Justin Garritt: I Came, We Fished, I Learned. . . 2 Amazing Weeks Aboard Shimada: September 14, 2018

NOAA Teacher at Sea
Justin Garritt
NOAA Ship Bell M. Shimada
September 1-14, 2018

Mission: End of Hake Research

Geographical area of cruise: Seattle, Washington to Newport, Oregon

Date: September 11-14, 2018: Day 11-14

Location: Off the coast of Newport, Oregon. End of research cruise.

IMG_E1260[1]

Throughout my life there have been moments when I recognize I am in the presence of something truly unique and special. Moments when I realize just how beautiful our planet can be. Moments I know will be engraved in my brain as life passes by. Hiking Zion National Park, night boat riding down the beautiful Saint Lawrence Seaway in the heart of the Thousands Islands, the view on top of Whiteface Ski Mountain, climbing the mountain islands in Greece, landing a helicopter on an Alaskan glacier, gigantic waves crashing in on an empty Puerto Rican beach with nothing but the moon in sight, taking a train ride up the gigantic Alps, and color of the fall leaves over the Castleton University skyline in Vermont are just a few of those moments I have been so privileged to have experienced in my short life. Monday evening, I got to add another new nature wonderland experience aboard the NOAA Bell M Shimada.

It was 5:15pm and I was eating a terrific dinner when one of the scientists came in the galley to tell us fishing was on hold because of the abundance of marine wildlife that was surrounding our ship. I immediately ran upstairs to check it out. When I stepped in the bridge (command room of the ship) the first thing I noticed was the beautiful blue skies with a touch of clouds and the sun that set the stage for the spectacle. My ears rang with the crashing waves against the boat and seagulls squawking in the background. As I looked over the side of the boat there were two pairs of dolphins synchronized swimming all around the ship. After a few minutes, three California sea lions came floating by on their backs waving at the passing ship. Another minute later, the dolphins came back for their encore followed by a spray of a Humpback whale spouting directly behind it. As the whale came closer it swam gracefully in an up and down pattern until it bent its massive dinosaur-like body down followed by its tail flipping over as it took a deep dive below the surface. As soon as the whale took the dive another pair of sea lions came floating by smiling as they took in the heat of the sun. Before I could look again, a Pelagic Cormorant landed directly in front of me on the ship. Right after I took a picture of that I looked up and saw at least fifteen spouts surrounding the ship like a spectator would see at the Bellagio Hotel light show in Las Vegas. For the next hour whale after whale surfaced, spouted, and even breached behind the beautiful blue sky backdrop. No matter where I looked I was seeing whales grace our presence. No camera could capture the magic of that hour as I ran from side to side on the viewing tower above the bridge to soak in as much of this experience as possible. I was in awe at the majesty of the sea creatures. As the ship made its way through the evening and to sunset, the whales slowly trickled off beyond sight as the sun came down in the background. Hope that future generations can experience this beauty for centuries to come.

This slideshow requires JavaScript.

 


 

The reality is the ever growing world’s population consumes large amounts of fish.  The Food and Agriculture Organization of the United Nations states that in 2016, the global seafood trade was worth $140 billion. In the US it is estimated that 1.5 million people are employed by the fishing industry. That is a lot of communities and families that rely on the resources in our water systems. Throughout the week I learned that so much of the work of NOAA is not limiting the growth and catch of our fishermen/fisherwomen, but it is to ensure there is a fish population to catch and future generations can experience what I was able to experience these past two weeks. Part of NOAA’s mission is to conserve and manage coastal and marine ecosystems and resources. Having the most high tech equipment constantly being researched to seek improvements mixed with “ground truthing (catching and surveying)” to analyze different species is crucial for the future of the world’s fisheries.

Two weeks ago I wrote about the main goals for this research cruise. The first was to gather data to study the impact of the US 32mm net liners and the CANADIAN 7mm net liners. The second was to compare the old acoustic equipment called the EK60 with the new equipment called the EK80. Throughout the last two legs of the trip, scientists have gathered data and will be working on analyzing it over the coming months to make better conclusions on these goals. The vision is for someday to reduce the number of surveying trawls needed to determine the population of fish, and instead, use this highly advanced acoustics equipment instead. If those ships are filled with as curious, hardworking, and focused people as the people I met on this ship, I am confident we will be able to obtain this goal in the future.

Here are some pictures from the final 3 days of fishing and exploring the ship:

IMG_1367
Reading the acoustics for hake

 

Bringing my experience back to the classroom:

Throughout the past two weeks I constantly thought about how I can bring my experience back to my students in Baltimore. My students receive half the amount of hours of science instructional time than math and reading. After much reflection I decided to use the same core standards we are obligated to teach but begin rewriting most of the 6th grade statistics unit. At the start of the unit I will begin with the purpose of NOAA, pictures of my trip, and exciting stories from my adventure. From there I will have investment in the subject from my students which will allow me to dive in to applying data collected at sea to find: mean, mode, range, variability, mean absolute deviation (MAD), and interquartile range (IQR). We will also be able to use real live data to create histograms, frequency tables, box and whisker plots, and dot plots.  I believe it will be exciting for them to have the opportunity to apply required statistical concepts to learning how NOAA (along with others) survey our fish population so species will survive for generations to come. It will also make our school’s 6th grade teacher, Mr. Davis, very happy!

rfgfg
An example of my change in classroom instructional materials to teach Box Plots with data from the research cruise.

At any given moment, there are thousands of NOAA employees studying our environment across the globe. I had the honor of sailing with incredibly intelligent and hardworking people who are dedicated to the mission. From them, I learned so many valuable things that I will carry with me as I disembark on Friday.

Chief Scientist, Rebecca Thomas was an excellent manager/role model. She taught me that leading through kindness, support, trusting others, and giving people rest will produce better and more accurate results than pushing people past their limitation.

 

Chief Scientist Rebecca Thomas

Scientist Steve de Bluis encouraged me to maintain a hobby outside of work that you love. Steve loves to fly planes and dive and talked about these trips all the time. You can tell how much joy it has brought him and how excited he is to continue to dive well into his retirement in a few years. He was also a BEAST in the wet lab!

IMG_1382

Roommate and Future Scientist Charlie Donahue taught me the importance of accuracy over speed. He constantly pushed me to be sure the data we were collecting was as accurate as possible. He never let speed and efficiency take away from quality. For those of you who know me, this is certainly an important push for me!

img_1390.jpg

Scientist John Pohl taught me about supporting newcomers. He was the first guy I met aboard and always spent time breaking down complicated science topics for me.

IMG_1086[1]
Scientist John Pohl analyzes the depth of the net vs. the acoustic picture on his screen
Scientist Melanie Johnson taught me about working through chaos with calmness. She has been on both commercial and scientific ships and constantly kept calm during any situation that arose.

IMG_1291

Scientist Dezhang Chu (Super Chu) taught me about focus. No matter what was going on “Super Chu” always kept a clear view of his own goals and purpose aboard and stayed focused on the prize. Chu was also super hard working and was in the acoustics lab at 6:30am when I went to the gym and still in on his computer analyzing data from the day when I returned from yoga at 10pm. I think he could even give KIPP Ujima Resident-Principal Reese a run for it in terms of work ethic!

Volunteer Scientist Heather Rippman  taught me about service and life-long learning. Heather commits herself to volunteering for important science missions across the country. After leaving an executive position with Nike, she now travels and volunteers to learn all she can about marine science and give back to the marine science community. She shared so much knowledge with me and was the first person to teach me how to dissect hake.

Master Chef Arnold Dones reminded me about the power of food bringing people together. At exactly 7am, 11am, and 5pm, roughly 40 people from all over the country with all types of jobs aboard came together to feast. Arnold made that happen because of the pride he takes in his craft.

Chef Arnold

Chief Engineer Sabrina Taraboletti spent 3 hours with me on our last day to show me the massive engine room. She explained what every piece of equipment does below deck. I learned the science behind creating freshwater from sea water. I learned the regulations behind sewer and contaminants. The best part was climbing to the bottom of the ship and watching the shaft that makes the propeller turn move. Her team of engineers barely see daylight and work long hours to make sure the ship moves safely and all the amenities and scientific research equipment works flawlessly. She keeps the morale of her team high, keeps an impressively organized work space that is approximately the size of over a dozen typical garages, and is one of the most knowledgeable professionals I ever crossed paths with.


How to apply for the Teacher At Sea Program:

Ms. Ellmauer is a 25 year veteran science teacher from my hometown of Liberty, NY. She was also my high school ski coach. She has been following my blog and reached out about information on how to apply. I am humbled to see so many teachers and school officials reading my blog from across the country so I thought I would pass on the website with information about the program and how to apply for this once in a lifetime experience. Please reach out to me at JAGarritt@gmail.com if you have any questions.

https://teacheratsea.noaa.gov/#/home/


Tomorrow we pull in to Newport, Oregon, and the research cruise will come to an end. Thank you to the nearly one-thousand readers who have been following my journey. I am grateful for your support.

Good bye for now, until I hopefully sail again a part of the NOAA Teacher At Sea Alumni Program,

Justin

 

Justin Garritt: Paired Trawling, X-raying, and The Galley Master: September 11, 2018

NOAA Teacher at Sea

Justin Garritt

NOAA Ship Bell M. Shimada

September 1-14, 2018

Mission: Hake Research

Geographical area of cruise: Seattle, Washington to Newport, Oregon

Date: September 9-11, 2018: Day 7-9

Location: West of the Columbia River and Astoria, Oregon

 

Where Are We? After fishing off of the Straits of Juan de Fuca on Friday and Saturday, we headed south.  We ended up west of the Columbia River off the coast of Astoria, Oregon and continued to fish for a few days.

 

The fishing and sampling continues: A typical day consists of the scientists waking up before sunrise to begin scouting for fish. We use the information from the acoustic transducer to find fish.

Chief Scientist Rebecca Thomas
Chief Scientist Rebecca Thomas spots signs of fish on the sonar
sonar from the acoustic transducer
The sonar from the acoustic transducer showing signs of fish

Paired Trawling: Last week I wrote about our goals of the cruise. One of them was to perform paired trawls to determine net size impact to evaluate the differences between the US 32mm net liners and the Canadian 7mm net liners. A paired trawl is when we fish approximately the same location and depth two times using two different size liners. Data is collected on the size, characteristics, and species of fish being caught to eliminate the possibility that there is bias in the data between the two liners. Below are pictures of the nets being sent in and brought back based on information from the sonars. This typically happened 2-4 times per day (1-2 paired trawls).

 

Sorting the Fish Aboard:

rockfish photo shoot
A rockfish photo shoot 🙂

How We Collect Data:

When fish come aboard we follow this flow chart to determine what analysis needs to be done on the catch.

img_11131
Our instructional chart for how we analyze the hake and other species

Hake is the majority of the fish we catch. It is also the main species we are researching this cruise.

A random sample of 250 are set aside and the rest are sent back in to the ocean. Of the approximately 250 random hake, 30 are dissected for enhanced sampling (length, weight, sex, maturity, and other projects).

220 are set aside for sex/length analysis. All other species of fish must be logged into the computer and some are kept for special research projects. See pictures below:

Male vs. female hake distinction:

Determining the length of the hake:

Enhanced sampling (length, weight, sex, maturity, and other projects):

IMG_1251
Dissecting the hake to enhance sample

Special Projects: There are also a number of special projects going on aboard:

Fish X-ray: Scientist Dezhang Chu x-rays samples of fish occasionally. The x-ray is used to determine the volume of the swim bladders in certain species of fish (see picture below). The volume of different species’ swim bladders affects the observed acoustics. I spoke to him about the purpose of this study. He said that the present acoustic transducers are great to capture whether fish are present below the ship’s surface but are still not able to classify the type of species being observed. He is working on a team that is trying to use x-ray’s from multiple species to solve that problem. When asked how long he thought it may take for there to be an acoustic system advanced enough to better predict the species onscreen, he said, “People have and will continue to spend their entire careers on improving the system.” If we have more scientists like Dr. Chu on this project, I predict it will be much sooner than he leads on.

"Super Chu"
“Super Chu” and I with his new apron I made him for x-raying

Filming the Catch: Melanie Johnson leads the science team’s visual analysis. During each trawl a camera is placed securely on the net. The purpose of the net is to analyze approximately which depth and time certain fish enter the net.

fish entering the net
Camera footage of fish entering the net

———————————————————————

Getting to know the crew: As promised in other blog posts, here is another interview from the incredible crew aboard  NOAA Ship Bell M. Shimada who continue to make my journey such a rich experience:

Mr. Arnold Dones, Head Chef

Arnold Dones is our head chef or what I like to call him, “Master Chef.” Since the minute I’ve been aboard I quickly noticed the incredible work ethic and talent of our chef. To be clear, every meal has incredible! When I spoke to my mom a few days into the cruise my exact words were, “The food aboard is better than a buffet on a cruise ship. I expected to come aboard for two weeks and lose a few pounds. Well that’s not going to happen!”

Chef Arnold
Chef Arnold and his incredible food artwork

Arnold was born in the Philippines and his family migrated here when he was twenty. When he first got here he knew very little English and worked hard to learn the language and the American culture. He worked a few odd and end jobs until he joined the United States military as a chef. During his first years in the military, he showed so much promise as a chef that he enrolled in “A School” which allowed him to learn how to be a master chef in the military. He spent more than a decade working on military vessels. His last ship placement was aboard the USS Ronald Reagan where he and his team prepared meals for 6,000 soldiers per meal. Two months ago he joined the NOAA Ship Bell M. Shimada family as head chef.  Arnold has two children and a wife who live back in San Diego.

After a tour of the galley with Arnold, I learned how much work it takes to pull 42 meals in 14 days for over 40 crew members without a supermarket nearby. A few weeks out, Arnold has to create his menu for the next cruise leg (typically two weeks). He then has to order the food required to make the meals and do so by staying under a strict budget. When the ship ends a leg and pulls in to port, a large truck pulls up and unloads all his ordered food in large boxes. He then organizes it in the order he plans to prepare it in his large freezer, refrigerator, and store rooms. The trick is to be sure his menu is organized so nothing spoils before it is used.  Arnold’s day begins at 05:00  (5am) and goes until 19:00 (7pm) with a short break after lunch. The only days off he has is a day or two once every two weeks when the boat is in port.

Here is a sample menu for the day:

Breakfast (7-8am)- Eggs benedict, blueberry pancakes, french toast, hash browns, scrambled eggs, oat meal, cut fresh fruit, and breakfast danish.

Lunch (11-12pm)- Bacon wrapped rockfish, chicken wings, Chinese noodles, brussel sprouts, bread, a large salad bar, homemade salads, avocado, bean salad, homemade cookies, and ice cream.

Dinner (5-6pm)-  Stuffed pork chops with spinach and cheese, fine braised chicken thigh, baked salmon, Spanish rice, oven potatoes, peas, dinner rolls, a large salad bar, homemade salads, homemade apple pie, and ice cream.

Snack (24/7)- Soup, crackers, ice cream, and salad/fruit bar

We dock in Newport, Oregon on Friday, September 14, 2018. My final post will be on Friday. Thank you for continuing to follow along in this journey. I am grateful for your support and for the amazing people I have met aboard.

Justin

 

Justin Garritt: Precision in Science is Key. Calibrating Day and Ship Tour, September 5, 2018

NOAA Teacher at Sea
Justin Garritt
NOAA Ship Bell M. Shimada
September 5, 2018

Topic Today: Calibrating the Equipment and ship tour

Geographical area of cruise: Seattle, Washington to Newport, Oregon

Today’s Location and Weather: Beautiful sunny skies calibrating in Elliot Bay, Seattle, Washington

Date: September 5, 2018

This slideshow requires JavaScript.

Today’s blog will focus on calibration and a tour of the beautiful ship.

Calibration is the act of evaluating and adjusting the precision and accuracy of measurement equipment. It is intended to eliminate or reduce bias in an instrument’s readings. It compares the standard measurement with the measurement being made by the equipment. The accuracy of all measurements degrade over time by normal wear and tear. The purpose of calibration is to check the accuracy of the instrument and with this information, adjustments can be made if it is out of calibration. The bottom line is that calibration improves the accuracy of the measurement device which improves quality.

We calibrate many things in life. For an example, many teachers at my school have smart boimagesards or promethean boards. These boards are interactive white boards that allow teachers to teach using more interactive tools. As a math teacher, I have had a promethean board in my classroom which acts like a large touch screen computer that I take notes on, teach lectures on, give student feedback on, and play math games on.

calibrating
A teacher calibrating their smart board in a classroom

They have improved the learning experience for students in my class and across the globe. In order for the screen to work most accurately, we must perform routine calibrations on the board. If we don’t, there is often errors and where we touch the screen is not what actually shows up on the board. When these errors begin to occur, we must calibrate the board or else we won’t be as accurate when writing on the board.

cal2

Police officers and military personnel must also use calibration in their work. Officers must routinely calibrate their weapons for accuracy. When at a safe and secure range, officers will “site-in” their weapons to determine if their scope is accurate. They will then make modifications to their weapons based on the calibration tests. This is another form of calibrating that improves the quality and accuracy of the equipment.

On board the NOAA Ship Bell M. Shimada, calibration typically happens at the start and end of most legs. Sometimes the Chief Scientist will also make the decision to calibrate mid-leg. For the past two days we have been spending 12 to 15 hours per day calibrating the equipment to ensure the most accurate research can be completed and we can meet the goals of the leg.

Calibrating the equipment is an interesting process that involves the teamwork of all the scientists on board. The process begins with three scientists setting up down riggers on the outside of the boat. Two are set up on starboard side (right side of the ship) and one is set up on port side (left side of the ship). This creates a triangle which will allow the calibration sphere or what I like to call,  “the magic sphere”  to move in whatever direction needed. This same triangle shaped design is used to move cameras that fly above players in the Superbowl.

 

dafonbjedkjjpicd
The picture above shows how three lines suspended from down riggers that are attached to the sphere.

The pictures (with captions) show the process step by step.

We calibrated for two full days. It was surprising how long the process took. After  explanations from the many scientists on board I learned that the process is so long because we are assessing numerous acoustic transducers under the ship.  Then, for each transducer, we are calibrating the old acoustic system and the new acoustic system.

img_0987
All smiles at the end of calibration as we head out to continue our mission at sea:-)  In this photo: NOAA TAS Justin Garritt, Scientist Volunteer Heather Rippman, and Future Scientist Charlie Donahue (and roommate)

______________________________________________________________________________________

A Tour of the ship

img-09201
NOAA Ship Bell M. Shimada

NOAA Ship Bell M. Shimada is an incredible vessel that sails for months at a time. It has a crew of over 40 people (who I will be discussing in future blogs). The ship is a science lab with most state of the art equipment and also home for the crew on board that make the boat run 24 hours a day for 365 days a year. Here is a quick behind the scenes look at this remarkable vessel.

The Deck: When you embark the ship, the first thing you see is a huge deck with massive pieces of equipment. Each item has a different purpose based on what scientific study is taking place throughout the leg of the journey.

The Bridge: This is where the captain and his crew spend most of their day. The bridge has all of the most up-to-date technology to ensure we are all safe while on board. Operations occur 24 hours a day, so the ship never sleeps. Officers on the bridge must know what is happening on the ship, what the weather and traffic is like around the ship. The bridge has highly advanced radar to spot obstacles and other vessels. It also is the center of communication for all units on board the ship.

The Galley and Mess Hall: I expected to come on board and lose weight. Then I met Arnold. He is our incredible galley master who makes some of the best meals I have had on a ship. Yes, this better than food on a buffet line on a cruise. Arnold works his magic in a small kitchen and has to plan, order, and organize food two weeks out. Breakfast, lunch, and dinner are all served at the same time everyday. The food is prepared and everyone eats in the mess hall. Beverages, cereal, salad, and most importantly, ice cream are available 24 hours a day, so there is no need to ever be hungry. Every meal has a large menu posted on the television monitor and you can eat whatever you want. Every meal so far has been amazing.

Staterooms: Sleeping quarters are called staterooms and most commonly sleep two people. Each stateroom has its own television and a bathroom, which is called a head. As The bunks have these neat curtains that keep out the light just in case you and your roommate are working different shifts.

Laundry Room: There are three washer machines and three dryers that crew can use to clean their clothes during off-duty hours

The Entertainment Room:  The living room of the ship. This room has a large screen TV,  comfy recliners, and hundreds of movies, including new releases.

The Acoustics Lab: The acoustics lab is like the situation room for the scientists. There are large computer screens every where that can monitor all of the things the scientists are doing. For the past two days, Rebecca, our Chief Scientist, along with other scientists, lead the calibration from that room.

The Wet Lab: The wet lab will be used to inspect and survey the hake when we start fishing later this week.

I only just began my exploration of the ship. I will have so many more places to share throughout the journey. Later this week I will be asking our Chief Engineer to take me on a behind the scenes tour of “below deck” which is where they turn salt water to freshwater, handle all trash on board, etc. I will also be asking a member of captain’s  officers to teach me a little about the navigation equipment up in the bridge. I will be sure to write about all I learn in future blogs.

Thank you for continuing to join me on this epic adventure.

Justin

 

 

 

Justin Garritt: What is NOAA and Why Are We Sailing? September 3, 2018

NOAA Teacher at Sea
Justin Garritt
(Almost) aboard NOAA Ship Bell M. Shimada
September 3, 2018

Geographical area of cruise: Seattle, Washington to Newport, Oregon
Date: September 3, 2018

Today was day two and my first full day on-board. I learned so much about the National Oceanic and Atmospheric Administration (NOAA). I learned about what our ship, Bell M. Shimada’s, mission was this cruise. I started to get acquainted with all the impressive things the ship has to offer. However, what I enjoyed most was meeting all the wonderful people who spend their lives on-board for months (or even years) serving us. Every single professional was warm and welcome and answered the thousand questions I asked today with a smile. It was an amazing day because of the crew and scientists who already made me feel at home.

I was unaware of what NOAA did before joining the Teacher at Sea Program. Today’s post is all about NOAA, the ship I am sailing on, and the mission ahead the next two weeks.

IMG-0920
My home for the next two weeks. . . NOAA Ship Bell M. Shimada

What is NOAA? Before I can get in to details about my journey, here is some information about the governmental agency that welcomes Teacher At Sea applicants with open arms.

The National Oceanic and Atmospheric Administration (NOAA) is an American scientific agency that focuses on the conditions of the oceans, major waterways, and the atmosphere. It was formed in 1970 and as of last year had over 11,000 employees. NOAA exists to monitor earth systems through research and analysis. It uses the research to assess and predict future changes of these earth systems and manage our precious resources for the betterment of society, the economy, and environment.

One component of NOAA studies our oceans. They ensure ocean and coastal areas are safe, healthy, and productive. One of the many ships that are used to study the oceanic environment (which I am fortunate to sail on these next two weeks) is NOAA Ship Bell M. Shimada. This ship is stationed on the west coast with forty-plus crew who work endlessly to make this ship run so NOAA scientists can perform important environmental studies. Every person I have met the past two days has been remarkable and you will hear more about them throughout my future blogs.

 

Why Are We Sailing? NOAA Ship Bell M. Shimada is one of dozens of NOAA ships that sail the ocean every day in order to research vital information about our environment. Every sailing has clear objectives that help achieve the goals that the National Oceanic Atmospheric Association sets. On NOAA Ship Bell M. Shimada, hake fish surveys are completed every other year and research is done during off years. Fish surveys determine estimates of certain fish species. This vessel sails the entire west coast of the United States and then works with their Canadian counterparts to provide an estimate of a variety of species. NOAA uses this information to provide the fisherman with rules governing the amount of species that can be fished. During research years, like the one I currently am on, the vessels have different objectives that support their work.

For this leg, the ship has three main objectives:

#1: Pair trawling to determine net size impact: Evaluate the differences between the US 32mm nets and the CANADIAN 7mm nets. The questions being asked are does the differences in size of the two nets affect the size, characteristics, or species of fish being caught during surveys.

The reason this research is needed is because currently the Canadians and the United States have always used different size liners on the far tip of the net while surveying. The purpose of this experiment is to eliminate the possibility that there is bias in the data between the two countries when surveying their respective territories with slightly different net sizes.The hope is that the different liners do not affect the  size, characteristics, or species of fish being caught during surveys.

IMG-0907

#2: Comparing old acoustic equipment with new equipment: An acoustic transducer is a highly technological piece of equipment used on board scientific and commercial fishing vessels around the word. It emits a brief, focused pulse of sound into the water. If the sound encounters objects that are of different density than the surrounding medium, such as fish, they reflect some sound back toward the source. On-board N

OAA Ship Bell M. Shimada these echoes provide information on fish size, location, and abundance. NOAA is modernizing all of their acoustic equipment to a higher range of frequency. This is equivalent to when televisions went from black and white to color. This will hopefully allow scientists to collect more precise and accurate data.

The second goal of this cruise is to determine the differences in the frequency levels of both the new and the old technology. The goal in the long run is to reduce the number of surveying trolls needed to determine the population of fish, and instead, use this highly advanced acoustics equipment instead. It would be a more efficient and environmentally smarter option for the future.

Multibeam Sonar
An illustration of a ship using multi-beam sonar. Image courtesy of NOAA

#3: Using oceanography to predict fish presence: During the night time, scientific studies continue. The ship never sleeps. Depending on where we saw and caught fish during the day time experiments, the captain will bring the boat back to that same area to determine what water characteristics were present. The goal is to find the correlation between increased hake presence and certain water characteristics.

Throughout the next two weeks I will take you behind the scenes on how the ship is collecting data and using the data to create a hypothesis for each goal.

IMG-0913
A beautiful view while calibrating today
IMG-0895
Immersion suit practice during drills
IMG-0909
The beautiful Seattle skyline

Upcoming Blogs through Sept 14:

Life on-board these beautiful ships

The galley is a work of art

Tour of the ship

Careers on-board

Daily tasks and updates on our ship leg’s mission and goals

Justin Garritt: Preparing to Sail, September 1, 2018

NOAA Teacher at Sea

Justin Garritt

(Almost) aboard NOAA Ship Bell M. Shimada

September 2-15, 2018

Geographic Area of Cruise: Seattle, Washington to Newport, Oregon

Date: September 1, 2018

About My School and I:

My name is Justin Garritt and I teach mathematics in Baltimore City at KIPP Ujima Academy. KIPP stands for Knowledge is Power Program and is a nationwide charter school network. Most of the 224 KIPP schools serve in communities that have been historically left behind. My awesome middle school serves the best 750 5th through 8th graders in the world. Sadly, due to recent budget cuts throughout our city, science programs have been cut. Three years ago, our school reduced our students’

KIPP Ujima Academy
2017 Day 1: KIPP Ujima Academy in Baltimore

access to science in half. Students now only receive science for half the year. Many of our world’s most important problems require amazing and informed scientists and our kids have to be a part of those solutions. As a mathematics teacher who has the privilege of having my students for double the time of our science team, it is crucial that I make cross-curricular connections to science in my classroom. As a lifelong learner, I can’t wait to get on board a National Oceanic Atmospheric Association (NOAA) ship so I can investigate new and creative ways to infuse all the research I will be doing into my curriculum. I can’t wait for students at my school to see me working among the most talented scientists in the world. I can’t wait for my students at my school to picture themselves someday working as scientists with NOAA and solving our world’s most important problems that involve our precious environment. I can’t wait for my future students to get excited when learning statistics, scaling, and ratios with actual data I collected while sailing in the Pacific.

 

To My Baltimore and New York Supporters:

For those of you reading from Baltimore or my hometown, let me tell you a bit about what I am doing.

Last Fall I was sent information about a program called the National Oceanic Atmospheric Association Teacher at Sea Program (NOAA TAS) from a friend and mentor of mine, Amy Wilson. She knew how much I loved ships, water, and exciting adventures and thought I would be interested in this unique experience that could benefit my students and school. NOAA’s Teacher at Sea program gives K-12 teachers across the country insight into our ocean planet & increases understanding of earth system science through real research projects. Teachers are paired with wonderful scientists across a variety of ecosystems across the planet in order to learn from them so they can take back their knowledge gained to their school communities. Fast forward six months and here I am sailing aboard a NOAA ship named Bell A. Shimada. It sails from Seattle, Washington to Newport, Oregon and conducts scientific experiments throughout its journey. I will be writing about these over the next few weeks. Throughout the trip we will be using scientific equipment and techniques that I never knew existed. I will be studying and learning about things I never heard of. I will be working side by side with scientists to learn their exact roles. I will be interviewing people throughout the ship about what a career is like on board a NOAA ship. The whole time I will be posting updates and pictures on this blog. I hope you will join me on this journey.

When I return to KIPP Baltimore, I hope that I will be better equipped to create epic math lessons that are grade level and common core aligned but infuse the data I collected on board Bell A. Shimada. I hope my ratios and proportions unit and my statistics unit come alive for my future scholars. I hope that I can teach my students about the incredible careers involving science with the NOAA so that a few consider it for their life path. Personally, I hope I can be more educated on some of the most pressing environmental issues the future of our world faces.

Although I am nervous about my lack of scientific knowledge, I am so excited to participate in this once in a life time opportunity for myself and my future students back in Baltimore.

The next time you will hear from me, I will be off the coast of Seattle surrounded by water, scientists, and fish.

Justin

 

Pam Schaffer: Back on Dry Land- a Reflection, July 14, 2017

NOAA Teacher at Sea

Pam Schaffer

Aboard NOAA Ship Bell M. Shimada

[July 2-10, 2018]

Mission: ACCESS Cruise

Geographic Area of Cruise: North Pacific:  Greater Farallones National Marine Sanctuary, Cordell Bank National Marine Sanctuary

Photo of Pam Schaffer wearing hard hat
Pam Schaffer, NOAA Teacher at Sea

All I can say about my NOAA Teacher at Sea experience is WOW- what an incredible experience.   Thank you to everyone at the NOAA Teacher at Sea program, the crew of the NOAA Ship Bell M. Shimada, the ACCESS research scientists on-board and the staff of the Greater Farallones and Cordell Bank National Marine Sanctuaries.     I’d particularly like to thank Dr. Jaime Jahncke for teaching me how to collect and process zooplanton samples using the Tucker Trawler and enabling me to become a trusted member of his research team.

During the cruise, I learned so much about the work of oceanographers, marine biologists and ecologists.  I’ve sailed in these waters in my own sail boat many times but I’ve never seen the sanctuaries through the lens of a researcher.  The care and attention to detail taken during marine wildlife observations and the collection of  zooplankton and phytoplankton samples throughout the water column reveals an incredibly rich and abundant ecosystem.  The data collected will be shared with scientists around the world and helps us better understand and manage the health of our oceans.

The experience has given me lots of great ideas for lessons that I think will engage students and get them excited about knowing more about the ocean. I can hardly wait for the next school year to start so that I can share this amazing experience with students and facilitate learning experiences to inspire future scientists.

Here are some great wildlife pictures that I wanted to share earlier but the connectivity on the vessel was really limited and I wasn’t able to post them.

Humpback whale tail
Humpback Whale Tail. Photo credit: Julie Chase/NOAA/ACCESS/Point BLUE
humpback whale fin
Hump back Whale Fin. Photo Credit: Dru Devlin/NOAA/ACCESS/Point Blue
Pacific White-Sided Dolphin
Pacific White-sided Dolphin. Photo Credit: Dru Devlin/NOAA/ACCESS/Point Blue
Black Footed Albatross
Black Footed Albatross. Photo Credit: Julie Chase/NOAA/ACCESS/Point Blue
squid
Squid. Photo Credit: Ryan Anderson/NOAA/ACCESS/Point Blue
nazca boobie
Nazca Boobie- from the Galapagos. Photo Credit: Julie Chase/NOAA/ACCESS/Point Blue
sooty shearwater
Sooty Shearwater. Photo Credit: Julie Chase/ NOAA/ACCESS/Point Blue

Pam Schaffer: Getting Our “Sea Legs” and Getting to Work, July 3, 2018

NOAA Teacher at Sea

Pam Schaffer

Aboard NOAA Ship Bell M. Shimada

[July 2-10, 2018]

Mission: ACCESS Cruise

Geographic Area of Cruise: North Pacific:  Greater Farallones Nation Marine Sanctuary, Cordell Bank National Marine Sanctuary

Weather Data from the Bridge.

Date July 3 2018
Time 1200  (noon)
Latitude 37° 49.5’ N
Longitude 122° 48.1’ W
Present Weather/ Sky Cloudy
Visibility (nm) 10
Wind Direction (tree) 172°
Wind Speed (kts) 12
Atmospheric Pressure (mb) 1027
Sea Wave Height (ft) N/A
Swell Waves Direction (true) 290°
Swell Waves Height (ft) 3-5
Temperature  Sea Water (C) 13.6°
Temp Dry bulb (C)

Air Temperature

14.2°
Temp Wet Bulb (C ) 11.9°

Science and Technology Log

After leaving San Francisco Bay, yesterday we headed west and spent the day getting our “sea legs” and collecting observations of marine mammals and birds in the Greater Farallones National Marine Sanctuary waters.    We began collecting data around 1300 hrs from 37° 47′ 52.4“ N  122° 53’ 31.2” W and headed west towards the continental shelf break approximately 30 miles off shore.

ACCESS Research Team Departing San Francisco Bay
ACCESS Research Team Departing San Francisco Bay

Throughout the day we followed a series of predetermined tracks (referred to as transects) and collected counts of the abundant life thriving in the sanctuary.   We saw numerous Blue Whales, Fin Whales, Humpbacks and dolphins.   We also had a sighting of a strange prehistoric looking fish called a Mola mola (common name: Ocean Sunfish).   Mola Mola are the largest bony fish in the world and are playfully described small dinner plates and can grow to as large as a smart car.    They tend to live in deep water so seeing one at the surface is a real treat.   Their distinctive dorsal and ventral fins are quite long and their pectoral fins (the ones on the sides) are quite short and stubby.  They dine on jelly fish and need to eat a lot in order to develop and sustain their substantial bulk. Members of the ACCESS survey team have observed Mola slurping up Velella velella ( common name: Sea Raft) a type of free-floating hydrozoan that lives on the ocean surface.

Mola Mola feeding at surface
Mola Mola feeding at surface

 

Personal Log

My free time has been getting accustomed to being at sea again and getting to know my new colleagues.   The internet onboard is very limited and we have 40 users sharing it so getting blogs out is proving to be more challenging than I’d anticipated

Did You Know?

The terms “port” and “starboard” are used as to indicate the left and right sides of a ship. “Starboard comes from the Old English “steorbord”, meaning the side on which the ship is steered. Before rudders (which are located in the centerline), early ships had a steering oar and because most people are right handed it was located on the right hand side of the ship.  Because the steering oar needed to be out of the way when docking the opposite side of the boat traditionally was the side that was closest to the pier. Hence “port” refers to the left side of a ship if you are looking towards the front of the ship.  The front of a ship is called a “bow”.

Pam Schaffer: Welcome Aboard NOAA Ship Bell M. Shimada, July 2, 2018

NOAA Teacher at Sea

Pam Schaffer

Aboard NOAA ship Bell M. Shimada

July 2, 2018 – July 10, 2018

 

Today begins a nine day NOAA research cruise on NOAA ship Bell M. Shimada.  Presently, we’re docked in San Francisco and will head out the gate at 0900 tomorrow.   I’m  really excited to be part of a team of 12 scientists and specialists conducting research in the Greater Farallones and Cordell Bank National Marine Sanctuaries.  I plan to blog often (connectivity permitting) throughout the journey and to share the details of our work.

NOAA-Ship-Bell-M.-Shimada-underway_Photo-courtesy-NOAA
NOAA Ship Bell M. Shimada (photo credit: NOAA)

A bit about the ship-  NOAA ship Bell M Shimada was commissioned by NOAA in 2010.   Her home Port is Newport Oregon, and she supports research activities on the West Coast of the United States.   She’s 209 feet long and weighs 2479 tons, has a cruising range of 13,800 miles and travels at 11 knots (12.6 mph).  Shimada is an impressive vessel and is uniquely capable of conducting fisheries, oceanographic research and hydrographic studies.  She is considered to be one of the most advanced fisheries research vessels in the world.   Her stern looks very similar to a commercial fishing vessel and is capable of deploying large trawling nets for research to depths of 3,500 meters (11,483 feet).   Shimada uses specialized acoustic quieting technology developed by the U.S. Navy to monitor fish populations without disturbing the fish and altering their behavior.  She also has a Scientific Sonar System, used to measure the biomass of fish populations in a survey area.  Her acoustic profiling system enables scientists to gather data on ocean currents and provides information on the content of the water column and the topography of the seafloor.  In addition to sending out smaller sampling nets, longlines, and fish traps she can also deploy instruments to measure the electrical conductivity (used to determine salinity), temperature, depth (CTD) and chlorophyll fluorescence of sea water.  You can learn more about the ship here: https://www.omao.noaa.gov/learn/marine-operations/ships/bell-m-shimada/about

It’s a delight and an honor to be part of the ACCESS research team on NOAA ship Bell M. Shimada.

 

 

 

 

Christine Webb: September 19, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 9/19/2017

Latitude: 42.2917° N (Back home again!)

Longitude: 85.5872° W

Wind Speed: 6 mph

Air Temperature: 65 F

Weather Observations: Rainy

Here I am, three weeks deep in a new school year, and it’s hard to believe that less than a month ago I was spotting whales while on marine mammal watch and laughing at dolphins that were jumping in our wake. I feel like telling my students, “I had a really weird dream this summer where I was a marine biologist and did all kinds of crazy science stuff.”

IMG_20170817_103950017_HDR
Me on marine mammal watch

If it was a dream, it certainly was a good one! Well, except for the part when I was seasick. That was a bit more of a nightmare, but let’s not talk about that again. It all turned out okay, right?

I didn’t know what to expect when signing on with the Teacher at Sea program, and I’m amazed at how much I learned in such a short period of time. First of all, I learned a lot about marine science. I learned how to differentiate between different types of jellyfish, I learned what a pyrosome is and why they’re so intriguing, I learned that phytoplankton are way cooler than I thought they were, and I can now spot a hake in any mess of fish (and dissect them faster than almost anyone reading this).

I also learned a lot about ship life. I learned how to ride an exercise bike while also rocking side to side.  I learned that Joao makes the best salsa known to mankind. I learned that everything – everything – needs to be secured or it’s going to roll around at night and annoy you to pieces. I even learned how to walk down a hallway in rocky seas without bumping into walls like a pinball.

Well, okay. I never really mastered that one. But I learned the other things!

Beyond the science and life aboard a ship, I met some of the coolest people. Julia, our chief scientist, was a great example of what good leadership looks like. She challenged us, looked out for each of us, and always cheered us on. I’m excited to take what I learned from her back to the classroom. Tracie, our Harmful Algal Bloom specialist, taught me that even the most “boring” things are fascinating when someone is truly passionate about them (“boring” is in quotes because I can’t call phytoplankton boring anymore. And zooplankton? Whoa. That stuff is crazy).

329 hobbit house 2
Phytoplankton under a microscope

Lance taught me that people are always surprising – his innovative ways for dissecting fish were far from what I expected. Also, Tim owns alpacas. I didn’t see that one coming. It’s the surprising parts of people that make them so fun, and it’s probably why our team worked so well together on this voyage.

I can’t wait to bring all of this back to my classroom, specifically to my math class. My students have already been asking me lots of questions about my life at sea, and I’m excited to take them on my “virtual voyage.” This is going to be a unit in my eighth and ninth grade math classes where I show them different ways math was used aboard the ship. I’ll have pictures and accompanying story problems for the students to figure out. They’ll try to get the same calculations that the professionals did, and then we’ll compare data. For example, did you know that the NOAA Corps officers still use an old-fashioned compass and protractor to track our locations while at sea? They obviously have computerized methods as well, but the paper-and-pencil methods serve as a backup in case one was ever needed. My students will have fun using these on maps of my locations.

They’ll also get a chance to use some of the data the scientists took, and they’ll see if they draw the same conclusions the NOAA scientists did. A few of our team were measuring pyrosomes, so I’ll have my students look at some pyrosome data and see if they get the correct average size of the pyrosome sample we collected. We’ll discuss the implications of what would happen if scientists got their math wrong while processing data.

I am so excited to bring lots of real-life examples to my math classroom. As I always tell my students, “Math and science are married.” I hope that these math units will not only strengthen my students’ math skills, but will spark an interest in science as well.

This was an amazing opportunity that I will remember for the rest of my life. I am so thankful to NOAA and the Teacher at Sea program for providing this for me and for teachers around the country. My students will certainly benefit, and I have already benefited personally in multiple ways. To any teachers reading this who are considering applying for this program – DO IT. You won’t regret it.

CWeb
Me working with hake!

Chelsea O’Connell-Barlow: To Fish Or Not to Fish?…A Question of Sound, September 4, 2017

NOAA Teacher at Sea

Chelsea O’Connell-Barlow

Aboard NOAA Ship Bell M. Shimada

August 28 – September 13, 2017

 

Mission: Pacific Hake Survey

Geographic Area of Cruise: Northern Pacific Ocean

Date: 9/04/2017

 

Weather Data from the Bridge:

Latitude: 53.59.372N

Longitude: 133 32.484W

Temperature 59 F

Wind 12.5 knots

Waves 1-2 feet

 

Science and Technology Log

After spending a few days observing what happens in the Acoustics lab and listening to our Chief Scientist Rebecca (RT) Thomas and acoustician Julia Clemons brainstorm aloud, I had one overriding question…”How do you decide when to fish?”

I asked RT this question and it is a multi-factored decision for sure, but seems like the decision could be broken down into 3 parts: what we see, what we know and what is currently happening.

What they see when deciding to fish or not is an echogram created by three acoustic sounders on the ship that send out 3 different frequency wavelengths. The image shows a relatively low frequency 18 kHz, 38 kHz, and a longer wavelength of 120 kHz. Keep in mind that sound travels faster in water than on land so this is a great way to gather information while being minimally invasive to the marine environment.

annotated bridge screens for 9.4 post
Bridge of Bell M. Shimada. The 3 screens we watch during a AWT trawl for Hake.

The backscatter, sound that scatters off of an object or its echo, on the echogram is what they look at to determine what marine life is on the transect we are scouting. As the sound wave bounces off of material in the ocean be it rock, flora or fauna it will create a spot or colored pixel on the echogram. Hake has a particular “look” of backscatter. When the echogram shows this particular hake sign we move in the direction of fishing.

Of course they only know what “hake sign” is because of gathering evidence throughout the course of this multi-year survey. During this survey they have created a huge reference database of hake sign and sign of other integral species to the hake’s environment, for example Euphausiid sp., one of the hake’s favorite food. RT and Julia have both interpreted many echograms and fished to confirm the identity the organisms that created the sign.  They are able to rule out images on the echogram until they find the backscatter that most resembles what they have historically experienced as hake.

The third part of this decision making process is the most variable…what is currently happening. As the boat travels and the sounders are sending out the trio of wavelengths an image of the ocean shelf is created. The scientists are able to see topography and measure the depths of the shelf’s different contours. The Shimada is a 209 foot long boat weighing over 2,400 tons. When deciding to trawl for hake that we suspect are present because of backscatter sign in the echogram the scientists and Commanding Officer always consider the depth to bottom, contours, wind and the maneuverability of the ship. Deploying the Aleutian Wing Trawl (AWT) net to catch hake is a task that involves cooperation and communication between the deck crew, Boatswain, bridge officers and the Chief Scientist. When RT sees a sign on the echogram that she wants to fish, she and Commanding Officer Kunicki quickly discuss the approach, wind direction and depth to get an idea on how the net will be affected and how close the ship can get to the exact sign that she wants to sample.

This is my bare bones description of the process that goes into deciding when to fish on Leg 5 of the Pacific Hake Survey. Stay tuned to see what we learn from comparing the echogram of sign to the actual yield from the AWT fishing net.

For more specifics from NOAA on the Bell M. Shimada’s acoustic and trawling capabilities https://www.omao.noaa.gov/learn/marine-operations/ships/bell-m-shimada/about

Personal Log

This ship is filled with kind, creative and industrious people. I am reminded of this constantly and appreciate this often. To me it is astounding to consider all the work and thought that is involved in a fifteen-day research survey at sea. This is a science survey so there are specific tools, computer programs and labs that must run well. To me, coming in with a science focus, this is most obvious. What I am blown away by are all of the additional layers that work together to make science even possible on this successful voyage. There are several teams at play: engineering, technology, deck, science and the bridge officers. Engineers are constantly maintaining engines, generators (this ship has 4), plumbing, ventilation and so much more. I had a tour today with Engineering Chief Sabrina Taraboletti that I am still trying to process through.

Technology is handled by one person on this ship. He maintains and trouble shoots computers in the acoustics lab, the bridge, the chemical lab and even found time to help maximize signal for the Fantasy Football draft. The deck crew is as versatile as anyone on this ship. We have two types of nets that we fish with. The deck crew is responsible for getting the nets out to fish and back in with the catch. Way easier said than done when we are talking about over a ton of weight with net, camera, chain, and doors. On top of all their other responsibilities many of the men in the deck crew have been helping out in the galley (kitchen) on this leg of the hake survey. Larry is the chief steward (chef) on board this leg and he typically has someone working with him but not on this leg of the Survey. So in addition to working their 12 hour shift, many of the deck crew have been working with Larry to prep food, clean up the mess (dining area), do dishes or even create their own personal specialties for dinner. We have been spoiled by Matt’s rockfish, Joao’s fresh salsa and soups and our Operations Officer Doug’s amazing BBQ. Liz and I even got to help out and make some donuts with Larry. Eating is great on the Shimada!

Liz & OCB makin the donuts
Liz and OCB making the donuts – thanks for the lesson Larry.

The Shimada team is rounded out with the bridge crew made up of 4 officers. The officers on a NOAA ship have a foundation of science knowledge and extensive nautical training. Before we go fishing I get to participate in the marine mammal watch up in the bridge. As I look for whales, dolphins and other marine mammals near the boat I can listen to the Captain and officers working their magic. We have had an incredibly smooth trip thus far which I credit to our Officers and of course Mother Nature.

 

 

 

 

 

 

 

 

Did You Know?

our Viperfish for blog
Who is this?

Crazy cool catch of the day…can you figure out what type of fish this is?

Here is a clue…they have specially adapted cells called photocytes that create light producing organs called photophores.  The photophores run along the sides of the fish and help them to lure prey and attract mates.

Viperfish from strangeanimals site
photo credit: http://www.strangeanimals.com

 

Answer:

This is a Viperfish.

Viperfish live in the deep ocean and migrate vertically as the day goes on in order to catch prey. They typically live around 1,500m (4,921 ft) and in the night will end up around 600m (1,969 ft) at night. This particular fish appears to have photophores along its mouth but it is difficult to be 100% sure from this specimen.

 

 

Chelsea O’Connell-Barlow: Full Steam Ahead, August 30, 2017

NOAA Teacher at Sea

Chelsea O’Connell-Barlow

Aboard NOAA Ship Bell M. Shimada

August 29 – September 12, 2017

 

Mission: Pacific Hake Survey

Geographic Area of Cruise: NW Pacific Ocean

Date: 8/30/2017

 

Weather Data from the Bridge:

Latitude: 48.472837N

Longitude: -124.676694W

Temperature 59 F

Wind 9.7 knots

Waves 3-5 feet

Science and Technology Log

We have not started fishing yet because we are heading to our first transect off the western coast of the Haida Gwaii archipelago. I thought this would be a perfect time to introduce another research project that is gathering data on the Shimada. One of my roommates, Lynne Scamman, is on-board researching Hazardous Algal Blooms (HABs).

Lynne in Chem lab
Lynne Scamman running wet chemistry tests and identifying phytoplankton.
  1. What are Hazardous Algal Blooms?

They are large numbers of phytoplankton, either diatoms or dinoflagellates, who produce toxins. Phytoplankton are essential to the ecosystem because they produce half of the global oxygen. However under certain circumstances these organisms reproduce rapidly, skyrocketing the population, this is a bloom. Some of these phytoplankton produce toxins. When the populations are low the toxins aren’t a big deal. However, when a bloom of phytoplankton that produce toxins occurs there can be health concerns for organisms exposed to the toxins. We have to consider the marine food chain and something called bioaccumulation. Phytoplankton along with zooplankton create the base of the marine food web. Organisms who eat toxin producing phytoplankton retain the toxin in their body. Then any organism who eats them will also hold that toxin. You can see how the toxin would accumulate along the food chain and potentially hold serious side effects for organisms with high levels of toxin.

  1. Why is research being done on HABs?

HABs are becoming a problem for humans along the coasts and in the Great Lakes. Basically all of the factors that contribute to the increase in HABs are a product of human impact. Global climate change, increased nutrient pollution and global sea trade are all factors contributing to the rise in Hazardous Algal Blooms. We want to monitor so that eventually we will be able to predict when, where and why the HABs will occur.

  1. Why are YOU studying HABs?

One day I walked into my college biology lab and met a guest instructor who specializes in all things phytoplankton related. I was blown away by the complexity that some of these single celled organisms held. The professor shared a few species names and I started investigating. The species that grabbed my attention is called Nematadinium armatum. This organism has a rudimentary eye called a melanosome and nematocysts for hunting, again this is pretty impressive for an organism made of one cell. Once I learned about the variety in this microscopic world and how influential they were to the health of the entire ocean, I knew that I wanted to learn more.

Personal Log

I am still figuratively pinching myself every few hours at just how amazing this experience is to participate in first hand. Yesterday we left the dock of Port Angeles at 10am and the boat hasn’t slowed down since. We did drills to ensure that all aboard knew where to go in case of fire and if we needed to abandon ship. Part of the abandon ship drill is to make sure that everyone has and can get into their Immersion Suit aka “Gumby Suit.” This suit is amazing! This portion of the Pacific is quite cold and the Immersion suit would keep you warm and buoyant until a rescue can occur.

OCB Gumby
Trying on the Immersion suit.

After our drills several of the science crew went up to the Flying Bridge to look for marine mammals. We were cruising between Cape Flattery, Washington and Vancouver Island, British Columbia with high hopes of seeing activity. WOW, we lucked out. We spotted 17 Humpback whales, 2 Harbor porpoise and 2 Dall’s porpoise. We are also seeing several types of sea birds but I am still brushing up with the Sibley to id birds from this area.

Shimada Flags
The Shimada under two flags as it enters Canadian waters.

 

Did You Know?

The island cluster that we are heading to had a name change at the end of 2009. What was formerly called Queen Charlotte Islands is now called Haida Gwaii. This name change came as part of a historic reconciliation between British Columbia and Haida nation. Haida Gwaii translated means “island of the people.”

Haida Gawaii
Map of Haida Gawaii area.

Chelsea O’Connell-Barlow: Get ready, get set, SAIL!!! August 26, 2017

NOAA Teacher at Sea

Chelsea O’Connell-Barlow

Aboard NOAA Ship Bell M. Shimada

August 28 – September 13, 2017

 

Mission:  Pacific Hake Survey – Leg V

Geographic Area of Cruise:  Northwest Pacific Ocean, off the coast of Washington

Date:  August 26, 2017

 

Weather from the Bridge…or Backyard

At home in Decatur, GA we are celebrating a weekend break in the humidity.  The sun is shining and the sky is filling with a variety of imagination provoking Cumulus clouds.

Latitude:  33.767782

Longitude:  -84.299283

Wind Speed: 6mph

Wind Direction:  E

On Monday I will travel 2,759 miles to Port Angeles, WA where I will board the Bell M. Shimada.  I look forward to cooler temperatures and the invigorating salty air.

 

Science and Technology Log:

I have yet to meet the scientists and crew of the Shimada so I have no first hand info to share.  However this is a great opportunity to introduce the main focus of this survey… Merluccius productus, Pacific Hake.

Pacific Hake or Pacific Whiting (photo courtesy of http://www.nmfs.noaa.gov/)
(photo courtesy of http://www.nmfs.noaa.gov/)

Pacific Hake is an important species to both humans and many species in the marine ecosystem off of the Pacific Northwest coast of both the United States and Canada.  There is a cooperative effort to manage these fish that involves the governments of both the U.S. and Canada, fisheries scientists and fisherman.  Such a collaboration and intentional effort  amongst so many groups is a great model and example for other issues at large.  Here is some background reading related to the Pacific Hake Survey.

Personal Log:

I have taught middle school science at Renfroe Middle School (RMS) in the City Schools of Decatur for 10 years.  Renfroe is full of wonderfully intelligent, thoughtful and supportive people – students and staff.  Currently, I work with 7th grade students as we explore ecology, evolution, genetics, cells and anatomy.  I am thrilled to have this adventure at sea to share with my students and friends.  I look forward to bringing back real-world research and developing curriculum that we can ALL benefit from.

As an inquisitive and adrenaline hungry person I love the combination of adventure and challenging work, so I am thinking that my time on the Bell M. Shimada may be about as ideal of a learning opportunity as I could imagine. In addition to being a classroom teacher at RMS, I also work as a Mentor in The Nature Conservancy’s Leaders in Environmental Action for the Future (LEAF) program. LEAF provides an opportunity for Mentors and Interns to spend an intensive month focused on all aspects of conservation. This program encourages all involved towards hands-on environmental stewardship experiences and to broaden the boundaries of our comfort zone.  For both my RMS students and LEAF mentees I take this Teacher At Sea opportunity to put into action the message that I often share with them…learning is a life long goal and risk-taking is a way to enhance the connection that you feel with the world.

I want to thank my colleagues and students for a heart warming send-off and I promise all plenty of awesome photos and updates to come.

Teacher At Sea RMS send-off
A lovely RMS bon voyage complete with oodles of creative & pun filled cards.

 

Did you know?

According to Atlas Obscura, in 1914 the town of Port Angeles had such an issue with sewage flooding that they opted to raise one of the town’s main streets by 10-14 feet.  This engineering challenge was accomplished by moving soil from a neighboring hill completely by hand…no mechanical interventions.  To this day you can tour the underground areas and see store fronts frozen in time.  This lovely seaside town is where I will embark on my voyage.

 

Christine Webb: August 23, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/23/2017

Latitude: 48.19 N

Longitude: 125.29 W

Wind Speed: 7.9 knots

Barometric Pressure: 1021.70 mBars

Air Temperature: 62.1 F

Weather Observations: Partially cloudy

Science and Technology Log

For today’s science and technology log, I interviewed my roommate Tracie. You only have to talk to Tracie for five seconds to learn that she’s passionate about marine chemistry and marine biology and marine physics…all things marine. She’s the HAB (harmful algal bloom) specialist on board, and she’s been squirreled away in the chemistry lab every day collecting lots of great samples as we travel up the coast. Before we left Newport, she taught me a bit about algae by taking me to the beach to see some bioluminescent dinoflagellates. When we stomped in the water, the dinoflagellates would glow! It looked like puddles full of blue lightning bugs, and it was amazing. One of her quotes from that night was, “I imagine this is what unicorn footprints would look like if they were traipsing over rainbows.” Everyone should have the chance to see that at some point in their life. It gave me a taste of why it makes sense to be so passionate about algae. So, without further ado, here’s your chance to learn a bit more about HABs from my friend Tracie!

  1. What is a HAB, and why should we care about them?

HABs are phytoplankton that have negative consequences either for us or the ecosystem. Some can release neurotoxins that can be damaging to mammals (including humans), amongst other things. A harmful algal bloom (HAB) can also create a dead zone by a process called eutrophication. Bacteria eat the phytoplankton once they begin to die, which removes oxygen from the water.

  1. What makes it a bloom?

A “bloom” is when there is so much algae that the ecosystem can’t support it and they start to die off. There aren’t enough nutrients available in the water. Some people call this a “Red Tide.” There are certain species, such as Alexandrium spp., where even one cell per liter would be enough to create a harmful effect.

  1. What made you decide to study HABs?

During a lab in college, we were allowed to go to the beach and sample phytoplankton. When we got back to the lab with our samples, we found a huge amount of Pseudo-nitzschia spp. It releases a neurotoxin that gives mammals amnesiac shellfish poisoning. That year, we couldn’t eat shellfish and crab from our area because of this bloom. There’s no antidote to this toxin, and it affects the brain function of mammals who eat it. Whales died that year because they forgot how to breathe. This made me super interested in studying more about these types of species.

  1. What are you specifically hoping to find in your research aboard this cruise?

We’re trying to find where blooms start, how blooms begin, and follow them within the California Current system. It’s part of an ongoing study of the California Current system and how species are transported. California fisheries have been dramatically affected by HABs.

  1. Have you been finding what you need so far?

It’s been really interesting…we’ve seen quite a few Dinophysis species (which I find to be the cutest), and some really interesting Pseudo-nitzschia spp., but no blooms. Close to the coast, within 15 nm of shore, I see a lot more diversity in my samples. This is mostly due to upwelling.

  1. Has anything in your research so far surprised you?

There are very few species that I haven’t recognized, which is interesting because we’re so far north. We have fjord-like environments up here by Vancouver Island, so I expected there to be a higher abundance of phytoplankton up here than I saw.

  1. What is a common misconception about HABs?

The term “HAB” itself – they’re called harmful because they’re harmful to us as humans and to various industries, however – they provide a huge amount of support to other animals as primary producers and as oxygen producers.

They’re basically plants that can swim, and they’re all food for something. They’re not harmful for most things, so the name is kind of a misnomer. In defense of the HABs, they’re just trying to survive. Phytoplankton are responsible for around 50% of the world’s oxygen, and they’re the primary producer for marine and freshwater ecosystems.

  1. Anything else you want people to know?

There’s still a lot that we need to learn, and I would like everyone at some point in their life to see how beautiful these fragile organisms are and appreciate how much they contribute to our world.

  1. If you weren’t a marine chemist, what would you be?

I would write nonfiction about the beauty of the world around us. Or maybe I’d be an adventure guide.

  1. What are some fun facts about you that not a lot of people know?

My motto for life is “always look down.” There’s so much around us, even the dirt under our toes, that is so full of life and beauty.

My art is on Axial Seamount, 1400 m below sea level, 300 miles off the coast of Oregon! I drew an octopus high-fiving ROPOS the ROV that placed it there!

Also, I’m a high school dropout who is now a straight-A senior in environmental science at the University of Washington, Tacoma. Other people’s perceptions of you don’t control your destiny.

Here are a couple pictures of some of the HABs Tracie has seen during this trip (she took these pictures from her microscope slides):

329 D. fortii
Algae under the microscope: D. fortii. Image by Tracie.
329 hobbit house 2
Algae under microscope. Image by Tracie.

Personal Log:

Since today’s science log was about Tracie, I’ll feature her in the personal log too! She’s my partner in the ship-wide corn hole tournament, and we won our first-round game yesterday. Look at these awesome corn hole boards that were specially made for the Shimada!

IMG_20170822_153718727
Shimada corn hole board!

We mostly credit our fabulous war paint for the win. Today we play against our fellow scientists Lance and Tim. Wish me luck!

corn hole victory
Christine and Tracie celebrate corn hole victory

Another down-time activity that Tracie (and all the scientists) enjoy is decorating Styrofoam cups. The cool marine biologist thing to do is to sink them to very low ocean depths (3000+ meters). Apparently the pressure at that depth compresses the Styrofoam and shrinks it, making the cup tiny and misshapen but still showing all the designs that were put on it. I’m not kidding: this is a thing that all the marine biologists get really excited about. Tracie even decorated a Styrofoam head (the kind that cosmetologists use) in advance of this trip and brought it with her to sink. Look how cool it is – she’s an amazing artist!

IMG_20170824_171631958_HDR
Styrofoam head, decorated by Tracie, for shrinking

There are shrunken heads in the lab already from other people who have done this. Sinking Styrofoam is a legit marine biology hobby. Well, as the saying goes, “When in Rome…” so I worked on a Styrofoam cup today. I’m making a hake tessellation, which takes longer than you might think. Here’s what I’ve got so far:

IMG_20170823_051528993
Styrofoam cup decorated with hake tesselation

We’re having lots of fun at sea on this beautiful day. Someone just came over the radio and said there’s been a marine mammal sighting off the bow…gotta go!

Special Shout-out:

A special shout-out to Mrs. Poustforoush’s class in Las Vegas, Nevada! I just found out you’ve been following this blog, and it’s great to have you aboard. If you have any questions about algae (from this post) or about life on a ship, please feel free to e-mail me. I can hopefully get your questions answered by the right people. Work hard in Mrs. Poustforoush’s class, okay? She’s a great teacher, you lucky kiddos. Learn a lot, and maybe one day you can be a scientist and live on a ship too!

Christine Webb: August 21, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/21/2017

Latitude: 49.48 N

Longitude: 128.07 W

Wind Speed: 10 knots

Weather Observations: Sunny

Science and Technology Log

Today was our first chance to use the Methot net, and it was a lot of fun! The Methot net is smaller than the net that we usually use, and it is used to catch smaller organisms. Today we were targeting euphausiids. We thought we saw a pretty good aggregation of them on the 120 kHz acoustics data, where they appear the strongest of the three frequencies we monitor. We needed to validate that data by trawling the area to find the source of the backscatter and make sure they really were what we thought they were. There are many scientists who use data on euphausiids, so this was a good opportunity to provide them with some additional data. Because we’ve been working mostly on larger organisms, I was excited for the chance to see what a Methot net would pull up.

IMG_20170821_125553193_HDR
The Methot net coming up with its haul

It was very exciting that when the net came up, we had TONS of euphausiids! (“Tons” here is not used in a literal sense…we did not have thousands of pounds of euphausiids. That would have been crazy). Although we did not have thousands of pounds of them, we did have thousands of specimens. I’m sure thankful that we only had to take data on a subsample of thirty! I got to measure the lengths and widths of them, and using the magnifying lenses made me look very scientific.

IMG_20170821_145225093
Measuring euphausiids

Along with euphausiids, we also found other species as well. We found tiny squids, jellies, and even a baby octopus! It was adorable. I’ve never considered that an octopus could be cute, but it was.

IMG_20170821_131649146
Baby octopus

We also measured volumes and weights on samples of the other specimens we found, and I used graduated cylinders for the first time since college. We would put in a few milliliters of water, add our specimens, and then calculate the difference. Voila! Volume. Good thing I remembered to call the measurement at the bottom of the liquid’s meniscus… I could have messed up all the data! Just kidding… I’m sure my measurements weren’t that important. But still – good thing I paid attention in lab skills. It was definitely a successful first day with the Methot net.

Personal Log

The big buzz around the ship today was the solar eclipse! I was even getting excited at breakfast while I ate my pancakes and made them eclipse each other. We got lucky with weather – I was nervous when I heard the foghorn go off early in the morning. Fortunately, the fog lifted and we had a pretty good view. We all sported our cheesy eclipse shades, and the science team wore gray and black to dress in “eclipse theme.” Even though we couldn’t see the totality here, we got to see about 85%. We’re pretty far north, off the coast of Vancouver Island in Canada. The mountains are beautiful! Seeing land is always a special treat.

Here are some eclipse pics:

IMG_20170821_091709694
Rockin’ our cheesy eclipse shades
IMG_20170821_101636324
Some science team members enjoying the eclipse
IMG_20170821_100819772
Eclipse!

The eclipse would have made the day exciting enough, but the excitement didn’t stop there! While the scientists and I were working in the wet lab, we heard that a pod of orcas was swimming within eyesight of the ship. We dropped everything and hurried to take a look. It was so amazing; we could see five or six surface at once. They must have been hunting. We only see orcas when we’re close to land because their prey doesn’t live in deeper waters. Deeper into the ocean we are more likely to see gray or humpback whales.

It’s almost time for dinner…we sure have been spoiled for food! Last night we had pork loin and steak. I’m not sure that our chef will be able to top himself, but I’m excited to find out. I have heard rumors that he is very good at cooking the fish we’ve been catching, and that really makes me wish I liked seafood. Unfortunately, I don’t. At all. Not even enough to try Larry’s fried rockfish. Luckily, he makes lots of other food that I love.

Tonight after dinner I think Hilarie, Olivia, and I are going to watch Pirates of the Caribbean 2. Last night we watched the first movie while sitting on the flying bridge. It was a pretty cool experience to feel the spray of the sea while watching pirates battle!

IMG_20170820_174605473_HDR
Movie time!

That’s all for now; I’ll be back with more scientific fun soon!

Did you know?

Krill (the type of euphausiid we studied) is one of the most populous species on earth. It basically fuels the entire marine ecosystem.

 

Christine Webb: August 19, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/19/2017

Latitude: 48.59 N

Longitude: 126.59 W

Wind Speed: 15 knots

Barometric Pressure: 1024.05 mBars

Air Temperature: 59 F

Weather Observations: Sunny

Science and Technology Log:

You wouldn’t expect us to find tropical sea creatures up here in Canadian waters, but we are! We have a couple scientists on board who are super interested in a strange phenomenon that’s been observed lately. Pyrosomes (usually found in tropical waters) are showing up in mass quantities in the areas we are studying. No one is positive why pyrosomes are up here or how their presence might eventually affect the marine ecosystems, so scientists are researching them to figure it out. One of the scientists, Olivia Blondheim, explains a bit about this: “Pyrosomes eat phytoplankton, and we’re not sure yet how such a large bloom may impact the ecosystem overall. We’ve already seen that it’s affecting fishing communities because their catches have consisted more of pyrosomes than their target species, such as in the shrimp industry.”

IMG_20170817_100329068
Sorting through a bin of pyrosomes

Pyrosomes are a type of tunicate, which means they’re made up of a bunch of individual organisms. The individual organisms are called zooids. These animals feed on phytoplankton, and it’s very difficult to keep them alive once they’re out of the water. We have one alive in the wet lab right now, though, so these scientists are great at their jobs.

We’ve found lots of pyrosomes in our hake trawls, and two of our scientists have been collecting a lot of data on them. The pyrosomes are pinkish in color and feel bumpy. Honestly, they feel like the consistency of my favorite candy (Sour Patch Kids). Now I won’t be able to eat Sour Patch Kids without thinking about them. Under the right conditions, a pyrosome will bioluminesce. That would be really cool to see, but the conditions have to be perfect. Hilarie (one of the scientists studying them) is trying to get that to work somehow before the trip is over, but so far we haven’t been able to see it. I’ll be sure to include it in the blog if she gets it to work!

One of the things that’s been interesting is that in some trawls we don’t find a single pyrosome, and in other trawls we see hundreds. It really all depends on where we are and what we’re picking up. A lot of research still needs to be done on these organisms and their migration patterns, and it’s exciting to be a small part of that.

Personal Log:

The science crew continues to work well together and have a lot of fun! Last night we had an ice cream sundae party after dinner, and I was very excited about the peanut butter cookie dough ice cream. My friends said I acted more excited about that than I did about seeing whales (which is probably not true. But peanut butter cookie dough ice cream?! That’s genius!). After our ice cream sundaes, we went and watched the sunset up on the flying bridge. It was gorgeous, and we even saw some porpoises jumping in the distance.

It was the end to another exciting day. My favorite part of the day was probably the marine mammal watch where we saw all sorts of things, but I felt bad because I know that our chief scientist was hoping to fish on that spot. Still, it was so exciting to see whales all around our ship, and some sea lions even came and swam right up next to us. It was even more exciting than peanut butter cookie dough ice cream, I promise. Sometimes I use this wheel to help me identify the whales:

IMG_20170818_094058774_HDR
Whale identification wheel

Now we’re gearing up for zooplankton day. We’re working in conjunction with the Nordic Pearl, a Canadian vessel, and they’ll be fishing on the transects for the next couple days. That means we’ll be dropping vertical nets and doing some zooplankton studies. I’m not exactly sure what that will entail, but I’m excited to learn about it! So far the only zooplankton I’ve seen is when I was observing my friend Tracie. She was looking at phytoplankton on some slides and warned me that sometimes zooplankton dart across the phytoplankton. Even though she warned me, it totally startled me to see this giant blob suddenly “run” by all the phytoplankton! Eeeeep! Hopefully I’ll get to learn a lot more about these creatures in the days coming up.

Christine Webb: August 18, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

 

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/18/2017

Latitude: 48.19 N

Longitude: 125.29 W

Wind Speed: 7.9 knots

Barometric Pressure: 1021.70 mBars

Air Temperature: 55.4 F

Weather Observations: Foggy

 

Science and Technology Log:

I am learning an unbelievable amount about marine biology! Today I will focus on hake because that is the main type of fish we are surveying on this voyage. Pacific hake are found in great abundance out here off the west coast of North America and Canada. Let me tell you a little bit about what we do.

The first thing we have to do before trawling for hake is find a good aggregation of them based on our acoustics. There is always a scientist in the acoustics lab watching the monitor outputs. The monitors show the acoustics from different frequencies: 18, 38, and 120 KHz. They can “see” when there are things between us and the ocean floor (see picture below). Based on the response of the acoustics to the objects in the water, the scientists make an educated guess about when we are over a hake aggregation. I’ve been learning a lot about how to read these monitors and how to see if we’re over rockfish, phytoplankton, or hake. I think it would be pretty cool to see something giant like a whale go underneath us, but that hasn’t happened. That’s probably for the best – I can’t imagine it’s super safe to have a whale under your ship.

IMG_20170816_090024430_BURST000_COVER_TOP
Acoustic data from the acoustics lab.

Once the acoustic scientists decide we’re over hake, they radio up to the bridge to tell them it’s time to go fishing. The fishermen start getting the nets ready, and the scientists (that’s me!) go up for marine mammal watch. We have to make sure there aren’t any whales or dolphins nearby that might get caught in our nets. I really like marine mammal watch. I get super excited to see whales and dolphins, even though I guess that’s kind of bad because we might have to postpone our trawl. Seeing mammals when we’re not fishing is the most exciting. Today we saw two orcas by the side of our boat – now THAT is cool!

IMG_20170817_103950017_HDR
Me on marine mammal watch

Once the net is fully deployed and well below the surface, the marine mammal watch ends. Then they fish through the sign they saw on the acoustics and bring the net up when they believe they caught an adequate sample. Then it’s time to process the trawl! What we want to see is a majority of hake, but that doesn’t always happen. We’ve had trawls with hundreds of hake, and we’ve had trawls with only seventeen. We sometimes catch a bunch of other stuff too, and we do different things with those creatures (I’ll save that for a different post).

Processing the trawl is pretty intensive. First we have to weigh all of them to get the mass of the entire trawl. Then we sex them to sort into male and female baskets. It’s tricky to tell the difference between males and females. We have to dissect them and find the gonads to be able to tell. Near as I can tell, the male gonads look like ramen noodles and the females look like peach jello. I think of it as, “I wonder what my husband is eating while I’m gone? Probably ramen noodles. Okay, ramen noodles means male.”

IMG_20170818_153044071
Getting ready to sort hake!

Once we have them all sorted, we take length measurements and start extracting the parts we need. The scientists are collecting and preserving the otoliths, gonads, stomachs, livers, and fin clips. We have a LOT of tubes of fish guts in our lab. I’m not entirely sure what scientists will be doing with all of this data, but perhaps I’ll interview our chief scientist about this and put it in a future post.

Personal Log:

Everyone I’ve met on this ship has been so friendly! One of my favorite things about it is that these people seem so passionate about whatever they’re doing. You should have seen my friend Hilarie’s face today when we pulled up a trawl full of pyrosomes (that’s what she studies). Tracie showed me some of the phytoplankton she’s studying, and it was like she was a little kid at Christmas. Personally I’ve never been super interested in phytoplankton, but now I am. She makes it sound like it’s the most exciting subject on earth, and looking at her slides makes me believe her.

IMG_20170817_081818382
Tracie studying phytoplankton

It’s not only the scientists who are passionate about their work. The chief steward, Larry, was so excited about his cauliflower soup today that he seemed personally offended when I didn’t take any. “Take some soup!” he said. “Seriously – it’s really good soup. You’re going to like it.” I took some just to be nice, but after one bite I said, “Larry, will this be out at dinner? Can this please be out at dinner? I LOVE IT.” It was seriously good. I need to learn how to make that.

Our chief scientist takes her job as chief very seriously too. She’s like the momma duck who takes care of all of us (thanks, Julia!). Also, she plans fun and goofy games every day where we can win prizes out of her “bag of goodies.” I haven’t won yet, but I hope I will before this is over. Today Hilarie won some awesome coral reef socks. I’m not sure how I’ve gotten this far in life without owning marine biology socks! It’s great to have Julia around because she makes time for all of us even though her own research is very absorbing and important. She’s a rock star.

IMG_20170818_181046070_HDR
Hilarie choosing her prize

Stay tuned for more info from Leg 4 – bye for now!

Christine Webb: Introducing Christine Webb and Pacific Hake Survey, August 8, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

 

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/8/2017

Current Location: Kalamazoo, Michigan (home sweet home…not yet on the cruise)

Latitude: 42.297 N

Longitude: 85.5872 W

Wind Speed: 11 mph

Barometric Pressure: 30.14 inHg

Air Temperature: 79 F

Weather Observations: Partly sunny

 

Science and Technology Log

Before I go any further, let me take this opportunity to thank NOAA and Teacher at Sea for such a wonderful opportunity! I can’t wait to learn all about life at sea and to have an up-close view of oceanographic fisheries research. On this cruise, we will be studying Pacific Hake. Because I have not personally had the chance to experience our research yet, let me show you this quote from the NOAA website regarding our project. Click HERE if you’d like to see the full description.

“Pacific whiting, or hake, is a prevalent fish species found off the West Coast of the United States and Canada. There are three stocks of Pacific whiting: a migratory coastal stock, ranging from southern Baja California to Queen Charlotte Sound; a central-south Puget Sound stock; and a Strait of Georgia stock. While the status of the latter stocks has declined considerably, the coastal stock remains large and is the most abundant commercial fish stock on the Pacific Coast.

Setting harvest levels of coastal Pacific whiting is accomplished through a bilateral agreement between the United States and Canada, known as the Pacific Whiting Treaty. Traditionally, domestic commercial fishermen harvested whiting with midwater trawl gear between May and September along northern California, Oregon, and Washington. The Makah Tribe also has an active fishery for whiting entirely within their usual and accustomed fishing grounds off the Olympic coast.”

We’re going to be studying the hake populations off the coast of the US Northwest. It appears I’ll get really used to seeing these!

Pacific-Whiting-Fish-Watch
Pacific Whiting, or Pacific Hake (photo from http://www.fishwatch.gov)

I’ll be aboard the Bell M. Shimada, which was built to do acoustic trawls along the west coast (exactly what we’re doing). It was commissioned in 2010 and is named after Bell Shimada, a fisheries specialist who is known for his study of tuna populations.

NOAA-Ship-Bell-M.-Shimada-underway_Photo-courtesy-NOAA
NOAA Ship Bell M. Shimada (photo credit: NOAA)

I’m excited to get started!

Personal Log

I’ll be honest – I’m a little nervous to be on this voyage with such experienced scientists! While I do love science, I do not teach it during the school year. I teach math and English. I always tell my students that “math and science are married,” and I try to do as many cross-curricular connections as possible. One of the things I’m excited about for this trip is to get pictures and recordings of the many ways math is used in our research. I can’t wait to integrate that into my units next year and take my math students on a “virtual voyage” with me. Putting math into practical contexts makes it a lot more fun.

When I’m not teaching, I spend a lot of time with my family. My family includes my husband, my awesome dogs, my evil cat, and, well, I guess I’ll include my husband’s best friend who’s been living with us on and off for the past year. He’s sort of in our family now. Living with two men and a bunch of animals feels a little like a sitcom at times, but I laugh a lot.

Here’s my husband, me, and one of our dogs:

familypic

My newfound favorite hobby is cycling. My husband and I did a bike trip across Ireland earlier this summer, so I spent quite a few months training up for that. It was an absolute blast, and I recommend it to everyone. You should do it!

irelandpic

The one thing that people ask me when they hear I’m going on this voyage is, “Do you get seasick?” My answer is always the same: “We’re about to find out.” I’ve never spent the night on a boat before, so sixteen in a row is going to be quite the experience. I’ve packed four different types of seasickness medications, so hopefully something works!

Did You Know?

Bell Shimada died in 1958 in a plane crash while on his way to conduct research in Mexico. At the time, it was Mexico’s deadliest aviation crash to date. Even though he only lived to be thirty-six, his legacy has stood the test of time.

Brad Rhew: The Sounds of the Sea, July 31, 2017

NOAA Teacher at Sea

Brad Rhew

Aboard NOAA Ship Bell M. Shimada

July 23 – August 7, 2017

 

Mission: Hake Fish Survey

Geographic Area of Cruise: Northwest Pacific Ocean, off of the coast of Oregon

Date: July 31, 2017

 

Weather Data from the Bridge

Latitude: 44 49.160 N
Longitude 124 26.512

Temperature: 59oF
Sunny
No precipitation
Winds at 25.45 knots
Waves at 4-5ft

 

Science and Technology Log

TAS Rhew 7-31 acoustics lab2
Inside the acoustics lab

The scientists on the Hake survey project are constantly trying to find new methods to collect data on the fish. One method used is acoustics. Scientists Larry Hufnagle and Dezhang Chu are leading this project on the Shimada. They are using acoustics at a frequency of 38 kHz to detect Pacific Hake. Density differences between air in the swimbladder, fish tissue, and the surrounding water allows scientists to detect fish acoustically.

The purpose of the swim bladder in a fish is to help with the fish’s buoyancy. Fish can regulate the amount of gas in the swim bladder to help them stay at a certain depth in the ocean. This in return decreases the amount of energy they use swimming.

TAS Rhew 7-31 echosounder
The screen shows the data collected by the echosounder at different frequency levels.

Larry and Chu are looking at the acoustic returns (echoes) from 3 frequencies and determining which are Hake. When the echosounder receives echoes from fish, the data is collected and visually displayed. The scientists can see the intensity and patterns of the echosounder return and determine if Hake are present.

The scientists survey from sunrise to sunset looking at the intensity of the return and appearances of schools of fish to make the decisions if this is an area to fish.

TAS Rhew 7-31 scientists Larry and Chu
Scientists Larry Hufnagle (left) and Dezhang Chu (right) monitor the nets and echosounder while fishing for hake.

The ultimate goal is to use this data collected from the echosounder to determine the fish biomass. The biomass determined by the survey is used by stock assessment scientist and managers to manage the fish stock.

Personal Log

Everyday aboard the Shimada is a different experience. It has been amazing to be able to go between the different research labs to learn about how each group of scientists’ projects are contributing to our knowing more about Hake and marine ecosystems. My favorite part so far has been helping with the sampling of Hake. Some people might find dissecting fish after fish to determine length, sex, age, and maturity to be too much. However, this gives me an even better understanding and respect for what scientists do on a daily basis so we can have a better understanding of the world around us. We have also caught other fascinating organisms that has helped me explore other marine species and learn even more about their role in the ocean.

Even though the wind is a little strong and the temperatures are a little chilly for my southern body I wouldn’t trade this experience for anything…especially these amazing sunsets…

TAS Rhew 7-31 sunset
View of sunset over the Pacific Ocean from NOAA Ship Bell M. Shimada

Did You Know?

Before every fishing operation on the boat we must first do a marine mammal watch. Scientists and other crew members go up to the bridge of the boat to see if any mammals (whales, seals, dolphins) are present near the boat. This is to help prevent these animals from being harmed as we collect fish as well as making sure we are not running a risk of these mammals getting caught in the fishing nets.

Fascinating Catch of the Day!

Today’s fun catch in the net was a Brown Catshark! These creatures are normally found in the deeper parts of the Pacific Ocean. They are typically a darker brown color with their eyes on the side of their head. Their skin is very soft and flabby which can easily lead to them being harmed. They have two dorsal fins and their nostrils and mouth on the underside of their body. One of the sharks we caught was just recently pregnant.

 

TAS Rhew 7-31 catshark egg sack string
This catshark was recently pregnant; the yellow stringy substance is from an egg sack.

Notice to yellow curly substance coming out of the shark? That is from the egg sac. Sharks only produce one egg sac at a time. It normally takes up to a full year before a baby shark to form!

Brad Rhew: Getting Fishy With It, July 29, 2017

NOAA Teacher at Sea

Brad Rhew

Aboard NOAA Ship Bell M. Shimada

July 23 – August 7, 2017

 

Mission: Hake Survey

Geographic Area of Cruise: Northwest coast

Date: July 28, 2017

 

Weather Data from the Bridge

Latitude 4359.5N
Longitude 12412.6 W
Temperatue: 54 degrees
Sunny
No precipitation
Winds at 23.5 knots
Waves at 2-4 feet

 

Science and Technology Log

We are officially off! It has already been an amazing experience over the last couple of days.

One of the goals of this project is to collect data that will be used to inform the Pacific hake stock assessment. This falls in line with the Pacific Whiting Treaty that the US-Canadian governments enacted to jointly manage the hake stock. NOAA and Department of Fisheries and Oceans-Canada (DFO) jointly survey and provide the hake biomass to the stock assessment scientists. (Refer to the link in my last blog about additional information on this treaty.) Major goals of the survey are to determine the biomass, distribution, and biological composition of Pacific hake using data from an integrated acoustic and trawl survey. Additionally, we are collecting a suite of ecological and physical oceanographic data in order to better understand the California Current Large Marine Ecosystem (CCLME).

There is a very detailed process the scientists go through to collect samples and data on the hake caught and selected for sampling. They want to learn as much as possible about these fish to help with the ongoing research projects.

Here is a quick guide and understanding of how sampling works and what data is collected:

  1. Determine the length and sex of the fish.
    1. To determine the length, the fish is placed on a magnetic sensor measuring board. The magnet is placed at the fork of the tail fin; the length is recorded into the data table. (See figure A.)
      TAS Rhew Blog 2 photo A
      Figure A. Determining the length of the fish.

       

    2. To determine the sex, the fish is sliced open on the side. Scientist look to see if ovaries (for females) or testes (for males) are present. They also can determine the maturity of the fish by looking at the development of the reproductive organs. (See figure B.)

      TAS Rhew Blog 2 photo B
      Figure B. Determining the sex of the fish.
  2. Determine the mass.
    1. The Hake are placed on a digital scale and then massed. The data also gets entered into the database. (See figure C.)

      TAS Rhew Blog 2 photo C
      Figure C. Massing the fish on a digital scale.
  3. Removing of the otoliths (ear bones).
    1. Hake have two otoliths. How this is done is the scientist first cuts a slight incision on top of the fish’s head. (See figure D.)

      TAS Rhew Blog 2 photo D
      Figure D. Making an incision on the fish’s head to remove otoliths.
    2. The head is then carefully cracked open to expose the bones. (See figure E.)
    3. The bones are removed with forceps and then placed in a vial. The vial is then barcode scanned into the database. The otoliths will then be sent to the lab for testing. Scientists can run test on the otoliths to determine the age of the selected fish. (See figures F and G.)
  4. Removing a fin clip.
    1. Fin clips are removed from the Hake for DNA sampling to be completed back on shore in the lab. This gives researchers even more information about the selected fish.
    2. The fin clip is removed using scissors and forceps. (see figure H.)

      TAS Rhew Blog 2 photo H
      Figure H. Removing a fin clip.
    3. The clip is then placed on a numbered sheet. (see figure I.)

      TAS Rhew Blog 2 photo I
      Figure I. Placing the fin clip on a numbered sheet.
    4. The number is also entered into the database with all the other information collected on that particular fish.
  5. All the information is collected in one database so it can be assessed by scientists for future research. (see figure J.)

    TAS Rhew Blog 2 photo J
    Figure J. All information is stored in a database.

 

Personal Log

Even though this survey is just beginning this has been such an amazing experience already. I have learned a great deal about oceanography and marine research. I cannot wait to use my experiences back in my classroom to expose my students to careers and opportunities they could be a part of in their future.

Another great aspect of being a Teacher at Sea is the relationships I’m building with other scientists and the crew. It is amazing to hear how everyone became a part of this cruise and how passionate they are about their profession and the world around them.

 

Did You Know?

This is Leg 3 of 5 of this Summer Hake Survey. Two more legs will be completed this year to collect even more data on the fish population.

 

Fascinating Catch of the Day!

When we fish for Hake it is very common to collect some other organisms as well. Today’s fun catch was Pyrosomes or Sea Tongues!

These free-floating colonial tunicates are found in the upper part of the open ocean. Pyrosomes rely on the currents to move them around the ocean. They are typically cone shaped and are actually made up of hundreds of organisms known as zooids. The Zooids form a gelatinous tunic that links them together creating the cone shape. They are also bioluminescent and give off a glow in the ocean.

TAS Rhew Blog 2 photo collage
Fun with pyrosomes!

Check it Out!

If you want to learn more about what is happening on the Bell M. Shimada, check out The Main Deck blog for the ship:

https://www.nwfsc.noaa.gov/news/blogs/display_blogentry.cfm?blogid=7

Brad Rhew: “What the Hake?!” July 22, 2017

NOAA Teacher at Sea

Brad Rhew

Aboard NOAA Ship Bell M. Shimada

July 23 – August 7, 2017

 

Mission: Hake Fish Survey and Data Collection

Geographic Area of Cruise: Northwest Pacific Ocean, off of the coast of Oregon

Date: July 22, 2017

 

Weather Data from the Bridge

Summer is in full swing in my home state of North Carolina. We are averaging temperatures in the mid 80’s-90’s. Most days are very hot and humid. Traveling to Oregon and sailing off the coast will be bringing weather I haven’t experienced since early Spring. I am excited about having the chance to “cool off” for a while before returning to the southern summer temps.

Looking ahead at the forecast for Newport, Oregon where we will be sailing out of, temperatures will average in the 70’s during the day to lower 50’s in the evening/night.

Science and Technology Log

Since we have just officially set sail, the science and technology log will come in future post. On the Shimada, many experiments and forms of data collection will occur to learn more about Hake and the ecosystems they live in. I will be learning everything from what the in internal organs of Hake look like, how acoustics/sound waves are used to determine the location of Hake to how certain microbes in the water affect the marine ecosystem. Be prepared for some exciting news and amazing discoveries!

Introduction

TAS Rhew intro photo
TAS Brad Rhew

My name is Brad Rhew and I am currently a Science Lead teacher at Cook Literacy Model School in Winston-Salem, North Carolina.

I graduated with my degree in Middle Grades Science and Social Studies from the University of North Carolina at Greensboro.

Before moving into my current role, I was a middle school science teacher. I absolutely LOVED teaching 8th grade science. It was pure enjoyment watching my kiddos get messy in the lab and find their passion for science and learning.

In my current role as a Science Lead Teacher, I work with K-5 teachers planning and executing their science lessons in their classrooms. I also co-teach science lessons in the lab with teachers to help them gain a better understanding of science instruction. This has been a great experience in this role to watch children in kindergarten fall in love with science and then get to foster that passion all the way until they become fifth graders.

I am so excited about my upcoming adventure on the Bell M. Shimada. I know I will experience so many amazing things that I will get to bring back to my classroom. This experience will not only help me in becoming a better educator but will also help me expose my students to even more real-world science concepts.

Did You Know?

On the survey we will be collecting data about Hake fish. Here’s a little bit of information about the type of fish we will be studying.

TAS Rhew hake
Pacific Hake, also known as Pacific Whiting

Hake, also referred to as Pacific Whiting, is normally found off the Pacific coast of the United States. They are typically grey/silver in color with some black speckling. The underside of Hake is a white-cream color. These fish are normally found near the bottom of the ocean since they feed on smaller, bottom-dwelling fish.

These fish normally grow from one to three feet and weigh an average of five pounds. Hake have swim bladders which help them in the changing pressures of the ocean and to be able to navigate between the water columns. In later posts, I will discuss how research scientists in the acoustics lab on the Bell M. Shimada are using these swim batters to locate the fish in the ocean.

Something to Think About                 

You have probably eaten Hake before and didn’t even realize it. Hake is sometimes referred to as “White Fish” on menus. Because Hake is such a great fish for consumption, overfishing of this species is becoming an issue. Many countries and areas are starting to put regulations in place to help with the decreasing of the Hake population. NOAA has also become involved with this movement.

To learn more about NOAA’s involvement with Hake and more about our Summer Hake Survey visit the following website:

http://www.westcoast.fisheries.noaa.gov/fisheries/management/whiting/pacific_whiting.html

 

 

Cathrine Prenot: Why Math Matters. July 29, 2016.

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Thursday, July 29, 2016

Weather Data from the Bridge

Lat: 4901.93N (We’re in Canada!)
Lon: 12651.64W
Speed: 5.7 knots
Windspeed: 34.2 deg/knots
Barometer: 1018.10 mBars
Air Temp: 15.0 degrees Celsius
Water Temp: 13.92 degrees Celsius

Science and Technology Log

IMG_4287
Panoramic view of the back deck of the Bell M. Shimada from the wet lab.

There is a book on the bridge of most sailing vessels called “The American Practical Navigator.” Most people call it Bowditch, for short. It is a thick tome, and has an insane wealth of information in it, as Nathanial Bowditch vowed to “put down in the book nothing I can’t teach the crew.” He evidently thought his crew could learn anything, as Bowditch is an encyclopedia of information. You can find distances to nearby planets, how magnetic fields change around iron vessels, what to do if you are lost at sea, what mirages are, and rules to navigate around hurricanes. It’s been updated multiple times since Bowditch’s version in 1802, but one fact has remained. There is math—oodles and oodles of geometry and algebra and calculus—on every page. In fact, a lot of the Bell M. Shimada runs on math—even our acoustic fishing is all based on speed and wavelengths of sound.

transfer
Screenshot from the Bell M. Shimada’s Acoustics Lab showing the visual rendition (left to right) of 18,000Hz, 38,000Hz, and 120,000Hz.  The ocean floor is the rainbow wavy line 250-450meters below.  This was transect #38; we fished the red/orange splotches approx 150 meters deep.  They were all hake!

Sonar was first used in World War I to detect submarines, and began to be used to sense fish soon after the war ended, with limited success. Sonar advanced rapidly through World War II and fishermen and scientists modified surplus military sonar to specifically detect ocean life. Since sound will bounce off “anything different than water,” we can now use different frequencies and energy to determine an incredible amount of information on a fish’s life. We can “try to tell what kind of fish, where they are, map vertically what they do, and determine their density.” The chief scientist, Dr. Sandy Parker-Stetter says it best. “My job is to spy on fish.” In my opinion, Sandy seems good enough to be in the Acoustics CIA. Click on Adventures in a Blue World; Why Math Matters, to learn all about fish spying and other reasons you should pay attention in algebra class.

Adventures in a Blue World, CNP. Why Math Matters.
Adventures in a Blue World, CNP. Why Math Matters.

 

Personal Log

Life onboard continues to be interesting and fun. The wind has picked up a bit, which has translated into higher seas. I tried to film the curtains around my rack last night opening and closing of their own accord, but every time I’d pick up the camera, they’d stop. I did get a few seconds of some wave action outside the workout room; riding a bike is now much easier than running on the treadmill. Pushups are insanely easy when the ship falls into the waves, and ridiculously difficult when rising.

Porthole video.

I’ve also been involved in a chemical spill drill (that does say drill), and was lucky to be given the helm for a brief moment on the Bell Shimada.

Staging a chemical spill for the crew's spill drill
Staging a chemical spill for the crew’s spill drill
Prenot at the Helm
Prenot at the Helm

 

Did You Know?

NOAA has been around since 1970! Thanks to our great Survey Tech Kathryn Willingham for keeping our science team working so seamlessly. Well… …and making it fun too.

Kathryn
Kathryn Willingham

 

Resources: 

Ocean frequencies: explore sound in the ocean.
Check out this great TED talk about the importance of mathematics at sea.

Cathrine Prenot: Sea Speak. July 25, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

 

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Sunday, July 24, 2016

Weather Data from the Bridge

Lat: 47º32.20 N
Lon: 125º11.21 W
Speed: 10.4 knots
Windspeed: 19.01 deg/knots
Barometer: 1020.26 mBars
Air Temp: 16.3 degrees Celsius
Water Temp: 17.09 degrees Celsius


Science and Technology Log

Typical evening view from the flying bridge of the Bell M. Shimada
Typical evening view from the flying bridge of the Bell M. Shimada

We have been cruising along watching fish on our transects and trawling 2-4 times a day. Most of the trawls are predominantly hake, but I have gotten to see a few different species of rockfish too—Widow rockfish, Yellowtail rockfish, and Pacific Ocean Perch (everyone calls them P.O.P.)—and took their lengths, weights, sexes, stomachs, ovaries, and otoliths…

…but you probably don’t know what all that means.

The science team sorts all of the catch down to Genus species, and randomly select smaller sub-samples of each type of organism. We weigh the total mass of each species. Sometimes we save whole physical samples—for example, a researcher back on shore wants samples of fish under 30cm, or all squid, or herring, so we bag and freeze whole fish or the squid.

For the “sub samples” (1-350 fish, ish) we do some pretty intense data collection. We determine the sex of the fish by cutting them open and looking for ovaries or testes. We identify and preserve all prey we find in the stomachs of Yellowtail Rockfish, and preserve the ovaries of this species’ females and others as well. We measure fish individual lengths and masses, take photos of lamprey scars, and then collect their otoliths.

Fish Otolith showing concentric growth rings from here.

Otoliths are hard bones in the skull of fish right behind the brain. Fish use them for balance in the water; scientists can use them to determine a fish’s age by counting the number of rings. Otoliths can also be used to identify the species of fish.

Here is how you remove them: it’s a bit gross.

Otolith instructions from here.
Cod, Redfish, and Hake otoliths from here.

 

A bigger fish species does not necessarily mean a larger otolith. From here.

If you want to check out an amazing database of otoliths, or if you decide to collect a few and want to see what species or age of fish you caught, or if you are an anthropologist and want to see what fish people ate a long time ago? Check out the Alaska Fisheries Science Center—they will be a good starting spot.  You can even run a play a little game to age fish bones!

Pacific Ocean Perch, or P.O.P.
Pacific Ocean Perch, or P.O.P.

 

Personal Log

I haven’t had a lot of spare time since we’ve been fishing, but I did manage to finagle my way into the galley (kitchen) to work with Chief Steward Larry and Second Cook Arlene. They graciously let me ask a lot of questions and help make donuts and fish tacos!  No, not donut fish tacos.  Gross.

How to make friends and influence people
How to make friends and influence people

Working in the galley got me thinking of “ship jargon,” and I spent this morning reading all sorts of etymology.  I was interested to learn that the term crow’s nest came from the times of the Vikings when they used crows or raven to aid navigation for land.  Or that in the days of the tall ships, a boat that lost a captain or officer at sea would fly blue flags and paint a blue band on the hull—hence why we say we are “feeling blue.”  There are a lot more, and you can read some interesting ones here.

You can also click on Adventures in a Blue World below (cartoon citations 1 and 2).

TAS Cat Prenot 2016 cartoon4 v2

And here is a nautical primer from Adventures in a Blue World Volume 1:

A Nautical Primer part I from 2011 aboard the Oscar Dyson
A Nautical Primer from 2011 aboard the Oscar Dyson

 

Did You Know?

Working in the wet lab can be, well, wet and gross. We process hundreds of fish for data, and then have hoses from the ceiling to spray off fish parts, and two huge hoses to blast off the conveyor belt and floors when we are done. But… …I kind of love it.

Yay Science!
Yay Science!

Resources

Etymology navy terms: http://www.navy.mil/navydata/traditions/html/navyterm.html

Interestingly enough, the very words “Sea Speak” have a meaning.  When an Officer of the Deck radios other ships in the surrounding water, they typically use a predetermined way of speaking, to avoid confusion.  For example, the number 324 would be said three-two-four.

 

Cathrine Prenot: Lights in the Ocean. Thursday, July 21, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Thursday, July 21, 2016

Weather Data from the Bridge
Lat: 46º18.8 N
Lon: 124º25.6 W
Speed: 10.4 knots
Wind speed: 12.35 degree/knots
Barometer: 1018.59 mBars
Air Temp: 16.3 degrees Celsius

 

Science and Technology Log

The ship’s engineering staff are really friendly, and they were happy to oblige my questions and take me on a tour of the Engine Rooms. I got to go into the ‘belly of the beast’ on the Oscar Dyson, but on the tour of the Shimada, Sean Baptista, 1st assistant engineer, hooked us up with headsets with radios and microphones. It is super loud below decks, but the microphones made it so that we could ask questions and not just mime out what we were curious about.

I think the job of the engineers is pretty interesting for three main reasons.

On the way to see the bow thruster below decks
On the way to see the bow thruster below decks

One, they get to be all over the ship and see the real behind-the-scenes working of a huge vessel at sea. We went down ladders and hatches, through remotely operated sealed doors, and wound our way through engines and water purifiers and even water treatment (poo) devices. Engineers understand the ship from the bottom up.

One of four Caterpillar diesel engines powering the ship
One of four Caterpillar diesel engines powering the ship

Second, I am sure that when it is your Job it doesn’t seem that glamorous, but an engineer’s work keeps the ship moving. Scientists collect data, the Deck crew fish, the NOAA Corps officers drive the ship, but the engineers make sure we have water to drink, that our ‘business’ is treated and sanitary, that we have power to plug in our computers (the lab I am writing in right now has 6 monitors displaying weather from the bridge, charts, ship trackers, and science data) and science equipment.

I did not touch any buttons. Promise.
I did not touch any buttons. Promise.

Finally, if something breaks on the ship, engineers fix it. Right there, with whatever they have on hand. Before we were able to take the tour, 1st Assistant Engineer Baptista gave us a stern warning to not touch anything—buttons, levers, pipes—anything. There is a kind of resourcefulness to be an engineer on a ship—you have to be able to make do with what you have when you are in the middle of the ocean.

The engineers all came to this position from different pathways—from having a welding background, to being in the navy or army, attending the U.S. Merchant Marine Academy, or even having an art degree.  The biggest challenge is being away from your family for long periods of time, but I can attest that they are a pretty tight group onboard.

 

In terms of the science that I’ve been learning, I’ve had some time to do some research of some of the bycatch organisms from our Hake trawls. “Bycatch” are nontargeted species that are caught in the net.  Our bycatch has been very small—we are mostly getting just hake, but I’ve seen about 30-40 these cute little fish with blue glowing dots all over their sides. Call me crazy, but anything that comes out of the ocean with what look like glowing sparkling sapphires is worthy of a cartoon.

So… …What is small, glows, and comprises about 65% of all deep-sea biomass? Click on the cartoon to read Adventures in a Blue World 3.

Adventures in a Blue World, CNP. Lights in the Ocean
Adventures in a Blue World, CNP. Lights in the Ocean

 

Personal Log

The weather is absolutely beautiful and the seas are calm. We are cruising along at between 10-12 knots along set transects looking for hake, but we haven’t seen—I should say “heard” them in large enough groups or the right age class to sample.  So, in the meanwhile, I’ve taken a tour of the inner workings of the ship from the engineers, made an appointment with the Chief Steward to come in and cook with him for a day, spent some time on the bridge checking out charts and the important and exciting looking equipment, played a few very poor rounds of cornhole, and have been cartooning and reading.

I was out on the back deck having a coffee and an ice cream (I lead a decadent and wild life as a Teacher at Sea) and I noticed that the shoreline looked very familiar. Sure enough—it was Cannon Beach, OR, with Haystack Rock (you’ll remember it from the movie The Goonies)! Some of my family lived there for years; it was fun to see it from ten miles off shore.

Chart showing our current geographic area. Center of coast is Cannon Bean, Oregon.
Chart showing our current geographic area. Center of coast is Cannon Beach, Oregon.
View of Tillamook Head and Cannon Beach. It looked closer in person.
View of Tillamook Head and Cannon Beach. It looked closer in person.

 

Did You Know?

One of the scientists I have been working with knows a lot about fish. He knows every organism that comes off the nets in a trawl down to their Genus species. No wonder he knows all the fish—all of the reference books that I have been using in the wet lab were written by him. Head smack.

Dan Kamikawa, our fish whisperer
One of the books written by Dan Kamikawa, our fish whisperer

 

Resources

My sister (thank you!) does my multi media research for me from shore, as I am not allowed to pig out on bandwidth and watch lots of videos about bioluminescence in the ocean.  This video is pretty wonderful.  Check it out.

If you want to geek out more about Lanternfish, read this from a great site called the Tree of Life web project.

Interested in becoming a Wage Mariner in many different fields–including engineering?  Click here.

Cathrine Prenot: A Fish Tale, Too Big to Fail. July 18, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard the Bell M. Shimada
July 17-July 30, 2016

 

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: July 18, 2016

Weather Data from the Bridge:
Lat: 45º19.7 N
Lon: 124º21.6 W
COG: 11.2
Speed: 17.1 knots
Air Temp: 16.4 degrees Celsius
Barometer (mBars): 1019.54
Relative Humidity: 84%

Science and Technology Log

It is exciting to be out to sea on “Leg 2” of this cruise! The official title of our research is “2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem.” One of the key portions of this leg of the trip is to collect data on whether or not a piece of equipment called the “Marine Mammal Excluder Device” (MMED) makes any difference in the fish lengths or the species we catch. Here is how it works (all images from Evaluation of a marine mammal excluder device (MMED) for a Nordic 264 midwater rope trawl):

The catch swims towards the codend of the net and encounters the MMED
The catch swim towards the codend of the net and encounter the MMED
The catch encounters the grate; some go through the grate while others escape the net through the hatch (shown by the orange buoy).
Some of the catch go through the grate (to the codend) while others escape the net through the hatch (shown by the orange buoy).

Why is this important?  For example, if all of one type of fish in a trawl escape through this MMED, we would be getting a different type of sample than we would if the equipment was off the nets.  Our lead scientist, Dr. Sandy Parker-Stetter explained: “If all the rockfish go out the top escape panel, how will we know they were there?”   To collect data on this, we will be doing a lot of trawls—or fishing, for those non-sea faring folk—some with the MMED and others without it. These will be small catches, we need about 300-400 fish, but enough to be able to make a determination if the equipment effect the data in any way.

We have done a few trawls already, and here are some of the photos from them:

'Young of the Year' Hake
‘Young of the Year’ Hake
Pacific Hake sample
Pacific Hake sample
Wanted: must love fish. And science.
Wanted: must love fish. And science.

All of this reminds me of why we are so concerned with accurately estimating the population of a little fish. To illustrate, let me tell you a story—a story of a fishery thought too big to fail—the Great Banks Atlantic Cod fishery. Why don’t you click on Issue 2 of Adventures in a Blue World: A Fish Tale, Too Big to Fail.

Adventures in a Blue World, CNP. A Fish Tale: Too Big to Fail
Adventures in a Blue World, CNP. A Fish Tale: Too Big to Fail

Cod populations decreased to such a degree (1% of previous numbers), that the Canadian Government issued a moratorium on Cod fishing in 1992.  Our mission—to investigate of hake survey methods, life history, and associated ecosystem—is designed to prevent such a devastating result. We don’t want Hake or other species to go the same route.

Atlantic Cod circa 1920s: from here

Personal Log

We left the left the dock on Sunday at 1145, and made our way under the Newport Bridge and out to sea. It was really wonderful to watch the ship leave the harbor from way up on the Flying Bridge—the top-most deck of the ship. There are four tall chairs (bolted to the deck) at the forward end of the deck, an awning, and someone even rigged a hammock between two iron poles. It is rather festive, although again, there were no drinks with umbrellas being brought to us.

View of Newport, OR from the flying bridge of the Shimada
View of Newport, OR from the flying bridge of the Shimada

I didn’t have any problems with seasickness on my last voyage, but I did take some meds just in case. One of the researchers said that he doesn’t take any meds any more, he just gets sick once or twice and then feels much better. If you are interested, here is a link to my previous cartoon about why we are sea-sick, and how and why ginger actually works just as well as other OTC drugs. All I can say now is that I’m typing this blog in the acoustics lab, and the ship does seem to be moving rather alarmingly from fore to aft–called pitching.  Maybe I should find a nice porthole. In the meanwhile, you can read “Why are we seasick.”

 

Did You Know?

The end of the fishing net is called the codend.  Who knew?  This and many more things can be learned about fishing from reading this handy reference guide.

Dana Chu: May 17, 2016

NOAA Teacher at Sea
Dana Chu
On Board NOAA Ship Bell M. Shimada
May 13 – 22, 2016

Mission: Applied California Current Ecosystem Studies (ACCESS) is a working partnership between Cordell Bank National Marine Sanctuary, Greater Farallones National Marine Sanctuary, and Point Blue Conservation Science to survey the oceanographic conditions that influence and drive the availability of prey species (i.e., krill) to predators (i.e., marine mammals and sea birds).

Geographic area of cruise: Greater Farallones, Cordell Bank, and Monterey Bay National Marine Sanctuaries

Date: Tuesday, May 17, 2016

Weather Data from the Bridge
Clear skies, light winds at 0600 increased to 18 knots at 0900, 6-8 feet swells

Science and Technology Log

Ahoy from the Bell Shimada! Today, I will explain three of the tools that are deployed from the side deck to obtain samples of the water and the ocean’s prey species.

First off we have the Harmful Algal Bloom Net, also known as the HAB Net, which is basically a 10-inch opening with a 39-inch fine mesh netting attached to a closed end canister. The HAB net is deployed manually by hand to the depth of 30 feet three consecutive times to obtain a water sample. The top fourth of the water collected is decanted and the remaining water (approximately 80ml) is transferred to a bottle which is then sealed and labeled with the location (latitude, longitude), date, time, vertical or horizontal position, and any particular comments. The samples will eventually be mailed off to California Department of Health Services lab for analysis for harmful toxins from algae that can affect shellfish consumers.

Next we have the hoop net, which is pretty much similar in design to the HAB net, except for a larger opening diameter of 3 feet (think hula hoop) and a net length of nine feet. The net tapers off into a closed container with open slits on the sides to allow for water drainage. The purpose of the hoop net to collect organisms that are found at the various depth levels of the deployment. The hoop net is attached to a cable held by the winch. The hoop net is lowered at a specific angle which when calculated with the speed of the vessel equates to a certain depth. The survey crew reports the wire angle sighting throughout the deployment.

Every time the hoop net is brought back up there is a sense of anticipation at what we will find once the canister is open. Coloring is a good indicator. Purple usually indicates a high concentration of doliolids, while a darker color may indicate a significant amount of krill. Phytoplankton usually have a brownish coloring. Many of the hoop net collections from today and yesterday include doliolids and colonial salps, neither are very nutrient dense. Yesterday we also found pyrosomes, which are transparent organisms that resemble a sea cucumber with little bumps and soft thorns along their body. The smallest pyrosome we came upon was two and a half inches with the largest over six inches long. A few small fish of less than one inch in length also showed up sporadically in these collections as well.

The Scientific team is looking for the presence of krill in the samples obtained. The Euphausia pacifica is one of the many species of krill found in these waters. Many tiny krill were found in the various hoop net deployments. On the last hoop net deployment for today and yesterday, larger sized krill of approximately 1 inch) were found. This is good news because krill is the dominant food source for marine mammals such as whales. Ideally it would be even better if the larger krill appeared more frequently in the hoop net samples.

Finally, we have the Tucker Trawl, which is the largest and most complex of the three nets discussed in today’s post. The Tucker Trawl consists of three separate nets, one for sampling at each depth: the top, middle, and bottom of the water column. Like the hoop net, the tucker trawl nets also have a canister with open slits along the side covered with mesh to allow water to drain. All three nets are mounted on the same frame attached to a wire cable held by the winch. As the Tucker Trawl is towed only one net is open at a time for a specific length of time. The net is closed by dropping a weight down along the tow. Once the weight reaches the net opening, it triggers the net to shut and sends a vibration signal up the cable line back to the surface which can be felt by the scientist holding the cable. The net is then towed at the next depth for ten minutes. Once the last net tow has been completed, the Tucker Trawl is brought back up to surface. Similar to the hoop net, the survey tech reads the wire angle throughout the deployment to determine the angle the cable needs to be at in order for the net to reach a certain depth. This is where all the Geometry comes in handy!

As mentioned already, with three nets, the Tucker Trawl yields three separate collections of the nutrients found within the top, middle and bottom of the water column. Once the nets are retrieved, each collection container is poured into a different bucket or tub, and then into a sieve before making it into a collection bottle. If there is a large quantity collected, a subsample is used to fill up a maximum of two bottles before the remainder is discarded back into the ocean. Once the samples are processed, an outside label is attached to the bottle and an interior label is dropped inside the bottle, formalin is added to preserve the sample organisms collected so that they can be analyzed later back in the lab.

Personal Log

It is so good to finally get my sea legs! I am glad I can be of use and actively participate. Cooperative teamwork is essential to getting everything to flow smoothly and on time. The Bell Shimada’s deck crew and NOAA team work hand in hand with the scientists to deploy and retrieve the various instruments and devices.

In the past two days I am getting a lot of hands on experience with deploying the HAB net to assisting with processing samples from the HOOP Net and Tucker Trawl. It’s always exciting to see what we might have collected. I can’t wait to see what the rest of the week may bring. I wonder what interesting finds we will get with the midnight Tucker Trawl samples.

Lesson Learned: Neatness and accuracy are imperative when labeling samples! Pre-planning and preparing labels ahead of time helps streamline the process once the samples are in hand.

Word of the Day:        Thermocline – This is the depth range where the temperature of the water drops steeply. The region above the thermocline has nutrient depleted waters and while the region below has nutrient rich waters.

 

Dana Chu: Introduction, May 12, 2016

NOAA Teacher at Sea
Dana Chu
(Almost) Aboard NOAA Ship Bell M. Shimada
May 13-22, 2016

Mission: Applied California Current Ecosystem Studies (ACCESS) is a working partnership between Cordell Bank National Marine Sanctuary, Greater Farallones National Marine Sanctuary, and Point Blue Conservation Science to survey the oceanographic conditions that influence and drive the availability of prey species (i.e., krill) to predators (i.e., marine mammals and sea birds).

Geographical area of cruise:  Greater Farallones, Cordell Bank, and Monterey Bay National Marine Sanctuaries (all off the coast of California)

Date:  Thursday, May 12, 2016

Personal Log