John Schneider, July 27-29, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: FISHPAC
Geographical Area: Bering Sea
Date: July 27-29, 2009

Position
In transit to Bristol Bay, AK

Weather Data from the Bridge 
Weather System: highly variable in the Bering Sea
Barometer: falling on the second day
Wind: Ranging from light and variable to 35 kts
Low Temperature: 7.0º C
Sea State: initially <1-2 feet up to 8 feet on the evening of the 29th

The sheet above shows legs 5-10 of FISHPAC in the Bering Sea, AK
The sheet above shows legs 5-10 of FISHPAC in the Bering Sea, AK

What Is FISHPAC? 

The Magnusen-Stevens Fisheries Conservation Management Act includes the broad designation of “Essential Fish Habitat” (EFH) as including myriad parameters which are to be considered for all life stages of the managed species. Included in them are bottom type, epifauna and infauna, grain size, and organic debris. Additionally, studies are to span the life cycles of those species.  There is an enormous amount of historical data relating to commercial fisheries catches, but the data have not been assembled as a whole and screened for accuracy.  Additionally, there has been virtually no search for correlations within the data. Dr. Bob McConnaughey is engaged in seeking correlations between bottom characteristics, managed species and sorting through extant records in the search for utilizing sonar data to anticipate species presence in the Bering Sea.  The phrase I’ve heard is “using bottom characteristics as proxy for prey identification.” Earlier cruise results can be viewed here.  It would take a long time to describe all that they do at the Alaska Fisheries Service Center, so what I highly recommend is that you spend a while at their site.

Science and Technology Log 

SeaBoss on deck
SeaBoss on deck

In addition to searching for correlations between trawl catch data and bottom characteristics, Dr. McConnaughey and his team are trying to determine if sound data (Multi-beam Echo Sounders and Side Scan Sonar) can be used in anticipating what species will likely be present in a given area. There are 69 managed commercial species in Alaska alone, which represent an enormous proportion of the commercial US catch, and if technology and research can be gained here, it can conceivably be applied elsewhere.  The Alaskan fisheries have also not been subjected to as much commercial fishing as, say, the coast of New England due to the remote, harsh and generally newly populated area which is Alaska. Commercial fishing here is, for the most part, less than 50 years old compared to the hundreds of years off the East Coast.

SeaBoss being deployed. It is suspended from the J-Frame and swung outboard. Tending the SeaBoss can be hazardous so crew members are tethered to the deck.
SeaBoss being deployed. It is suspended from the J-Frame and swung outboard. Tending the SeaBoss can be hazardous so crew members are tethered to the deck.

Alaska has over 45,000 miles of coastline, contains 70% of the United States continental shelf, and 28% of the Exclusive Economic Zone (a 200 mile legal designation) yet much of that area has never been properly surveyed. With the prospect of a warming climate and potential northerly relocation of commercially viable species, it is essential to document as much of this area as possible before long-term damage may be inflicted on it. In order to evaluate the EFH parameters, one of the tools the FISHPAC team uses to gather bottom samples is an apparatus called the SeaBoss (Sea Bed Observation System.)

SeaBoss on the way up--it can be seen as deep as about 5 to 10 meters
SeaBoss on the way up–it can be seen as deep as about 5 to 10 meters

SeaBoss allows the team to gather a 0.1m2 bottom sample, descending and forward looking video and still pictures taken just before it hits the bottom. SeaBoss gets deployed twice at each site.  The first sample is brought up and dumped into a sieve with a 1mm grid size.  It is then gently hosed off with seawater to clear away the inorganic materials and large particles.  The remaining biomass is put into containers with formalin solution for 2 days and then put into an alcohol solution to prevent decay.  Those samples will be quantified back in the lab in the Seattle area. With the second sample from roughly the same bottom area, samples are taken of the bottom material itself from the surface and from a couple of centimeters below the surface.  These, too, will be quantitatively evaluated back in the lab for grain sizes present and the proportions of those grain sizes in the sample. For background information on the SeaBoss, go here.

Jim Bush in the bosun’s chair.  Rick Ferguson (l) and Chief Bosun Ron Walker assisting.
Jim Bush in the bosun’s chair. Rick Ferguson (l) and Chief Bosun Ron Walker assisting.

Personal Log 

Before we left Dutch Harbor, we took on fuel (about ¼ of a load – only 22,000 gallons!) We took on ship’s stores (food.) 100+ gallons milk, 25 cases produce, a couple hundred pounds of meat (beef, chicken, pork, lamb,) scores of loaves of bread, and numerous cases of ice cream as well as other things.  It took several hours to stow it all away.  We also took on about 10 pallets of scientific gear for the FISHPAC team.  One of the more interesting scenes was watching AB Jim Bush rigging the A-Frame for deploying some of the equipment off of the fantail.

Questions for You to Investigate 

Check out the web sites I listed, there’s some really cool stuff on them.

New Terms/Phrases 

Biomass – organic matter created by living things epifauna – living animals on the surface of the bottom infauna – living animals in the bottom quantitatively – using numerical values

 

Heather Diaz, July 15, 2006

NOAA Teacher at Sea
Heather Diaz
Onboard NOAA Ship David Starr Jordan
July 6 – 15, 2006

Mission: Juvenile Shark Abundance Survey
Geographical Area: U.S. West Coast
Date: July 15, 2006

Science and Technology Log 

They did a swordfish set last night around midnight.  We hauled in the set around 5:30am. We caught 4 blues and 2 makos.  We also caught one pelagic ray.  They set a shark line out around 7:45. We were hoping to be able to finish one last set before going into port. We were scheduled to be in port around 3.

Teacher at Sea, Heather Diaz, holds up a Blue shark.
Teacher at Sea, Heather Diaz, holds up a Blue shark.

Dr. Russ Vetter explained what the different computers are used for in the aft lab.  There is one called at EK500/EQ50 which uses a split beam transponder to create a “map” of the ocean floor, so the scientists can use the data to find high spots, which sometimes are better for fishing. It also works as a sort of “fish finder” and the different things in the water show up in scale and color, so that you can see the approximate size of the animal/plant in the water.  He also explained the Navigation computer, which digitally shows the charts (with soundings), topographical features (like islands and coastline), and our course. It also provides information on other vessels that are nearby, and when available, that vessel’s name and number…the same navigation computer they also use on the Bridge. The Nav. Comp. also provides information like our latitude and longitude and our speed.

There is another computer which monitors wind speed and direction, temperature of the water (under the boat), barometric pressure, and salinity of the water.  All of these are real-time, and provide important information to the scientists.  There is also an ADCP (Acoustic Doppler Current Profiler) computer which displays a constantly changing graph of current velocity relative to the ref layer.

The very last set of this leg was a bit slower than most, which may have been a good thing, since most people were starting to get a bit tired.  We had 2 blues and 2 makos. We were very pleased to find out that we had, during the entire leg, managed to capture 80 blue sharks (78 were measured, sexed, and released), 63 mako sharks (61 were tagged and released), 23 pelagic rays (23 were released, none were tagged), 3 molas (3 were tagged and released), and 1 lancetfish (which was released but not tagged).  Everyone seemed very pleased with the results, and now Dr. Suzy Kohin (Chief Scientist) and Dr. Heidi Dewar will head back to their lab at Southwest Fisheries to analyze the data.

Personal Log 

Last night the sky was very clear, so we were able to see a lot of stars, including the Milky Way, which was very easy to see last night.  The view from the Flying Bridge (the very top of the ship) is amazing, and we felt like we could see every star in the universe, even though we know we couldn’t. We could also see the far away glow of Los Angeles, a reminder that we will soon be back in port and that our trip is nearly over.  Nearby, there was a large tanker and a container ship, which also looked neat in the dark.  The container ship was still nearby this morning when we woke up.

The sunset this morning was amazing.  There were a few wispy Cirrus clouds in the sky, which reflected the glow of the sun long before the sun made its first appearance in the sky. It was truly a beautiful sunrise, and a great way to start off our last day!  This morning after the set, everyone was a bit disappointed that we have not caught a swordfish this trip.  But, Dr. Heidi Dewar said she would consider doing another swordfish study in the future.

Everyone is busy packing and getting their gear ready to go home.  Everyone, including me, is excited to be going home to see family and friends, but I think most people will be a little sad, too. For me, this has been an absolutely amazing experience!  I have learned so much, and I have seen more in the past week than I ever could have from reading books or watching documentaries.  There is just something so special about being able to feed a sea lion, touch a shark, or come within inches of a mola to feel the power of nature and the beauty of the ocean. I am awe struck in so many ways.  The people aboard the DAVID STARR JORDAN could not have been kinder, and everyone has gone far out of their way to make me feel like part of the DSJ family.  Everyone from the captain and the officers, the boatswains, the stewards, and everyone in engineering has been friendly and helpful. I will surely miss everyone on board.  As for the scientists, they did an outstanding job of helping me to learn things and to make me feel like I was a real part of their crew. I will miss the lapping of the waves, the rolling of the ship, the camaraderie, the food, the animals, the scenery, the sunsets, and the sunsets.  And, although I cannot take any of them with me, I will have the memories of them all forever.

I want to sincerely thank Lieutenant Commander Von Saunder, the amazing crew of the DAVID STARR JORDAN, Dr. Suzy Kohin, and her wonderful team of scientists for a fantastic experience!  I never imagined it would be this incredible!  I will be grateful to you all for a long, long, long time!  Thank you for allowing me to share these past 10 days with you, and I wish you all safe travels and many more beautiful sunsets at sea to come!