Christine Webb: September 19, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 9/19/2017

Latitude: 42.2917° N (Back home again!)

Longitude: 85.5872° W

Wind Speed: 6 mph

Air Temperature: 65 F

Weather Observations: Rainy

Here I am, three weeks deep in a new school year, and it’s hard to believe that less than a month ago I was spotting whales while on marine mammal watch and laughing at dolphins that were jumping in our wake. I feel like telling my students, “I had a really weird dream this summer where I was a marine biologist and did all kinds of crazy science stuff.”

IMG_20170817_103950017_HDR

Me on marine mammal watch

If it was a dream, it certainly was a good one! Well, except for the part when I was seasick. That was a bit more of a nightmare, but let’s not talk about that again. It all turned out okay, right?

I didn’t know what to expect when signing on with the Teacher at Sea program, and I’m amazed at how much I learned in such a short period of time. First of all, I learned a lot about marine science. I learned how to differentiate between different types of jellyfish, I learned what a pyrosome is and why they’re so intriguing, I learned that phytoplankton are way cooler than I thought they were, and I can now spot a hake in any mess of fish (and dissect them faster than almost anyone reading this).

I also learned a lot about ship life. I learned how to ride an exercise bike while also rocking side to side.  I learned that Joao makes the best salsa known to mankind. I learned that everything – everything – needs to be secured or it’s going to roll around at night and annoy you to pieces. I even learned how to walk down a hallway in rocky seas without bumping into walls like a pinball.

Well, okay. I never really mastered that one. But I learned the other things!

Beyond the science and life aboard a ship, I met some of the coolest people. Julia, our chief scientist, was a great example of what good leadership looks like. She challenged us, looked out for each of us, and always cheered us on. I’m excited to take what I learned from her back to the classroom. Tracie, our Harmful Algal Bloom specialist, taught me that even the most “boring” things are fascinating when someone is truly passionate about them (“boring” is in quotes because I can’t call phytoplankton boring anymore. And zooplankton? Whoa. That stuff is crazy).

329 hobbit house 2

Phytoplankton under a microscope

Lance taught me that people are always surprising – his innovative ways for dissecting fish were far from what I expected. Also, Tim owns alpacas. I didn’t see that one coming. It’s the surprising parts of people that make them so fun, and it’s probably why our team worked so well together on this voyage.

I can’t wait to bring all of this back to my classroom, specifically to my math class. My students have already been asking me lots of questions about my life at sea, and I’m excited to take them on my “virtual voyage.” This is going to be a unit in my eighth and ninth grade math classes where I show them different ways math was used aboard the ship. I’ll have pictures and accompanying story problems for the students to figure out. They’ll try to get the same calculations that the professionals did, and then we’ll compare data. For example, did you know that the NOAA Corps officers still use an old-fashioned compass and protractor to track our locations while at sea? They obviously have computerized methods as well, but the paper-and-pencil methods serve as a backup in case one was ever needed. My students will have fun using these on maps of my locations.

They’ll also get a chance to use some of the data the scientists took, and they’ll see if they draw the same conclusions the NOAA scientists did. A few of our team were measuring pyrosomes, so I’ll have my students look at some pyrosome data and see if they get the correct average size of the pyrosome sample we collected. We’ll discuss the implications of what would happen if scientists got their math wrong while processing data.

I am so excited to bring lots of real-life examples to my math classroom. As I always tell my students, “Math and science are married.” I hope that these math units will not only strengthen my students’ math skills, but will spark an interest in science as well.

This was an amazing opportunity that I will remember for the rest of my life. I am so thankful to NOAA and the Teacher at Sea program for providing this for me and for teachers around the country. My students will certainly benefit, and I have already benefited personally in multiple ways. To any teachers reading this who are considering applying for this program – DO IT. You won’t regret it.

CWeb

Me working with hake!

Chelsea O’Connell-Barlow: To Fish Or Not to Fish?…A Question of Sound, September 4, 2017

NOAA Teacher at Sea

Chelsea O’Connell-Barlow

Aboard NOAA Ship Bell M. Shimada

August 28 – September 13, 2017

 

Mission: Pacific Hake Survey

Geographic Area of Cruise: Northern Pacific Ocean

Date: 9/04/2017

 

Weather Data from the Bridge:

Latitude: 53.59.372N

Longitude: 133 32.484W

Temperature 59 F

Wind 12.5 knots

Waves 1-2 feet

 

Science and Technology Log

After spending a few days observing what happens in the Acoustics lab and listening to our Chief Scientist Rebecca (RT) Thomas and acoustician Julia Clemons brainstorm aloud, I had one overriding question…”How do you decide when to fish?”

I asked RT this question and it is a multi-factored decision for sure, but seems like the decision could be broken down into 3 parts: what we see, what we know and what is currently happening.

What they see when deciding to fish or not is an echogram created by three acoustic sounders on the ship that send out 3 different frequency wavelengths. The image shows a relatively low frequency 18 kHz, 38 kHz, and a longer wavelength of 120 kHz. Keep in mind that sound travels faster in water than on land so this is a great way to gather information while being minimally invasive to the marine environment.

annotated bridge screens for 9.4 post

Bridge of Bell M. Shimada. The 3 screens we watch during a AWT trawl for Hake.

The backscatter, sound that scatters off of an object or its echo, on the echogram is what they look at to determine what marine life is on the transect we are scouting. As the sound wave bounces off of material in the ocean be it rock, flora or fauna it will create a spot or colored pixel on the echogram. Hake has a particular “look” of backscatter. When the echogram shows this particular hake sign we move in the direction of fishing.

Of course they only know what “hake sign” is because of gathering evidence throughout the course of this multi-year survey. During this survey they have created a huge reference database of hake sign and sign of other integral species to the hake’s environment, for example Euphausiid sp., one of the hake’s favorite food. RT and Julia have both interpreted many echograms and fished to confirm the identity the organisms that created the sign.  They are able to rule out images on the echogram until they find the backscatter that most resembles what they have historically experienced as hake.

The third part of this decision making process is the most variable…what is currently happening. As the boat travels and the sounders are sending out the trio of wavelengths an image of the ocean shelf is created. The scientists are able to see topography and measure the depths of the shelf’s different contours. The Shimada is a 209 foot long boat weighing over 2,400 tons. When deciding to trawl for hake that we suspect are present because of backscatter sign in the echogram the scientists and Commanding Officer always consider the depth to bottom, contours, wind and the maneuverability of the ship. Deploying the Aleutian Wing Trawl (AWT) net to catch hake is a task that involves cooperation and communication between the deck crew, Boatswain, bridge officers and the Chief Scientist. When RT sees a sign on the echogram that she wants to fish, she and Commanding Officer Kunicki quickly discuss the approach, wind direction and depth to get an idea on how the net will be affected and how close the ship can get to the exact sign that she wants to sample.

This is my bare bones description of the process that goes into deciding when to fish on Leg 5 of the Pacific Hake Survey. Stay tuned to see what we learn from comparing the echogram of sign to the actual yield from the AWT fishing net.

For more specifics from NOAA on the Bell M. Shimada’s acoustic and trawling capabilities https://www.omao.noaa.gov/learn/marine-operations/ships/bell-m-shimada/about

Personal Log

This ship is filled with kind, creative and industrious people. I am reminded of this constantly and appreciate this often. To me it is astounding to consider all the work and thought that is involved in a fifteen-day research survey at sea. This is a science survey so there are specific tools, computer programs and labs that must run well. To me, coming in with a science focus, this is most obvious. What I am blown away by are all of the additional layers that work together to make science even possible on this successful voyage. There are several teams at play: engineering, technology, deck, science and the bridge officers. Engineers are constantly maintaining engines, generators (this ship has 4), plumbing, ventilation and so much more. I had a tour today with Engineering Chief Sabrina Taraboletti that I am still trying to process through.

Technology is handled by one person on this ship. He maintains and trouble shoots computers in the acoustics lab, the bridge, the chemical lab and even found time to help maximize signal for the Fantasy Football draft. The deck crew is as versatile as anyone on this ship. We have two types of nets that we fish with. The deck crew is responsible for getting the nets out to fish and back in with the catch. Way easier said than done when we are talking about over a ton of weight with net, camera, chain, and doors. On top of all their other responsibilities many of the men in the deck crew have been helping out in the galley (kitchen) on this leg of the hake survey. Larry is the chief steward (chef) on board this leg and he typically has someone working with him but not on this leg of the Survey. So in addition to working their 12 hour shift, many of the deck crew have been working with Larry to prep food, clean up the mess (dining area), do dishes or even create their own personal specialties for dinner. We have been spoiled by Matt’s rockfish, Joao’s fresh salsa and soups and our Operations Officer Doug’s amazing BBQ. Liz and I even got to help out and make some donuts with Larry. Eating is great on the Shimada!

Liz & OCB makin the donuts

Liz and OCB making the donuts – thanks for the lesson Larry.

The Shimada team is rounded out with the bridge crew made up of 4 officers. The officers on a NOAA ship have a foundation of science knowledge and extensive nautical training. Before we go fishing I get to participate in the marine mammal watch up in the bridge. As I look for whales, dolphins and other marine mammals near the boat I can listen to the Captain and officers working their magic. We have had an incredibly smooth trip thus far which I credit to our Officers and of course Mother Nature.

 

 

 

 

 

 

 

 

Did You Know?

our Viperfish for blog

Who is this?

Crazy cool catch of the day…can you figure out what type of fish this is?

Here is a clue…they have specially adapted cells called photocytes that create light producing organs called photophores.  The photophores run along the sides of the fish and help them to lure prey and attract mates.

 

Answer:

This is a Viperfish.

Viperfish live in the deep ocean and migrate vertically as the day goes on in order to catch prey. They typically live around 1,500m (4,921 ft) and in the night will end up around 600m (1,969 ft) at night. This particular fish appears to have photophores along its mouth but it is difficult to be 100% sure from this specimen.

 

 

Chelsea O’Connell-Barlow: Full Steam Ahead, August 30, 2017

NOAA Teacher at Sea

Chelsea O’Connell-Barlow

Aboard NOAA Ship Bell M. Shimada

August 29 – September 12, 2017

 

Mission: Pacific Hake Survey

Geographic Area of Cruise: NW Pacific Ocean

Date: 8/30/2017

 

Weather Data from the Bridge:

Latitude: 48.472837N

Longitude: -124.676694W

Temperature 59 F

Wind 9.7 knots

Waves 3-5 feet

Science and Technology Log

We have not started fishing yet because we are heading to our first transect off the western coast of the Haida Gwaii archipelago. I thought this would be a perfect time to introduce another research project that is gathering data on the Shimada. One of my roommates, Lynne Scamman, is on-board researching Hazardous Algal Blooms (HABs).

Lynne in Chem lab

Lynne Scamman running wet chemistry tests and identifying phytoplankton.

  1. What are Hazardous Algal Blooms?

They are large numbers of phytoplankton, either diatoms or dinoflagellates, who produce toxins. Phytoplankton are essential to the ecosystem because they produce half of the global oxygen. However under certain circumstances these organisms reproduce rapidly, skyrocketing the population, this is a bloom. Some of these phytoplankton produce toxins. When the populations are low the toxins aren’t a big deal. However, when a bloom of phytoplankton that produce toxins occurs there can be health concerns for organisms exposed to the toxins. We have to consider the marine food chain and something called bioaccumulation. Phytoplankton along with zooplankton create the base of the marine food web. Organisms who eat toxin producing phytoplankton retain the toxin in their body. Then any organism who eats them will also hold that toxin. You can see how the toxin would accumulate along the food chain and potentially hold serious side effects for organisms with high levels of toxin.

  1. Why is research being done on HABs?

HABs are becoming a problem for humans along the coasts and in the Great Lakes. Basically all of the factors that contribute to the increase in HABs are a product of human impact. Global climate change, increased nutrient pollution and global sea trade are all factors contributing to the rise in Hazardous Algal Blooms. We want to monitor so that eventually we will be able to predict when, where and why the HABs will occur.

  1. Why are YOU studying HABs?

One day I walked into my college biology lab and met a guest instructor who specializes in all things phytoplankton related. I was blown away by the complexity that some of these single celled organisms held. The professor shared a few species names and I started investigating. The species that grabbed my attention is called Nematadinium armatum. This organism has a rudimentary eye called a melanosome and nematocysts for hunting, again this is pretty impressive for an organism made of one cell. Once I learned about the variety in this microscopic world and how influential they were to the health of the entire ocean, I knew that I wanted to learn more.

Personal Log

I am still figuratively pinching myself every few hours at just how amazing this experience is to participate in first hand. Yesterday we left the dock of Port Angeles at 10am and the boat hasn’t slowed down since. We did drills to ensure that all aboard knew where to go in case of fire and if we needed to abandon ship. Part of the abandon ship drill is to make sure that everyone has and can get into their Immersion Suit aka “Gumby Suit.” This suit is amazing! This portion of the Pacific is quite cold and the Immersion suit would keep you warm and buoyant until a rescue can occur.

OCB Gumby

Trying on the Immersion suit.

After our drills several of the science crew went up to the Flying Bridge to look for marine mammals. We were cruising between Cape Flattery, Washington and Vancouver Island, British Columbia with high hopes of seeing activity. WOW, we lucked out. We spotted 17 Humpback whales, 2 Harbor porpoise and 2 Dall’s porpoise. We are also seeing several types of sea birds but I am still brushing up with the Sibley to id birds from this area.

Shimada Flags

The Shimada under two flags as it enters Canadian waters.

 

Did You Know?

The island cluster that we are heading to had a name change at the end of 2009. What was formerly called Queen Charlotte Islands is now called Haida Gwaii. This name change came as part of a historic reconciliation between British Columbia and Haida nation. Haida Gwaii translated means “island of the people.”

Haida Gawaii

Map of Haida Gawaii area.

Chelsea O’Connell-Barlow: Get ready, get set, SAIL!!! August 26, 2017

NOAA Teacher at Sea

Chelsea O’Connell-Barlow

Aboard NOAA Ship Bell M. Shimada

August 28 – September 13, 2017

 

Mission:  Pacific Hake Survey – Leg V

Geographic Area of Cruise:  Northwest Pacific Ocean, off the coast of Washington

Date:  August 26, 2017

 

Weather from the Bridge…or Backyard

At home in Decatur, GA we are celebrating a weekend break in the humidity.  The sun is shining and the sky is filling with a variety of imagination provoking Cumulus clouds.

Latitude:  33.767782

Longitude:  -84.299283

Wind Speed: 6mph

Wind Direction:  E

On Monday I will travel 2,759 miles to Port Angeles, WA where I will board the Bell M. Shimada.  I look forward to cooler temperatures and the invigorating salty air.

 

Science and Technology Log:

I have yet to meet the scientists and crew of the Shimada so I have no first hand info to share.  However this is a great opportunity to introduce the main focus of this survey… Merluccius productus, Pacific Hake.

Pacific Hake or Pacific Whiting (photo courtesy of http://www.nmfs.noaa.gov/)

(photo courtesy of http://www.nmfs.noaa.gov/)

Pacific Hake is an important species to both humans and many species in the marine ecosystem off of the Pacific Northwest coast of both the United States and Canada.  There is a cooperative effort to manage these fish that involves the governments of both the U.S. and Canada, fisheries scientists and fisherman.  Such a collaboration and intentional effort  amongst so many groups is a great model and example for other issues at large.  Here is some background reading related to the Pacific Hake Survey.

Personal Log:

I have taught middle school science at Renfroe Middle School (RMS) in the City Schools of Decatur for 10 years.  Renfroe is full of wonderfully intelligent, thoughtful and supportive people – students and staff.  Currently, I work with 7th grade students as we explore ecology, evolution, genetics, cells and anatomy.  I am thrilled to have this adventure at sea to share with my students and friends.  I look forward to bringing back real-world research and developing curriculum that we can ALL benefit from.

As an inquisitive and adrenaline hungry person I love the combination of adventure and challenging work, so I am thinking that my time on the Bell M. Shimada may be about as ideal of a learning opportunity as I could imagine. In addition to being a classroom teacher at RMS, I also work as a Mentor in The Nature Conservancy’s Leaders in Environmental Action for the Future (LEAF) program. LEAF provides an opportunity for Mentors and Interns to spend an intensive month focused on all aspects of conservation. This program encourages all involved towards hands-on environmental stewardship experiences and to broaden the boundaries of our comfort zone.  For both my RMS students and LEAF mentees I take this Teacher At Sea opportunity to put into action the message that I often share with them…learning is a life long goal and risk-taking is a way to enhance the connection that you feel with the world.

I want to thank my colleagues and students for a heart warming send-off and I promise all plenty of awesome photos and updates to come.

Teacher At Sea RMS send-off

A lovely RMS bon voyage complete with oodles of creative & pun filled cards.

 

Did you know?

According to Atlas Obscura, in 1914 the town of Port Angeles had such an issue with sewage flooding that they opted to raise one of the town’s main streets by 10-14 feet.  This engineering challenge was accomplished by moving soil from a neighboring hill completely by hand…no mechanical interventions.  To this day you can tour the underground areas and see store fronts frozen in time.  This lovely seaside town is where I will embark on my voyage.

 

Christine Webb: August 23, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/23/2017

Latitude: 48.19 N

Longitude: 125.29 W

Wind Speed: 7.9 knots

Barometric Pressure: 1021.70 mBars

Air Temperature: 62.1 F

Weather Observations: Partially cloudy

Science and Technology Log

For today’s science and technology log, I interviewed my roommate Tracie. You only have to talk to Tracie for five seconds to learn that she’s passionate about marine chemistry and marine biology and marine physics…all things marine. She’s the HAB (harmful algal bloom) specialist on board, and she’s been squirreled away in the chemistry lab every day collecting lots of great samples as we travel up the coast. Before we left Newport, she taught me a bit about algae by taking me to the beach to see some bioluminescent dinoflagellates. When we stomped in the water, the dinoflagellates would glow! It looked like puddles full of blue lightning bugs, and it was amazing. One of her quotes from that night was, “I imagine this is what unicorn footprints would look like if they were traipsing over rainbows.” Everyone should have the chance to see that at some point in their life. It gave me a taste of why it makes sense to be so passionate about algae. So, without further ado, here’s your chance to learn a bit more about HABs from my friend Tracie!

  1. What is a HAB, and why should we care about them?

HABs are phytoplankton that have negative consequences either for us or the ecosystem. Some can release neurotoxins that can be damaging to mammals (including humans), amongst other things. A harmful algal bloom (HAB) can also create a dead zone by a process called eutrophication. Bacteria eat the phytoplankton once they begin to die, which removes oxygen from the water.

  1. What makes it a bloom?

A “bloom” is when there is so much algae that the ecosystem can’t support it and they start to die off. There aren’t enough nutrients available in the water. Some people call this a “Red Tide.” There are certain species, such as Alexandrium spp., where even one cell per liter would be enough to create a harmful effect.

  1. What made you decide to study HABs?

During a lab in college, we were allowed to go to the beach and sample phytoplankton. When we got back to the lab with our samples, we found a huge amount of Pseudo-nitzschia spp. It releases a neurotoxin that gives mammals amnesiac shellfish poisoning. That year, we couldn’t eat shellfish and crab from our area because of this bloom. There’s no antidote to this toxin, and it affects the brain function of mammals who eat it. Whales died that year because they forgot how to breathe. This made me super interested in studying more about these types of species.

  1. What are you specifically hoping to find in your research aboard this cruise?

We’re trying to find where blooms start, how blooms begin, and follow them within the California Current system. It’s part of an ongoing study of the California Current system and how species are transported. California fisheries have been dramatically affected by HABs.

  1. Have you been finding what you need so far?

It’s been really interesting…we’ve seen quite a few Dinophysis species (which I find to be the cutest), and some really interesting Pseudo-nitzschia spp., but no blooms. Close to the coast, within 15 nm of shore, I see a lot more diversity in my samples. This is mostly due to upwelling.

  1. Has anything in your research so far surprised you?

There are very few species that I haven’t recognized, which is interesting because we’re so far north. We have fjord-like environments up here by Vancouver Island, so I expected there to be a higher abundance of phytoplankton up here than I saw.

  1. What is a common misconception about HABs?

The term “HAB” itself – they’re called harmful because they’re harmful to us as humans and to various industries, however – they provide a huge amount of support to other animals as primary producers and as oxygen producers.

They’re basically plants that can swim, and they’re all food for something. They’re not harmful for most things, so the name is kind of a misnomer. In defense of the HABs, they’re just trying to survive. Phytoplankton are responsible for around 50% of the world’s oxygen, and they’re the primary producer for marine and freshwater ecosystems.

  1. Anything else you want people to know?

There’s still a lot that we need to learn, and I would like everyone at some point in their life to see how beautiful these fragile organisms are and appreciate how much they contribute to our world.

  1. If you weren’t a marine chemist, what would you be?

I would write nonfiction about the beauty of the world around us. Or maybe I’d be an adventure guide.

  1. What are some fun facts about you that not a lot of people know?

My motto for life is “always look down.” There’s so much around us, even the dirt under our toes, that is so full of life and beauty.

My art is on Axial Seamount, 1400 m below sea level, 300 miles off the coast of Oregon! I drew an octopus high-fiving ROPOS the ROV that placed it there!

Also, I’m a high school dropout who is now a straight-A senior in environmental science at the University of Washington, Tacoma. Other people’s perceptions of you don’t control your destiny.

Here are a couple pictures of some of the HABs Tracie has seen during this trip (she took these pictures from her microscope slides):

329 D. fortii

Algae under the microscope: D. fortii. Image by Tracie.

329 hobbit house 2

Algae under microscope. Image by Tracie.

Personal Log:

Since today’s science log was about Tracie, I’ll feature her in the personal log too! She’s my partner in the ship-wide corn hole tournament, and we won our first-round game yesterday. Look at these awesome corn hole boards that were specially made for the Shimada!

IMG_20170822_153718727

Shimada corn hole board!

We mostly credit our fabulous war paint for the win. Today we play against our fellow scientists Lance and Tim. Wish me luck!

corn hole victory

Christine and Tracie celebrate corn hole victory

Another down-time activity that Tracie (and all the scientists) enjoy is decorating Styrofoam cups. The cool marine biologist thing to do is to sink them to very low ocean depths (3000+ meters). Apparently the pressure at that depth compresses the Styrofoam and shrinks it, making the cup tiny and misshapen but still showing all the designs that were put on it. I’m not kidding: this is a thing that all the marine biologists get really excited about. Tracie even decorated a Styrofoam head (the kind that cosmetologists use) in advance of this trip and brought it with her to sink. Look how cool it is – she’s an amazing artist!

IMG_20170824_171631958_HDR

Styrofoam head, decorated by Tracie, for shrinking

There are shrunken heads in the lab already from other people who have done this. Sinking Styrofoam is a legit marine biology hobby. Well, as the saying goes, “When in Rome…” so I worked on a Styrofoam cup today. I’m making a hake tessellation, which takes longer than you might think. Here’s what I’ve got so far:

IMG_20170823_051528993

Styrofoam cup decorated with hake tesselation

We’re having lots of fun at sea on this beautiful day. Someone just came over the radio and said there’s been a marine mammal sighting off the bow…gotta go!

Special Shout-out:

A special shout-out to Mrs. Poustforoush’s class in Las Vegas, Nevada! I just found out you’ve been following this blog, and it’s great to have you aboard. If you have any questions about algae (from this post) or about life on a ship, please feel free to e-mail me. I can hopefully get your questions answered by the right people. Work hard in Mrs. Poustforoush’s class, okay? She’s a great teacher, you lucky kiddos. Learn a lot, and maybe one day you can be a scientist and live on a ship too!

Christine Webb: August 21, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/21/2017

Latitude: 49.48 N

Longitude: 128.07 W

Wind Speed: 10 knots

Weather Observations: Sunny

Science and Technology Log

Today was our first chance to use the Methot net, and it was a lot of fun! The Methot net is smaller than the net that we usually use, and it is used to catch smaller organisms. Today we were targeting euphausiids. We thought we saw a pretty good aggregation of them on the 120 kHz acoustics data, where they appear the strongest of the three frequencies we monitor. We needed to validate that data by trawling the area to find the source of the backscatter and make sure they really were what we thought they were. There are many scientists who use data on euphausiids, so this was a good opportunity to provide them with some additional data. Because we’ve been working mostly on larger organisms, I was excited for the chance to see what a Methot net would pull up.

IMG_20170821_125553193_HDR

The Methot net coming up with its haul

It was very exciting that when the net came up, we had TONS of euphausiids! (“Tons” here is not used in a literal sense…we did not have thousands of pounds of euphausiids. That would have been crazy). Although we did not have thousands of pounds of them, we did have thousands of specimens. I’m sure thankful that we only had to take data on a subsample of thirty! I got to measure the lengths and widths of them, and using the magnifying lenses made me look very scientific.

IMG_20170821_145225093

Measuring euphausiids

Along with euphausiids, we also found other species as well. We found tiny squids, jellies, and even a baby octopus! It was adorable. I’ve never considered that an octopus could be cute, but it was.

IMG_20170821_131649146

Baby octopus

We also measured volumes and weights on samples of the other specimens we found, and I used graduated cylinders for the first time since college. We would put in a few milliliters of water, add our specimens, and then calculate the difference. Voila! Volume. Good thing I remembered to call the measurement at the bottom of the liquid’s meniscus… I could have messed up all the data! Just kidding… I’m sure my measurements weren’t that important. But still – good thing I paid attention in lab skills. It was definitely a successful first day with the Methot net.

Personal Log

The big buzz around the ship today was the solar eclipse! I was even getting excited at breakfast while I ate my pancakes and made them eclipse each other. We got lucky with weather – I was nervous when I heard the foghorn go off early in the morning. Fortunately, the fog lifted and we had a pretty good view. We all sported our cheesy eclipse shades, and the science team wore gray and black to dress in “eclipse theme.” Even though we couldn’t see the totality here, we got to see about 85%. We’re pretty far north, off the coast of Vancouver Island in Canada. The mountains are beautiful! Seeing land is always a special treat.

Here are some eclipse pics:

IMG_20170821_091709694

Rockin’ our cheesy eclipse shades

IMG_20170821_101636324

Some science team members enjoying the eclipse

IMG_20170821_100819772

Eclipse!

The eclipse would have made the day exciting enough, but the excitement didn’t stop there! While the scientists and I were working in the wet lab, we heard that a pod of orcas was swimming within eyesight of the ship. We dropped everything and hurried to take a look. It was so amazing; we could see five or six surface at once. They must have been hunting. We only see orcas when we’re close to land because their prey doesn’t live in deeper waters. Deeper into the ocean we are more likely to see gray or humpback whales.

It’s almost time for dinner…we sure have been spoiled for food! Last night we had pork loin and steak. I’m not sure that our chef will be able to top himself, but I’m excited to find out. I have heard rumors that he is very good at cooking the fish we’ve been catching, and that really makes me wish I liked seafood. Unfortunately, I don’t. At all. Not even enough to try Larry’s fried rockfish. Luckily, he makes lots of other food that I love.

Tonight after dinner I think Hilarie, Olivia, and I are going to watch Pirates of the Caribbean 2. Last night we watched the first movie while sitting on the flying bridge. It was a pretty cool experience to feel the spray of the sea while watching pirates battle!

IMG_20170820_174605473_HDR

Movie time!

That’s all for now; I’ll be back with more scientific fun soon!

Did you know?

Krill (the type of euphausiid we studied) is one of the most populous species on earth. It basically fuels the entire marine ecosystem.

 

Christine Webb: August 19, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/19/2017

Latitude: 48.59 N

Longitude: 126.59 W

Wind Speed: 15 knots

Barometric Pressure: 1024.05 mBars

Air Temperature: 59 F

Weather Observations: Sunny

Science and Technology Log:

You wouldn’t expect us to find tropical sea creatures up here in Canadian waters, but we are! We have a couple scientists on board who are super interested in a strange phenomenon that’s been observed lately. Pyrosomes (usually found in tropical waters) are showing up in mass quantities in the areas we are studying. No one is positive why pyrosomes are up here or how their presence might eventually affect the marine ecosystems, so scientists are researching them to figure it out. One of the scientists, Olivia Blondheim, explains a bit about this: “Pyrosomes eat phytoplankton, and we’re not sure yet how such a large bloom may impact the ecosystem overall. We’ve already seen that it’s affecting fishing communities because their catches have consisted more of pyrosomes than their target species, such as in the shrimp industry.”

IMG_20170817_100329068

Sorting through a bin of pyrosomes

Pyrosomes are a type of tunicate, which means they’re made up of a bunch of individual organisms. The individual organisms are called zooids. These animals feed on phytoplankton, and it’s very difficult to keep them alive once they’re out of the water. We have one alive in the wet lab right now, though, so these scientists are great at their jobs.

We’ve found lots of pyrosomes in our hake trawls, and two of our scientists have been collecting a lot of data on them. The pyrosomes are pinkish in color and feel bumpy. Honestly, they feel like the consistency of my favorite candy (Sour Patch Kids). Now I won’t be able to eat Sour Patch Kids without thinking about them. Under the right conditions, a pyrosome will bioluminesce. That would be really cool to see, but the conditions have to be perfect. Hilarie (one of the scientists studying them) is trying to get that to work somehow before the trip is over, but so far we haven’t been able to see it. I’ll be sure to include it in the blog if she gets it to work!

One of the things that’s been interesting is that in some trawls we don’t find a single pyrosome, and in other trawls we see hundreds. It really all depends on where we are and what we’re picking up. A lot of research still needs to be done on these organisms and their migration patterns, and it’s exciting to be a small part of that.

Personal Log:

The science crew continues to work well together and have a lot of fun! Last night we had an ice cream sundae party after dinner, and I was very excited about the peanut butter cookie dough ice cream. My friends said I acted more excited about that than I did about seeing whales (which is probably not true. But peanut butter cookie dough ice cream?! That’s genius!). After our ice cream sundaes, we went and watched the sunset up on the flying bridge. It was gorgeous, and we even saw some porpoises jumping in the distance.

It was the end to another exciting day. My favorite part of the day was probably the marine mammal watch where we saw all sorts of things, but I felt bad because I know that our chief scientist was hoping to fish on that spot. Still, it was so exciting to see whales all around our ship, and some sea lions even came and swam right up next to us. It was even more exciting than peanut butter cookie dough ice cream, I promise. Sometimes I use this wheel to help me identify the whales:

IMG_20170818_094058774_HDR

Whale identification wheel

Now we’re gearing up for zooplankton day. We’re working in conjunction with the Nordic Pearl, a Canadian vessel, and they’ll be fishing on the transects for the next couple days. That means we’ll be dropping vertical nets and doing some zooplankton studies. I’m not exactly sure what that will entail, but I’m excited to learn about it! So far the only zooplankton I’ve seen is when I was observing my friend Tracie. She was looking at phytoplankton on some slides and warned me that sometimes zooplankton dart across the phytoplankton. Even though she warned me, it totally startled me to see this giant blob suddenly “run” by all the phytoplankton! Eeeeep! Hopefully I’ll get to learn a lot more about these creatures in the days coming up.