Wind Direction 67.01 degrees
Air Pressure 1014.8 mbar

Science and Technology Log:
The primary purpose of this cruise is to survey reef fish. Our main task is to collect data pertaining to presence and number of fish species, species length frequency, and sample materials for fish age and growth. However, other types of measurements are being made as well. For example, the CTD is an instrument that measures different properties of ocean water with depth. It is deployed every time the fish traps are dropped.

CTD instrument

The CTD sits on the starboard side of the deck of NOAA Ship Pisces.

The acronym “CTD” stand for conductivity, temperature, and depth. The instruments that measure these properties are affixed to a metal cylinder called a rosette. A range of sensors can be attached depending on what needs to be measured. Additionally, containers can be attached to the frame in order to collect sea water samples at different depths. When the ship reaches the designated coordinates, the survey technician calls to the deckhands and instructs them to use the winch to lower the CTD to a designated depth, and then haul it back up.

Deckhands assist with lowering the CTD

Deckhands assist with lowering the CTD.

Below you can see a graph of the data collected earlier in the week:

CTD Data

CTD Data

The y-axis represents depth in meters. The CTD actually measures water pressure, which is then converted to depth. Pressure and depth are directly related: as depth increases, pressure increases.

There are several different properties represented on the x-axes, shown in different colors:

light green = oxygen (mg/l)
orange = conductivity (S/m)
dark green = temperature (°C)
purple = salinity (PSU, or ppt)

What do these measurements mean? As depth increases, temperature decreases. Sunlight warms the sea surface, and wind and ocean currents distribute this heat energy throughout the upper waters. Beneath this mixed layer, temperature decreases steadily with depth. In deeper water (not at this location), this rate of change decreases and the temperature of deep ocean water is nearly a constant 3 °C. Salinity refers to the concentration of dissolved salts in the water. Average ocean salinity is 35 ppt (parts per thousand), though this varies by a few parts per thousand near the surface. Increased precipitat