Ragupathy Kannan: Ocean Salinity to Ocean Sunfish, August 26, 2019

NOAA Teacher at Sea

Ragupathy Kannan

Aboard NOAA Ship Gordon Gunter

August 15-30, 2019


Mission: Summer Ecosystem Monitoring

Geographic Area of Cruise: Northeast U.S. Atlantic Ocean

Date: August 26, 2019

Weather Data from the Bridge

Latitude: 41.27688
Longitude: -67.03071
Water temperature: 18.4°C
Wind Speed: 14.8 knots
Wind Direction: 41°
Air temperature: 18.6°C
Atmospheric pressure: 1021 millibars
Sky: Cloudy


Science and Technology Log

We entered Canadian waters up north in the Gulf of Maine, and sure enough, the waters are cooler, the sea choppier, and the wind gustier than before.  And the organisms are beginning to show a difference too.  Our Chief Scientist Harvey Walsh showed me a much longer arrow worm (Chaetognatha) from the plankton samples than we had encountered before (see photo below).  And there are more krill (small planktonic crustaceans) now. 

arrow worm
We got this beautiful arrow worm in our plankton sample as we entered colder waters

So far in my blogs, I have focused on sampling of biological organisms like plankton.  But recall that in an ecosystem monitoring survey like ours, we need to measure the abiotic (non-biological) aspects too because the word Ecosystem covers a community of organisms along with their biotic and abiotic environment. 

In today’s blog, I will highlight the ways various important abiotic components are measured.  You will learn about the interdisciplinary nature of science.  (Feel free to pass this blog on to physics, chemistry, and engineering majors you know—it may open up some career paths they may not have explored!).  I will come back to biotic factors in my next blog (seabirds and marine mammals!).

CTD

The CTD is a device that measures Conductivity, Temperature, and Depth.  We lower a heavy contraption called a Rosette (named due to its shape, see photo below) into the water. It has bottles called Niskin bottles that can be activated from a computer to open at specific depths and collect water samples.  Water samples are collected from various depths.  Electrical conductivity measurements give an idea of salinity in the water, and that in turn with water temperature determines water density.  The density of water has important implications for ocean circulation and therefore global climate.  In addition, dissolved inorganic carbon (DIC) is also measured in labs later to give an idea of acidity across the depths.  The increased CO2 in the air in recent decades has in turn increased the ocean’s acidity to the point that many shelled organisms are not able to make healthy shells anymore.  (CO2 dissolves in water to form carbonic acid).  Addressing the issue of increasing ocean acidity and the resulting mass extinction of shell-building organisms has become a pressing subject of study.  See the photos below of CTD being deployed and the real-time data on salinity and temperature transmitted by the CTD during my voyage.

lowering the CTD
I assist lowering the CTD Rosette into the water. The gray cylinders are Niskin bottles that can be activated to open at various depths.
CTD data
This display shows the real time data from each scan the CTD sends back to the computer. The y-axis is depth in meters, with sea surface at the top. The instrument was sent down to 500 meters deep. The green lines show fluorescence, an estimate of phytoplankton production. Note that the phytoplankton are at the photic (top) zone where more light penetrates. The blue line shows water temperature in degrees Celsius and the red line shows salinity. (Photo courtesy: Harvey Walsh)

EK-80

The ship is equipped with a highly sensitive sonar device called EK-80 that was designed to detect schools of fish in the water. (See photo of it attached to the hull of our ship, below).  It works by sending sound waves into the water.  They bounce off objects and return.  The device detects these echos and generates an image.  It also reflects off the sea bottom, thus giving the depth of the water.  See below an impressive image generated by our EK-80, provided kindly to me by our amicable Electronics Technician, Stephen.

EK-80 display
A remarkable screen shot of the EK-80 display of our ship passing over the Chesapeake Bay Bridge Tunnel as we headed out to sea from Norfolk, Virginia. To the left is a huge mound of dirt/rock, and just to the right of the mound, is a ravine and the tunnel (has a small peak and spikes). To the right (seaward side of the tunnel) you can see dredge material falling from the surface. We observed the sand and silt on the surface as we were passing through it. (Courtesy Stephen G. Allen).

The Acoustic Doppler Current Profiler (ADCP)

Scientists use this instrument to measure how fast water is moving across an entire water column. An ADCP is attached to the bottom of our ship (see photo below) to take constant current measurements as we move.  How does it work? The ADCP measures water currents with sound, using a principle of sound waves called the Doppler effect.  A sound wave has a higher frequency as it approaches you than when it moves away. You hear the Doppler effect in action when a car speeds past with a building of sound that fades when the car passes. The ADCP works by transmitting “pings” of sound at a constant frequency into the water. (The pings are inaudible to humans and marine mammals.) As the sound waves travel, they bounce off particles suspended in the moving water, and reflect back to the instrument. Due to the Doppler effect, sound waves bounced back from a particle moving away from the profiler have a slightly lowered frequency when they return. Particles moving toward the instrument send back higher frequency waves. The difference in frequency between the waves the profiler sends out and the waves it receives is called the Doppler shift. The instrument uses this shift to calculate how fast the particle and the water around it are moving. (From whoi.edu)

The University of Hawaii monitors ocean currents data from ADCPs mounted in various NOAA ships to understand global current patterns and their changes. 

hull of NOAA Ship Gordon Gunter
The hull (bottom surface) of the ship showing the EK-80 and ADCP systems, among other sensors. Photo taken at the ship yard. (Courtesy: Stephen G. Allen)

Hyperpro

Hyperpro is short for Hyperspectral profiler, a device that ground truths what satellites in outer space are detecting in terms of light reflectivity from the ocean.  What reflects from the water indicates what’s in the water.  Human eyes see blue waters when there isn’t much colloidal (particulate) suspensions, green when there is algae, and brown when there is dirt suspended in the water.  But a hyperpro detects a lot more light wavelengths than the human eye can.  It also compares data from satellites with what’s locally measured while actually in the water, and therefore helps scientists calibrate the satellite data for accuracy and reliability.  After all, satellites process light that has traversed through layers of atmosphere in addition to the ocean, whereas the hyperpro is actually there. 

deploying hyperpro
A Hyperpro being deployed

Career Corner

Three enterprising undergraduate volunteers.

Volunteers get free room and board in the ship in addition to invaluable, potentially career–making experience.

undergraduate volunteers
David Caron (far side), Jessica Lindsay, and Jonathan Maurer having some much-needed down time on the flying bridge

David Bianco-Caron is doing his B.A. in Marine Science from Boston University (BU).  His undergraduate research project at the Finnerty Lab in BU involves a comb-jelly (Ctenophore) native to the West Atlantic but which has become an introduced exotic in the East Atlantic.  David studies a cnidarian parasite of the comb-jelly in an attempt to outline factors that could limit the comb-jelly.  The project has implications in possible biological control. 

Jessica Lindsay finishes a B.S. in Marine Biology later this year and plans to get her Small Vessels operating license next year.  This is her 2nd year volunteering in a NOAA ship.  She received a NOAA Hollings Scholarship which provides up to $9500 for two years (https://www.noaa.gov/office-education/hollings-scholarship).  It entailed 10 weeks of summer research in a lab.  She studies how ocean acidification affects shelf clams. 

Jonathan Maurer is a University of Maine senior working on a B.S. in Climate Science.  He studies stable isotopes of oxygen in ocean waters to understand ocean circulation.  The project has implications on how oceanic upwelling has been affected by climate change.  He intends to go to graduate school to study glaciers and ocean atmosphere interactions. 

See my previous blog for information on how to become a volunteer aboard a NOAA research ship.

I also had the pleasure of interviewing our Executive Officer (XO), LCDR Claire Surrey-Marsden.  Claire’s smiling face and friendly personality lights up the ship every day. 

XO Claire Surrey-Marsden
Our Executive Officer (XO), LCDR Claire Surrey-Marsden

Claire is a Lieutenant Commander in the NOAA Corps:

The NOAA Commissioned Officer Corps is made up of 321 professionals trained in engineering, earth sciences, oceanography, meteorology, fisheries science, and other related disciplines. Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA. Learn more: https://www.omao.noaa.gov/learn/noaa-commissioned-officer-corps

Q. Thanks for your time, Claire. You’re the XO of this ship.  What exactly is your role?

A. The Executive Officer is basically the administrator on board.  We help with staffing, we manage all the crew, we have a million dollar budget for this ship every year that we have to manage.  Everything from food to charts to publications, all these get managed by one central budget. I’m kind of the paper work person on board.

Q. What’s your background?

A. I have a marine biology degree from Florida Tech. I’ve done marine mammal work most of my career. I joined NOAA in 2007, before that I was a biologist for Florida Fish and Wildlife [FFW].

Q. I heard you have done necropsies of marine mammals?

A. I was a manatee biologist for FFW for 3 years, we also dealt with lots of whales and dolphins that washed up on shore. I’ve also done marine mammal work in my NOAA career.  Worked with Southwest Fisheries Science Center on Grey Whales and dolphins, and worked with Right Whale management with the maritime industry and the coast guard.

Q. About a 100 college students, maybe even more are following my blog now.  What’s your advice to them, for someone interested in marine biology/NOAA Corps, what should they be doing at this stage?

A. Great question. Volunteer! Find all the opportunities you can to volunteer, even if it’s unpaid.  Getting your face out there, letting people see how good a worker you are, how interested and willing you are, sometimes you will be there right when there is a job opening. Even if it seems like a menial task, just volunteer, get that experience. 

Q. NOAA accepts volunteers for ships every summer?

A. Yes, ecomonitoring and other programs takes students out for 2-3 weeks, but there are other opportunities like the local zoo.  Even stuff that isn’t related to what you’re doing. Getting that work experience is crucial.

Q. What’s the most challenging part of your job as an XO in a ship like this?

A. Living on a small boat in the middle of the ocean can be challenging for people working together harmoniously.  Just making sure everyone is happy and content and getting fulfillment for their job.

At the end of the interview, Claire handed me a stack of brochures describing the NOAA Corps and how you can become part of it. Please stop by my office (Math-Science 222) for a copy.

Personal Log

The seas have become decidedly choppier the past few days.  It’s a challenge to stay on your feet!  The decks lurch unexpectedly.  Things get tossed around if not properly anchored.  I have fallen just once (touchwood!) and was lucky to get away with just a scratch.  I’ve had to take photo backups of my precious field notes lest they get blown away.  They came close to that once already.

The ship has a mini library with a decent collection of novels and magazines plus a lounge (with the ubiquitous snacks!).  I found a copy of John Grisham’s The Whistler, and this has become my daily bed time reading book. 

The lounge and library on board
The lounge and library on board

Interesting animals seen lately

I started this blog with a photo of an exceptionally long arrow worm.  The cold waters have brought some other welcome creatures.  I created a virtual stampede yesterday in the flying bridge when I yelled Holy Mola!  Everyone made a mad dash to my side to look over the railings at a spectacular Ocean Sunfish (Mola mola) floating by.  The name Mola comes from the Latin word meaning millstone, owing to its resemblance to a large flat and round rock.  I have been looking for this animal for days!  Measuring up to 6 feet long and weighing between 250 and 1000 kg, this is the heaviest bony fish in the world.  The fish we saw was calmly floating flat on the surface, lazily waving a massive fin at us as though saying good bye.  It was obviously basking.  Since it is often infested with parasites like worms, basking helps it attract birds that prey on the worms.

mola mola
Ocean Sunfish Mola mola. We saw this behemoth lying on its side basking, waving its massive dorsal fin as though greeting us. They allow birds and other fish to pick their ectoparasites as they float (from baliscuba.com)

Another animal that almost always creates a stir is the dolphin.  Schools of dolphins (of up to 3 species) never cease to amuse us.  They show up unexpectedly and swim at top speed, arcing in and out of the water, often riding our bow.  Sometimes, flocks of shearwaters circling around a spot alert us to potential dolphin congregations.  Dolphins drive fish to the surface that are then preyed upon by these birds.  My colleague Allison Black captured this wonderful photo of Common Dolphins frolicking by our ship in perfect golden evening light.

common dolphins
Common Dolphins swimming by our ship (Photo by Allison Black)

Did You Know?

Molas (Ocean Sunfish) are among the most prolific vertebrates on earth, with females producing up to 300,000,000 eggs at a time (oceansunfish.org).

Parting shot

NOAA does multiple concurrent missions, some focused on fisheries, some on oceanography, and some hydrography.  It has a ship tracker that tracks all its ships around the world.  Our ET Stephen Allen kindly shared this image of our ship’s location (marked as GU) plus the locations of two other NOAA ships. 

location on shiptracker
Our exact location (GU) on 25 August 2019, captured by NOAA’s ship tracker (Courtesy Stephen G. Allen)

Linda Kurtz: Women in STEM-(at sea): Meet Iris Ekmanis, August 21, 2019

NOAA Teacher at Sea

Linda Kurtz

Aboard NOAA Ship Fairweather

August 12-23, 2019


Mission: Cascadia Mapping Project

Geographic Area of Cruise: Northwest Pacific

Date: 8/21/2019

JO Iris Ekmanis
Junior Officer Iris Ekmanis on Bridge Watch


Women in STEM: Iris Ekmanis

Iris Ekmanis is currently a Junior Officer with the NOAA Corps

On this Teacher at Sea mission, Officer Ekman is currently on bridge watch, and is a training and small craft officer. 

Current Position:  Junior Deck Officer on Bridge Watch, training officer, small boats officer

3-4 other duties in addition to watch. 

Years/Experience:     

Years at NOAA:  2.5 months after a 4-month basic training

College and/or specialized training:

2017 Bachelors of Marine Science from University of Hawaii

Junior Officer Ekmanis worked as a deckhand on tourism boats, dive boats, whale watching, and worked on a small live-aboard cruise ship.

  1. When you were a child, what was your dream career?

I wanted to be a marine biologist – but then I fell in love with being out on the water and on boats. Surrounded by the science of hydrography, I really like driving small boats and like the navigation part of my job.

2. Do you have any plans to continue your education while working for NOAA?

We get the GI bill since we are uniformed service (after 3 years with NOAA) so I’m considering a master’s in marine biology.

3. What was your favorite subject in school?

My favorite subject was outdoor education. I went to high school in New Zealand so there were outdoor education, whitewater kayaks, rock climbing, caving. My favorite academic subjects were biology & geography.

4. At what point in your life did you realize you wanted to do the work you are doing now?

I heard about NOAA in college, so I applied, I completed basic training and have been working for 2 ½ months.

5. What would you tell an elementary school student about your work that is most important?

We are out here charting the seafloor to ensure safe navigation for other mariners who are traveling through the Pacific.  All kinds of cruise ships, fisherman, and cargo ships travel through the Pacific and must get there safely.  Also, it is important that we are researching the fault lines to learn more about earthquakes and tsunamis.

We navigate the ship to ensure safety and collaborate with the hydrotechs (hydrographic technicians) to make sure the ship’s travels are resulting in good hydrographic surveys.

6. What is the most enjoyable or exciting part of your work?

 I would say it is constantly learning new skills. Every day, I’m on the bridge learning about navigation, on the launchers learning about hydrography, and the “office view” changes every day.  Every single day is different, and most times wake up in a new place.  I’m learning something new every day!

7. Where do you do most of your work?

Mostly on the bridge 8 hours a day, rest of the time working on computers, or my training workbooks, plotting courses, planning our next route.  A lot of charting.

8. What tool do you use every day that you couldn’t live without?

Definitely the software systems that allow us to navigate, radar, etc.

9. What tool would you bring aboard to make your job easier? 

Multi beam sonar that could see in front of us instead of below us, since we are in uncharted waters that would alleviate the possibility of us running into something.

10. Is there any part of your NOAA job that you didn’t expect? 

The job is hands on right away, and the job is fast paced and very diverse.  You started doing the jobs right away.  I’m looking forward to learning more about hydro.

11.  How could teachers help student understand and appreciate NOAA science?

NOAA science is so broad, we are doing a small part in our survey missions, but the science of NOAA is extensiveCheck out the student opportunities and educational resources.

12. What is the favorite part of your day and why?

My favorite time was in Alaska, in the launches (small boats) and navigating a vessel though the Inside Channel. Navigating through SE Alaska was beautiful!  I also enjoyed seeing humpback whales and occasionally orcas.

13. What was your favorite book when you were growing up?

My favorite book series was Harry Potter when I was growing up.  My idols were Jacques Cousteau and Sylvia Earle .

14. What would you be doing if you weren’t working for NOAA?

If I didn’t work for NOAA I would definitely be doing something in the marine science field or in the maritime industry, I love boats!  I would probably be working on a boat or doing something in the ocean.

15. Do you have an outside hobby?

My outside hobbies include: paddle boarding, surfing, scuba, free diving, outrigger canoes were my passion growing up, hiking, camping, anything outdoors. 

16. What is your favorite animal? 

Hawaiian spinner dolphin and whale sharks.

17. If you could go back in time and tell you 10-year-old self something, what would it be?

Keep pursuing your dreams, don’t take life too seriously, enjoy life and enjoy the ride.

Interested in a career as a NOAA Corps Officer like Junior Officer Ekamanis? Want to learn more? See the resource links below:

-NOAA Commissioned Officer Corps

NOAA Marine Operations

NOAA Student Opportunities

Meg Stewart: What’s it Like to Work on a NOAA Ship? July 18, 2019

Meg on flying bridge

NOAA Teacher at Sea

Meg Stewart

Aboard NOAA Ship Fairweather

July 8 – 19, 2019


Mission: Cape Newenham Hydrographic Survey

Geographic Area of Cruise: Bering Sea, Alaska

Date: July 18, 2019

Weather Data from the Bridge
Latitude: 54° 09.9 N
Longitude: 161° 46.3 W
Wind: 22 knots NW
Barometer: 1014.2 mb
Visibility: 10 nautical miles
Temperature: 55.6° F or 13.1° C
Weather: Partly cloudy, no precipitation


Careers at Sea Log, or Meet the ….

Life at sea on the Ship Fairweather, this past week and a half, with some 42  crew members, has been something I have never experienced. The closest thing that I can think of was when I was in undergraduate geology field camp, living in close quarters for weeks on end, with the same people, working together towards a goal. But I knew all of those field camp students; we were in college together. This is different. Everyone works here on the Fairweather and this is their job and their home. We’re all adults and no one knows anyone when they first come aboard. So, if you are friendly, open to people and welcoming, you can get to know some folks quickly. If you’re shy or try to ease in slowly, it may be a harder adjustment, living on a 231-foot heaving, rolling, pitching and yawing, ice-strengthened, welded steel hydrographic survey vessel. It’s a unique environment. And there are a lot of different but interesting jobs that people do here on the Fairweather. Here are but a few of the mariners on the ship.

NOAA Corps – The first group of ship crew that I’ll talk about are NOAA Corps officers.  NOAA Commissioned Officer Corps (or NOAA Corps) is one of the nation’s seven uniformed services and they are an integral part of the National Oceanic and Atmospheric Administration (NOAA). NOAA Corps support nearly all of NOAA’s programs and missions.

XO Sam Greenaway
XO Sam Greenaway, the Executive Officer on NOAA Ship Fairweather

Commander Greenaway is the Executive Officer onboard Fairweather and that work entails a variety of tasks that all function under the heading “administering the ships business.” Greenaway’s number one job is as the ship’s Safety Officer and he has additional tasks that include purchase requests from the departments, lining up contractors, making sure everyone has their training up-to-date, handling human resource issues, and accounting of the ship’s finances. On the Fairweather, Greenaway is second in command. He loves being at sea and has always liked sailing, which is one of his hobbies when not on the ship. What Greenaway least expected to be doing as a NOAA Corps officer was managing people but he finds that he loves that part of the job. Greenaway has a bachelors of science degree in Physics from Brown University and a masters degree in Ocean Engineering from University in New Hampshire. 

*************************

ENS Jeffery Calderon, Junior Officer
ENS Jeffery Calderon, Junior Officer

Ensign Jeffrey Calderon is a NOAA Corps Junior Officer and has been on Ship Fairweather for two years. Calderon was previously with the Air Force for eight years and also with the National Guard for about four years. His duties on the ship include driving small boats, doing hydrographic surveys, bridge duty on the ship, and he’s the medical officer on board. Calderon enjoys the challenges he gets with NOAA Corps and likes to manage small teams and decide priorities. He learned about NOAA Corps from his college advisor at the University of Maryland, where he earned a bachelor’s degree in Physics.

*************************

ENS Iris Ekmanis, Junior Officer
ENS Iris Ekmanis, Junior Officer

Ensign Iris Ekmanis is also a Junior Officer who recently completed her basic training for the NOAA Corps. She has been on Ship Fairweather for about a month and a half. She chose NOAA Corps because she wanted to utilize her degree in Marine Science (from University of Hawaii, Hilo) and had worked on boats for six years. She likes that she has been learning new things everyday, like how to pilot the ship from the bridge, learning to coxswain a launch, and learning to use the hydrographic software to collect bathymetric data. In fact, when we left the dock in Dutch Harbor at the beginning of the leg, Ekmanis had the conn, which means she maneuvered the ship through her orders to the helm (although she had plenty of people around her in case she needed assistance.)

_____________________________________________________________________

Survey team – The hydrographic survey team is involved in all aspects of collecting the data and generating the bathymetric surfaces that will be used to make updated nautical charts. They don’t drive the boats and ships, they run the software, take the casts that determine water salinity and temperature, tell the coxswain where to motor to next and then process the data back on Ship Fairweather.  There are six members on the survey team; here are two of them.

Ali Johnson
Ali Johnson, Hydrographic Senior Survey Technician

Ali Johnson has been a hydrographer on the Ship Fairweather for two and a half years. She told me she always knew she wanted to work in ocean science in some capacity so she earned a degree in Environmental Studies at Eckerd College in St. Petersburg, Florida.  With this job, Johnson enjoys going to places that most people don’t ever get to see and one of the highlights was surveying while dodging icebergs and seeing the interesting bathymetry as a result of glacial deposits, another was seeing an advancing glacier up close. She is the hydrographer who showed me most of the ropes on the ship, the launch surveys and in the plot room.

*************************

Michelle Wiegert
Michelle Wiegert, Hydrographic Assistant Survey Technician

Michelle Wiegert has been with NOAA Ship Fairweather since last September. Although she did not lay eyes on the ocean until she was nineteen, she always knew she would do some ocean-based work.  Wiegert earned a double major in Biology and Spanish from Metropolitan State University of Denver in Colorado and studied Applied Science Marine Technology at Cape Fear Community College in Wilmington, NC. As a Survey team member, she loves that she is working at sea and the fact that every day is different and she is always learning new things.

_____________________________________________________________________

Ship Stewards – The stewards are the crew members who make the three square meals a day. The food on Ship Fairweather has been outstanding and every meal seems like two or even three meals in one because the stewards offer so much variety, including vegetarian and vegan options.  There are four stewards on the Fairweather and they are all as nice as can be. Here is one of them.

Carrie Mortell, Acting Chief Cook
Carrie Mortell, Acting Chief Cook

Carrie Mortell has been a steward with the Fairweather for two years and with NOAA for fifteen. She has ten years of commercial fisheries experience in southeast Alaska and she loves the ocean. Mortell told me she feels more comfortable at sea than on land. She likes to keep busy in her downtime by reading, writing letters, crocheting, cooking & baking and drawing.

_________________________________________________________________________

Deck Department – The Fairweather’s Deck Department takes care of general ship maintenance, cleaning decks, painting, operating cranes, helming the ship, and coxswaining the launches. There are currently eight members of the Deck Department and I interviewed one for this post.

Eric Chandler, Able Seaman
Eric Chandler, Able Seaman

Eric Chandler has been an Able Seaman with NOAA for one and a half years. He has driven the launches, taught coxswains-in-training, been a ship medic, moved launches with a davit, repaired jammed grab samplers, and many other tasks. Chandler started working on boats in 2016 when he was a deckhand, educator and naturalist on tour boats out of Seward, AK.  He has also been a professional photographer and an auto mechanic. Chandler likes being on a ship because he sees remote places, gets to learn new skills all the time, and likes the feeling of being self-sufficient.

_____________________________________________________________________

Visitors to NOAA Ship Fairweather – I am a visitor to Ship Fairweather but I am not the only temporary person onboard. Here are two of the four of us who are “just passing through.”

Fernando Ortiz
Fernando Ortiz, Physical Scientist at NOAA

Fernando Ortiz has been a Physical Scientist with NOAA since 2008 and works out of Western Regional Center in Seattle, WA. He was visiting the Fairweather on the same leg is mine. NOAA Physical Scientists normally work in the office but will go on a NOAA ship at least once a year to support field operations. Ortiz will possibly do the quality control check on the data for the Cape Newenham project in the future. Ortiz has a bachelor’s degree in Geography from the University of Washington, Seattle WA. His advice for people looking for a similar career is to take science classes and he emphasized having Geographic Information Systems (GIS) and programming experience.

*************************

Christine Burns, Knauss Fellow
Christine Burns, Knauss Fellow through NOAA Sea Grant

Christine Burns is visiting from Washington, DC, where she is a Knauss Fellow through NOAA Sea Grant. She is on a one-year post-graduate marine policy fellowship with NOAA’s Office of Coast Survey.  She wanted to see what the hydrographic research going on so came out to Dutch Harbor as part of her fellowship. Burns has a bachelor’s degree in Environmental Science from Dickinson College in Carlisle, PA, and a masters in Marine Science from the University of Georgia in Savannah, GA. As she was visiting like I was and we were both very much observers, Burns filled me in on some scholarship and internship ideas she has for high school students and those students thinking of careers and college after high school graduation. By the way, once you’re nearing the end of college or have graduated already, don’t forget that there is usually career advisory office and your alumni network at your institution. You can make connections, seek advice, ask about positions, among other important functions those offices and groups do for you.
Hollings Scholars – for current college sophomores, this is an undergraduate scholarship and internship through NOAA
EPP/MSI Undergraduate Scholarship Program – this is the Hollings Scholarship for students attending HBCU or Minority Serving Institutions
Student Conservation Association – a good place to get work and volunteer experiences or a gap year opportunity, for people 18-35 interested in land management.
Youth Conservation Corps – a summer youth employment program that engages young people in meaningful work experiences on national parks, forests, and so on.
USAJobs – this link has summer internships for college students or recent graduates.
Rotary Clubs can help students find scholarships and volunteer opportunities
Unions – you can find paid internships or educational opportunities through unions for skills such as pipefitters, electrical, plumbing, etc.

_____________________________________________________________________

Next post: the Engineering Department of the Ship Fairweather

Personal Log

I am impressed and awed by the people who have chosen living and working on a ship. When I first came aboard the Fairweather, I felt everything was a little cramped and the space was confined. I couldn’t figure out how to get around very well. Now, I don’t get lost as often. It isn’t easy to live and work on a ship, but there are plenty of folks on the Fairweather who happily chose it.

Meg on flying bridge
On the flying bridge near Cape Newenham

I’ve enjoyed looking out at sea as we are underway. I try to spot whales and other flying and leaping sea critters. We have one more long transit before arriving back to Dutch Harbor so I am going to head up to the flying bridge and see what I can see.

Did You Know?

The Fairweather makes its own potable water. When I was shown the engine room, I was also shown the reverse osmosis water making machine that turns sea water into fresh water. The ship never runs out!

Quote of the Day

“It is not that life ashore is distasteful to me. But life at sea is better.” – Sir Francis Drake

Erica Marlaine: Oh, the Places You’ll Go! July 6, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 6, 2019

Weather Data from the Bridge:

Latitude: 55º 4.07N
Longitude: 156º 42 W
Wind Speed: 3.2knots
Wind Direction: 96º
Air Temperature:  10.3º Celsius
Barometric Pressure: 1025.7. mb
Surface Water temperature: 11.05º Celsius
Depth of water column: 1,057.6 meters


If you love science and exploring, consider a career in the NOAA Corps!

NOAA Corps

The NOAA Corps is one of our nation’s seven uniformed services (along with the Army, Marine Corps, Navy, Air Force, Coast Guard, and Public Health Service Commissioned Officer Corps). NOAA Corps officers are an integral part of the National Oceanic and Atmospheric Administration (NOAA), an agency of the U.S. Department of Commerce. NOAA and the NOAA Corps can trace their lineage to 1807 when President Thomas Jefferson signed a bill for the “Survey of the Coast.” The survey work was done by Army and Naval officers along with civilian men and women. The Coast Survey was actually the first federal agency to hire female professionals! Their duties included charting our nation’s waterways and creating topographic maps of our shorelines, which made our marine highways among the best charted in the world.

Today, the NOAA Corps is an elite group of men and women trained in engineering, earth sciences, oceanography, meteorology, and fisheries science. NOAA is comprised of the National Weather Service, National Marine Fisheries Service (NOAA Fisheries), Office of Oceanic and Atmospheric Research (NOAA Research), National Environmental Satellite, Data and Information Service, National Ocean Service, and the Office of Marine and Aviation Operations. NOAA Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA.

NOAA Officer Spotlight

ENS Lexee Andonian
ENS Lexee Andonian

I had the opportunity to speak with Ensign (ENS) Lexee Andonian (although by the time this is published Ms. Andonian will have been selected for LTJG (Lieutenant junior grade)! ENS Andonian has been a member of NOAA Corps for almost 2 years, and loves her job, but it was not something she originally considered as a career (or even knew about). She first learned about NOAA while working at a rock climbing gym. A patron mentioned it to her, and offered to show her around a NOAA ship. She went home and googled NOAA. With her interest piqued, she decided to accept the patron’s offer, and went to Newport, Oregon to tour the NOAA Ship Bell M. Shimada (which is actually the sister ship of the NOAA Ship Oscar Dyson. A sister ship means they were based off the same blueprint and can serve similar projects.)

ENS Andonian applied for the NOAA Corps, but was waitlisted. NOAA is highly selective and accepts a very limited number of applicants (approximately 15-25 twice a year.) Undeterred, she applied for the next NOAA class, and was once again waitlisted, but this time she was accepted off the waitlist. After 5 months of training at the Coast Guard Academy, she was ready to begin her assignment onboard a NOAA ship, where additional hands-on training occurs non-stop. Each NOAA Corps member wears a multitude of “hats” while onboard. ENS Andonian is currently the Acting Operations Officer, the Navigation Officer, the Environmental Compliance Officer, and the Dive Officer. ENS Andonian loves that her job allows her to see unique places that many people never get to explore since they are not accessible by plane or car. Asked what she misses the most from home, she said, “Bettee Anne” (her dog).


Science and Technology Log

Today I was introduced to a few new species in the fish lab. Until now, most of the jellyfish have been Chrysaora melanasta, which are beautiful and can be quite large, but today I saw 2 egg yolk jellyfish, aptly named as they look like egg yolks.

Egg yolk jellyfish
Egg yolk jellyfish

I also saw a lumpsucker, which is the cutest fish I have ever seen. Lumpsuckers look like little balls of grey goo. He (or she) seemed to look right at me and kept opening and closing its mouth as if trying to say something. Lumpsuckers have a suction cup on their bottom which allows then to adhere to rocks or other surfaces.

Lumpsucker
Lumpsucker


Personal Log

As a teacher, I create experiences for my students that will take them out of their comfort zone so that they can realize just how much they are truly capable of. On the NOAA Ship Oscar Dyson, it is my turn to step outside my own comfort zone. If you would have told me a few months ago that I would feel comfortable being elbow-deep in live fish and jellyfish, or dissecting fish to see whether they are male or female, or slicing into a fish’s head to collect otoliths (ear bones), I would not have believed you, but that is how I spend every day onboard the Oscar Dyson, and after 2 weeks, it feels like something I have done all my life.  It is an experience I highly recommend to everyone!

Jill Bartolotta: Careers at Sea, June 8, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 14, 2019


Mission
:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: June 8, 2019

Weather Data:

Latitude: 30°30.7’ N

Longitude: 078°11.2’ W

Wave Height: 3 feet

Wind Speed: 13 knots

Wind Direction: 150

Visibility: 10 nm

Air Temperature: 26.6° C

Barometric Pressure: 1015.9

Sky: overcast


Science and Technology Log

Throughout my blogs you have been hearing an awful lot about NOAA. But what is NOAA? NOAA stands for the National Oceanic and Atmospheric Administration. NOAA informs the public all about environmental happenings from the deepest depths of the ocean floor all the way to the sun.

NOAA was formed in 1970 as a federal agency within the Department of Commerce. It was the result of bringing three previous federal agencies together, U.S. Coast and Geodetic Survey, Weather Bureau, and U.S. Commission of Fish and Fisheries. Through research, NOAA understands and predicts changes in climate, weather, oceans, and coasts. Through outreach and education, NOAA shares the research with end users and the public with the purpose of conserving and managing coastal and marine ecosystems and resources (NOAA, 2019. https://www.noaa.gov/our-mission-and-vision).

In order to accomplish its mission, NOAA hires a whole slew of people including Commissioned Officers, administrators, career scientists, research technicians, vessel operators, educators, etc. These people may work on land or out at sea. In this blog I will focus on some of the NOAA careers at sea.


NOAA Commissioned Officer Corps (NOAA Corps)

The NOAA Corps is a descendant of the US Coast and Geodetic survey, the oldest federal scientific agency dedicated to surveying the ocean coast. Today, officers of the NOAA Corps command NOAA’s fleet of survey and research vessels and aircraft.

In order to be eligible to apply for NOAA Corps one must have a four-year degree in a study area related to the scientific or technical mission of NOAA. There are many other eligibility requirements and you can check them out here.  Once you meet the requirements, you apply to the program, and if accepted you will head to the Coast Guard Academy in New London, Connecticut where you will attend a 19-week basic officer training class. Once officers graduate, they are assigned to sea duty for two years. After sea duty, officers rotate to land duty for three years. And the pattern continues as long as the officers choose to remain in the NOAA Corps.

NOAA officers fill many roles on Okeanos Explorer. Their primary role is to safely navigate the ship. All officers stand two 4-hour watches. During these watches, they are responsible for navigating and driving the ship, taking weather, and handling the ship per the requirements needed for the science mission whether it be for a series of ROV dives, mapping project, or emerging technology cruise. When not on watch, officers are responsible for collateral duties. There are many collateral duties, some of which are described below:

  • Safety officer: responsible for the safety drills and equipment.
  • Navigations officer: maintains charts, loads routes, plots routes on paper charts, updates electronic chart, and creates inbound and outbound routes for ports of call.
  • MWR (Morale, Welfare and Recreation) officer: responsible for fun activities when at sea or in port. These activities have included ice cream socials, movie nights, and baseball games.
  • Public affairs officer: Responsible for giving ship tours to the public, maintain the ships social media presence, and performs public outreach.

There are also many officer ranks (follow the ranks of the US Navy) aboard the ship. The entry level rank is ensign or junior officer and the highest rank is admiral, allowing for 10 ranks in total. In addition to rank classes, there are varying positions. Ensigns or junior officers are recent graduates of basic officer training and on their first sea assignments. They are learning how to navigate and drive the ship, the tasks associated with standing watch, and learning about the other collateral duties. The operations officer is responsible for all mission operations while at sea and in port. They serve as the liaison between the science team and the commanding officer. If project instructions change, the Operations Officer is responsible for managing operations, understanding requests or change and then speaking with the commanding officer to approve the change. They are also responsible for all logistics when in port such as shore power, vehicles, trash, potable water, fuel, and sewer. The next highest position (second in command) is the Executive Officer who also coordinates with many of the port duties, and is supervisor of the varying departments on the ship. They are also responsible for all paperwork and pay. The highest duty on the ship is that of Commanding Officer. They are ultimately responsible for mission execution and for the safety of the ship and people aboard.

NOAA Commissioned Officers
The NOAA Commissioned Officers aboard Okeanos Explorer. From left to right: Ensign Brian Caldwell, Lieutenant Steven Solari, Lieutenant Rosemary Abbitt, Ensign Kevin Tarazona, Commander Eric Johnson, Ensign Nico Osborn, Lieutenant Commander Kelly Fath, Lieutenant Commander Faith Knighton, and Commander Nicole Manning.


Professional Mariners

Professional mariners provide technical assistance needed to support operations while at sea. They support the ship in five different expertise areas: deck, engineering, steward, survey, and electronics. More information about the professional mariners and job posting information can be found here. Some have attended maritime school to receive training or licensure to work aboard a ship at sea. Others get their training while at sea, take required training courses, and complete onboard assessments. These mariners that work their way up to leadership positions are known as hawse-pipers (for example, the Chief Boatswain, Jerrod Hozendorf, many years ago was a General Vessel Assistant and has worked up to the Department Head of the Deck Department.)

Deck

Deck hands and able bodied seamen who attend maritime school or training where they learn how to support ship operations, including but not limited to maintenance of the ship’s exterior, maintenance and operation of the ship’s cranes (places ROV (remotely operated vehicle) or CTD (conductivity temperature depth) in the water) and winches (lowers ROV and CTD into the water), and conducts 24/7 watches to ensure the safe operation and navigation of the ship. Augmenters also rotate through the fleet, while others are permanent crew on a ship.

deck crew
The deck crew aboard Okeanos Explorer. Back row from left to right: General Vessel Assistant Sidney Dunn, Chief Bosun Jerrod Hozendorf, Able Bodied Seaman Angie Ullmann (augmenting), and General Vessel Assistant Deck Eli Pacheco. Front row from left to right: Able Bodied Seaman Peter Brill and Able Bodied Seaman Jay Michelsen (augmenting).

Engineering

The engineers aboard are responsible for the water treatment, air quality systems, and machines needed to make the ship move through the water. The also oversee the hydraulics of the cranes and winches. Engineers receive a four-year engineering degree at either a maritime academy or regular college. Depending on their degree, they will come aboard at different engineer expertise levels. Engineers move into higher level positions based on their days at sea and successful completion of licensing tests.

engineers
The engineers aboard Okeanos Explorer. From left to right: General Vessel Assistant Christian Lebron, Engine Utility Will Rougeux, Acting Chief Marine Engineer Ric Gabona, 3rd Assistant Engineer Alice Thompson (augmenting), Junior Utility Engineer Pedro Lebron, and Acting First Assistant Engineer Warren Taylor.

Stewards

The stewards on board are responsible for the preparation and management of the culinary services and the stateroom services such as bed linens. Tasks include meal planning, food purchasing and storage, food preparation, and oversight of the galley and mess.

stewards
The stewards aboard Okeanos Explorer. From left to right: General Vessel Assistant Eli Pacheco (assisting the stewards for this cruise), Chief Cook Ray Capati, and Chief Steward Mike Sapien.

Survey

Survey technicians are responsible for the operation of all survey equipment aboard the ship needed for mapping, CTD deployment, and ROV operations. Equipment includes echo sounders and meteorological and oceanographic sensors. They are also responsible for data quality control and processing, disseminating data to land data centers so it can be shared with the public, and working alongside the science team to assist with other data and equipment needs. A college degree is not required for survey technicians, but many of them have one in the fields of environmental or applied science.

Electronics

Electronic technicians are responsible for all electronics aboard such as the intercoms, radios, ship’s computers and internet access, sonars, telephones, electronic navigation and radar systems, and most importantly satellite TV! Chief Electronic Technicians rotate between land and sea, typically spending 2-3 months at sea.

survey and electronic technicians
Chief Electronic Technician Mike Peperato and Senior Survey Technician Charlie Wilkins pose with the CTD.


Personal Log

We saw dolphins today!!!! It was absolutely amazing. We believe them to be Atlantic Spotted Dolphins. Spotted you say? The one in the picture to the left is not spotted because it is less than one year old. They do not receive their spots until their first birthday. Spotted dolphins are very acrobatic. They enjoy jumping out of the water and surfing on the bow waves created by vessels. To date one of the best moments of the trip so far. Yay dolphins!!!!!

Atlantic spotted dolphins
Atlantic spotted dolphins surfing the bow of the ship.


Did You Know?

Including all the NOAA officers and professional mariners aboard Okeanos Explorer, 12,000 people work for NOAA worldwide!

Ashley Cosme: Special Situation Lights, September 11, 2018

NOAA Teacher at Sea

Ashley Cosme

Aboard NOAA Ship Oregon II

August 31 – September 14, 2018

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 11, 2018

Weather data from the Bridge:

  • Latitude: 28 40.5N
  • Longitude: 91 08.5W
  • Wind speed: 22 Knots
  • Wind direction: 080 (East)
  • Sky cover: Scattered
  • Visibility: 10 miles
  • Barometric pressure: 1014.5 atm
  • Sea wave height: 3-4 feet
  • Sea Water Temp: 29.9°C
  • Dry Bulb: 25.9°C
  • Wet Blub: 24.6°C

 

Science and Technology:

When NOAA Corps officers go through training they learn a poem to help them remember how to identify Special Situation Lights on other vessels.

Red over green, sailing machine.

Red over white, fishing boat in sight.

Green over white, trawling at night.

White over red, pilot ahead.

Red over red, captain is dead.

mast of the Oregon II
The mast of the Oregon II is identified by the arrow.

When driving a vessel like the Oregon II it is always important to have the ability to analyze the radar, locate other vessels in the water, and determine their current situation by reading their mast lights.  Line 1 of the poem describes a vessel that is currently sailing by use of wind without the use of an engine, line 2 describes a boat engaged in fishing operations, line 3 indicates that the vessel is currently trawling a net behind the boat, line 4 indicates that the vessel is a pilot boat (a boat containing a pilot, who helps guide larger tanker and cargo ships into harbors), and line 5 of the poem is used for a situation when the vessel is not operating properly and other vessels should steer clear.

 

 

 

Personal Log:

blacktip shark
NOAA Scientist, Adam, Pollack, and I measuring and tagging a blacktip shark (Carcharhinus limbatus)

There are currently three named storms in the Atlantic, including a category 4 hurricane (Florence) that is headed towards the Carolinas.  I have never experienced a bad storm while out on the water.  The waves the last 24 hours have ranged from 3-5 feet, with an occasional 8 foot wave.  We have changed our port call location and will now be going back to Pascagoula, Mississippi instead of Galveston, Texas.  There was also no internet for part of the day so my team and I sat in the dry lab and told ghost stories.  I was also introduced to the “dinosaur game” in Google Chrome, which is sort of like a low budget Mario.  Apparently it is the dinosaur’s birthday so he is wearing a birthday hat.

I am still making the most of every minute that I am out here.  Our last haulback was very active with many large blacktip sharks.  It is a workout trying to handle the sharks on deck, while collecting all required data, and getting them back in the water as fast as possible.  I am loving every second!

 

 

Did you know:

Sharks possess dermal denticles (skin teeth) that makes their skin feel rough when running your hand tail to nose.  Shark skin used to be used as sandpaper before it was commercially manufactured.  It can also give you shark burn, which is sort of like a rug burn, if the shark brushes up against you.

 

Animals Seen:

Atlantic Sharpnose Shark (Rhizoprionodon terraenovae)

Blacknose Shark (Carcharhinus acronotus)

Blacktip Shark (Carcharhinus limbatus)

Flying Fish (Exocoetus peruvianus)

Gafftopsail Catfish (Bagre marinus)

Pantropical Spotted Dolphin (Stenella attenuate)

Red Snapper (Lutjanus campechanus)

Spinner Shark (Carcharhinus brevipinna)

Tiger Shark (Galeocerdo cuvier)

Meredith Salmon: Who’s Who Aboard the Okeanos: Part IV, July 27, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

Date: July 27, 2018

Weather Data from the Okeanos Explorer Bridge

Latitude: 28.48°N

Longitude: 62.41°W

Air Temperature: 27.8°C

Wind Speed:  10.5 knots

Conditions: Partly Sunny

Depth: 5272.37 meters

 

LT Rosemary Abbitt

Growing up in Norfolk, Virginia, Rosemary spent much of her childhood around the ocean. She was fascinated by the sea and had a strong desire to learn as much as she could about marine ecosystems. During her high school career, Rosemary participated in a summer travel program at the Forfar Field Station in the Bahamas on Andros Island. This experiential learning opportunity allowed Rosemary to be directly involved with field-studies that focused on scuba diving and exploration. Thanks to that unique experience, Rosemary was hooked on marine science.

After Rosemary graduated high school, she earned her Associates Degree in General Studies of Science at a local community college, then transferred to Coastal Carolina University (CCU) to continue studying marine science. During her undergraduate career, she completed an independent research project in Discovery Bay, Jamaica and focused her studies on coral ecology. After she earned her degree at CCU, Rosemary was interested in becoming a NOAA Corps Officer. Since a few of Rosemary’s family members worked for NOAA, she was exposed to the Corps mission and impact from an early age. She applied and did not gain admittance; however, that did not set Rosemary back.

Rosemary started working as a Physical Scientist intern at the Atlantic Hydrographic Branch in Norfolk, Virginia and sailed aboard NOAA Ship Thomas Jefferson for two field seasons. After this experience, she reapplied to the Corps, was accepted, and began her Basic Officer Training Class at Kings Point Merchant Marine Academy in February 2012. Officer training school was an intense program that emphasized leadership, teamwork, seamanship, and navigation. Once Rosemary graduated, her first sea assignment was on the hydrographic research vessel, NOAA Ship Rainier in Alaska. After this assignment, Rosemary’s land assignment was at the Florida Marine Sanctuary in Key West. She worked as a support diver to assess coral health and completed grounding assessments for three and half years before rotating to her current position as the Operations Officer aboard Okeanos Explorer. Now, Rosemary is involved with deep sea exploration and loves being on a ship that is dedicated to discovering more about the unknown parts of the ocean. Rosemary is enthusiastic about supporting NOAA’s mission of science, service, and stewardship. She believes that it is incredibly important to set goals, remain determined, and push yourself out of your comfort zone to experience success.

Rosemary Abbitt
LT Abbitt plotting a fix at the charting table on the bridge of the Okeanos Explorer. Image courtesy of Brianna Pacheco, LTJG (Sel.)/NOAA Corps

Meredith Salmon: Who’s Who Aboard the Okeanos: Part III, July 27, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

Date: July 27, 2018

Weather Data from the Okeanos Explorer Bridge

Latitude: 28.48°N

Longitude: 62.41°W

Air Temperature: 27.8°C

Wind Speed:  10.5 knots

Conditions: Partly Sunny

Depth: 5272.37 meters

 

Commanding Officer – Commander Eric Johnson, NOAA Corps

Hometown: Maryland but currently resides in D.C

 

Ever since Eric was young, he had been fascinated by the ocean. After reading about Eugenie Clark’s contributions to marine science and shark research, he was hooked on learning as much as he could about the sea. Eric began his studies at St. Mary’s College of Maryland; however, he made the decision to take a six year sabbatical and work in a variety of fields to gain practical experience. During this time, he found employment as an apprentice for a deep sea salvage company and completed electrical work on ROVs for the Navy. This job granted him the opportunity to go to sea and encouraged him to apply what he learned in the field.

 

After this six year period, Eric returned to college at the University of Maryland, majored in Marine Biology, and earned his scuba certification. Upon graduation, he was a manager at REI in College Park and volunteer diver at the National Aquarium in Baltimore. As an exhibit diver, Eric was responsible for feeding the animals by hand in the tanks, maintenance of tanks and scuba equipment, as well as educational outreach.

 

Although Eric learned a great deal about customer service and public speaking during his time at REI and the Baltimore Aquarium, he was interested in researching a more permanent marine science career. While researching potential employment opportunities on the NOAA website, he discovered the NOAA Corps. Eric was very interested in the mission of this Uniformed Service and decided to apply. Eric was not selected the first time since he did not have direct experience working in a related field; however, he was not discouraged. Instead, Eric secured a job working at a Biotech company, reapplied to the NOAA Corps, and was selected. Once he graduated from Basic Officer Training at the Coast Guard Academy, Eric began an extensive and impressive career with NOAA.

 

Eric’s first sea assignment was as navigation officer on the Oregon II.  He was responsible for operations focused on diving, navigation, and safety aboard this vessel. After spending two years at sea, he began his first land rotation as the Executive Officer of the NOAA Dive Program before advancing to the NOAA ship Hi’ialakai. Eric kept track of scientific diving operations aboard the Hi’ialakai, which amounted to approximately 3,000 to 4,000 dives per year! Then, Eric served as the NOAA Recruiter for a year and a half before becoming Chief of the Recruiting Branch. He found the recruiting positions to be incredibly rewarding and enjoyed encouraging those who were looking to make a difference while serving their country to apply to NOAA. Eventually, Eric returned to his original ship, the Oregon II, as Executive Officer before beginning as Commanding Officer on the Okeanos Explorer. Although serving as the Commanding Officer is a major responsibility, Eric is dedicated to supporting NOAA’s mission in regards to science, service, and stewardship. He finds is assignment on the Okeanos very exciting since this ship’s main purpose is ocean exploration.

 

Throughout his career, Eric has learned that it is especially important to pursue your true interests and not be afraid to explore the unknown. Eric believes that stepping outside your comfort zone and learning how to adapt to new situations enables you to construct a skill set that will help you experience success in a variety of situations.

CDR Johnson and wife
CDR Johnson and his wife, Angela, at his Change of Command Ceremony last year

 

Fun Facts about CO Eric Johnson

Eric continues to be an avid diver and has completed over 1,000 dives during his career.

– If you added up all of the hours Eric has spent diving, it would be about one month underwater!

– In Eric’s opinion, the best spot to dive is south of Hawaii at Palmyra Atoll.

Meredith Salmon: Who’s Who Aboard the Okeanos: Part II, July 25, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

Date: July 25, 2018

Weather Data from the Okeanos Explorer Bridge

Latitude: 28.37°N

Longitude: 63.15°W

Air Temperature: 27.8°C

Wind Speed:  9.7 knots

Conditions: partly sunny

Depth: 5236.01 meters

 

Ensign (ENS) Anna Hallingstad

Hometown: Anacortes, Washington

The National Oceanic and Atmospheric Association (NOAA) is built on three principles: science, service, and stewardship, and ENS Anna Hallingstad embodies all of these core values. Anna is currently immersed in her first sea assignment aboard the Okeanos Explorer and has many different responsibilities as a NOAA Corps Officer.

Anna has always been fascinated by the outdoors and enrolling in a Marine Science course in high school set her on a science track in college. After graduating high school, Anna completed an undergraduate and graduate career at Stanford University. She majored in Earth Systems and focused particularly on ocean systems. Earth Systems was a unique interdisciplinary major that investigated the interactions of different ecological, geological, and human systems.

Anna extended her learning outside of the traditional classroom environment by completing a quarter of classes at Hopkins Marine Station in Pacific Grove, California. She spent the fall quarter of her junior year studying abroad in Australia in collaboration with the University of Brisbane and Stanford. During the summer before her senior year, Anna participated in a 10-week Research Experience for Undergraduates (REU) through the National Science Foundation. Anna continued her studies at Stanford to earn her Masters in Earth Systems and focused on the human relationship with the ocean.

Upon graduation, Anna did an AmeriCorps term by working for an urban forestry non-profit and was a volunteer for Salish Sea Stewards in Washington. Anna also worked as the Harbor Porpoise Project Coordinator before applying and being accepted into NOAA’s Basic Officer Training Class (BOTC). Anna had a desire to work for NOAA since she was young and began her 19-week training in January at the Coast Guard Academy in New London, Connecticut. Officer training school was an intense program that emphasized leadership, teamwork, seamanship, navigation, etc. After graduating in May, Anna was shipped off to her first assignment in Honolulu, Hawaii and reported to the Okeanos Explorer in 2017. She will spend two years on the Okeanos Explorer until her three-year land assignment in Washington state.

Anna wears many different hats aboard the Okeanos Explorer as the Morale, Safety, and Property Officer as well as a Purchase Card Holder and Diver. As the Morale Officer, she organizes events on aboard such as ice cream socials, cookouts, and cribbage tournaments. She really enjoys seeing everyone having a great time onboard. It can be very busy balancing all of these important responsibilities, but Anna believes that you shouldn’t shy away from difficult things. Having the confidence to tackle the unknown is a valuable life lesson and one that she abides by while at sea.

 

ENS Anna Hallingstad
ENS Anna Hallingstad

Meredith Salmon: Who’s Who Aboard The Okeanos Part I, July 23, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

 

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

 

Weather Data from the Okeanos Explorer Bridge

Latitude: 28.34°N

Longitude: 64.14°W

Air Temperature: 28.16°C

Wind Speed:  17.34 knots

Conditions: Partly Sunny

Depth: 5060.32 meters

 

Brian Caldwell

Brian has a true passion for exploration and science, so being part of the NOAA Corp is a perfect fit for him. Brian has an extensive educational background and enjoys advancing his knowledge about the ocean. Prior to NOAA, Brian worked as a civilian mariner for a sail training program. He served as both a captain and educator and taught non-traditional education courses about the ocean. In addition, he worked on the NOAA ship Rainier as a wage mariner.

 

Brian began his schooling at Miami Dade College and earned an Associate’s degree in Biology. He then attended Georgetown University and majored in Biology with a minor in Physics. During his time at Georgetown, he was the captain of Georgetown Sailing Team. Upon graduation, Brian continued his schooling and started his graduate degree abroad at the University Of Wales School Of Ocean Sciences.

 

After 9/11, Brian honorably served in the United States Army for ten years. He completed eight combat deployments in Iraq and Afghanistan and even conducted additional graduate work in Military History and a program in Italian Studies. After his commendable involvement with the military, Brian applied and was accepted to the NOAA Corp. Once he graduated from Basic Officer Training at the Coast Guard Academy, he began his career with NOAA. He is now working on the Okeanos and continues to be fascinated with ocean exploration and discovery. Brian loves adventure and travel, so he considers himself very fortunate to be able to experience both while working at sea. Brian has learned that it is important to be flexible in life and never stop learning.

brian interview pic
ENS Brian Caldwell

 

David Knight: Musings from Mission Viejo, July 28, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

 

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 28, 2018

Weather Data from Mission Viejo, California:

Latitude: 33.64°
Longitude: 117.62°
Sea wave height: 1-2 ft
Wind speed: 4 kts
Wind direction: 90
Visibility: 10 nm
Air temperature: 29.0
°C
Barometric pressure: 758 mm Hg
Sky: Clear

The past few days back home have given me a chance to share my experiences as a NOAA Teacher at Sea with family and friends and to enjoy some slime and scale free days in southern California. I no longer have the picturesque sunrises and sunsets, but I don’t have to climb down a ladder to get out of bed anymore. I am so grateful that I was selected to be a Teacher at Sea this season and that I had an opportunity to learn from and work with some fantastic people.

SEFIS 2018 Leg 2 Track Line
NOAA Ship Pisces route for SEFIS Survey, July 10 – 23, 2018 (image from Jamie Park)

My experience as a NOAA Teacher at Sea greatly exceeded my expectations and has reinvigorated me as a teacher. From the first full day on NOAA Ship Pisces, I was having fun learning about and collecting data that are used to create models of fish populations.  The techniques the NOAA scientists taught me not only allowed me to contribute to their research in a small way, but it gave me an opportunity to collect data that I can immediately integrate into my classroom.  My students will be able to analyze salinity, temperature, and pressure changes as depth changes, as well as biological data such as fish length, weight and age using tissue samples I was able collect while a Teacher at Sea.  Furthermore, I was also able to learn about the men and women that serve as officers in the NOAA Corps, engineers, and deck crew, without whom the scientists would be unable to gather the necessary data. Meeting these dedicated men and women and learning about the mission of NOAA will allow me to help my own students know about career opportunities in marine biology and STEM fields. Every day was an opportunity to learn and I am eager to share my experience and knowledge with my future students as well as my colleagues in Irvine.

 

This slideshow requires JavaScript.

I want to thank Nate Bacheler and the entire NOAA science group for not only teaching me how to extract otoliths and ovaries, but for answering my many questions and including me in everything. Whenever I asked if I could help out in some way I always got a, “Sure, let’s show you how to get that done.” I truly had a blast getting slimed by flopping fish.  I also would not have learned so much about the NOAA Corps and the mission of NOAA without being able to freely go to the bridge and engage with the officers on duty. They too were willing to tell me the story of how the came to be NOAA Corps officers and answered my questions ranging from navigating and the propulsion of NOAA Ship Pisces to college majors and family-life.

IMG_6706
View from a bow hawsehole. (photo by David Knight)

 

 

 

 

David Tourtellot: Draggin’ The Line, July 21st, 2018

NOAA Teacher at Sea

David Tourtellot

Aboard NOAA Ship Thomas Jefferson

July 9-26, 2018

Mission:  Hydrographic Survey – Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: July 21st, 2018

Weather Data from the Bridge

Latitude: 29° 11.6357’ N

Longitude: 093° 55.9746’W

Visibility: 10+ Nautical Miles

Sky Condition: 6/8

Wind: Direction: 224°    Speed: 8.5 knots

Temperature:

Seawater: 30.4°C

Air: Dry bulb:31.5°C          Wet bulb: 28.5°C

 

Science and Technology Log

In my previous post, I discussed the ship’s sonar. This time, I’ll go into more detail about the tools the Thomas Jefferson is using to complete its mission. The sonar that the ship uses is multi-beam echosounder sonar, which sends the pings down to the seafloor and receives echoes in a fan shape, allowing the ship to survey a wide swath beneath the ship.

Multibeam Sonar
An illustration of a ship using multi-beam sonar. Image courtesy of NOAA

In addition to the multi-beam sonar, NOAA Ship Thomas Jefferson utilizes two towfish, or devices that are towed in the water behind the ship.

The first is the side scan sonar. Like the multi-beam, this device uses pings of soundwaves to create images of its surroundings. However unlike the multi-beam, the side scan doesn’t capture any data from the area underneath it. Instead, it collects data to its sides.  The side scan is connected to the ship via a cable, and is dragged through the water 6-15 meters above the seafloor. It is great for measuring the intensity of the return of the ping, which provides insights into the makeup of the seafloor.

The side scan towfish
The side scan towfish

The second towfish that the Thomas Jefferson is using is the MVP (like many things on the ship, MVP is an acronym, for Moving Vessel Profiler). The MVP truly gives the ship some of its most valuable data. As I discussed in my previous blog post, in order for us to accurately calculate the distance that the sonar’s pings are traveling, we need to know the amount of time it takes them to travel, as well as the velocity, or the speed, at which they’re moving. The singarounds I mentioned in my last post measure sound velocity, but only at the face of the sonar. Water conditions are not uniform – at the surface, water tends to be warmer, with less salinity. As you get deeper, however, the water tends to be colder and saltier. This means that the velocity of sound changes the deeper you get. Most of the time, the MVP rides just under the surface of the water, but periodically it will get cast down, to approximately 1 meter above the seafloor. It measures the water conditions of the entire water column from the surface to the seafloor, allowing us to calculate sound velocity all the way down.

MVP
The MVP towfish as it is being lowered into the water

The MVP measures the same water qualities as the CTD (a device I discussed in an earlier blog post), however, the MVP has a distinct advantage over the CTD. In order to use a CTD, the ship has to come to a stop while the CTD is lowered into the water. The MVP, however, can be used while the ship is in motion, which greatly increases productivity.

When surveying, many on the crew say it’s like mowing the lawn. The ship will capture a long stretch of data, called a line, and then turn around, and capture another stretch. 4% of these lines are cross lines, which run perpendicular, across a wide swath of lines of captured data. Cross lines allow the survey department to double check that the data they’ve captured is accurate.

Mowing the Lawn
A display of the lines of survey data the ship has captured. Cross lines can be seen running perpendicular to the majority.

 

Personal Log

TJ Bridge Daylight
The bridge of NOAA Ship Thomas Jefferson in the daylight

A couple of days ago, I went up to the bridge shortly after sunset, and I was surprised what I saw. All the lights were off, and the screens of the various instruments had been covered by red filters. I was told that this is for maintaining night vision when on watch. Red light interferes least with our night vision, so anything that gives off light is switched to red.

Bridge at night
The bridge of NOAA Ship Thomas Jefferson at night

While on the bridge, I had the opportunity to ask ENS Garrison Grant (who had recently been selected for a promotion to Lieutenant Junior Grade – congratulations Garrison!) a little about the NOAA Corps. I must admit that I was largely unfamiliar with them before joining the Thomas Jefferson.

The NOAA Corps as we know it today began in 1970, though its roots are much older. As president, Thomas Jefferson (for whom NOAA Ship Thomas Jefferson is named) created the United States Survey of the Coast, which would later evolve into the United States Coast & Geodetic Survey. Their early operations were not unlike the survey work that NOAA Ship Thomas Jefferson is doing today, though their tools were more primitive: surveyors wanting to determine the depths of America’s bodies of water didn’t have the benefit of sonar, and instead used lead lines – lead weights tied to the end of ropes. These surveyors would also play a vital role in our military history. They would often assist artillery, and survey battlefields. This is what led to the United States Coast & Geodetic Survey (and later, the National Oceanic and Atmospheric Administration) to gain a commissioned uniformed service. Due to the rules of war, captured uniformed service members could not be tried as spies.

To join the NOAA Corps today, you need to first have a bachelor’s degree. ENS Grant received his degree from Stockton University in Marine Sciences, but he says that it isn’t a requirement that the degree be in a maritime field. He says that some of his classmates had degrees in fields such as English or Communications. After getting a degree, you then apply to join the NOAA Corps (anyone interested should check out this website: https://www.omao.noaa.gov/learn/noaa-corps/join/applying). If selected, you would then complete the Basic Officer Training Class (BOTC), which generally takes about 6 months. After that, you’d be given your first assignment.

 

Did you know? Before NOAA Ship Thomas Jefferson was operated by the National Oceanic and Atmospheric Administration, it belonged to the U.S. Navy and was known as the U.S.N.S. Littlehales

Taylor Planz: What’s It Like to Be a…, July 19, 2018

NOAA Teacher at Sea

Taylor Planz

Aboard NOAA Ship Fairweather

July 9 – 20, 2018

 Mission: Arctic Access Hydrographic Survey
Geographic Area of Cruise: Point Hope, Alaska and vicinity
Date: July 19, 2018 at 10:53am

Weather Data from the Bridge
Latitude: 65° 15.541′ N
Longitude: 168° 50.424′ W
Wind:  10 knots NW, gusts up to 20 knots
Barometer:  765.06 mmHg
Visibility: 8 nautical miles
Temperature: 7.4° C
Sea Surface 7.2° C
Weather: Overcast, light drizzle

Interview Issue!

NOAA hires employees with many different career specialties. So many in fact that I cannot cover them all in one blog post. In an effort to give you a glimpse into some of the day to day happenings of the ship, I chose three different people with widely varying careers to interview today. The first is Oiler Kyle Mosier, who works in the engineering department. Next is Erin Billings, a meteorologist from the National Weather Service visiting NOAA for this leg of the mission. Finally, ENS Jeffrey Calderon who works for the NOAA Commissioned Officer Corps as the Medical Person In Charge.

Oiler Kyle Mosier

Oiler Kyle Mosier
Oiler Kyle Mosier


What is your job on NOAA Ship Fairweather?
“I am an oiler in the engineering department, and my job is to do maintenance work and watches when we are underway. During my work day, I complete a list of maintenance items called a SAMMS list. On a given day, I might clean strainers, air supply, or air filters. We have 5 fan rooms; fan rooms 1 and 3 go to our staterooms, so I make sure those are always clean.”

What tool do you use in your work that you could not live without?
“An adjustable wrench. We use wrenches just about every day, so if I only had one wrench (and one tool) it would be the one that can adjust to many sizes.”

What do you think you would be doing if you were not working on a NOAA ship?
“My dream job is to be a successful writer. I got started in high school just writing for fun, and I got better as I went through college. I also took an art class in college, and the teacher let me work on my own project ideas. I made my first book cover in that class, for a book called “Natalie and the Gift of Life”. I brought back my original character Natalie years later because I loved that first book so much, and I’m a much better writer now versus back then. My most recent book is “Natalie and the Search for Atlantis”.”

What advice would you give to students who may be interested in a job like yours?
“Some people only get certified to be an Oiler, but I went to the Maritime Academy and got my QMED certification (Qualified Member of the Engine Department). I recommend this pathway because it qualifies you to be an electrician, oiler, junior unlicensed engineer, and work in refrigeration. You’re not stuck with one job; instead, you have many different choices for what kind of job you do.”

Erin Billings

Meteorologist Erin Billings
Meteorologist Erin Billings

Tell me about what you do for a living.
“I am general forecaster for the National Weather Service in Fairbanks, Alaska. I produce forecasts for northern Alaska and the adjacent waters. As an organization, we forecast for approximately 350,000 square miles of land area.”

What do you enjoy most about your work?
“It’s like putting all the pieces of a puzzle together. Forecasting is a lot about pattern recognition. People also rely a lot on forecasts, so I feel like my job is important for people as they plan their day, their weekend, and even their vacations.”

What parts of your job can be challenging?
“When you have a lot going on and the weather is frequently changing, it can be hard to choose what area gets looked at first as well as managing the time it takes to do that. I work rotating shifts as well, so my work hours are always changing and sometimes I work 7 days in a week. I love what I do though, so there’s a trade off.”

What advice would you give to students who may be interested in a job like yours?
“In order to get in to a meteorological position, you should find a way to set yourself apart from other people. Get a good foundation of science and math, but focus on something else you can bring to the table. Examples could be learning a foreign language, learning computer programming, or completing an internship or relevant volunteer position. Setting yourself apart will make you more competitive than everyone else who is applying for the same job and has the same degree as you.”

Ensign Jeffrey Calderon

Ensign Jeffrey Calderon
Ensign Jeffrey Calderon

What is your job on NOAA Ship Fairweather?
“I am a Junior Officer with the NOAA Commissioned Officer Corps. My job is administration of the ship, which is broken down into collateral duties. Each duty needs to be completed to keep the ship operating smoothly. I am the Medical Person in Charge, so I keep track of all the medicines, make sure they haven’t expired, order medical supplies, and inspect medical equipment. I can also perform CPR and first aid. I can follow a doctor’s order to administer medication, including IVs. I am also in charge of all of the keys on the ship; there are about 300. I have to get them back from people when they leave and make copies when needed. I am the auxiliary data manager on the ship. I collect weather data, inspect the sensors (anemometer, barometer, etc), and upload the data to an online system. I also drive and navigate the ship and the small launch boat.”

What do you enjoy most about your work?
“I like being on a ship because I get to travel and see things that I will remember all my life. On the Fairweather, I get to see the aurora borealis, mountains, fjords, whales… things that not everyone gets to see. It also forces me to face new challenges; there’s always something I have to master and learn. I may have to fight a fire on the ship or go out on a launch and rescue somebody on the water.”

What do you miss the most when you are at sea?
“I miss having a real bed. I miss the privacy too. My stateroom is a 2-person stateroom.”

What advice would you give to students who may be interested in a job like yours?
“Pick a science-related path. It will be challenging, but it will be worth it in the long run. Science degrees will better prepare you for challenging careers, and it will prove to future employers that you can persevere through challenges. NOAA is also looking for people with good moral character, so stay out of trouble.”

Question of the Day
What are the eligibility requirements to be in the NOAA Commissioned Officer Corps?

Answer to Last Question of the Day
As mentioned above, northern Alaska reaches temperatures colder than most people can even imagine! Nome’s record low temperature occurred on January 27, 1989. Without using the internet, how cold do you think Nome got on that day?

The coldest temperature on record in Nome, Alaska is -54° Fahrenheit! Brrrr!

David Knight: Getting to Know the Pisces, July 16, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 16, 2018

Weather Data from the Bridge:

Latitude: 32° 49.6
Longitude: 78
° 52.4
Sea wave height: 1-2 ft
Wind speed: 10 kts
Wind direction: 59
Visibility: 10 nm
Air temperature: 28.7
°C
Barometric pressure: 1016.9 mb
Sky: Clear

An Interview with Ensign Luke Evancoe

Pisces logo
NOAA Ship Pisces Seal

My first day on NOAA Ship Pisces I was introduced to about 300 different people. Well, maybe it was more like 30, but it sure seemed like a lot of people were aboard.  NOAA vessels have civilian personnel that perform a myriad of important duties, scientists that assist in planning and carrying out the various missions of the ship, and commissioned NOAA Corps Officers that ensure the mission of NOAA is carried out.

Engineers are responsible for making sure that all of the systems on the ship are operating properly.  The engineers must be able to fix and maintain all mechanical, electrical, and plumbing systems on the ship.  It’s this important group that makes sure the A/C is working in our cabins and that the propulsion system gets us from one trap site to the next.  Members of the deck department use equipment to lower CTD units, bring up traps, deploy and retrieve buoys, and maintain watches throughout the day.  These men and women are responsible for making sure very expensive equipment is safely and effectively used. As a research vessel, the Survey department’s role in the acquisition and processing of oceanographic and survey data is crucial. These individuals operate and analyze data from a number of different pieces of equipment including the CTD and the multibeam echosounder.  And finally, there are the Stewards. The stewards are the ones responsible for making sure everyone is well fed and comfortable. They prepare and plan all meals, ensure the pantry is stocked and ready for each mission, and that all of the common areas are clean and sanitary.

Soon after boarding, I met Ensign Luke Evancoe, the newest NOAA Corps Officer to join the NOAA Ship Pisces. After talking to him briefly and learning about his varied background and the circuitous route that brought him to NOAA, I decided I wanted to interview him and find out more about his role as a NOAA Corps Officer.

IMG_6592
Ensign Luke Evancoe, NOAA Ship Pisces newest NOAA Corps Officer

Where are you from and what did you do before coming to NOAA?

I grew up in Pittsburgh and have a B.S. in Biology and Masters in Teaching from Virginia Commonwealth University in Richmond, Virginia. After high school and two years of college, I decided to join the United States Marine Corps and become an Infantryman. While in the Marine Corps I was a member of the USMC Silent Drill Platoon, a 24-member team that are ambassadors of the USMC that perform at sporting events and parades. I was then deployed to Afghanistan for seven months. I was a vehicle commander for an MRAP (Mine-Resistant Ambush Protected) vehicle.

After the Marine Corps, Mr. Evancoe went back to VCU and then became a sixth grade science teacher at the Franklin Military Academy in Richmond, Virginia where he taught for two and one half years. While at a research symposium, he learned about the work of NOAA and the NOAA Corps and decided to apply to the program and once he was accepted, left teaching to train to become an NOAA Corps Officer.

What was a memorable experience while you were teaching?

My most memorable experience teaching was when I successfully executed an experiment to see whether the myth that if someone moves while stuck in quicksand, they sink faster than if they remained motionless was true or not. Using Hexbugs, which are tiny robot bugs, my students tested whether the Hexbugs which were turned on and “squirming” sank into a cornmeal mix (the quicksand) at a faster or slower rate than Hexbugs that were turned off. It was a simple, yet fun way to demonstrate the basics of the scientific method to middle school children.

Tell us about your training with NOAA Corps.

The NOAA Corps training lasts 19 weeks and is held at the US Coast Guard Academy in New London, Connecticut. Our training is called Basic Officer Training Class (BOTC) and is carried out alongside the Coast Guard Officer Candidates.

The training is similar to the military academies in that we wear a uniform, start our day at about 5 a.m., go to classes and are expected to carry out other duties when we are not in class. It is very regimented, but it is also rewarding.

25501_0
Ensign Evancoe (on the left, 5th from the bottom)

How is training for NOAA Corps similar to your Marine Corps training that you received?

They are really incomparable. What is similar, however, is the training you receive in leadership and discipline and how to best represent yourself as a member of a uniformed service for the United States.

What types of things do you learn during your BOTC training?

As I mentioned, we learn a lot about leadership, but we also learn about the goals and mission of NOAA and the role of officers in fulfilling that mission. Obviously, we also learn about skills that will allow us to be good seamen.  We have to know about all of the different operations of a NOAA ship like propulsion, navigation, and communication and we also learn the skills of each of the departments like engineering and the deck crew. We learn different nautical skills and about maritime regulations.  Obviously, we learn how to handle both large ships and small vessels.

The training program involves a lot of hands on opportunities beside the classroom sessions we have. It is similar to how you would teach science with some lecture time and then lab time.

You are currently an ensign, what are your duties right now?

I am considered a Junior Officer of the Deck (JOOD). I am assigned two 4-hour watches on the bridge. During this time, I am driving the ship as we transit from one location to another or as we drop and pick up traps. You have to multi-task very well. I have to be listening to the radios as the crew relays information to the bridge, the scientists also communicate with the bridge as traps are being deployed or retrieved, I have to know our speed, pay attention to the strength of the current, wind direction and its speed, I have to watch for other vessels in the area, there’s a whole lot going on. Fortunately, I am being mentored by a senior officer when I am on the bridge. All of the training I am currently doing will allow me to become an Officer of the Deck (OOD) which will allow me to be unsupervised on the bridge.

What is the most difficult aspect of driving the ship?

The most difficult aspect of driving the ship would have to be maintaining an understanding of the current state of the wind, currents, and swell, while realizing that these variables can change multiple times over the course of a watch; a strategy that I was using to pick up fish traps the first hour of watch may not work at all with how the sea state has changed an hour later.

NOAA Ship Pisces in port
NOAA Ship Pisces in port

In addition to my shifts on the bridge, I have collateral duties that I am learning. For instance, I am learning the duties of the Navigation Officer who is responsible for ensuring that all of the navigation charts are up to date, that the navigation equipment is working properly, and that upcoming tracklines are laid out on our charts and approved by the CO.  The Imprest Officer is responsible for managing some of the ship’s funds and making sure the wage mariners are paid when required. I am also learning about the duties of the Movie Officer. We have a large inventory of movies from the US Navy that have to be cataloged and replaced. We get movies that are still playing in theaters so crew members can use their time when they are not on duty to relax. It’s important that people can relax.  Finally, I am coming up to speed with the duties of the Property Officer, who maintains inventory of all of the ship’s electronically-based and sensitive property and accounts for assets that must be properly disposed of.

What is the OOD workbook?

It is like on-the-job training. The work that I do in the workbook helps me put into practice the things I learned at BOTC, and once I have completed the workbook and it has been approved, it will allow me to stand watch on the bridge without supervision.

The workbook assesses my knowledge of the mission and maintaining the safety and security of the ship.

What didn’t you realize before you became a NOAA officer that you discovered since joining the NOAA Corps?

I guess I did not realize that, as an officer, you have to know everyone else’s job in addition to yours. An officer is ultimately responsible for all aspects of the ship, so I have to be knowledgeable in not just navigating or driving the ship, but I also have to know about all the other departments. It’s a lot to know, but I find it very rewarding.

What are your goals with NOAA?

My commitment as a NOAA Officer is three years, but I plan on making this my career.  After my two years on NOAA Ship Pisces I will then spend time at my land based assignment.  I enjoy my job because I am involved in collecting valuable data for the scientists to analyze, there is a lot of responsibility and you have to constantly be 100% engaged in your work, and you get to see and experience amazing things while at sea.

Personal Log

There is always work to be done on the NOAA Ship Pisces, but at the end of a day there may be time to relax and to play a little Corn Hole. Sunday evening the scientific team cleared the back deck for a little tournament. Playing Corn Hole on a moving ship is quite a bit different than playing in your back yard! Just as you are getting ready to release the bag a swell will move the ship and cause your bag to miss the board—-at least that’s my story and I’m sticking to it!

Did You Know?

Pisces is the Latin word for “fish”. In Greek mythology, Aphrodite and Eros were transformed into fish to escape the monster, Typhon.

Eric Koser: Let the Science Begin! June 27, 2018

NOAA Teacher at Sea
Eric Koser
Aboard Ship Rainier
June 22-July 9
Mission: Lisianski Strait Survey, AK
June 27, 2018: 1500 HRS

Weather Data From the Bridge
Lat: 57°52.9’          Long: 133°33.8’
Skies: Overcast
Wind 15 kts at 011°
Visibility 10+ miles
Seas: Calm
Water temp: 3.9°C

Science and Technology Log

Rainier Hat
This insignia cap is worn by the NOAA Corps members on the ship.

Let the science begin! We departed from Sitka about 1300 on Monday enroute for Lisianski Inlet. Getting out to sea has been a wonderful experience. Ship Rainier is truly run by a dedicated team of people. I have been able to spend quite a bit of time on the bridge – first watching and then participating with the Junior Officers on the deck. It quickly became obvious to me that this is a teaching operation. The hands on the deck represent a variety of experience levels, quite by design. More experienced NOAA Corps Officers coach Junior Officers through each procedure that happens on the Bridge. It’s a great example of a team based ‘on the job’ teaching system!

On the bridge there is always an OOD (Officer On the Deck) that is in charge of operations. This person then helps to administrate the work of the CONN (responsible for the conduct of the vessel), the helm, the lee helm, the lookouts, and the navigator. The CONN gives commands to the others on the team, which are then repeated back to assure clarity.

Chart Table
This is the chart table where the Navigator works on the bridge of the ship.

The first task I learned was to plot our course on the charts. The CO (Commanding Officer—in charge of the entire ship) selects waypoints for an upcoming course in a digital mapping suite called Coastal.   Coastal sets a series of digital paths that each include a compass bearing (direction in degrees) and range (distance in nautical miles) between each waypoint. Then the navigator takes this same series of points and plots them by hand in pencil on the series of chart {the nautical term for maps]. Each point is a pair of latitude and longitude points plotted as a small square. Given the expected cruising speed, the navigator can also estimate future positions of the ship, which are referred to as “dead reckoning” and are plotted with a half circle.

 

 

 

Sheet Route
A route that I plotted on our charts.

Coastal
A view from the Coastal software of a route.

Periodically the navigator measures the location of the ship either digitally with GPS or by measuring distances to adjacent land features with radar. A pair of dividers is used to plot these distances on the sheet as small triangles and confirm the current location of the ship. By these methods, the navigator assures the ship is on the planned track and/or adjusts the track accordingly.

The person at the helm (the steering wheel) is directed by the CONN to point the ship at the necessary bearing. As changes are needed to the bearing, the person at the helm responds to the CONN’s commands to adjust.

In Lisianski Inlet the team of hydrographers started collecting data with the multibeam sonar system around midnight Tuesday morning. As we traveled along the entire length of the Inlet overnight, this initial data was collected. When we arrived at the small town of Pelican, AK (pop. 88) a crew on a launch (small boat deployed from Rainier) traveled in and set up a HORCON (Horizontal Control) reference station. This is a high precision satellite receiver. It provides a very accurate way to measure potential drift in satellite indicated GPS over time. After taking data from the ship, the latitude and longitude are corrected with data from the HORCON.

Launch RA
This is one of several small(er) boats called “Launches” that are used for surveying.

Ship Rainier
This is a view of our ship from the launch.

After this initial work was complete at Lisianski, we began transit to Tracy Arm Fjord. While the multibeam sonar work was completed here last week, three crews deployed in launches to ‘proof’ the shoreline information on the charts. This is essentially confirming and updating the existence and location of particular features (rocks, ledges, etc).

Tracy Arm
This was the view as we approached the glacier at the end of Tracy Arm.

Launch Team
NOAA Hydrographer Amanda Finn and I together on the launch.

At this point, the hydrographers are processing much of the data obtained in the past few days. Additional data will be collected tomorrow morning. Then in the evening we’ll transit back to Lisianski to begin further work there.

Ship among ice.
The ship parked here while the launches moved closer to the ice.

Glacial Ice
The glacial ice shows a beautiful blue color.

Ice Blue
Different pieces of ice appear slightly different colors.

Personal Log

Every member of the team on this vessel has a job to do. Every member matters. The success of the entire operations depends upon the teamwork of all. There is a positive sprit among the group to work together for the tasks at hand.

I’ve been welcomed to learn to chart our course. I had an opportunity today to operate the helm (steering). I went out on a launch today to visit waters that were yet uncharted as the glacier at the end of Tracy Arm Fjord is receding. It was incredible to see not only the beauty of the ice among the water, but to also witness from afar the calving of the glacier. A rumble like thunder accompanied the crashing of two small walls of ice into the ocean below as we watched from afar.

I enjoyed capturing many photos of the ice and the wildlife among it. Many harbor seals were relaxing upon chunks of glacial ice as we traveled through the Arm. The natural beauty of this area is best represented by a few photos.

An adult seal and pup
This adult seal was watching us closely with the pup.

Ice Dog?
What can you see in this ice? Might it resemble a dog?

Did You Know?

Junior Officers in the NOAA Corps learn in a 19 week program followed by 2 weeks at sea on a tall ship called Eagle.

There are approximately 320 commissioned officers in the NOAA Corps internationally.

NOAA Operates 16 Ships and 20 Aircraft!

Cindy Byers: On the Homefront, May 19, 2018

NOAA Teacher at Sea
Cindy Byers
Aboard NOAA Ship Fairweather
April 29 – May 13, 2018

Mission: Southeast Alaska Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska

Date: May 19, 2018

Weather:  It is SPRING in Wisconsin!

 

Personal Log

I got home this week from an absolutely amazing experience on NOAA Ship Fairweather!  I arrived so excited to share what I have learned with students and other teachers alike!  I went to school 30 minutes before the end of the day bell when I arrived.  I felt like I was welcomed back like a hero!  My students and the staff were happy to see me, and I was very happy to see them!  I got lots of hugs and high fives.  It was especially exciting to hear that the students had enjoyed and learned from my blog.  They especially liked to learn what I had eaten!

I was able to share some pictures and stories this week as our year winds down. I have begun organizing my photos and have plans with the staff to give a presentations to all the 4-8 grade students in the fall.  Ideas are flowing through me about how I will incorporate my new knowledge and experiences into my different curriculums.  There is so much potential!

I have not stopped talking about my experience with people in and out of school.  I love having so many experiences to share.  The people of NOAA Ship Fairweather where so willing to teach me about hydrography and ship life.  I have strong memories of people asking if I wanted to try doing something, or calling me over to explain something they were doing.  I, of course, hopped in and tried everything I could!  I got to drive the ship on my first morning!  I also was able to drive the launches! (Thanks Colin!)  I learned so much about being a hydrographer thanks to all the surveyors!   What a wonderful group of people.  I could thank everyone really, the deck crew, the engineers, the stewards, the NOAA Corps officers, and the great leadership of the XO and CO.  I was able to learn from all of them.  Everyone always made me feel like they had time to teach me how to do things, and to answer questions.  It is exciting to be in a place with so many talented educators!

This is a trip that will influence how I approach my teaching and my everyday life.  I will never forget the kindness and caring of NOAA Ship Fairweather personnel, or the beauty and splendor of SE Alaska!

NOAA Corps mustaches
NOAA Corps Officers! Mustaches are required.

CTD Cast
Taking a CTD Cast

IMG_8844
Setting up a HorCon (Horizontal Control) Station

Dawes Glacier
Our NOAA Physical Scientist at Dawes Glacier

Bald eagle skull
A Bald Eagle skull being examined

Skiff ride
Skiff ride to a shore party

Settlers of Catan
A game of Settlers of Catan

Sam in galley
Sam, one of the stewards, in the galley

Hydrographer
Ali Johnson, Hydrographer, at work

Bekah with guide
Hydrographer Bekah Gossett looking up marine mammals

LTJG Douglas
NOAA Corps Officer LTJG Douglas on the bow

Life on the Bridge
Life on the Bridge

Kayaking
Kayaking

Glacial moraine
Me and the mountains from the glacial moraine

Cindy Byers: Working at Sea, May 9, 2018

NOAA Teacher at Sea
Cindy Byers
Aboard NOAA Ship Fairweather
April 29 – May 13

Mission: Southeast Alaska Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska

Date: May 9, 2018

Weather from the Bridge

Latitude: 57° 43.2 N
Longitude:133° 35.6
Sea Wave Height: 0
Wind Speed: 3 knots
Wind Direction: Variable
Visibility:10 Nautical miles
Air Temperature: 15° C
Sky: 90% cloud cover

Me on boat in Endicott Fjord, Dawes Glacier
Dawes Glacier In Endicott Fjord

Science and Technology Log

When I reflect on the personalities of the people living and working on NOAA Ship Fairweather, two words come to mind: challenge and adventure.  They are also people that are self-confident, friendly, they see great purpose, and take great pride in their work.  Life is not always easy on board a ship. People are often very far from family and away from many of the comforts of home.  But for this group, it seems that they are willing to give up those hardships for being at sea. Below are some interviews I did with personnel on the ship.

Terry – Deck Crew

Terry is part of what is called the deck crew.  He reported to me that his duties include standing bridge watch, which means looking out from the bridge to warn the bridge crew of any obstacles or dangers ahead of them. On this trip those hazards have been fishing vessels, and gear, and whales.  He also will be at the helm, which means steering the ship as directed by a bridge officer. Other bridge duties include monitoring the radio and radar when the ship is anchored. He said that like everyone on the bridge, he needs to be aware of where the ship is at all times. He is part of the Deck Department so he does maintenance such as keeping things greased, painted and clean.  The deck department also keeps the ships interior clean, except for the galley and the mess

IMG_9071 Terry
Terry at the Helm

What got you interested in the sea?
When I was eight, I moved from Michigan to Florida and I fell in love with the sea.  I used to run up and down the beach.

I liked Jimmy Buffett, “A Pirate Turns Forty,” and I liked reading adventure books by Jack London.  When I was 13, I also read Moby Dick and The Odyssey.  I read The Odyssey every year, I love that book.  I really like the lore of the sea and the freedom of being at sea. I like the idea of going to exotic places.

When were you first in a boat in the ocean?
When I was 10 years old I went on a day cruise from Tampa, Florida. It was a dive boat that was used to take tourists out. I loved it, if I could get on a boat, I would go. I tried to build a skiff, but it took on water.

When did you first work on the ocean?
I went to sea when I was 24 years old.  In my first job I worked bringing supplies to oil rigs. I found an ad for the job and they said no experience was needed. I wanted to be a captain, I wanted to travel and see the world.  I watched a lot of Indiana Jones. I wanted to be an adventurer. When oil prices went down I was out of a job, but in 2000 I worked for another oil company.

What other jobs have you had?
After 9/11, I joined the Military Sealift Command, which is a civilian part of the Navy. They bring food, fuel, and supplies to Navy ships [he was in the Mediterranean Sea.] Military ships do not fuel in ports where they could get attacked.

In 2013 I had a wife and two kids and so I did different jobs, not at sea.

When did you first start to work for NOAA?  
In 2016 I was hired by NOAA on NOAA Ship Fairweather. This boat and NOAA Ship Rainier are where people start.  I started as an Ordinary Seaman. Now I am Able Seaman.  To move up I needed to take a course in survival training and fire training. I did this in Louisiana at a community college, it took two weeks.  I also needed six months of experience on a NOAA vessel.

IMG_9073
Terry at the helm

What is your favorite part of the job?
I like being at the helm and steering the ship. I like going to different places and seeing different things. I like that the ship has extra functions to keep up moral up. I even did a comedy show twice. It is like your own community. It is great being part of a team and accomplishing a goal.

What is the hardest part of the job?
The hardest thing is being away from home.  For every 9 months away, I am home for a few months, that is spread out over a year.  The season is 7-8 months.

What do you think it takes to be on a ship away from your family?
Everyone has to be a team player.  You need to really get along with others.  People need to be confident and you need to show respect to each other.  You live in very tight quarters. Nobody has a job that is small, everybody’s job needs to be done.

 

Jeff – NOAA Corps Junior Officer

 

I grew up in Juno, Alaska and went to college there.  I got a Bachelor’s degree in math, I never thought I would be interested in math.  I started out with an art major then went to geology, then biology, then math. I liked that I learned a new set of rules during the day and then got to apply them to problems that I could solve.  It took me six years to get my degree. I paid for it myself by working and I was living in a sailboat in the harbor.

Jeff
Jeff in the launch during bottom sampling

What brought you to a career in NOAA?
Previously I was a Sergeant in the Army for five years.  I was searching for tide information for a fishing trip and was on a NOAA website,  There I saw a recruiting video and decided to do that. It took a couple years to get into the NOAA Corps. I was first hired on a NOAA Ship Oscar Dyson as a General Vessel Assistant in the deck department. Then I found out I was accepted into the NOAA Corps.  After my Officer Training in New London, Connecticut I was assigned to NOAA Ship Fairweather.

What is your role on the ship?
I am a Junior Officer.  I am here to learn how to drive ships and learn the science of hydrography.  I am learning how to become a professional mariner.

What are the best parts of your job?
Ever since the Army I enjoyed being part of a team. On the ship there is a lot of social interaction.  It is a tight community of people that live and work together. We have all types of personalities.

I really like going out on a launch (the small boats used for surveying) and collecting data. We are in beautiful places and we get to eat our picnic lunches and listen to music and work together to figure out how to drive our lines and to collect the data we need.

I also like processing and organizing the data we get.  Our project areas are divided up into acquisition areas and I work as a Sheet Manager for an area. So, I am responsible for taking the data that is cleaned up from the night processors (who clean up the data when it first comes in) and getting a map ready for the launches with areas that need more data collection and safety hazards marked. I keep track of what needs to be done and report those needs to my superiors.

What do you like to do on the ship when you aren’t working?
I like the VersaClimber.  (This is in the gym. There is a ship contest going on to see who can climb highest!)  I used to do some fishing. I also spend time communicating with my family.

What do you miss when you are at sea?
Mostly I miss my family.  I also miss doing things like going for a walk to get coffee.  Since the field season is all summer, I really miss going camping with my family.

What will you be doing for your next assignment with NOAA?
Assignments are two years on a ship and three years on land.  Next, NOAA is sending me to graduate school for three years. So I will be working on a  Master’s Degree in Ocean Engineering with an emphasis in Ocean Mapping.

 

Niko – Chief Engineer

I had a conversation with Niko one day because I was really interested in how the water on the ship was acquired and disposed of.  I learned that and a little more!

I asked Niko what got him interested in being at sea.  He told me that this family had a cabin on an island in the state of Washington. He loved driving the families small boat whenever he could.  He would take it out for 8 hours a day. In Middle School and High School he did small engine repair. He took a lot of shop classes and was in a program called “First Robotics.” He thought he wanted to be a welder. His mom worked for the  BP oil company and through that he learned about maritime school. He went to school at Cal Maritime, (The California State University Maritime Academy.)  There he studied Marine Engineering Technology. He said it was hard.  Of the 75 students that started in his class, only 14 graduated on time.

IMG_8723
Niko in his office

He told me that NOAA Ship Fairweather has engines from 1968, and they are due for a rebuild,  They have 20,000 hours since the last rebuild in 2004, that is like running them 3 straight years..  

Niko is the Chief Engineer.  He has a department of nine engineers.

I asked him about the freshwater on the ship. He said the ship uses 600 gallons a day without the laundry and 2000 gallons a day if the laundry is in use.  It takes 17,000 gallons of water to go for 10 days. The ship has freshwater tanks that are filled when they are in port, but the ship can produce freshwater from salt water.  To do this the ship must be moving. It uses a method which evaporates the salt water so the freshwater is left behind. This costs one gallon of diesel to produce 9.7 gallons of freshwater.  This costs is $0.30 a gallon for water. The sinks, showers, dishwasher and laundry all use freshwater. The toilets use saltwater.

Personal Log

I have learned an amazing amount about ocean mapping from my time on NOAA Ship Fairweather.  I have also learned a lot about different NOAA careers and life on a ship. But like any good experience, it is always the people that make things great!

I have really enjoyed getting to meet all of the people of the ship.  They have been so kind to take me in and show me their jobs and let me try out new things, like driving a ship and a launch!

We have also had fun kayaking, watching wildlife, and taking a walk on shore.

eagle on ice
Eagle on Ice

IMG_8668
Life Jackets and Float Coats

IMG_8767
Kayaks on board

Bear
Here is a Brown Bear that was along the shoreline today

IMG_9047
Launches leaving for a day of surveying

Launch
A Launch

Lisa Battig: DRs, The Survey Team and A Goodbye in Kodiak, September 8, 2017

NOAA Teacher At Sea

Lisa Battig

Aboard NOAA Ship Fairweather

August 28 – September 8, 2017

 

Mission: Alaskan Hydrographic Survey

Geographic Location: Kodiak and Anchorage Airports and back home

Date: September 8, 2017

 


map of route to kodiak
A map of the long transit south from the through the Aleutians and then northeast to Kodiak (the dark green line was the Tuesday evening through Friday morning transit from the Yukon River delta)

The last three and a half days of the experience were the transit back to Kodiak. This gave me a lot of time up on the bridge and in the surveyors’ work areas.

So many things impressed me about the crew on this trip.  I think most of all, seeing that a group of young scientists between 22 and 38 (I believe) were ultimately responsible for all of the ship operations and were doing a phenomenal job! Fairweather has the largest number of junior officers on board and the atmosphere is of constant training. I kept thinking about the ages of most of the junior officers and how my own students could be in this position in a few years. The opportunity to grow as a member of a uniformed service and receive all of the training while still being able to pursue the sciences is incredible to me and I intend to make sure that my students know about the opportunity. I can’t tell you how many times I thought, “If I had just known this existed when I graduated college…”

 

On the long trip back, we were traveling through dense fog, narrow rocky passes in the middle of the night, and areas of high and sometimes unpredictable currents. We even managed a rendezvous with another NOAA vessel in order to pass of some medical supplies. Throughout all of it, I watched the NOAA Commissioned Corps officers handle everything with tremendous grace under pressure. But on Fairweather, I found out their work does not stop with the ship operations. Each of the officers are also directly involved with the hydrographic science, and have responsibility for a specific survey area.

The Survey team are also responsible for specific survey areas.

Drew & Bekah
Survey techs Bekah and Drew at their computers. If they’re not eating, sleeping, working out, or on a survey boat – this is probably what they’re doing!

For each area owner, this culminates in a final report (called a Division Report, or DR) giving details of the survey and talking through all anomalies. Survey work does not stop. These folks are working 7 days a week and often 14+ hour days when they are out at sea.

In some cases the owner of a survey area will have very intimate knowledge of a survey area because they had the opportunity to be out on the survey boats. But in many cases, this will not be true. Ultimately their responsibility is making absolutely certain that every piece of necessary information has been gathered and that the data is clean. I was told that in most cases, writing the final report will take a couple months.

These reports will eventually become mapped data that is accessible to anyone through the National Centers for Environmental Information (NCEI). But it will also be sent in various forms to be housed for shipping navigation and other industries.

Sleepy Surveyors
If you’re working long hours 7 days a week, you learn to take advantage of any opportunity you get to rest. A couple members of the survey team, catching a nap on the transit back from the Yukon Delta to Fairweather.

With all of the work they do at sea, ports can become very welcome places. The Fairweather crew had gone into port at Nome, Alaska several time through July and August and were excited to pull into Kodiak. Even on our transit south, I watched the crew get more excited as they left the desolation of the tundra and we began to see cliffs and trees again.

I am so glad that I saw the tundra finally, and that I will now be able to explain it more fully to my students, but I can also completely understand how the sheer vastness of the northern parts of Alaska could make you long for more varied terrain.

Kodiak harbor
Harbors in Southern California don’t look like this!! Coast Guard Base harbor in Kodiak, AK

I only got to spend one day in Kodiak, but it is a breathtaking place. I didn’t get to do any serious hiking, but I did see the salmon running and ended up on an old nature trail. And the best part was that I got to see a bunch of amazing people relax and enjoy their time away from work.

Would I do this again if I had the opportunity? Unequivocally YES!! I would jump at the chance!

Would I recommend this to other teachers? Absolutely! It is an amazing experience. Granted, I think I had the best ship with the best crew…

 

 

Jenny Hartigan: Organisms from the Deep! July 27, 2017

NOAA Teacher at Sea

Jenny Hartigan

Aboard NOAA Ship R/V Fulmar

July 27, 2017

Mission: Applied California Current Ecosystem Studies: Bird, mammal, plankton, and water column survey

Geographic Area: North-central California

Date: July 27, 2017

Weather Data from the Bridge:

Latitude: 38º 19.820’ N

Longitude: 123º 03.402’ W

Time: 0700 hours

Sky: overcast

Visibility: 8 nautical miles

Wind Direction: NW

Wind Speed: 15-25 knots

Sea Wave Height: 3-5’

NW Swell 5-7 feet at 8 seconds

Barometric pressure: 1028 hPA

Air temperature: 63º F

Wind Chill: 51º F

Rainfall: 0 mm

 

Scientific Log:

As I described in another blog, the ACCESS cruise records data about top-level predators, plankton, and environmental conditions as indicators of ecosystem health. Today I’ll explain sampling of plankton and environmental conditions.

 

IMG_7858
Krill from the Tucker Trawl Photo credit: J. Jahncke/ NOAA/Point Blue/ACCESS

 

IMG_8048
a single krill. Photo credit: J. Jahncke/NOAA/Point Blue/ACCESS

 

a small squid – Video credit: J. Jahncke/NOAA/Point Blue/ACCESS

 

There are two methods of collecting plankton. The Tucker Trawl, a large net with 3 levels is used to sample organisms that live in deep water (200 meters or more) just beyond the continental shelf. The collected krill and plankton are sent to a lab for identification and counting.

IMG_7993
Scientist Dani Lipski (left) and myself with the hoop net. Photo credit: C.Fish/NOAA/Point Blue/ACCESS

 

Another method of sampling producers and organisms is the hoop net, deployed to within 50 meters of the surface.

 

2017-07-27 09.15.22
Here I am with my daily job of cleaning the CTD. I also prepare labels for the samples, assist with the CTD, Niskin and hoop net, and Tucker Trawl if needed. Photo credit: C. Fish/NOAA/Point Blue/ACCESS

 

Deploying the CTD and hoop net – Video credit: J. Jahncke/NOAA/Point Blue/ACCESS

Environmental conditions are sampled using the Conductivity, Temperature and Depth (CTD) device. It measures conductivity (salinity) of the water, temperature and depth. The CTD is deployed multiple times along one transect line. Nutrients and phytoplankton are also sampled using a net at the surface of the water. I interviewed several scientists and crew who help make this happen.

An Interview with a Scientist:

Danielle Lipski, Research Coordinator, Cordell Bank National Marine Sanctuary

IMG_7985 2
Dani and myself deploying the CTD Photo credit: C. Fish/NOAA/Point Blue/ACCESS

 

Why is your work important?

The many aspects of the ocean we sample give a good picture of ecosystem health. It affects our management of National Marine Sanctuaries in events such as ship strikes, harmful algal blooms and ocean acidification.

What do you enjoy the most about your work?

I like the variety of the work. I get to collaborate with other scientists, and see the whole project from start to finish.

Where do you do most of your work?

I spend 4 – 5 weeks at sea each year. The rest of the time I’m in the Cordell Bank National Marine Sanctuary office.

When did you know you wanted to pursue a career in science or an ocean career?

In high school I was fascinated with understanding why biological things are the way they are in the world. There are some amazing life forms and adaptations.

How did you become interested in communicating about science?

I want to make a difference in the world by applying science.

What’s at the top of your recommended reading list for a young person exploring ocean or science career options?

Silent Spring by Rachel Carson

 

An Interview with a Scientist:

Jaime Jahncke, Ph.D., California Current Director, Point Blue Conservation Science

FullSizeRender
Jaime checks the echo sounder for the location of krill. Photo credit: NOAA/Point Blue/ACCESS

 

Why is your work important?

We protect wildlife and ecosystems through science and outreach partnerships.

What do you enjoy the most about your work?

-being outside in nature and working with people who appreciate what I do.

When did you know you wanted to pursue a career in science or an ocean Science? 

I always wanted a career in marine science.

What part of your job did you least expect to be doing?

I thought whale study would not be a possibility, and I love whale study. (I started my career studying dolphin carcasses!)

What’s at the top of your recommended reading list for a young person exploring ocean or science career options?

The Story of the Essex – the history behind Moby Dick

An Interview with a NOAA Corpsman:

Brian Yannutz, Ensign, NOAA Corps

                   

2017-07-26 13.40.44
Brian on the bridge Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

    

2017-07-26 13.19.44 2
Brian retrieving party balloons from the ocean so they won’t harm wildlife. Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

The NOAA Commissioned Officer Corps (NOAA Corps) is a uniformed service of the United States which provides professionals trained in sciences and engineering. Brian has been working for the NOAA Corps for 3 years. He is responsible for the ship while on watch, and other duties such as safety officer.

 

Why is your work important?

Among other duties, I drive the ship and operate the winch to deploy the trawl and CTD.

What do you enjoy the most about your work?

I enjoy meeting new people.

Where do you do most of your work?

I’m based out of Monterey, and spend 60 – 90 days per year at sea. I spend 40 hours / week maintaining the boat.

What tool do you use in your work that you could not live without?

-the Vessel Inventory Management System, which is a maintenance program.

When did you know you wanted to pursue a career in science or an ocean career?

In the summer of eighth grade I went to visit relatives in Germany. It was my first time in the ocean. I also spent 15 days in the San Juan Islands.

What’s at the top of your recommended reading list for a young person exploring ocean or science career options?

-the movie “The Life Aquatic”

 

Let’s Talk about Safety:

Brian is responsible for safety aboard ship and it is a high priority. Before sailing I had to do an immersion suit drill where I put on a heavy neoprene suit in 3 minutes. When on deck everyone wears wear a Personal Flotation Device (PFD), which could be a “float coat” or a “work vest”. A “float coat” looks like a giant orange parka with flotation built in. A “work vest” is a life vest. If you are working on the back deck when the winch line is under tension, you must wear a hard hat. Most people wear waterproof pants and boots to stay dry when hosing down nets.

 

FullSizeRender 2 2
That’s me, wearing the “gumby” immersion suit! Photo credit: J. Jahncke/NOAA/Point Blue/ACCESS

 

Bird and Mammals Seen Today in the Bodega Bay Wetlands:

35 Egrets, 1 Great Blue Heron, 1 Snowy Egret, many Brandt’s Cormorants, many Western Gulls

Did you know?

A blue whale spout has the general shape of a fire hydrant, and a humpback whale spout looks more like a fan.

Personal Log:

I suppose you are wondering what I do in my free time. Between my tasks on board, eating, and blogging, I am pretty busy. Getting extra rest is a big deal, because it’s hard work just to keep your balance on a ship. Some evenings, I feel like I have been skiing all day long! I spend a lot of my time on the flying bridge watching wildlife through my binoculars, or chatting with the scientists and crew. It is fabulous to be out here on the ocean.

Highlight of Today:

Watching several Dall’s Porpoises surfing the wake in front of the bow!

Questions of the Day:

Why do porpoises swim in front of the boat?

Why do whales breach? (Breaching is a behavior that looks like jumping out of the ocean on their side.)

 

 

I love hearing from you. Keep those comments coming!

Marsha Lenz: And The Hauls Begin, June 14, 2017

NOAA Teacher at Sea

Marsha Lenz

Aboard NOAA Ship Oscar Dyson

June 8–28, 2017

 

Mission:Geographic Area of Cruise: Gulf of Alaska

Date: June 14, 2017

 

Weather Data from the Bridge

Latitude: 53 24.35 N

Longitude: 166 58.2 W

Time: 0700

Visibility: 8 Nautical Miles

Wind Direction: 095

Wind Speed: 25 Knots

Sea Wave Height: 7-9 foot swell

Barometric Pressure: 1003.4 Millibars

Sea Water Temperature: 7.2°C

Science and Technology Log

I know that I have already talked about how much science and technology there is on board, but I am amazed again and again by not only the quantity of it, but also the quality of it. I am also impressed by the specialized education and training that the scientists and rest of the crew have in their designed roles on this ship. They know how to utilize and make sense of it all. I keep trying to understand some of basics,  but often I just find myself standing in the back of the room, taking it all in.

We brought in our first haul on Monday.  I was given an orientation of each station, put on my fish gear, and got to work. I was shown how to identify the males from the females and shown how to find the fork length of the fish. Finally, I also practiced removing the otoliths from the fish. I finally felt like I was being useful.

 

This slideshow requires JavaScript.

I woke up on Tuesday (6/13) to start my 4:00 am shift. After some coffee and a blueberry muffin, I headed down to the “Chem lab.” We had arrived at the Islands of the Four Mountains in the night and were now heading back to start on the transect lines. The scientists had just dropped down the Drop Camera to get an idea of what was happening on the ocean floor. The camera went down to 220 meters to get an idea of what was happening down there. The video images that were being transmitted were mind-blowing. Though it was black and white footage, the resolution had great detail. We were able to see the bottom of the ocean floor and what was hanging out down there. The science crew was able to identity some fish and even some coral. One doesn’t really think of Alaska when one thinks of coral reefs. However, there are more species of coral in the Aleutians than in the Caribbean. That’s a strange thought. According to the World Wildlife Fund, there are 50 species of coral in the Caribbean. Scientists believe that there are up to 100 species of coral in the coral gardens of Alaska that are 300 to 5,000 feet below the surface.

labelled_correct_camdrop
The DropCam took images of life on the ocean floor.

 

 

This slideshow requires JavaScript.

Personal Log

Monday, June 12

We have been making progress in getting to the Island of Four Mountains. We should be arriving around noon. At this point the scientists have still been getting everything ready for the first haul. The crew has been working hard to fine-tune the equipment ready for data gathering. I have been sitting in “The Cave” at various times, while they have been working around the clock, brainstorming, trouble-shooting, and sharing their in-depth knowledge with each other (and at times, even with me).

In the afternoon, I was asked to help a member of the Survey Crew sew a shark sling. I was not sure what that entailed, but was willing to help in any way possible. When I found Meredith, she was in the middle of sewing straps onto the shark sling. Ethan and I stepped in to help and spent the rest of the afternoon sewing the sling. The sling is intended to safely return any sharks that we catch (assuming we catch any) back to the water.

IMG_1534
We spent many hours sewing the straps onto the sling.

IMG_1539
The sling is intended to safely remove any shark we catch from the boat.

Tuesday, June 13

I woke up at 3am, grabbed a coffee and then made my way down to the Chem Lab. After downloading the footage from the DropCam and getting a few still pictures, we started identifying what we saw. Using identification key, we were able to identify the fish and some coral. We saw what we thought was an anemone. We spent about and hour to an hour and a half trying to identify the species. We had no luck. Finally, Abigail, with her scientific wisdom, decided to look into the coral species a bit deeper. And then, AHA!, there it was. It turned out to be a coral, rather than an anemone. It was a great moment to reflect on. It was a reminder that, even in science, there is a bit of trial and error involved.   I have also observed that the science, actually everyone else on the ship, is always prepared to “trouble shoot” situations. In the moments where I have been observing in the back of the room, I have been able to take in many of the subtleties that take place on a research vessel like this. Here are some things that I have noticed.
1) Things will go wrong, 2) They always take longer than expected to fix, 3) Sometimes there are things that we don’t know (and that’s ok!) 4) Patience is important, 5) Tolerance is even more important, and 6) Clear communication is probably the most important of all. These have been good observations and reminders for me to apply in my own life.

Animals (And Other Cool Things) Seen Today

I feel very fortunate that I had a chance to participate in the DropCam process.  We were able to identify:

  • Blackspotted rockfish
  • Feathery plumarella
  • Basketstar
  • Pink seafan
  • Grooved hydrocoral
  • Anthomastus mushroom coral

 

Did You Know?

In the NOAA Corps, an Ensign (ENS) is a junior commissioned officer. Ensigns are also part of the U.S. Navy, Coast Guard, and other maritime services. It is equivalent to a second lieutenant in the U.S. Army, the lowest commissioned officer, and ranking next below a lieutenant, junior grade.

Interview with ENS Caroline Wilkinson

What is your title aboard this ship?

I serve as a Junior Officer aboard the NOAA Ship Oscar Dyson.

How long have you been working with the NOAA Corps?

Since July 2015 when I entered Basic Officer Training Class (BOTC) at the Coast Guard Academy in New London, CT. We train there for 5 months before heading out to our respective ship assignments. I arrived on the Dyson in December of 2015 and have been here ever since.

What sparked your interest in working for them?

I first learned of the NOAA Corps during a career fair my senior year of college at the University of Michigan. I was attracted by all of the traveling, the science mission of the organization, and the ability to serve my country.

What are some of the highlights of your job?

We see some incredible things out here! The Alaskan coastline is stunningly beautiful and there are more whales, sea birds, seals, otters, etc. than we can count. The crew and scientists are incredibly hardworking and supremely intelligent. They are a joy to work with and I love being able to contribute to highly meaningful science.

What are some of challenging parts of your job?

We spend over 200 days at sea each year and operate in remote areas. It is difficult to keep in touch with loved ones and most of us only see family and friends once or twice a year, if we are lucky. That is a huge sacrifice for most people and is absolutely challenging.

How much training did you go through?

The NOAA Corps Officers train for 5 months at the US Coast Guard Academy alongside the Coast Guard Officer Candidates. It is a rigorous training program focusing on discipline, officer bearing, and seamanship. Once deployed to the ship, we serve 6-8 months as a junior officer of the deck (JOOD) alongside a qualified Officer of the Deck (OOD). This allows us to become familiar with the ship, get more practice ship handling, and learn the intricacies of trawling.

What are your main job responsibilities?

Each Junior Office wears many hats. Each day I stand eight hours of bridge watch as OOD driving the ship and often instructing a JOOD. I also serve as the Medical Officer ensuring all crew and scientists are medically fit for duty and responding to any illness, injury, or emergency. I am the Environmental Compliance Officer and ensure the ship meets all environmental standards for operations with regards to things like water use and trash disposal. As the Navigation Officer, I work with the Captain and the Chief Scientist to determine where the ship will go and how we will get there. I then create track lines on nautical charts to ensure we are operating in safe waters. In my spare time I manage some small aspects of the ship’s budget and organize games, contests, outings, etc. as the morale officer.

Is there anything else that you would like to add or share about what you do?

I am really enjoying my time working for NOAA and in the NOAA Corps; I could not have asked for a better career. It is a challenging and exciting experience and I encourage anyone interested to reach out to a recruiting officer at https://www.omao.noaa.gov/learn/noaa-corps/join/applying.

 

David Amidon: All Aboard for Science, June 12, 2017

NOAA Teacher at Sea

David Amidon

Aboard NOAA Ship Reuben Lasker

June 2 – 13, 2017

Mission: Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean off the California Coast

Date: June 12, 2017

 

Science Log: 

IMG_1908
A Chrysaora colorata  jellyfish with an anchovy

As I end my journey on the Reuben Lakser, I wanted to prepare a post about the people on the ship. As in any organization, there are a lot of different people and personalities on board. I interviewed 15 different people and, looking back, I am particularly amazed by how much “Science” drives the ship. The Chief Scientist is involved in most of the decisions regarding course corrections and the logistics. It is really promising as a science teacher — NOAA offers a place for those interested in science to enjoy many different careers.  

The people working on the ship can be grouped into broad categories. I have mentioned the science crew, but there are also fishermen, deck crew, engineers, stewards and, of course, the ship’s officers. If you like to cook, there are positions for you here. Same thing if you want to be an electrician or mechanic. Each of those positions has different responsibilities and qualifications. For example, the engineers need proper licenses to work on specific vessels. All of the positions require ship specific training. For some, working on the ship is almost a second career, having worked in the private sector or the Navy previously. Kim Belveal, the Chief Electrical Technician followed this path as did Engineer Rob Piquion. Working with NOAA provides them with a decent wage and a chance to travel and see new places. For young people looking to work on a ship, these are great jobs to examine that combine different interests together. IMG_1930

All of the officers on the ships are members of the NOAA Commissioned Officer Corps, one of the nation’s seven uniformed services. They have ranks, titles and traditions just like the Navy and Coast Guard. Commander (CDR) Kurt Dreflak, the Commanding Officer, or CO and Lieutenant Commander (LCDR) Justin Keesee, the Executive Officer, or XO, are in charge of everything that happens on the Reuben downloadLasker. To reach these positions, someone must work hard and be promoted through the NOAA Corps ranks. They make the ultimate decisions in terms of personnel, ordering, navigation, etc. The XO acts as most people think a First Mate would work. What impressed me was how they responded when I asked about why they work for NOAA and to describe their favorite moment at sea.  They both responded the same way: NOAA Corps provides a chance to combine science and service – a “Jacques Cousteau meets the Navy” situation. They also shared a similar thought when I asked them about their favorite moments at sea – they both reflected about reaching the “Aha” moment when training their officers.  This is definitely something I can relate to as a teacher.

Other NOAA Corps officers have different responsibilities, such as the OPS or Operations Officer, and take shifts on the bridge and on the deck, driving the ship, coordinating trawls and keeping the ship running smoothly in general. Most of the NOAA Corps has a background in marine science, having at least a degree in some science or marine discipline. When I asked them why they decided to work for NOAA, the common response was that it allows them to serve their country and contribute to science. Again, this is an awesome thing for a science teacher to hear!

IMG_1906
A Butterfish

To emphasize how important science is to the organization, two NOAA Corps officers, LTJG Cherisa Friedlander and LTJG Ryan Belcher, are members of the science crew during this leg of the Juvenile Rockfish Survey. They worked with us in the Science Lab, and did not have the same responsibilities associated with the ship’s operations.

 

Cherisa provided a lot of background about the NOAA Corp and the Reuben Lasker  in particular. I am including her full interview here:

  • What is your name?
    • Lieutenant Junior Grade Cherisa Friedlander
  • What is your title or position?
    • NOAA Corps Officer/ Operations Officer for the Fisheries Ecology Division in Santa Cruz,CA
  • What is your role on the ship?
    • I used to be the junior officer on board, now I am sailing as a scientist for the lab. It is kind of cool to have sailed on the ship in both roles! They are very different.
  • How long have you been working on the Reuben Lasker?
    • I worked on board from 2013-2014
  • Why did you choose to work on the Lasker?
    • I originally listed the RL as one if the ships I wanted after basic training in 2012 because it was going to be the newest ship in the fleet. It was very exciting to be a part of bringing a new ship online. I got to see it be built from the inside out and helped order and organize all of the original supplies. The first crew of a ship are called the plankowner crew of the ship, and it stems from olden times when shipbuilders would sleep on the same plank on the deck while they were building the ship. It is a big task.

      13918058190_741d909766_o
      Cherisa (far right) when the Reuben Lasker was commissioned From: https://www.omao.noaa.gov/learn/marine-operations/ships/reuben-lasker
  • What is your favorite moment on the ship or at sea?
    • I was the first Junior Officer the ship ever had and got to plan and be on board for the transit through the Panama Canal!
  • Why do you work for NOAA?
    • I love my job! I come from a service family, so I love the service lifestyle the NOAA Corps offers while still incorporating science and service. I like that every few years I get to see a new place and do a new job. Next I head to Antarctica!
  • If a young person was interested in doing your job someday, what advice would you give them?
    • Explore lots of options for careers while you are young. Volunteer, do internships, take courses, and find out what interests you. The more activities you participate in, the more well rounded you are and it allows you to find a job you will love doing. It is also appealing to employers to see someone who has been proactive about learning new ideas and skills.
  • Is there anything else you’d like to share about your work or experiences at sea?
    • Working at sea can certainly be challenging. I can get very seasick sometimes which makes for a very unhappy time at sea. It can also be hard to be away from family and friends for so long, so I make sure to spend quality time with those people when I am on land. 🙂

 

IMG_1901
Wrapping up a trawl – measuring & bagging

The remainder of the science crew is at different points in their careers and have followed different paths to be a part of this cruise. Students motivated in science can take something from these stories, I hope, and someday join a field crew like this.   

San Diego red crabs last haul 1703.JPG
Last Haul- off coast of San Diego  Photo by Keith Sakuma

Chief Scientist Keith Sakuma has been part of the Rockfish Survey since 1989. He started as a student and has worked his way up from there. Various ships have run the survey in the past, but the Reuben Lasker, as the most state-of-the-art ship in the fleet, looks to be its home for the near future.

IMG_1910
An octopus

Thomas Adams is an undergraduate student from Humboldt State University. He has kept his eyes open and taken advantage of opportunities as they come up. He has been part of the survey for a few years already and looks to continue his work through a Master’s degree program.

Maya Drzewicki is an undergrad student from the University of North Carolina – Wilmington. She was named as a Hollings Scholar -in her words this is: “a 2 year academic scholarship and paid summer internship for college students interested in pursuing oceanic or atmospheric sciences. I am a marine biology major and through this scholarship program I have learned so much about ocean sciences and different careers.”

IMG_1900
Measuring Northern Lampfish

Rachel Zuercher is a PhD student associated with the University of California- Santa Cruz. She joined the survey in part because the group has provided her samples in the past that she has used for her research.

Mike Force is a professional birdwatcher who was able to make a career out of something he loves to do. He has been all over the globe, from Antarctica to the South Pacific helping to identify birds. As a freelance contractor, he goes where he is needed. His favorite time at sea was also a common theme I came across- there is always a chance to see something unique, no matter how long you have been on ship.

 

Ken Baltz is an oceanographer who ran the daytime operations on the ship. He was associated with NOAA Fisheries Santa Cruz lab – Groundfish Analysis Team. As advice to young people looking to get in the field, he suggests they make sure that they can handle the life on the ship. This was a common theme many people spoke to – life on a ship is not always great. Seas get rough, tours take time and you are working with the same group of people for a long time. Before making a career of life on a ship, make sure it suits you!

 

Personal Log

Sunday, June 11th

I experienced a truly magical moment on the Flying Bridge this evening as we transited off the coast near Santa Barbara. For a good 20 minutes, we were surrounded by a feeding frenzy of birds, dolphins, sea lions and humpback whales. It was awesome! The video below is just a snippet from the event and it does not do it justice. It was amazing!

 

 

 

Monday, June 12th

Sad to say this is my last night on the ship. We had plans to do complete 4 trawls, but we had a family of dolphins swimming in our wake during the Marine Mammal Watch. We had to cancel that station. After we wrapped up, it was clean up time and we worked through the night. The ship will arrive in San Diego early tomorrow morning.

Thank you NOAA and the crew of the Reuben Lasker for an awesome experience!!!

 

 

 

Sam Northern: From Microscopes to Binoculars—Seeing the Bigger Picture, June 7, 2017

NOAA Teacher at Sea

Sam Northern

Aboard NOAA ship Gordon Gunter

May 28 – June 7, 2017

Mission: Spring Ecosystem Monitoring (EcoMon) Survey (Plankton and Hydrographic Data)

Geographic Area of Cruise: Atlantic Ocean

Date: June 7, 2017

Weather Data from the Bridge:

Latitude: 40°34.8’N

Longitude: -72°57.0’W

Sky: Overcast

Visibility: 10 Nautical Miles

Wind Direction: 050°NE

Wind Speed: 13 Knots

Sea Wave Height: 1-4 Feet

Barometric Pressure: 1006.7 Millibars

Sea Water Temperature: 14.8°C

Air Temperature: 12.8°C

Personal Log

The Eve of Debarkation (Tuesday, June 6)

IMG_6336Today is the eve of my debarkation (exit from NOAA Ship Gordon Gunter). Our estimated time of arrival (ETA) to Pier 2 at the Naval Station Newport is 10 a.m. tomorrow, June 7th. Before I disembark, the sea apparently wants to me remind me of its size and force. Gordon Gunter has been rocked back and forth by the powerful waves that built to around 5 feet overnight. Nonetheless, it is full steam ahead to finish collecting samples from the remaining oceanography stations. All hands on deck, as the saying goes. The navigational team steer the vessel, engineers busy themselves in the engine room, deck hands keep constant watch, scientists plan for the final stations, and the stewards continue to provide the most delicious meals ever. I am determined to not let a bumpy ship ride affect my appetite. It is my last full day aboard Gordon Gunter, and I plan to enjoy every sight, sound, and bite.

Coming into Port (Wednesday, June 7)

IMG_9840.JPGI am concluding my log on board NOAA Ship Gordon Gunter, in port. It seems fitting that my blog finish where it took life 10 days ago. When I first set foot on the gangway a week and a half ago, I had no idea of the adventure that lay in front of me. I have had so many new experiences during the Spring Ecosystem Monitoring (EcoMon) Survey—from sailing the Gulf of Maine to collecting plankton samples, along with many special events in between.

Gordon Gunter Course v2.png
Our entire cruise  [Source — Sailwx.Info]
I have grown accustomed to life on board Gordon Gunter. The constant rattling of the ship and the never-ending blowing of the air-conditioner no longer bother me, they soothe me. It is remarkable what we as humans can do when we just do it. At this time last year I never would have imagined working on a research vessel in the North Atlantic. It is nice proving yourself wrong. There is always a new experience waiting. Why hesitate? The memories I have made from the Teacher at Sea program will be amongst the ones I will cherish for the rest of my life.

IMG_6467.JPGI won’t keep the experience and the memories just for myself either. Back home at Simpson Elementary School, 670 eager 1st, 2nd, and 3rd graders are waiting to experience oceanography and life at sea vicariously through their librarian. Through the knowledge I have gained about the EcoMon Survey, my blog, photographs, and videos, I am prepared to steer my students toward an understanding and appreciation of the work that is being done by NOAA. Gordon Gunter steered us in the right direction throughout the entire mission, and I plan to do the same for students in my library media center.

Seeing the Bigger Picture

IMG_8787 - Copy.JPGMany types of zooplankton and phytoplankton are microscopic, unable to be seen by the naked eye. From 300 plus meters out, birds can appear to be specks blowing in the wind. But with a microscope and a pair of binoculars, we can see ocean life much more clearly. The organisms seem to grow in size when viewed through the lenses of these magnification devices. From the smallest fish larvae to the largest Blue Whale, the ocean is home to millions of species. All the data collected during the EcoMon Survey (plankton samples, wildlife observers, ship’s log of weather conditions, and GPS coordinates) creates a bigger picture of the ocean’s ecosystem. None of the data aboard Gordon Gunter is used in isolation. Science is interconnected amongst several variables.

IMG_6786 - Copy.JPG
Common Tern

Take for instance the avian observers’ data which is most useful when analyzed in terms of the current environmental conditions in which each bird or marine animal was seen: sea temperature, wind speed, and water currents. This kind of data in conjunction with the plankton samples will help scientists create predictive models of the marine environment. Our understanding of the hydrographic and planktonic components of the Northeast U.S. Continental Shelf Ecosystem will help us prepare for a more sustainable future where marine life flourishes.

To explain the purpose behind the the EcoMon Surveys, I would like to share an excerpt written by Chief Scientist, Jerry Prezioso during the 1st Leg of the Spring Ecosystem Monitoring Survey:

IMG_9548My answer would be that we need to do these ecosystem monitoring surveys because we are on the front lines of observing and documenting first hand what’s going on in our coastal and offshore waters. The science staff, aided by the ship’s command and crew, is working 24 / 7 to document as much as they can about the water conditions, not just on the surface but down to 500 meters, by measuring light, chlorophyll, and oxygen levels as well as nutrients available.  Water column temperatures and salinities are profiled and Dissolved Inorganic Carbon (DIC) levels are checked as a way of measuring seawater acidity at the surface, mid-water and bottom depths. What planktonic organisms are present?  Plankton tows across the continental shelf down to 200 meters are made to collect them.  What large marine organisms such as whales, turtles and seabirds are present in different areas and at different times of the year, and are they different from one year to the next?  From one decade to the next? Two seabird observers work throughout the daylight hours to document and photograph large marine organisms encountered along our cruise track.  Without this information being gathered on a regular basis and in a consistent manner over a long period of time, we would have no way of knowing if things are changing at all. [Source — Jerry Prezioso, Chief Scientist]

IMG_8819.JPGJust as the ocean changes, so does the science aboard the ship. So, what’s next for Gordon Gunter? Three days after my debarkation from the vessel, Gunter will be employed on an exploratory survey of Bluefin Tuna. This is quite an iconic survey since scientists could be on the brink of a new discovery. Bluefin Tuna were once thought to only spawn in the Gulf of Mexico and the Mediterranean Sea. That is until researchers began to find Bluefin Tuna larvae in the deep waters between the Gulf Stream and the northeast United States. Fifty years ago fishermen believed Bluefin Tuna were indeed spawning in this part of the Gulf Stream, but it was never thoroughly researched. The next survey aboard Gordon Gunter (June 10-24) will collect zooplankton samples which scientists predict will contain Bluefin Tuna larvae. The North Gulf Stream is not an area regularly surveyed for Bluefin Tuna. It is quite exciting. The data will tell scientists about the life history and genetics of these high-profile fish. NOAA Ship Gordon Gunter has executed countless science missions, each special in its own right. Yes, it is time for me to say farewell to Gordon Gunter, but another group of researchers won’t be far behind to await their turn to come aboard.

360-degree of the most beautiful sunset I have ever seen.

A BIG Thank You!

I would like to extend a heartfelt thank you to the NOAA crew for such an amazing voyage I would like to thank the ship’s stewards, Chief Steward, Margaret Coyle and 2nd Cook, Paul Acob. Their hospitality cannot be matched. From day one, they treated me like family. They prepared each meal with care just like my mother and grandmother do. I cannot imagine enjoying another ship’s food like I have that aboard Gordon Gunter. To the stewards, thank you.

I would like to thank the deck team for their continual hard work throughout the cruise. Chief Boatswain, Jerome Taylor is the definition of leadership. I watched on countless occasions his knack for explaining the most difficult of tasks to others. Jerome knows the ship and all her components like the back of his hand. The deck crew left no stone unturned as they carried out their duties. To the deck crew, thank you.

I would like to thank the engineers. Without the engineering team our cruise would not have been possible. The engineers keep the heart of the ship running, the engine. I am astounded by the engineers’ ability to maintain and repair all of Gordon Gunter’s technical equipment: engines, pumps, electrical wiring, communication systems, and refrigeration equipment. To the engineers, thank you.

I would like to thank the wonderful science team, who patiently taught me the ropes and addressed each of my questions. It is because of their knowledge that I was able to share the research being done during our Ecosystem Monitoring Survey. To the science team, thank you.

I would like to thank the NOAA Corps officers who welcomed me and my questions at all times. These technically skilled officers are what make scientific projects like the EcoMon successful. They remained steadfast in the way of any challenge. They ensured the successful completion of our mission. To the NOAA Corps officers, thank you.

NOAA Commissioned Officer Corps (NOAA Corps): “Stewards of the Sea”

NOAA Corps is one of the nation’s seven uniformed services. With 321 officers, the NOAA Corps serves throughout the agency to support nearly all of NOAA’s programs and missions. Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA. The combination of commissioned service and scientific expertise makes these officers uniquely capable of leading some of NOAA’s most important initiatives. [Source — NOAA Corps]

IMG_6699.JPG
Great Black-backed Gull

All officer candidates must attend an initial 19-week Basic Officer Training Class (BOTC). The curriculum is challenging, with on board ship-handling exercises coupled with classroom instruction in leadership, officer bearing, NOAA mission and history, ship handling, basic seamanship, firefighting, navigation, and first aid. BOTC is held at the U.S. Coast Guard Academy in New London, Connecticut, where new NOAA Corps recruits train alongside Coast Guard officer candidates before receiving their first assignment to a NOAA ship for up to 3 years of sea duty. [Source — NOAA Corps] The NOAA Commissioned Officer Corps is built on honor, respect, and commitment.

Meet Gordon Gunter’s NOAA Corps Officers

Meet Lieutenant Commander, Lindsay Kurelja!

IMG_9773
Lieutenant Commander, Lindsay Kurelja

What is your position on NOAA Ship Gordon GunterAs Commanding Officer (CO) I am wholly responsible for everything that happens on board. I’m the captain of the boat. I am in charge of all people and actions that happen on board.

Have you had much experience working at sea? I started going to sea when I was 18. That’s 20 years.

Where do you do most of your work aboard the ship? I stay on a four hour watch on the bridge where I am in charge of the navigational chart and maneuvering of the vessel. I also disperse myself amongst managing the four departments on board to concentrate on the engineering and maintenance side of things.

What is your educational background? I graduated from Texas Maritime Academy with a degree in Marine Biology and a minor in Marine Transportation which gave me a third mate unlimited license with the U.S. Coast Guard. I then came straight to work for NOAA.

What tool do you use in your work that you could not live without? Our navigational equipment. Nothing is more important to a navigational officer than a pair of dividers and a set of triangles.

What is your favorite marine animal? My favorite marine animal are Ctenophoras. Ctenophoras are little jellyfish that are unique in the evolutionary scale because of their abilities despite the lack of brains.

Meet Lieutenant Commander, Chad Meckley!

IMG_9775
Lieutenant Commander, Chad Meckley

What is your position on NOAA Ship Gordon GunterI am the Executive Officer (XO) aboard NOAA Ship Gordon Gunter. I am second in command after the Commanding Officer.

Have you had much experience working at sea? Yes. This is my third sea assignment. My first sea assignment was for two years on the Albatross IV. I also sailed aboard the McArthur II for a year, I did six months on the Henry Bigelow, and I was certified while sailing on the Coast Guard Cutter EAGLE. I have had quite a bit of sea time so far in my career.

Where do you do most of your work aboard the ship? If I am not on the bridge on watch, you can find me in my office. As XO one of my primary responsibilities is administrative work—from time and attendance to purchasing.

What is your educational background? I earned a bachelor’s degree at Shippensburg State University in Shippensburg, Pennsylvania. I studied Geography and Environmental Science.

What tool do you use in your work that you could not live without? The biggest tool we have aboard the ship that we use more than anything are the nautical charts. Without our nautical charts, we wouldn’t be going anywhere. We could not get safely from point A to point B and accomplish our mission of science and service aboard these vessels.

What is your favorite marine animal? That’s a tough one because there’s so many cool animals in the sea and on top of the sea. I am really fascinated by Moray eels. The way they move through the water and their freaky, beady eyes make them really neat animals.

Meet Lieutenant Junior Grade, Libby Mackie!

IMG_9767
Lieutenant Junior Grade, Libby Mackie

What is your position on NOAA Ship Gordon GunterI am the Operations Officer on board. One step below the Executive Officer. I do the coordination of the scientists.

Have you had much experience working at sea? I had some experience at sea when I was in the NAVY. Even though I never went underway in the NAVY, but I did have a second job on some of the dive boats in Hawaii. After I got out of the NAVY and went to school I got some small boat time there. Other ships I have sailed on with NOAA are the Oscar Dyson, the Reuben Lasker, and the Bell M. Shimada.

Where do you do most of your work aboard the ship? On the bridge and in the dry lab with the scientists.

What is your educational background? I have a bachelor’s of science in Marine Biology and an associate’s degree in Mandarin.

What tool do you use in your work that you could not live without? The coffee machine!

What is your favorite marine animal? Octopus.

Meet Ensign, Alyssa Thompson!

IMG_9756
Ensign, Alyssa Thompson

What is your position on NOAA Ship Gordon GunterI am a Junior Officer. I reported here May 20th of last year. I am the Navigation Officer and Safety Officer. I am an ensign, so I do all of the navigational planning. I also drive the ship. 

Have you had much experience working at sea? I have been at sea with the NOAA Corps for over a year now.

Where do you do most of your work aboard the ship? On the bridge, driving the ship.

What is your educational background? I went to Virginia Tech. I earned my undergraduate degree in Biology/Animal Sciences. I took a lot of Fisheries classes, too. I interned in Florida researching stingrays and general marine biology with the University of Florida.

What tool do you use in your work that you could not live without? Probably radar. I could not live without the radar. It shows you all of your contacts, your targets, especially in the fog up here in the Northeast. Radar is a wonderful tool because there are times you can’t see anything. Sometimes we have only a half mile visibility, and so the radar will pick up contacts to help you maneuver best.

What is your favorite marine animal? Dolphins. I love dolphins, always have.

Meet ENS, Lola Ajilore!

IMG_9144
ENS, Lola Ajilore

What is your position on NOAA Ship Gordon Gunter?

I am a NOAA Corps Junior Officer. I joined NOAA in July of 2016. I work with navigation, and I am the secondary Environmental Compliance Officer.

Have you had much experience working at sea? Not yet. I have only been at sea for one month.

What is your educational background? I earned my undergraduate degree in Environmental Policy from Virginia Commonwealth University. I have a master’s in Environmental Science from John Hopkins University.

What is most challenging about your work? It is a challenge learning to drive a ship. It is much different from a car, especially because there are no brakes. I also miss being around my family. You miss out on a lot of special events like birthdays when you work at sea.

What is your favorite marine animal? Dolphins!

Meet Ensign, Mike Fuller!

IMG_9759
Ensign, Mike Fuller

What is your position on NOAA Ship Gordon GunterI am an Augmenting Junior Officer on Gordon Gunter for the time being until I head off to my permanent duty station.

Have you had much experience working at sea? Not in this position. I did have some research experience when I was at the University of Miami.

Where do you do most of your work aboard the ship? Most of my work is on the bridge standing watch and operating the actual ship itself—general ship driving and operations.

What is your educational/training background? Those who decide to do the NOAA Corps are required to have a science background. My background is in Marine Science and Biology. I studied a lot of invertebrates in university. After university I went to a 19-week training course where the NOAA Corps trains alongside the Coast Guard learning about different maritime regulations and standard operating procedures.

What tool do you use in your work that you could not live without? From a very broad standpoint the tool we use regularly are our navigational charts. You can’t do anything without those. That’s how we setup the entire cruise. It gives us all the information we need to know for safe sailing.

What is your favorite marine animal? There’s so many, it’s hard to pick. My favorite would have to be a species of crinoid that you find in really old rocks. They are a really cool invertebrate.

Meet Ensign, Mary Claire Youpel!

IMG_9763
Ensign, Mary Claire Youpel

What is your position on NOAA Ship Gordon GunterI am the newest Junior Officer aboard the Gordon Gunter. I just reported; this is my first sea assignment.

Have you had much experience working at sea? Limited. I did research at Louisiana State University during grad school. My lab worked on Red Snapper research in the Gulf of Mexico. This is my first time going out to sea with NOAA.

Where do you do most of your work aboard the ship? I work in the bridge or the pilot house. This is where we drive the ship.

What is your educational background? I have a bachelor’s of science from the University of Illinois-Champaign in Environmental Science. I have a master’s of science in Oceanography and Coastal Studies from Louisiana State University. I also have a master’s of Public Administration from Louisiana State University.

What tool do you use in your work that you could not live without? Radar, because it helps us navigate safely on our track lines.

What is your favorite marine animal? The Great White Shark.

Animals Seen

 

 

New Terms/Phrases

For my final glossary of new terms and phrases, I would like to share ways to say goodbye. It has been difficult for me to find parting words for all of those I have worked with and got to know the past 10 days. If you cannot think of one way to say goodbye, try 10!

  1. Goodbye.
  2. ‘Bye.
  3. Farewell.
  4. Take care.
  5. See you later.
  6. So long.
  7. Adios.
  8. Ciao.
  9. Au revoir.
  10. Sayonara.

Did You Know?

The NOAA Corps traces its roots to the former U.S. Coast and Geodetic Survey, which dates back to 1807 and President Thomas Jefferson. In 1970, NOAA was created to develop a coordinated approach to oceanographic and atmospheric research and subsequent legislation converted the commissioned officer corps to the NOAA Corps. [Source — NOAA Corps] https://www.omao.noaa.gov/learn/noaa-corps/about

Photoblog

 

This slideshow requires JavaScript.

Cecelia Carroll: Visit with the NOAA Corps Officers, May 10, 2017                   

NOAA Teacher at Sea

Cecelia Carroll

Aboard NOAA Ship Henry B. Bigelow

May 2 – 13, 2017 

Mission: Spring Bottom Trawl

Geographic Area: Northeastern Atlantic

Date: May 10, 2017

Latitude: 42 54.920N
Longitude:  069 42.690
Heading:  295.1 degrees
Speed:  12.2 KT
Conditions: Clear

Science and Technology

I am on the day schedule which is from noon to midnight.  Between stations tonight is a long steam so I took the opportunity with this down time to visit the bridge where the ship is commanded.  The NOAA Corps officers supplied a brief history of the corp and showed me several of the instrument panels which showed the mapping of the ocean floor.

“The National Oceanic and Atmospheric Administration Commissioned Officer Corps, known informally as the NOAA Corps, is one of seven federal uniformed services of the United States, and operates under the National Oceanic  and Atmospheric Administration, a scientific agency within the Office of Commerce.

“The NOAA Corps is part of NOAA’s Office of Marine and Aviation Operations (OMAO) and traces its roots to the former U.S. Coast and Geodetic Survey, which dates back to 1807 and President Thomas Jefferson.”(1)

During the Civil War, many surveyors of the US Coast and Geodetic Survey stayed on as surveyors to either join with the Union Army where they were enlisted into the Army, or with the Union Navy, where they remained as civilians, in which case they could be executed as spies if captured. With the approach of World War I, President Woodrow Wilson, to avoid the situation where surveyors working with the armed forces might be captured as spies, established the U.S. Coast and Geodetic Survey Corps.

During WWI and World War II, the Corps abandoned their peacetime activities to support the war effort with their technical skills.  In 1965 the Survey Corps was transferred to the United States Environmental Science Services Administration and in 1979, (ESSA) and in 1970 the ESSA was redesignated as the National Oceanic and Atmospheric Administration and so became the NOAA Corps.

“Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA.” (1)

“The combination of commissioned service with scientific and operational expertise allows the NOAA Corps to provide a unique and indispensable service to the nation. NOAA Corps officers enable NOAA to fulfill mission requirements, meet changing environmental concerns, take advantage of emerging technologies, and serve as environmental first responders.” (1)

There are presently 321 officers, 16 ships, and 10 aircraft.


We are steaming on a course that has been previously mapped which should allow us to drop the net in a safe area when we reach the next station.

The ship’s sonar is “painting” the ocean floor’s depth.  The dark blue is the deepest depth.

The path of the ship is highlighted.  The circles are the stations to drop the nets for a sample of the fish at that location.

This monitor shows the depth mapped against time.

This monitor also showing the depth.

A view inside the bridge at dusk.

The full moon rising behind the ship ( and a bit of cloud )

What can you do ?

  • When I asked “What can I tell my students who have an interest in NOAA ?”

If you have an interest in climate, weather, oceans, and coasts you might begin with investigating a Cooperative Observer Program, NOAA’s National Weather Service.

“More than 8,700 volunteers take observations on farms, in urban and suburban areas, National Parks, seashores, and mountaintops. The data are truly representative of where people live, work and play”.(2)

Did you know:

The NOAA Corps celebrates it 100 Year Anniversary this May 22, 2017!

Cute catch:

  1. Bobtail Squid

This bobtail squid displays beautiful colors!  (3 cm)

View from the flying bridge.

On the flying deck!


Bibliography

1. https://www.omao.noaa.gov/learn/noaa-corps/about

2. http://www.nws.noaa.gov/os/coop/what-is-coop.html

3.   http://www.history.noaa.gov/legacy/corps_roots.html

Kimberly Scantlebury: Interviews with OPS and ST; May 4, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 4, 2017

Weather Data from the Bridge

Time: 10:25

Latitude: 2823.2302 N, Longitude: 9314.2797 W

Wind Speed: 12 knots, Barometric Pressure: 1009 hPa

Air Temperature: 19.3 C, Water Temperature: 24.13 C

Salinity: 35.79 PSU, Conditions: Cloudy, 6-8 foot waves

Science and Technology Log

IMG_3013
The crew of NOAA Ship Pisecs. Some people have asked me if it is an all male crew. Nope! Even two out of the six NOAA Corps are ladies.

Mother Nature has put a hamper on surveying for right now. Field work requires patience and tenacity, which is appropriate given that is the motto of NOAA Ship Pisces: Patiencia Et Tenacitas. During this downtime I was able to interview a couple members of the crew. Our first interview is with the Operations (Ops) Officer, LT. Noblitt:

img_30201.jpg
The emblem of NOAA Ship Pisces.

The NOAA Corps is one of seven uniformed services of the U.S. What are possible paths to join and requirements? Do you need a college degree to apply?
Yes, you need a bachelor’s degree in science or engineering.  The only path is through the application process which starts with contacting a recruiter. NOAA Corps officers are always willing to work with interested applicants and are willing to give tours as well as to field any and all questions.

When did you know you wanted to pursue this career?
I decided I wanted to pursue a career with the NOAA Corps during graduate school when I realized that I desired a career path which combined my appreciation for sailing tall ships and pursuing scientific research.

What is your rank and what responsibilities does that entail?
I am an O3, Lieutenant; the responsibilities include operational management.  A lot of day to day operations and preparation for scientific requests, ship port logistics, and some supervision. Operation Officers keep the mission moving forward and always try to plan for what is next.

Why is your work important?
By supporting the scientists we are able to assist in enhancing public knowledge, awareness, and growth of the scientific community which ultimately not only benefits the Department of Commerce but the environment for which we are working in.

What do you enjoy the most about your work?
There is nothing better then operating a ship. I enjoy the feel of the vessel and harnessing the elements to make the ship move how I choose. I enjoy knowing that I am working on something that is bigger than just the ship. This job is a microcosm of all the science that is going on around the world and knowing that we are contributing to the growth of the nation, well nothing can really compete with that.

What is the most challenging part of your work?
In all honesty, being away from family simply does get challenging at times. You are guaranteed to miss birthdays, special events, and even births of your children. Gratification comes from knowing that you are providing everything you can for your family.

What tool do you use in your work that you could not live without?
Now this is an interesting question; I would have to say there really is not just one tool as a NOAA Corps Officer we pride ourselves in being versatile. If it weren’t for the ability to use multiple tools we would not be capable of running and operating a ship.

How many days are you usually out at sea a year?
On average the ship sails 295 days a year.

What does an average day look like for you on the NOAA Ship Pisces?
You are living the average day. Day and night operations three meals a day and keeping operations moving smoothly, all this happens as the ship becomes a living entity and takes on a personality of her own.

What part of your job with NOAA did you least expect to be doing?
In the beginning and early on in a NOAA Corps career an Officer may feel underutilized especially in regards to their educational background when they are working on trivial duties, however with growth over time our scientific backgrounds serve us more than we realize.

What’s at the top of your recommendation for a young person exploring a uniformed service or a maritime career?
If you are seeking to travel and discover an unknown lifestyle at sea; being a Commissioned Officer is a truly diverse whirlwind of experiences that goes by faster then you realize.

What do you think you would be doing if you were not working for NOAA?
If I was not working for NOAA I would probably try working for a similar governmental entity, or even NOAA as a civilian, studying near coastal benthic (bottom of aquatic) ecosystems.

Our second interview is with Todd Walsh, who is a Survey Technician on NOAA Ship Pisces:

What is your title and what responsibilities does that entail?

IMG_3012
Modern vessels require a team of technicians to run. Pictured here is part of the computer server on NOAA Ship Pisces.

Operations and some equipment maintenance of position sensors, sonars, and software. You need to know water chemistry because you also take water samples such as temperature, depth, conductivity to determine the speed of sound. From that we can make sure the sonar is working right, so you need the math to make it happen.

Pisces is different than some other NOAA vessels because it has a lot of other sensors. On some other NOAA vessels I have worked on there are also smaller boats that have the same equipment to keep in shape. You also need to analyze the data and make recommendations in a 60 page report in 90 days.

What are the requirements to apply for this job?
A bachelor’s of science in computer mapping, engineering, geology, meteorology, or some other similar degree.

When did you know you wanted to pursue this career?
I was a project engineer for an engineering company prior to this. We did work on airports, bridges, etc. I retired and then I went back to work in 2009 and I’ve been working for NOAA ever since. I got involved with NOAA because I wanted to see Hawaii and I found a job on board a ship that would take me there. I’ve now worked in the Arctic, Atlantic, and Pacific.

Why is your work important?
No matter which NOAA division you are working at it is integral to commerce in the country. The work we are doing here is important for red snapper and other fisheries. The work I did in the Bering Strait helped determine crab stocks. Ever watch Deadliest Catch? I got to play darts with the captain of the Time Bandit. There’s a different code for people who are mariners. You help each other out.

What do you enjoy the most about your work?
I like that we get to go exploring in places that most people never get to go (in fact, some places have never been visited before), with equipment that is cutting edge. There are always puzzles to solve. You also meet a lot of different people.

What is the most challenging part of your work?
It is:
-Man versus nature.
-Man versus machine.
-Man versus self because you are pushed to your limits.
Another challenge is missing my wife and kids.

What tool do you use in your work that you could not live without?
Since you are stuck on a boat, the biggest tool is to be able to deal with that through being friendly and having ways to occupy yourself in downtime.

Work-wise, it used to be the calculator. Now it’s the computer because it can do so much. All the calculations that used to be done by pen and calculator are now by computer. Cameras are also very useful.

How many days are you usually out at sea a year?
Used to be 8 months out of 12. That’s tough since there is no cellphone coverage but some ships are close enough to shore to use them. The oceanographic vessel Ronald H. Brown went around the world for 3 years.

What does an average day look like for you on the NOAA Ship Pisces?
I’m relatively new to this ship, but all ships are unique depending on what they’re studying. Each ship is a different adventure.

What part of your job with NOAA did you least expect to be doing?
When I was in Alaska training less experienced survey technicians in the Bering Strait, I got to see really neat stuff like being next to a feeding orca, atop a glacier, and got too close to a grizzly bear.

What’s at the top of your recommendation for a young person exploring a maritime career?
Stick with the science classes and you can never go wrong with learning more math.

Personal Log

IMG_2948
Imagine the size of the wave capable of getting the top wet!

When bringing in a camera array today that was left out overnight, a huge wave crashed aboard all the way up to the top of the bridge. At that same time I was in my stateroom laying down trying to avoid seasickness. I could hear the metal moving, the engines running strong, and knew something interesting was happening. I almost went down to check out the action, but decided against bumping into everyone during higher seas operations and potentially really getting sick.  

Quote of the Day:
Joey asked which stateroom I am in and I say, “The one next to the turny-door-thingy.” to which Joey replies, “You mean the hatch?”
What can I say? If you can not remember a word, at least be descriptive.

Did You Know?

NOAA operates the nation’s largest fleet of oceanographic research and survey ships. It is America’s environmental intelligence agency.

Barney Peterson: Who Works on NOAA Ship OREGON II? Part 1

NOAA Teacher a Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHO WORKS ON NOAA SHIP OREGON II? (Part 1)

In the last few days I have had the opportunity to become better acquainted with some of the great people aboard the OREGON II.  The variety of backgrounds and experiences provides richness to the culture we work in.

Firstly, there is our Commanding Officer, David Nelson.  Upon meeting him when I came aboard I felt immediately welcomed by his warm, informal greeting, “Hi Teach.” His drawl gives him away as a life-long southerner.  His friendliness and casual manner in conversation make it easy to see him as just one of the people who work here. BUT, make no mistake: Dave Nelson is a smart, perceptive, capable leader who understands ships and crews from the keel up.

CO Dave Nelson’s route to command has not been the typical college to NOAA Corp Officer track.  He got where he is today by working through the ranks.  After high school graduation he worked on commercial long-line and shrimp boats in the Gulf, gradually moving on to oil field supply boats.  At some point he decided to look into marine work that offered worker benefits and more chance of vertical advancements.  Dave had earned his card as an AB (Able Bodied Seaman) and been captain of fishing boats. He hired on as a Skilled Fisherman at NOAA and began a new phase of his career.  His skills set matched the needs of NOAA well enough that he moved from deck hand to deck boss to 3rd, then 2nd officer and in 1998 he got his First Mate’s papers and became part of the wheel team.

Advancement at that point began to require more formal training and certification.  He had had to invest 700 days at sea with NOAA to get that first license.  The big prize became the Master rank requiring an additional 1000 days at sea and rigorous formal testing.  He headed to Seattle where he enrolled at Crawford Nautical School, lived aboard NOAA Ship RAINIER at Sand Point, and spent seven days a week for 10 weeks immersed in preparing to take tests for the Master rank.  It was a proud day in 2003 when he called his family to report success.

Today, Dave is one of only two people in command of NOAA ships who are not NOAA Corps officers.  He brings to his job a depth of knowledge that positions him well to understand the challenges and rewards at every level on his ship.  He appreciates the continuity possible for him because he is not subject to the mandatory rotation of postings every 2 or 3 years as are members of the Corps.  He has the first-hand experience to know where the rough spots may be and to address those proactively.  I am not saying other ship’s Captains don’t have those same abilities, but CO Nelson has truly earned his position working from the bottom up.

captain-dave-nelson-on-the-bridge
Captain Dave Nelson on the bridge as we came into Gulfport, Mississippi

Executive Officer Lieutenant Commander Lecia Salerno, born in Halifax, PA, has loved the ocean for as long as she can remember, back to family vacations at Delaware beaches in her early childhood.  She vividly recalls running joyfully into the water and being lifted high in the air by family members so the waves wouldn’t crash over her head!  Later, a family visit to Sea World may have been the start of her fascination with marine mammals.

In her soft southern accent, no doubt developed during her undergraduate years in college at Myrtle Beach, SC, she tells of graduating with a degree in Marine Biology in 2001.  She returned to Pennsylvania where she spent the summer as a volunteer at Hershey Park before moving on to Gulfport, MS, in 2002.  There she trained sea lions which she remembers as uniquely intelligent and interesting to work with.  Training dolphins: not so fun and that changed her attitude about working with captive animals.   She began to see that type of work as a dead-end so she started looking at other options.  That is when she discovered NOAA Corps.  For her it seemed the perfect mix of military-style structure and science at sea.

Now, several years into her NOAA career, she views her role as being a “science facilitator.”  Her daily work is with management of people and resources.  She is mostly in an office and does not work in the science lab.  Rather, she helps organize the support necessary to make the science at sea possible.

               Lieutenant Reni Rydlewicz worked a lot of jobs in a lot of places before she became a NOAA Corps Officer.  Raised in Milwaukee, Wisconsin, she attended the University of Wisconsin – Whitewater and graduated with a degree in Ecology Field Biology.  An early goal of hers was a move to Alaska so after graduation she worked as a contracted observer on commercial fishing boats in the Bering Sea and Gulf of Alaska.  NOAA Fisheries employs regional contractors all over the country so next she moved to Chincoteague, Virginia, where she also worked as an observer on fishing boats. Then, for a few years, she was back in Wisconsin conducting seasonal work for the state Department of Natural Resources collecting data on recreational catches on Lake Michigan including salmon and steelhead.

Eventually Reni moved to New Jersey to a position as a coordinator for the mid-Atlantic observer program, working hand in hand with the commercial fleets and managing biologists aboard the vessels to gather data for NOAA Fisheries.  After a change in contractors a few years later, she again found herself in Virginia, this time working as a dockside monitor for recreational species.

By this time Reni had spent almost a decade as a contract worker on NOAA jobs.  A retired NOAA Corp Captain in her local American Legion suggested that she apply to NOAA Corps based upon her experience.  With that encouragement she met with a NOAA recruiter on a trip to Washington DC and has now been working on fisheries research ships as a NOAA Corps Officer for over seven years. She is currently the Operations Officer aboard NOAA Ship Oregon II.  Reni has considered returning to college to earn an advanced degree, but juggling work and school can sometimes be a difficult process.  She will soon be due to rotate to a land-based assignment for the next three years and is considering positions on the West Coast, continuing her work with NOAA Fisheries.

Reni’s advice to students is to take lots of science and math classes.  Science is a broad subject and can be applied in many different ways to so look around and find what really captures your interest. Finding jobs in science fields can be very competitive so get as much education and experience as you can.  A career in science can be one that you really love, but it likely will not ever make you rich.  How do you decide what to study?  “Well,” she says, “Think of something you want to know more about and then go to work finding answers to your own questions.  Go with you interests!”

Ensign Brian Yannutz is another young person from the central part of the United States who has chosen marine science as a career.   Raised in Colorado, he went to University of Hawaii with assistance from the NOAA Ernest F. Hollings Undergraduate Scholarship Program.  He earned his degree and presented his work in Washington DC, then returned to Hawaii where he worked on a temporary job in the NOAA Marine Debris Program.  In 2014 he applied to NOAA Corps and was graduated from the Coast Guard Academy in December 2014.

Brian’s first assignment is the OREGON II where he will be until December of this year.  His land-based assignment will be as an Operations Officer at the Monterey Bay National Marine Sanctuary in California.  His job there will have him working with schedules and boat maintenance.  He will be the officer in charge of deployments on the two research boats stationed there, one a fisheries boat and the other a diving platform.

Outside of his work for NOAA, Brian is an enthusiastic runner.  He ran cross country in school and since then has run marathons and ironman races.  His advice to young people getting ready to find a career is to “follow your dreams and passions.”  His have led him to a career in NOAA where he can travel, learn and grow with his job.

Ensign David Reymore can be described as the “renaissance man.”  He grew up mostly on a small family ranch in Tonopah, NV.  His high school years were spent rodeo riding: team roping, calf roping and saddle bronc riding.  After high school he continued to enjoy rodeo as he worked as a farm mechanic rather than enter the family construction business.  Eventually he enrolled at Embry Riddle Aeronautical University and earned a degree in aeronautical science.  While in college he joined Air Force ROTC, but after a visit from a Navy ROTC recruiter, he switched to the Navy and earned a scholarship to Officer Candidate School.   Dave remained in with the Navy, on active duty, and then as a civilian flight test engineer until 2008.

The next step was to enroll in premed training at University of West Virginia, but the demands of supporting his young and growing family made it more important to settle immediately into a job with benefits and advancement opportunities.  For the next several years, after completing training, he worked as an engineer for Burlington Northern Santa Fe Railroad, running mainly between Vancouver, Tri-Cities, Wenatchee, and Seattle, WA.

Still eager to learn and grow, NOAA Corps caught his eye and he spent 5 months at the US Coast Guard Academy in officer corps training to become an Ensign in NOAA Corps.  What’s next?   Dave has his heart set on getting back in the air and has been accepted into training to join the NOAA Aviation team.  Maybe he will be flying small planes that do aerial surveys of marine mammals, using helicopters, or even flying with the Hurricane Hunters.  At this point, the sky is the limit.

 

Julia Harvey: That’s a Mooring: June 29th, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3rd 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 29th, 2016

 

Weather Data from the Bridge

(June 29th, 2016 at 12:00 pm)

Wind Speed: 12 knots

Temperature: 26.3 C

Humidity: 87.5%

Barometric Pressure: 1017.5 mb

 

Science and Technology Log

Approaching Weather
Approaching Weather

When an anchor is dropped, forces in the ocean will cause this massive object to drift as it falls.  Last year, after the anchor of mooring 12 was dropped, an acoustic message was sent to the release mechanism on the anchor to locate it.  This was repeated in three locations so that the location of the anchor could be triangulated much like how an earthquake epicenter is found.  This was repeated this year for mooring 13 so next year, they will know where it is.  From where we dropped the anchor to where it fell, was a horizontal distance of 3oo meters.  The ocean moved the 9300 pound anchor 300 meters.  What a force!

The next morning as the ship was in position, another acoustic message was sent that triggered the release of the glass floats from the anchor. Not surprisingly, the floats took nearly an hour to travel up the nearly 3 miles to the surface.

Float recovery
A small boat went to retrieve the mooring attached to the floats

Once the floats were located at the surface, a small boat was deployed to secure the end of the mooring to the Hi’ialakai. The glass floats were loaded onto the ship.  17 floats that had imploded when they were deployed last year.  Listen to imploding floats recorded by the hydrophone.  Implosion.

Selfie with an imploded float.
Selfie with an imploded float.

Next, came the lengthy retrieval of the line (3000+ meters). A capstan to apply force to the line was used as the research associates and team arranged the line in the shipping boxes. The colmega and nylon retrieval lasted about 3 hours.

Bringing up the colmega line.
Bringing up the colmega line and packing it for shipping.

Once the wire portion of the mooring was reached, sensors were removed as they rose and stored. Finally the mooring was released, leaving the buoy with about 40 meters of line with sensors attached and hanging below.

Navigating to buoy.
Navigating to buoy.

The NOAA officer on the bridge maneuvered the ship close enough to the buoy so that it could be secured to the ship and eventually lifted by the crane and placed on deck. This was followed by the retrieval of the last sensors.

Buoy onboard
Bringing the buoy on board.

 

 

 

 

 

 

 

 

 

The following day required cleaning sensors to remove biofoul.  And the buoy was dismantled for shipment back to Woods Hole Oceanographic Institution.

Kate scrubbing sensors to remove biofoul.
Kate scrubbing sensors to remove biofoul.

 

Dismantling the buoy.
Dismantling the buoy.

 

 

 

 

 

 

 

 

 

 

Mooring removal was accomplished in seas with 5-6 feet swells at times. From my vantage point, everything seemed to go well in the recovery process. This is not always the case. Imagine what would happen, if the buoy separated from the rest of the mooring before releasing the floats and the mooring is laying on the sea floor? What would happen if the float release was not triggered and you have a mooring attached to the 8000+ pound anchor?  There are plans for when these events occur.  In both cases, a cable with a hook (or many hooks) is snaked down to try and grab the mooring line and bring it to the surface.

Now that the mooring has been recovered, the science team continues to collect data from the CTD (conductivity/temperature/depth) casts.  By the end of tomorrow, the CTDs would have collected data for approximately 25 hours.  The data from the CTDs will enable the alignment of the two moorings.

CTD
CTD

The WHOTS (Woods Hole Oceanographic Institution Hawaii Ocean Time Series Site) mooring project is led by is led by two scientists from Woods Hole Oceanographic Institution;  Al Plueddeman and Robert Weller.  Both scientists have been involved with the project since 2004.  Plueddeman led this year’s operations and next year it will be Weller.  Plueddeman recorded detailed notes of the operation that helped me fill in some blanks in my notes.  He answered my questions.  I am thankful to have been included in this project and am grateful for this experience and excited to share with my students back in Eugene, Oregon.

Al Plueddeman
Al Plueddeman, Senior Scientist

The long term observations (air-sea fluxes) collected by the moorings at Station Aloha will be used to better understand climate variability.  WHOTS is funded by NOAA and NSF and is a joint venture with University of Hawaii.  I will definitely be including real time and archived data from WHOTS in Environmental Science.

Personal Log

I have really enjoyed having the opportunity to talk with the crew of the Hi’ialakai.  There were many pathways taken to get to this point of being aboard this ship.  I learned about schools and programs that I had never even heard about.  My students will learn from this adventure of mine, that there are programs that can lead them to successful oceanic careers.

Brian Kibler
Brian Kibler

I sailed with Brian Kibler in 2013 aboard the Oscar Dyson up in the Gulf of Alaska.  He completed a two year program at Seattle Maritime Academy where he became credentialed to be an Able Bodied Seaman.  After a year as an intern aboard the Oscar Dyson, he was hired.  A few years ago he transferred to the Hi’ialakai and has now been with NOAA for 5 years.  On board, he is responsible for rigging, watch and other tasks that arise.  Brian was one of the stars of the video I made called Sharks on Deck. Watch it here.

Tyler Matta
Tyler Matta, 3rd Engineer

Tyler Matta has been sailing with NOAA for nearly a year.  He sought a hands-on engineering program and enrolled at Cal Maritime (Forbes ranked the school high due to the 95% job placement) and earned a degree in maritime engineering and was licensed as an engineer.  After sailing to the South Pacific on a 500 ft ship, he was hooked.  He was hired by NOAA at a job fair as a 3rd engineer and soon will have enough sea days to move to 2nd engineer.

 

 

There are 6 NOAA Corps members on  the Hi’ialakai.  They all went through an approximately 5 month training program at the Coast Guard Academy in New London, CT.  To apply, a candidate should have a 4 year degree in a NOAA related field such as science, math or engineering.  Our commanding officer, Liz Kretovic, attended Massachusetts Maritime Academy and majored in marine safety and environmental protection.  Other officers graduated with degrees in marine science, marine biology, and environmental studies.

Nikki Chappelle, Bryan Stephan and Brian Kibler on the bridge.
Nikki Chappelle, Bryan Stephan and Brian Kibler on the bridge.

ENS Chappelle
NOAA Ensign Nicki Chappelle

Ensign (ENS) Nikki Chappelle is new to the NOAA Corps.  In fact, this is her first cruise aboard the Hi’ialakai and second with NOAA.  She is shadowing ENS Bryan Stephan for on the job training.  She spent most of her schooling just south of where I teach.  I am hoping that when she visits her family in Cottage Grove, Oregon that she might make a stop at my school to talk to my students.  She graduated from Oregon State University with degrees in zoology and communication.  In the past she was a wildfire fighter, a circus worker (caring for the elephants) and a diver at Sea World.

All of the officers have 2 four hour shifts a day on the bridge.  For example ENS Chappelle’s shifts are 8am to 12pm and 8pm to 12am.  The responsibilities of the officers include navigating the ship, recording meteorological information, overseeing safety.  Officers have other tasks to complete when not on the bridge such as correcting navigational maps or safety and damage control. ENS Stephan manages the store on board as a collateral assignment.  After officers finish training they are sent to sea for 2-3 years (usually 2) and then rotate to land for 3 years and then back to sea.  NOAA Officers see the world while at sea as they support ocean and atmospheric science research.

Frank Russo
ET Frank Russo

Electronics technician (ET) seem to be in short supply with NOAA.  There are lots of job opportunities.  According to Larry Wooten (from Newport’s Marine Operation Center of the Pacific), NOAA has hired 7 ETs since November.  Frank Russo III is sailing with NOAA for the first time as an ET.  But this is definitely not his first time at sea.  He spent 24 years in the navy, 10 at Military Sealift Command supporting naval assets and marines around the world.  His responsibilities on the Hi’ialakai include maintaining navigational equipment on the bridge, making sure the radio, radar and NAVTEX (for weather alerts) are functioning properly and maintaining the server so that the scientists have computer access.

I have met so many interesting people on the Hi’ialakai.  I appreciate everyone who took the time to chat with me about their careers or anything else.  I wish I had more time so that I could get to know more of the Hi’ialakai crew.  Thanks.  Special thanks to our XO Amanda Goeller and Senior Scientist Al Plueddeman for reviewing my blog posts.  And for letting me tag along.

 

Did You Know?

The buoy at the top of the mooring becomes a popular hang out for organisms in the area. As we approached mooring 12, there were several red-footed boobies standing their ground. There were also plenty of barnacles and other organisms that are planktonic in some stage of their lives. Fishing line is strung across the center of the buoy to discourage visitors but some still use the buoy as a rest stop. The accumulation of organism that can lead to corrosion and malfunction of the equipment is biofoul.

Boobies to be Evicted
Red-Footed Boobies

Biofoul prevention
Wires and line to prevent biofoul.

 One More Thing

South Eugene biology teacher Christina Drumm (who’s husband was  Ensign Chappelle’s high school math teacher) wanted to see pictures of the food.  So here it is.  Love and Happiness.

Lobster for Dinner
Lobster for Dinner

 

Last supper
Last supper on the Hi’ialakai

 

 

 

 

 

 

 

 

 

Colors of the sea
I love the colors of the sea.

Sea colors
Sea colors

Jeanne Muzi: Science, Service and Stewardship, August 10, 2015

NOAA Teacher at Sea
Jeanne Muzi
Aboard NOAA Ship Thomas Jefferson
August 2 – 8, 2015

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic
Date: August 10, 2015

As I head home to New Jersey a few days ahead of schedule, I am reflecting on what I have learned aboard the Thomas Jefferson. From day one, I was asking questions and trying to understand the process of hydrographic surveying, the equipment used and the different roles of everyone involved in the process. I learned why hydrographic surveying is so important and why the mission of NOAA (Science, Service and Stewardship) is demonstrated in all the research and activities aboard the Thomas Jefferson.

The ocean covers 71 percent of the Earth’s surface and contains 97 percent of the planet’s water, yet more than 95 percent of the underwater world remains unexplored.  NOAA protects, preserves, manages and enhances the resources found in 3.5 million square miles of coastal and deep ocean waters.

The oceans are our home. As active citizens, we must all become knowledgeable, involved stewards of our oceans.

our-ocean
Our ocean. Image courtesy of http://oceanservice.noaa.gov/news/june14/our-ocean.pdf

http://oceanservice.noaa.gov/news/june14/our-ocean.pdf

Science and Technology Log

As my Teacher at Sea experience ends, I wanted to make sure I shared some of the conversations I had with the officers charged with leading the missions of the Thomas Jefferson and the hydrographic work it is involved in.

The Thomas Jefferson: Home to an amazing crew!
The Thomas Jefferson: Home to an amazing crew!

It is my honor to introduce to you:

Captain Shepard Smith (CO)

CO Smith
CO Smith

Captain Smith grew up on the water in Maine. He always enjoyed reading maps and charts. He received a Bachelor’s of Science degree in mechanical engineering from Cornell University and earned a Master’s of Science degree from the University of New Hampshire Ocean Engineering (Mapping) Program. He has worked at NOAA in many different capacities.

He served aboard NOAA Ship Rainier, NOAA R/V Bay Hydrographer and the Thomas Jefferson. He was also the chief of Coast Survey’s Atlantic Hydrographic Branch in Norfolk, Virginia. Captain Smith also served as Senior Advisor to Dr. Kathryn Sullivan, NOAA Deputy Administrator and as Chief of Coast Survey’s Marine Chart Division. Captain Smith explained how he has been involved in integrating many new technological innovations designed to improve the efficiency of NOAA’s seafloor mapping efforts. It was through Captain Smith’s endeavors that Americans enjoy open access to all NOAA charts and maps.

CO Smith on the Bridge
CO Smith on the Bridge

He enjoys being the CO very much and feels the best part of his job is developing the next generation of leadership in NOAA. He feels it is very important to have that influence on junior officers. The worst part of his job is the separation from his family.

Captain Smith’s advice to young students is to pay attention to the world around you and how things work. Try to ask lots of questions. He said, “There are loads of opportunities to be the best at something and so many things to learn about. There are new fields, new ideas and new ways to see and understand things. Never limit yourself.”

Lieutenant Commander Olivia Hauser (XO)

XO LCDR Hauser
XO LCDR Hauser 

LCDR Hauser grew up in New Jersey and always loved learning about the ocean. As a little girl, she thought she would like to study Marine Science but wasn’t sure how. She grew up and earned her Bachelor’s of Arts in Biology from Franklin and Marshall College and her Master’s of Science in Biological Oceanography from the University of Delaware’s College of Marine Studies. Before coming to NOAA, LCDR Hauser spent time working for a mortgage company, which provided her with different kinds of skills. She soon started officer training for NOAA and got to apply the sonar knowledge she developed in graduate school to her NOAA work. She has served on the NOAA ships Rainier and Thomas Jefferson. She has built her strong background in hydrography with both land and sea assignments. She has been Field Operations Officer, Field Support Liaison and Executive Officer. She explained that in the field of hydrographic surveying, experience is key to improving skills and she is always trying to learn more and share her knowledge. As XO, she is the second highest-ranking officer on the ship.

LCDR Hauser feels the best part of her job is that it never gets boring. Everyday is different and there are always new things to see and learn.

XO supervises the arrival of the launch
XO supervises the arrival of the launch

LCDR Hauser also explained that the hardest part of the job is the transitions, that come pretty frequently. She said, “You may find yourself leaving a ship or coming to a new job. There are always new routines to learn and new people to get to know. With so many transitions, it is often hard to find and keep community, but on the positive side, the transitions keep you adaptable and resilient, which are important skills too.”

Her advice to young students is “Take opportunities! Explore things you never heard of. Don’t give up easily! Even the rough parts of the road can work for you. Every experience helps you grow! Keep asking questions…especially about how and why!”

Lieutenant Joseph Carrier (FOO)

LT Carrier
LT Carrier

As a young boy, LT Carrier was the kind of kid who liked to take things apart and put them back together. He joined the Navy right out of high school. When he got out, he attended University of North Carolina at Wilmington and studied biology as an undergraduate and marine science in graduate school. He taught biology, oceanography, and earth science at a community college and worked at NOAA’s Atlantic Hydrographic Branch in Norfolk, VA before attending officer training. He served on other NOAA ships before coming to the Thomas Jefferson and has learned a lot about the technical aspects of hydrographic surveying, data collection and processing while onboard. He is currently the Field Operations Officer.

FOO on deck
FOO on deck

LT Carrier feels the best part of his job is the great people he works with. He explained that on a ship you are part of a close family that works together, lives together and helps each other.

He said the hardest parts of the job are the long hours and missing his family very much.

His advice to younger students is don’t get discouraged easily. He explained, “If you are not good at something at first, try again. Know that each time you try something…you have an opportunity to get better at it. Everyone can overcome challenges by working hard and sticking with it!

Personal Log:

Quick painting fromTJ Bow
Quick painting fromTJ Bow

The experience of living and learning on the Thomas Jefferson will stay with me and impact my teaching as I continue to encourage kids to stay curious, ask questions and work hard!

I would like to thank everyone at NOAA’s Teacher at Sea program for enabling me to come on this adventure! My time as a TAS has provided me with authentic learning experiences and a new understanding of science and math in action. I would like to thank every person serving on the Thomas Jefferson who took the time to talk with me and shared his or her area of expertise. I appreciated everyone’s patience, kindness and friendly help as they welcomed me into their home. Every crewmember has given me stories, knowledge and information that I can now share with others.

Print
Conserving our ocean and coasts. Image courtesy of http://oceanservice.noaa.gov/topics/

http://oceanservice.noaa.gov/topics/

 

In my last blog entry the Question of the Day and Picture of the Day was:

What is this and what do the letters mean?

What is this? What do the letters mean?
What is this?
What do the letters mean?

These containers are life rafts. The letters “SOLAS” stand for “Safety of Life at Sea.”

The First SOLAS Treaty was issued in 1914, just two years after the Titanic disaster. The Treaty was put in place so countries all around the world would make ship safety a priority. The SOLAS Treaty ensures that ships have safety standards in construction, in equipment onboard and in their operation. Many countries have turned these international requirements into national laws. The first version of the treaty developed in response to the sinking of the Titanic. It stated the number of lifeboats and other emergency equipment that should be available on every ship, along with safety procedures, such as having drills and continuous radio watch. Newer versions of the SOLAS Treaty have been adopted and the guidelines are always being updated so people at sea remain safe. If there was an emergency on the Thomas Jefferson, the crew is prepared because they have practiced many different drills. If these lifeboats were needed they would be opened, inflated and used to bring everyone to safety.

Many thanks for reading about my Teacher at Sea Adventure! 

Learning to be safe at sea!
Learning to be safe at sea!

 

Jeanne Muzi: Problem Solving on the Thomas Jefferson! August 5, 2015

NOAA Teacher at Sea
Jeanne Muzi
Aboard NOAA Ship Thomas Jefferson|
August 2 – 13, 2015

Mission: Hydrographic Survey
Geographical area of cruise
: North Atlantic
Date: August 5, 2015

Weather Data From the Bridge:
Temperature: 71° F (22° C)
Humidity: 84%
Wind Speed: S 5 mph
Barometer: 29.89 in (1012.1 mb)
Dewpoint: 66° F (19° C)
Visibility: 10.00 mi

Hello again!

Science and Technology Log:

One important thing that every single person has to face, no matter how old they are or what kind of job they have, is what to do when things go wrong. We are always happy when things are going smoothly—but what do you do when they don’t?

I found out about how important it is to be a thinker and problem solver on the Thomas Jefferson because we are experiencing engine problems. First the launches were not running. Then the TJ’s engines were having difficulties and it was discovered that we had water in our fuel. The engineers and officers all started to ask questions: Where is the water coming from? Is there a problem with the tanks? How are we going to fix this situation? What is the best solution right now? It was determined that we should sail into the Naval Base in Newport, Rhode Island so the fuel could be pumped out and the fuel tanks examined. This is a big job!

Heading to Newport
Lighthouse

Jamestown Bridge
Jamestown Bridge

We sailed into Newport on a beautiful sunny afternoon. I got to spend some time on the bridge and watched as Ensign Seberger and GVA (General Vessel Assistant) Holler steered our large ship around obstacles like lobster pots and small sailboats. AB (Ablebodied Seaman) Grains acted as the look out, peering through binoculars and calling out directions in degrees (instead of feet or yards), and port and starboard (instead of left and right). LTJG Forrest explained how to chart the route to Newport using a compass, slide rule and mathematical calculations. His computations were right on as he plotted the course of the Thomas Jefferson. 

Charting TJ's course to Newport
Charting TJ’s course to Newport

When we arrived at Newport, the tugboat, Jaguar, needed to help us dock and then the gangway was lifted into place using a crane.

The tugboat arrives to assist the TJ.
The tugboat arrives to assist the TJ.

The tugboat Jaguar helping the TJ dock at Newport
The tugboat Jaguar helping the TJ dock at Newport

The walkway is lowered from ship to shore.
The gangway is lowered from ship to shore.

Now we are waiting in Newport to see how the ship will be repaired, and how that will impact the surveying mission and the work of all the scientists on board. The fuel is currently being pumped out of the tanks so the engineering department can figure out what is going on.

Personal Log:

Some of my students have emailed to ask where am I sleeping. When you are aboard a ship, you sleep in a stateroom. I have the bottom bunk and my roommate has the top. We have storage lockers and shelves to hold our stuff. The bathroom (called the head) connects our stateroom with another room.

Bunks in our stateroom
Bunks in our stateroom

Everyone eats in the Mess. You pick up your hot food on a plate in front of the galley and then sit down to eat at a table. Some of our meals so far have been omelets and cereal for breakfast, shrimp, rice and vegetables for lunch, and fish and potatoes for dinner. There is always a salad bar. Yogurt and ice cream are available, along with lots of different drinks.

Everyone eats meals together in the mess.
Everyone eats meals together in the mess.

The passageways are pretty narrow around the ship and the stairs going from one deck to another are steep whether you are inside or outside.

Lots of ups and downs outside...
Lots of ups and downs outside…

Lots of ups and downs inside
Lots of ups and downs inside…

 

Everything on a ship must be well-organized so equipment can be found quickly and easily.

Equipment must be organized so everyone can get what they need.
Equipment must be organized so everyone can get what they need.

The view from the outside deck has been beautiful…

There is always something to see on the TJ
There is always something to see on the TJ

The last Question of the Day was: What do the letters XO mean on the hardhat of the person in the center of this picture?

XO Stands for Executive Officer
XO Stands for Executive Officer

XO stands for Executive Officer. Our Executive Officer is Lieutenant Commander Olivia Hauser. She is the second in command on board.

The last Picture of the Day showed this image:

Whale caught with sonar
Whale caught with sonar

This image was captured with sonar and shows a whale swimming in the ocean. Amazing!

Today’s Question of the Day is:

Why is surveying the ocean floor so important?

Today’s Picture of the Day is:

What is this and what is it used for?
What is this and what is it used for?

What is this?

Thanks for reading this entry.

Windy day on the deck of the TJ
Windy day on the deck of the TJ

Kathleen Gibson, Hammerheads on the Line, August 4, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Mission: Shark Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coast
Date:  Aug 4, 2015

Coordinates:
LAT   3323.870N
LONG    07736.658 W

Great Hammerhead Photo Credit: Ian Davenport
Great Hammerhead (Photo Credit: Ian Davenport)

Weather Data from the Bridge:
Wind speed (knots): 28
Sea Temp (deg C): 29.2
Air Temp (deg C):  24.2

Early this morning the night shift caught and cradled a great hammerhead shark (Sphyrna mokarran). This is a first for this cruise leg. I’m sure that just saying “Hammerhead” conjures an image of a shark with an unusual head projection (cephalofoil), but did you know that there are at least 8 distinct Hammerhead species?  Thus far in the cruise we have caught 4 scalloped hammerheads (Sphyrna lewini), one of which I was fortunate to tag.

Science and Technology Log

All eight species of hammerhead sharks have cephalofoils with differences noted in shape, size, and eye placement, to name a few. Research indicates that this structure acts as a hydrofoil or rudder, increasing the shark’s agility. In addition, the structure contains a high concentration of specialized electro sensory organs (Ampullae of Lorenzini) that help the shark detect electric signals of other organisms nearby.  The eye placement at each end of the cephalofoil allows hammerhead sharks to have essentially a panoramic view with only a slight movement of their head – quite handy when hunting or avoiding other predators.

 

Comparison of Scalloped and Great Hammerhead Sharks

Comparison of Scalloped and Great Hammerhead Sharks
Image Credit: NOAA Fisheries Shark Species

Great hammerhead sharks are highly migratory. They are found worldwide in tropical latitudes, and at various depths. There are no  geographically Distinct Population Segments (DPS) identified. The great hammerhead, as its name implies, is the largest of the group and average size estimates of mature individuals varies between 10-14 ft in length with a weight approximately 500 lb.; the largest recorded was 20 ft in length. The one we caught was ll ft. in length.

Great Hammerhead Photo Credit: Ian Davenport
Great Hammerhead
Photo Credit: Ian Davenport


Great Hammerhead
Great Hammerhead

As with most shark species, the numbers declined rapidly between 1975 and 1995 due to the fin fishing industry and focused sport fishing often fueled by fear and misinformation. One has to wonder what the average length was before that time.

Scalloped Hammerhead sharks are the most common hammerhead species. Their habitat overlaps that of the great hammerhead, though they are more often found in slightly shallower waters. In contrast to the great hammerhead, scalloped hammerheads are only semi-migratory, and scientists have identified Distinct Population Segments around the world.  This is important information when evaluating population size and determining which groups, if any, need regulatory protection.

Weighing a small Scalloped Hammerhead Photo Credit: Ken Wilkinson
Weighing a small scalloped hammerhead
Photo Credit: Ken Wilkinson

 

Scalloped Hammerhead on deck. Photo: Erica Nuss
Scalloped hammerhead on deck
Photo: Ian Davenport

The average life expectancy for both species is approximately 30 years.  Males tend to become sexually mature before females, at smaller weights; females mature between 7-10 years (sources vary). In my last log I discussed shark reproduction – Oviparous vs. Viviparous. (egg laying vs. live birth).  All hammerheads are viviparous placental sharks but reproductive patterns do differ. Great hammerheads bear young every two years, typically having 20-40 pups. A great hammerhead recently caught by a fisherman in Florida was found to be pregnant with 33 pups. Scalloped have slightly fewer pups in each brood, but can reproduce more frequently.

 

Career Spotlight – NOAA Corps

Setting and retrieving the Longline requires coordination between Deck Operations and the Bridge.  Up until now I’ve highlighted those on deck. Let’s learn a bit about two NOAA officers on the Bridge.

The NOAA Corps is one of the 7 Uniformed Services of the United States and all members are officers. The Corps’ charge is to support the scientific mission of NOAA, operating and navigating NOAA ships and airplanes.  Applicants for the Corps must have earned Bachelor’s degree and many have graduate degrees.  A science degree is not required but a significant number of science units must have been completed.  It’s not unusual for Corps recruits to have done post-baccalaureate studies to complete the required science coursework.  New recruits go through Basic Officer’s Training at the Coast Guard Academy in New London, Connecticut.

Lt. Lecia Salerno – Executive Officer (XO) – NOAA 

Lt. Lecia Salerno at the Helm
Lt. Lecia Salerno at the  helm or the Oregon II during Longline retrieval.

Lt. Salerno is a 10-year veteran of the NOAA Corps and has significant experience with ship operations.  She was recently assigned to the Oregon II as the XO. This is Lecia’s first assignment as an XO and she reports directly to Captain Dave Nelson. In addition to her Bridge responsibilities, she manages personnel issues, ship accounts and expenditures. During these first few weeks on her new ship, Lt. Salerno is on watch for split shifts – day and night – and is quickly becoming familiar with the nuances of the Oregon II.  This ship is the oldest (and much loved) ship in NOAA’s fleet, having been built in 1964, which can make it a challenge to pilot. It’s no small task to maneuver a 170-foot vessel up to a small highflyer and a float, and continue moving the ship along the Longline throughout retrieval.

Lecia has a strong academic background in science  and in the liberal arts and initially considered joining another branch of the military after college.  Her  assignments with  NOAA incorporate her varied interests and expertise, which she feels makes her job that much more rewarding.

Lt. Laura Dwyer on the Bridge of the Oregon II
Lt. Laura Dwyer on the Bridge of the Oregon II

Lt. Laura Dwyer- Junior Officer – NOAA Corps

Laura has always had a love for the ocean, but did not initially look in that direction for a career.  She first earned a degree in International Business from James Madison University.  Her interest in marine life took her back to the sea and she spent a number of years as a scuba diving instructor in the U.S. and Australia.  Laura returned to the U.S.  to take additional biology coursework.  During that time she more fully investigated the NOAA Corps, applied and was accepted.

Laura has been on the Oregon II for 1.5 years and loves her work.  When she is on shift she independently handles the ship during all operations and also acts as Navigator.  What she loves about the Corps is that the work merges science and technology, and there are many opportunities for her to grow professionally. In December Laura will be assigned to a shore duty unit that is developing Unmanned Underwater Vehicles (UUV).

Personal Log

Measuring a Sharpnose Photo: Kristin Hannan
Notice the white spots on the dorsal side of this atlantic sharpnose, characteristic of this species.
Photo: Kristin Hannan

It’s amazing to think that just over a week ago I held my first live shark.  We caught over  30 sharks at our first station and our inexperience showed.  At first even the small ones looked like all teeth and tail, and those teeth are not only sharp but carry some pretty nasty bacteria. It took all of us (new volunteers) forever to get the hooks out quickly without causing significant trauma to the shark–or ourselves.  A tail smack from this small-but-mighty tiger shark pictured below left me with a wedge-shaped bruise for a week!

Immature Male Tiger Shark. He's cute but he taught me a lesson with his tail.
Immature Male Tiger Shark.
He’s cute but he taught me a lesson with his tail.

Since then we have caught hundreds of sharks.  We’ve caught so many Atlantic Sharpnose that on occasion it seems mundane.  Then I catch myself and realize how amazing it is to be doing what I’m doing– holding a wild animal in my hands, freeing it from the circle hook (finally!), looking at the detailed pattern of its skin, and feeling it’s rough texture, measuring it and releasing it back into the sea.

Sandbar Shark on the Line
A beautiful sandbar shark on the line.

I’m pleased to be able to say that my day shift team has become much more confident and efficient.  Our mid-day haul yesterday numbered over 40 sharks, including a few large sharks that were cradled, and it went really smoothly.

Weighing in. Hook out - No Problem! Photo: Jim Nienow
An Atlantic Sharpnose weighing in at 2.1 kg.
Photo: Kristin Hannan

 

Out it Comes - No Problem Photo: Ian Davenport
Taking a closer look at an Atlantic Sharpnose shark.
Photo: Ian Davenport

At this point I’ve had a chance to work at most of the volunteer stations including baiting hooks, throwing off the high-flyer marker, numbering, gangions, throwing bait, data entry,  tagging shark, removing hooks, and measuring/ weighing.  A highlight of last night was getting to throw out the hook to pull in the high-flyer marker at the start of retrieval.  I’m not known for having the best throwing arm but it all worked out!

Ready to Throw Photo: Kristin Hannan
Ready to Throw
Photo: Kristin Hannan

Got it! Photo: Kristin Hannan
Right on Target!
Photo: Kristin Hannan

 

Question of the Day:  What is this?

Can you identify these?
Can you identify these?

NOAA SHARK FACTS: Bite off More that you can chew

For more on hammerheads: click

For my incoming  Marine Science students — Investigate two other hammerhead species. How are they distinguished from great hammerheads?

 

Andrea Schmuttermair, Underwater Adventures, July 17, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oscar Dyson
July 6 – 25, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 17, 2015

Weather Data from the Bridge:
Latitude: 58 02.3N
Longitude: 152 24.4W

Sky:  some clouds, clear

Visibility: 10nm
Wind direction: 261 degrees

Wind speed: 10 knots
Sea wave height: 2ft

Swell wave direction: 140 degrees

Swell wave height: 1ft

Sea water temp: 12.1C
Dry temperature: 16.2C

Science and Technology Log

In addition to the walleye pollock survey, there are also a few side projects taking place on the ship. One of the instruments we are trying out on this survey is the DropCam. With some upgrades from a previous version of the camera, this is the first time this camera has come on the pollock survey. It was initially created for a NOAA project studying deep sea corals. Now that the study is over, we are using it for a project funded by North Pacific Research Board. The goals of this project are two-fold: habitat classification and tracking fish densities in untrawlable versus trawlable areas.

My students would be excited to learn that this is very similar to the tool they designed with our underwater ROVs. The DropCam is made up of strobe lights and 2 cameras- one color and one black and white- contained in a steel frame. We’ve been deploying it twice each night in areas where we see the most fish on the echogram. The ship pauses when we get to a point we want to put the camera in, and the camera itself will drift with the current. The DropCam is attached to a cable on deck, and, with the help of the survey tech and deckhand, we lower it over the side of the ship and down into the water. Once it gets down to 35m, we make sure it connects with our computers here in the lab before sending it all the way down to the ocean floor. Once it is down on the ocean floor, it’s time to drive! While controlling the camera with a joystick in the lab, we let it explore the ocean floor for 15 minute increments before bringing it back up. I’ve had the opportunity to “drive” it a few times now, and I must admit it’s a lot of fun for a seemingly simple device. We’ve seen some neat things on camera, my favorite being the octopus that came into view. One night in particular was an active night, and we saw plenty of flatfish, rockfish, krill, shrimp, basket stars and even a skate.

Here are a couple of photos taken from our DropCam excursion.

A skate trying to escape the DropCam
A skate trying to escape the DropCam

An octopus that we saw on the DropCam
An octopus that we saw on the DropCam

Personal Log

We have hit some rougher weather the last couple days, and we went from have 2ft swells to 6 ft swells- it is a noticeable difference! Rumor has it they may get even bigger, especially as we head out into open water. We did alter our course a little bit so we could head into Marmot Bay where we would be somewhat protected from rough waters. It is quite interesting to walk around the ship in these swells. It feels like someone spun you around blindfolded 30 times and then sent you off walking. No matter how hard you try to walk straight, you inevitably run into the wall or stumble your way down the stairs. The good thing about this is that everyone is doing it, even those who have been on the boat longer, so we can all laugh at each other.

Two humpback whales breaching near our ship.
Two humpback whales breaching near our ship.

Because the weather changes just as quickly here in Alaska as it does in Colorado, the clouds lifted this evening and the sun finally came out. We had a great evening just off the coast of Afognak Island with sunshine, a beautiful sunset, and lots of whales! I stayed up on the bridge a good portion of the evening on lookout for blows from their spouts. Some were far off in the distance while a few were just 50 yards away! We were all out on deck when we saw not one, but two whales breeching before making a deeper dive.

longnoseskate1
Longnose skate

Our trawl today was a little sad as we caught a huge longnose skate. We didn’t notice him initially in our catch until he got stuck in all the pollock as we were lowering the fish down into the wet lab. We paused in our processing to try and get him out. He was about 90lbs with a wingspan of 1.5 meters, so he was difficult to lift out. It took 2 of our deck crew guys to pull him out, and then we got him back into the water as fast as we could. Hopefully he made it back in without too much trauma. While he was exciting to see, I felt bad for catching him in our net.

 

Meet a NOAA Corps Officer: ENS Justin Boeck

ENS Justin Boeck on the bridge
ENS Justin Boeck on the bridge

There are 5 NOAA Corps officers and a chief mate on board the Oscar Dyson for this leg of our survey: ENS Gilman, ENS Kaiser, ENS Boeck, LT Rhodes, LT Schweitzer, and Chief Mate Mackie. I have a lot of respect for the officers on our ship, as they have a great responsibility to make sure everything is running smoothly. They are one of the reasons I enjoy going up to the bridge every day. ENS Boeck picked me up from the airport when I first arrived in Kodiak, and gave me a short tour of the ship. He works each night during part of my shift, and it’s fun to come up on the bridge and chat with him and ENS Gilman. I had the opportunity to interview ENS Boeck, the newest officer on the Dyson, to learn a little more about the NOAA Corps and what they do on the ship.

Can you give me a little background on how you came to the NOAA Corps?

Before coming into the NOAA Corps, I received a Bachelor of Science degree in biology from the University of Wisconsin. After my undergraduate degree, I was in the Peace Corps in Senegal, West Africa for 3 years. I was an environmental advisor teaching classes to both students and teachers in addition to grant writing and funding. I lived in a village of 500 people, and taught 90 kids and 5 teachers. While I was there we built a wall to protect the garden from animals, helped village members increase their nutrition through micro-gardening, and ran seed bank projects and mosquito net distributions.

In 2015 I went into training with the Coast Guard, and also went through BOTC/OCS (Basic Officer Training Class/Officer Candidate School) at the U.S. Coast Guard Academy. There were 14 NOAA Corps officer candidates along with about 50 coast guard officer candidates, and we went through the same program with some of our academics varying slightly.

How long have you been in the NOAA Corps? One month, fresh out of BOTC (basic officer training class). I reported to the Oscar Dyson on June 4th.

Have you worked on other ships? If so, which one(s)? This is my first sea assignment. I’ll be at sea on the Dyson for 2 years, and will then move to a land assignment for 3 years.

What made you choose the NOAA Corps? I grew up near Lake Michigan and enjoy the water. I followed NOAA for job postings for a while, and I found out about the NOAA Corps through my last job working at a lab, so I contacted NOAA Corps officers to get more information about the NOAA Corps. I wanted to be on the water, drive a large ship, and get to SCUBA dive on a regular basis. I enjoy science and also working with my hands so this was a great way to be involved and be at the source of how fisheries data is being collected.

What’s the best part of your job? Driving the ship. The Oscar Dyson is the largest scale ship I’ve driven. It’s pretty amazing. I love being on the boat. The Oscar Dyson is considered the gold standard of the fleet, because it is a hardworking boat, running for 10 months of the year (most ships run for about 7 months out of the year) and a lot of underway time.

What is the most difficult part of your job? Getting used to the work and sleep schedule. We work 12 hours a day; 4 hour watch, 4 hours of collateral work, and then another 4 hour watch. We’re also short on deck so I spend some of my time helping out the deck crew. Because I’m new, I’m also learning the different duties around the ship. I need to know all the parts of the ship in order to become OOD (officer of the deck) qualified. I also need to have a specific amount of sea days, an interview with the commanding officer, and the trust of the commanding officer. Right now I’m learning more about the engineering on the ship.

What is something you wish more people knew about the NOAA Corps? With only 321 officers, it is still relatively unknown. We are aligning our training with the Coast Guard, which is creating more awareness and strengthening our relationship with the Coast Guard.

What advice would you give students who are interested in joining the NOAA Corps? Get boating experience and see if it’s something you’re into. Also having a solid understanding how a ship works. Get your experience early, and learn about weather, tide, swells, and ship processes. During BOTC, you get to fill out a request letter for what kind of ship you want to go on- fisheries, oceanographic, or hydrographic. Because my degree is in biology, I wanted to be on a fisheries boat, so I could get immediate experience in ship handling and still be involved with the fisheries data collection.

Did you know? The NOAA Corps is one of the 7 Uniformed Services, which include the US Army, US Navy, US Marine Corps, US Air Force, US Coast Guard,  US Public Health Service Commissioned Corps, and the NOAA Commissioned Officer Corps.

Where’s Wilson?

Or, rather, what sea creature is Wilson hanging out with in this picture? Write your answer in the comments below!

Where's Wilson?
Where’s Wilson?

Alex Miller, Riding by the River, June 8, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015

IMG_9074
Pyrotechnics training

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Monday, June 8th, 2015

Weather Data:

  • Air Temperature: 12.0°C
  • Water Temperature: 14.0°C
  • Sky Conditions: Overcast
  • Wind Speed (knots/kts) and Direction: 20 kts, NNW
  • Latitude and Longitude: 46°29’98”, 124°59’93”

Yesterday, I spoke with two of the NOAA Corps officers, Ensign Nikki Norton and Commander Brian Parker. Ensign Norton is in her first post as a NOAA Corps officer and Commander Parker has been in the Corps for 21 years. The NOAA Corps’ main responsibility is to oversee all operations of NOAA research vessels and aircraft. In addition to positioning the ship for deployment and hauling back of the various nets and instruments, they help chart the course to make sure that we visit all the transect stations. In fact, we missed an operation at one of the stations, so they are going to do a slight reroute so that we can make up for that lost data point!

Ensign Nikki Norton wore many hats and had many responsibilities during our time at sea. Including serving as the OOD, Officer on Deck, essentially an extension of the CO while on watch in the bridge, she oversaw safety operations and was the medical officer. Interestingly, she holds a Bachelor’s in marine biology from Florida State University, which makes her well suited for overseeing the operations of a research vessel.

You can listen to my conversation with Ensign Nikki Norton below.

 

This morning, I visited the bridge and spoke with the Commanding Officer of the Shimada, Commander Brian Parker. Commander Parker has been a NOAA Corps officer for 21 years, working his way up from ensign to XO (Executive Officer) to CO. NOAA Corps officers work alternating sea and land posts for two-years at a time, and at the end of this year, Commander Parker’s sea post will end and his land post as Port Captain of the NOAA facility in Newport will begin.

You can listen to my conversation with Commander Parker below.

____________________________

We arrived to our second to last transect, the Columbia River line, on Sunday. The Columbia River acts as an important source of food and habitat for certain marine species that the scientists on board the Shimada are studying and they anticipated interesting changes in the physical and biological data that they would collect at these stations.

IMG_8578
The long blue shelf-like line (labeled CR plume in top graph) shows decrease in salinity.

As I’ve mentioned before, the CTD measures temperature, salinity and chlorophyll (a measure of how much plant material is in the water), which are collectively referred to as physical oceanographic data. Dr. Curtis Roegner tracks the data acquired throughout the day at each station by printing the CTD graphs and taping them onto the cabinets of the Chem Lab, creating a visualization of the measurements. He looks for patterns in the data that may help him to better understand the samples acquired from neuston towing. In the graphs, you can see a dramatic change in salinity in the first 10 – 20 m as the ship passes through the fan of fresher water created by the emptying of the Columbia River into the Pacific Ocean. This area, called a plume, is the meeting of two bodies of water so different that you can see a front, a clear border between the salty water of the ocean and the fresh water of the river.

The chem lab, wallpapered with CTD graphs.
The chem lab, wallpapered with CTD graphs.

As a fisheries biologist, Curtis Roegner has several driving questions that guide the work he does on board the Shimada and back at the NOAA Center. Among the work he does, he aims to study how well certain projects in the Columbia River are working to restore salmon populations. Certain species rely on the wetlands of the river to spawn (produce young) and mature in and some of this habitat has been lost to the development of cattle grazing lands. Studying the impact of the Columbia River plume on the Oregon coast may help affect change in environmental policy and agricultural (farming) practices.

I interviewed Curtis about his work and you can hear that talk below.

 

____________________________

Rougher weather kicked up a lot of swells, which the mighty Shimada crashed right through, sending spray all over the decks and outer stairways and producing just enough pitching and yawing to make a walk through a hallway interesting. The Shimada’s size helps keep the rocking and rolling to a relative minimum, but when at sea safety always remains a major concern.

With that in mind, today I participated in an optional pyrotechnic training with some officers, crew and members of the science team. Several different types of flares and smoke bombs are used at sea to draw attention to a ship in need.

In order to avoid a “crying-wolf” type of situation, we practiced this during the day and most likely radioed to all nearby vessels that we were in fact training and not in need of rescue. While I probably won’t be applying this skill in the near future, I decided I couldn’t miss an opportunity to try something new. Above you can see photos of different members of the crew and science team using these tools and below, you can see a video of me operating a flare gun.

 

Lucky for me, we weren’t in an actual danger situation. At the end of the clip, I turn to NOAA Corps officer LT Tim Sinquefield for assistance. After some adjustment of the flare shell, you can see me successfully operating the flare gun below.

 

____________________________

To top off an even more unlikely morning, members of the night shift and I were watching the sun come up and helping Amanda with the bird and marine mammal observations when a pod of Pacific white-sided dolphins came to play off the bow of the ship. They stayed astern (toward the back of the ship) throughout the pyrothechnic training and at times, felt close enough to reach out and touch.

Pacific white-sided dolphins   ride the waves near our port stern, seemingly for the sheer joy of it.
Pacific white-sided dolphins ride the waves near our port stern, seemingly for the sheer joy of it.

Personal Log

As June 10 looms ever closer, I am frantically trying to take everything in. I’m basically operating under the mentality that I can sleep when I’m home. The more I try and experience, the less time I have to document what it is I’m learning on board the ship. But I set out to write eight posts about my time as a Teacher at Sea and I’m going to stay true to that commitment. Stay tuned for the final episode of my cruise aboard the Shimada, coming soon.

Heidi Wigman: Drill, Baby, Drill! May 26, 2015

NOAA Teacher at Sea
Heidi Wigman
Aboard NOAA Ship Pisces
May 27 – June 10, 2015


Mission: Reef Fish Surveys on the U.S. Continental Shelf
Geographical area of cruise: currently @ 30°22.081’N 088°33.789’W (Pascagoula, MS)
Date: May 26, 2015

Weather Data from Bridge: 82°, wind SW @ 10 knots , 90% precipitation, waves 3-5 @ 3 sec.

Science and Technology Log

We are 3 hours from raising anchor, untying from the dock, and heading out to sea.  Being aboard the Pisces for 2 days before departure turned out to be a blessing: getting to map out the lay of the 206′ labyrinth, hanging out with the crew, and even getting in a couple of runs around Pascagoula (even in the extreme humidity).

Yesterday was a day of dewatering drills, in case of lower-level compartment flooding.  We used the diesel and the electric pumps to run through set-up in the event of a flood in the engine compartment.  As the resident TAS, I don’t think that I would necessarily be relied upon to place gear in an emergency, but nevertheless, I wasn’t going to sit out and miss all of the fun.

Today we are running through a series of drills: fire, man overboard, and abandon ship.  Each of these events has a series of alerts that indicate what the emergency is, and all hands are to report to their designated muster areas – in the case of an abandon ship, that would be the life rafts.  Each of these drills also requires everyone to bring their immersion suits and PFD (Personal Flotation Device), and in my case, to don the suit.

Another training that we did today was to learn how to use the Ocenco EEBD (Emergency Escape Breathing Device) – basically a cool re-breather that fits in a pouch and provides about 10 minutes of fresh oxygen. This would generally be used in case of a fire, not if you are submerged.

So, with all of the drills and trainings, I feel ready for any major disaster that we may encounter while at sea.  Thanks NOAA Corps for making sure that I am safe and in good hands!

FRB - Fast-Rescue Boat
FRB – Fast-Rescue Boat

DSC_0995
Oscar – waiting to be the star in the man-overboard drill

DSC_0996
Life rafts awaiting

DSC_0997
Bright safety orange so you won’t miss it

June Teisan, Tuna: From Plankton to Plate (and a side of STEM careers), May 15, 2015

NOAA Teacher at Sea
June Teisan
Aboard NOAA Ship Oregon II
May 1 – 15, 2015

Mission: SEAMAP Plankton Study
Geographical area of cruise: Gulf of Mexico
Date: Friday, May 15, 2015

Science and Technology Log:

tuna
Tuna (photo from NOAA Fisheries)

Bluefin tuna are incredible creatures. Remarkably fast predators, they can swim at speeds up to 40 miles per hour and dive deeper than 3000 feet. They hunt smaller fish and invertebrates, and grow to between 6 to 8 feet long and weigh in at 500 pounds on average. Bluefin tuna are prized for their meat in the US and in other countries. Because bluefin tuna are relatively slow-growing, they are more vulnerable to overfishing than species that are faster growing or more productive. Atlantic bluefin tuna spawn in the western Mediterranean and the Gulf of Mexico. Since the early 1980s, NOAA has worked to conserve and manage the stock of bluefin tuna by monitoring stock in the Gulf of Mexico.

The data collected on plankton cruises provides one piece of the complex puzzle of the regulation of commercial and recreational fishing. Ichthyoplankton data is added to findings from trawl teams catching juvenile sizes of certain species, analysis of gonads and spawn from adult fish caught on other cruises, and other stock assessment information. Data analysis and modeling examine these information streams, and serve as the basis of stock assessment recommendations brought to policy makers.

Below is how we collect the plankton:

Hosing down the Neuston net to collect plankton in the codend.
Hosing down the Neuston net to collect plankton in the codend.

Plankton from codend is transferred to sieve.
Plankton from codend is transferred to sieve.

Sieve is tilted and plankton is transferred to sample jars.
Sieve is tilted and plankton is transferred to sample jars.

Transferring plankton to sample jar.
Transferring plankton to sample jar.

Sample jar is topped off with preservative solution.
Sample jar is topped off with preservative solution.

Jars are labeled and boxed for analysis in the lab.
Jars are labeled and boxed for analysis in the lab.

Spring ichthyoplankton surveys have been conducted for over 30 years, and my Teacher at Sea time has been an amazing glimpse behind the scenes of NOAA’s critical work maintaining the health of our fisheries.

SEAMAP Full Cruise (3)
SEAMAP Cruise Track May 1 – 15, 2015

Personal Log:

I expanded my career queries beyond the NOAA science team to interview a few of the ship’s crew members aboard the Oregon II and heard some terrific stories about pathways to STEM careers.

Laura
ENS Laura Dwyer – Navigation Officer, Oregon II

 

ENS Laura Dwyer – Navigation Officer, Oregon II

Path to a STEM Career: Laura’s career path began with a bachelor’s degree in International Business. After college she spent time as caretaker for her aging grandmother, then moved to Bali and certified as a scuba instructor. When she returned to the states, Laura investigated the NOAA Corps, and took more university courses for the science credits she needed to apply. In doing so she earned her Master’s in Marine Biology. Laura began her Basic Officer Training in NOAA Corps in January 2013, graduated, and now serves her country as Ensign on the Oregon II.

Best Part of Her Job: Laura knows she has a ‘cool’ job: she gets to pilot a 170 foot vessel.

Favorite Teacher: Mrs. Coppock. Laura’s 3rd grade teacher…She was in her late 60s or early 70s but every year Mrs. Coppock would start the school year by doing a head stand in front of the class. The inspirational lesson behind this gymnastic move was two-fold: Women can do anything they set their mind to, and age is just a number.

Larry
LTJG Larry Thomas – Operations Officer, Oregon II

Path to a STEM Career: Larry earned a bachelor’s degree in Marine Biology.  He worked as a fisheries observer out of NOAA’s Galveston, Texas lab, and volunteered as a guest biologist on NOAA vessels Gordon Gunter and Oregon II. Larry was raised in a military family with both parents serving in the Army, but had not known about the NOAA Corps until he met Corps officers during his time on NOAA vessels. Larry graduated with BOTC 116 in June 2010 and serves as Lieutenant, Junior Grade (LTJG)on the Oregon II.

Best Part of His Job: Larry appreciates that his work allows him to do and see things most people don’t experience, like being up close with 8-10 foot tiger sharks brought in on long line survey cruises or a rare encounter with sea turtles that have been tagged and released.

Favorite Teachers: Frank Ramano and George Cline, both college professors who were passionate about their work and helpful with any questions, offering guidance when Larry needed it.

Olay
Olay Akinsanya – Junior Engineer, Oregon II

Olay Akinsanya – Junior Engineer, Oregon II

Path to a STEM Career: Olay chose a career in the military because it was a great combination of hands on work and potential for training and further education. He served 8 years in the Navy, earning a GSM certification (Gas turbine Systems Mechanic). After his military service, he took exams with the Coast Guard to certify to be able to stand engine watch, which means qualified to be responsible for entire engine room. Olay then found out about NOAA through a friend and now works as a junior engineer on the Oregon II. He enjoys the work and finds it a good fit for his schedule; the shorter trips allow him to visit on shore with his daughter regularly.

Best Part of His Job: The opportunity to continue to build his skills and experience, to advance his career. And the food is good!

Favorite Teacher: Adrian Batchelor, a teacher at Mid-Atlantic Maritime School. “Mr. Batchelor is retired military, holds a GSM, and spent a lot of time with me, explained the job, encouraged me to reach out at any time. He’s been a great mentor.”

Classroom Fish ID Activity:

Correctly identify the “by catch” fish we brought up in our plankton nets. (Hint: we netted Flying Fish, Mahi Mahi, Half Beak, Little Tunny, File Fish, Sargassum Trigger Fish, Chub, Burr Fish, and Sargassum Fish). Enter your answers as a comment to this post!

B
Specimen A

C
Specimen B

A
Specimen C

G
Specimen D

E
Specimen E

F
Specimen F

 

D
Specimen G

Shout out to the students in Ms. Meredith Chicklas’ classes at  in Troy, Michigan, and in Ms. Kelly Herberholz’s classes at Dakota High School in Macomb, Michigan! 

A BIG thank you to the NOAA Fisheries Staff in Pascagoula, Mississippi, to the officers and crew of the Oregon II, and the NOAA Teacher at Sea Program Staff for this incredible adventure.

Julia West: Neuston! March 25, 2015

NOAA Teacher at Sea
Julia West
Aboard NOAA ship Gordon Gunter
March 17 – April 2, 2015

Mission: Winter Plankton Survey
Geographic area of cruise: Gulf of Mexico
Date: March 25, 2015

Weather Data from the Bridge

Time 0900; mostly sunny, clouds 25% altocumulus; wind 5 knots, 120° (ESE); air 21°C, water 21°C, wave height 1-2 ft.

Science and Technology Log

We continue to zigzag westward on our wild plankton hunt. When we are closer to shore, navigation is tricky, because we are constantly dodging oil platforms, so we can never quite do the straight lines that are drawn on the chart.

Plankton stations 3/25/15
Here’s what we have covered through this morning. We’re making good time!

One of our Oak Meadow math teachers, Jacquelyn O’Donohoe, was wondering about math applications in the work that we are doing. The list is long! But don’t let that deter you from science – no need to fear the math! In fact, Commanding Officer Donn Pratt told me that he was never good at math, but when it came to navigating a ship, it all became more visual and much more understandable. I think it’s cool to see math and physics being applied. So, just for fun, I’ll point out the many places where math is used here on the ship – it’s in just about every part of the operations.

Today’s topic is neuston. As soon as we get the bongo nets back on board, the cable gets switched over to the neuston net. This net is a huge pipe rectangle, 1 meter x 2 meters, with a large net extending to the cod end to collect the sample. The mesh of this net is 1mm, much larger than the 0.3mm mesh of the bongo nets. So we aren’t getting the tiniest things in the neuston net, but still pretty small stuff! We lower the net to the surface, using the winch, and let it drag there for ten minutes. The goal is to have the net half in the water, so we have a swept area of 0.5 x 2 meters, or 1 square meter. (See, there’s some math for you!) That’s the goal. Sometimes with big waves, none of the net is in the water, and then all of it is, but it averages out.

Deploying neuston net
Here I am helping to deploy the neuston net. Photo credit: Kim Johnson

Neuston net
Neuston net in the water. Photo credit: Madalyn Meaker

Then we hose the net off thoroughly to get what is stuck to the net into the cod end.

Neuston net cleaning
Andy is hosing off the neuston net.

As I mentioned before, neuston is the array of living organisms that live on or just below the surface. Some of it is not plankton, as you can also catch larger fish, but mostly, the sample overlaps with the larger plankton that we catch in the bongos. There tends to be more jellyfish in the neuston net, so we sometimes wear gloves. Pam got stung by a man o’ war on the first day while cleaning out the net!

 

neuston sample
Pam is sorting an interesting neuston sample. See her smile – she clearly loves plankton!

Collecting neuston
Madalyn funneling the neuston into a jar with ethanol

Sometimes we end up with Sargassum in our nets. Sargassum is a type of brown “macroalgae” (seaweed) that grows in large clumps and floats on the surface. Have you ever heard of the Sargasso Sea? It is a massive collection of Sargassum in the Atlantic Ocean, held in place by the North Atlantic Gyre.

Sargassum
Sargassum taken from a sample

Sargassum
Sargassum in the water

 

 

 

 

 

 

 

Sargassum often collects in our nets. Sometimes we get gallons of Sargassum, and we have to carefully hose the organisms off of it, and throw the weeds back. We get the most interesting variety of life in the Sargassum! It supports entire communities of life that wouldn’t be there without it. If you want to know a little more about Sargassum communities, check out this website.

Here are a few examples of some of the photographable organisms we have collected in the neuston net. I’m working on getting micrographs of the really cool critters that are too small to see well with the naked eye, but they are amazing – stay tuned. All of the fish, except the flying fish, are very young; the adults will be much, much larger. (If you click on one of these, you will see a nice slide show and the full caption.)

Lastly, here is a really cool neuston sample we got – whale food!

copepods
This sample looks like it is almost entirely made up of copepods; this species is a beautiful blue color.

Personal Log

Now let’s turn to the other life form on the ship – the people. There are a total of 26 people on this cruise. Everyone is really great; it’s a community of its own. First, let me introduce the NOAA Corps crew who run the ship.

The NOAA Corps, or NOAA Commissioned Officer Corps, is one of the seven uniformed services of the United States (can you name the others?). It seems that many have never heard of the NOAA Corps, so it’s worth telling you a little bit about them. Officers are trained to take leadership positions in the operation of ships and aircraft, conducting research missions such as this one and much, much more! NOAA Corps has all the career benefits of the U.S. military, without active combat. Our officers all have a degree in some kind of science, often marine science or fisheries biology.

The crew members generally keep 4 hour watches, twice a day. I really enjoy going up to the bridge to hang out with them. It’s a whole different world up there, and they have been gracious enough to explain to me (as best as I can understand it) how they navigate the ship. Conceptually, I get it pretty well, but even if I was allowed to, I wouldn’t dare touch one of the buttons and dials they have up there!

Our XO (Executive Officer) on the Gunter is LCDR Colin Little. Colin has been with NOAA for eleven years now, and his previous assignments include Sea Duty aboard Oregon II and Oscar Elton Sette, and shore assignments in Annapolis, MD and Newport, OR. His background is in fish morphology and evolution.  His wife and two sons are currently living in Chicago.

ENS Kristin Johns has been on the Gunter for almost a year. She joined NOAA after getting a biology degree at Rutgers. She is currently being trained to be the next Navigation Officer. Kristin is the safety officer, as well as the MPIC (Medical Person in Charge). Kristin is the one who suggested I use the word “thalassophilia” as the word of the day – something she clearly suffers from!

Our Operations Officer (OPS) is LT Marc Weekley. Marc is in charge of organizing the logistics, and coordinating between the scientists and the crew. He’s been with NOAA for ten years (on the Gunter for two years), and has had some interesting land-based as well as offshore posts, including a year at the South Pole Station (yes, Antarctica) doing clean air and ozone monitoring.

ENS Melissa Mathes is newest officer with NOAA, but spent 6 years in the Army Reserves in college, and then 6 years of active duty with the Navy. Melissa loves archery and motorcycles, and she has been rumored to occasionally dance while on watch.

Melissa and Marc
ENA Melissa Mathes and LT Marc Weekley

ENS (which stands for Ensign, by the way) David Wang, originally from New York City, is our Navigation Officer (NAV). He’s been with NOAA for two years. His job, as he puts it, is “getting us where we gotta go, safely.” He is the one who charts our course, or oversees the other Junior Officers as they do it. Dave used to be a commercial fisherman, and when he’s not on duty, those are his fishing lines extending out from the back deck. He’s also an avid cyclist and ultimate Frisbee player.

ENS Peter Gleichauf has been on the Gunter since November, but finished his training over a year ago. He is also an aviator, musician, and avid outdoors person. In fact, for all of the officers, health, fitness, and active lifestyle is a priority. Pete is in charge of environmental compliance on the ship.

Dave and Pete
ENS Dave Wang and ENS Pete Gleichauf

King mackerel
Lead fisherman Jorge Barbosa and a king mackerel caught today on Dave’s line! It took 2 deck crew men to pull it in!

 

Term of the Day: USS Cole – you can look this one up. Next blog post I will explain what in the world it has to do with a plankton research cruise. I promise it will all make sense!

 

Lauren Wilmoth: Strange Sea Creatures, October 16, 2014

NOAA Teacher at Sea
Lauren Wilmoth
Aboard NOAA Ship Rainier
October 4 – 17, 2014

Mission: Hydrographic Survey
Geographical area of cruise: Kodiak Island, Alaska
Date: Friday, October 16, 2014

Weather Data from the Bridge
Air Temperature: 7.32 °C
Wind Speed: 9.2 knots
Latitude: 57°44.179′ N
Longitude: 152°27.987′ W

Science and Technology Log

ENS Steve Wall collecting a bottom sample.
ENS Steve Wall collecting a bottom sample.

Wednesday, I went on a launch to do bottom sampling and cross lines.  Wednesday was our last day of data acquisition, so the motto on the POD (Plan of the Day) was “LEAVE NO HOLIDAYS! If in doubt, ping it again!”  Bottom sampling is pretty straight forward.  We drive to designated locations and drop a device that looks a little like a dog poop scooper down into the water after attaching it to a wench.  The device has a mechanism that holds the mouth of it open until it is jarred from hitting the bottom.  When it hits the bottom, it snaps closed and hopefully snatches up some of the sediment from the bottom.  Then, we reel it up with the wench and see what’s inside.

We took 10 bottom samples and most were the same.  We had a fine brown sand in most samples.  Some samples contained bits of shell, so we documented when that was the case.  At one location, we tried for samples three times and every time, we got just water.  This happens sometimes if the sea floor is rocky and the device can’t pick up the rocks.  If you try three times and get no definitive answer, you label the sample as unknown.  Two times we got critters in our samples.  One critter we found was an amphipod most likely.  The second critter was shrimp/krill-like, but I don’t know for sure.  Cross lines are just collecting sonar data in lines that run parallel to the previous data lines.  This gives us a better image and checks the data.

TeacheratSea 008 (8)
Survey Tech Christie and Me on our bottom sampling launch.

Amphipod found in bottom sample.
Amphipod found in bottom sample.

Unknown shrimp/krill critter from bottom sample.
Unknown shrimp/krill critter from bottom sample.

 

 

 

 

 

 

 

 

 

 

 

Staff observations at Terror Bay.
Staff observations at Terror Bay.

Thursday, we closed out the tidal station at Terror Bay. This entailed doing staff observations, a tidal gauge leveling check, and then break down everything including completing a dive to remove the orifice.  Since I have already taken part in a tidal gauge leveling check, I was assigned to the staff observations and dive party.  As I mentioned in an earlier post, for staff observations you just record the level of the water by reading a staff every six minutes for three hours.  We did this while on a boat, because the tide was pretty high when we got started, so we wouldn’t be able to read the staff if we were on shore.  Again, the reason we do staff observations is so we can compare our results to what the tidal gauge is recording to make sure the tidal gauge is and has been working properly.

While doing staff observations, I saw a small jellyfish looking creature, but it was different.  It had bilateral symmetry instead of radial symmetry. Bilateral symmetry is what we have, where one side is more or less the same as the other side.  Jellyfish have radial symmetry which means instead of just one possible place you could cut to make two side that are the same, there are multiple places you can cut to make it the same on each side.  Also, the critter was moving by flopping its body from side to side which is nothing like a jellyfish.  I had to figure out what this was!  In between our observations, Jeff, the coxswain, maneuvered the boat so I could scoop this guy into a cup.  Once we finished our staff observations, we headed to the ship.  I asked around and Adam (the FOO) identified my creature.  It’s a hooded nudibranch (Melibe leonina).  Nudibranches are sea slugs that come in a beautiful variety of colors and shapes.

Bilateral versus radial symmetry.

The hooded nudibranch.
The hooded nudibranch.

ENS Wood and ENS DeCastro diving for the orifice.
ENS Wood and ENS DeCastro diving for the orifice.

After a quick return to the ship, we headed back out with a dive team to remove the orifice from underwater. Quick reminder: the orifice was basically a metal tube that air bubbles are pushed out of.  The amount of pressure needed to push out the air bubbles is what tells us the depth of the water. Anyways, the water was crystal clear, so it was really neat, because we could see the divers removing the orifice and orifice tubing.  Also, you could see all sorts of jellyfish and sea stars.  At this point, I released the hooded nudibranch back where I got him from.

Jellyfish!
Jellyfish!

Just as we were wrapping up with everything.  The master diver Katrina asked another diver Chris if he was alright, because he was just floating on his back in the water. He didn’t respond.  It’s another drill! One person called it in on the radio, one of the divers hopped back in the water and checked his vitals, and another person grabbed the backboard. I helped clear the way to pull Chris on board using the backboard, strap him down with the straps, and pull out the oxygen mask. We got him back to the ship where the drill continued and the medical officer took over. It was exciting and fun to take part in this drill.  This was a very unexpected drill for many people, and they acted so professional that I am sure if a real emergency occurred, they would be prepared.

Drill: Saving ENS Wood.
Drill: Saving ENS Wood.

Personal Log

Sadly, this was most likely my last adventure for this trip, because I fly out tomorrow afternoon. This trip has really been a one-of-a-kind experience. I have learned and have a great appreciation for what it takes to make a quality nautical chart. I am excited about bringing all that the Rainier and her crew have taught me back to the classroom to illustrate to students the importance of and the excitement involved in doing science and scientific research. Thank you so much to everyone on board Rainier for keeping me safe, helping me learn, keeping me well fed, and making my adventure awesome!  Also, thank you to all those people in charge of the NOAA Teacher at Sea program who arranged my travel, published my blogs, provided me training, and allowed me to take part in this phenomenal program.  Lastly, thank you to my students, family, and friends for reading my blog, participating in my polls, and asking great questions.

Did You Know? 

1 knot is one nautical mile per hour which is equal to approximately 1.151 miles per hour.

Challenge:

Can you figure out what my unknown shrimp/krill critter is?

Unknown shrimp/krill critter from bottom sample.
Unknown shrimp/krill critter from bottom sample.

 

Lauren Wilmoth: “Wreckish looking rock?” October 15, 2014

NOAA Teacher at Sea
Lauren Wilmoth
Aboard NOAA Ship Rainier
October 4 – 17, 2014

Mission: Hydrographic Survey
Geographical area of cruise: Kodiak Island, Alaska
Date: Wednesday, October 15th, 2014

Weather Data from the Bridge
Air Temperature: 4.4 °C
Wind Speed: 5 knots
Latitude: 57°56.9′ N
Longitude: 153°05.8′ W

Science and Technology Log

Thank you all for the comments you all have made.  It helps me decide what direction to go in for my next post.  One question asked, “How long does it take to map a certain area of sea floor?”  That answer, as I responded, is that it depends on a number of factors including, but not limited to, how deep the water is and how flat the floor is in that area.

To make things easier, the crew uses an Excel spreadsheet with mathematical equations already built-in to determine the approximate amount of time it will take to complete an area.  That answer is a bit abstract though.  I wanted an answer that I could wrap my head around.  The area that we are currently surveying is approximately 25 sq nautical miles, and it will take an estimated 10 days to complete the surveying of this area not including a couple of days for setting up tidal stations.  To put this in perspective, Jefferson City, TN is approximately 4.077 sq nautical miles.  So the area we are currently surveying is more than 6 times bigger than Jefferson City!  We can do a little math to determine it would take about 2 days to survey an area the size of Jefferson City, TN assuming the features are similar to those of the area we are currently surveying.

Try to do the math yourself!  Were you able to figure out how I got 2 or 3 days?

Since we’re talking numbers, Rainier surveyed an area one half the size of Puerto Rico in 2012 and 2013!  We can also look at linear miles.  Linear miles is the distance they traveled while surveying.  It takes into account  all of the lines the ship has completed.  In 2012 and 2013, Rainier surveyed the same amount of linear nautical miles that it would take to go from Newport, Oregon to the South Pole Station and back!

Area we are currently surveying.
Area we are currently surveying (outlined in red) with some depth data we have collected.

Casting a CTD (Conductivity, Temperature, and Depth) gauge.
Casting a CTD (Conductivity, Temperature, and Depth) gauge.

Monday, I went on a launch to collect sonar data.  This is my first time to collect sonar data since I started this journey.  Before we could get started, we had to cast a CTD (Conductivity, Temperature and Depth) instrument.  Sound travels a different velocities in water depending on the salinity, temperature, and pressure (depth), so this instrument is slowly cast down from the boat and measures all of these aspects on its way to the ocean floor.  Sound travels faster when there is higher salinity, temperature, and pressure.  These factors can vary greatly from place to place and season to season.

Imagine how it might be different in the summertime versus the winter.  In the summertime, the snow will be melting from the mountains and glaciers causing a increase in the amount of freshwater.  Freshwater is less dense than saltwater, so it mainly stays on top.  Also, that glacial runoff is often much colder than the water lower in the water column.  Knowing all of this, where do you think sound will travel faster in the summertime?  In the top layer of water or a lower layer of water?  Now you understand why it is so important to cast a CTD to make sure that our sonar data is accurate.  To learn more about how sound travels in water, click here.

TeacheratSea 033 (5)
I’m driving the boat.

After casting our CTD, we spent the day running the sonar up and down and up and down the areas that needed to be surveyed.  Again, this is a little like mowing the lawn.  At one point, I was on bow watch.  On bow watch, you sit at the front of the boat and look out for hazards.  Since this area hasn’t been surveyed since before 1939, it is possible that there could be hazards that are not charted.  Also, I worked down in the cabin of the boat with the data acquisition/sonar tuning. Some important things to do below deck including communicating the plan of attack with the coxswain (boat driver), activating the sonar, and adjusting the sonar for the correct depth.  I helped adjust the range of the sonar which basically tells the sonar how long to listen.  If you are in deeper water, you want the sonar to listen longer, because it takes more time for the ping to come back.  I also adjusted the power which controls how loud the sound ping is.  Again, if you are surveying a deeper area, you might want your ping to be a little louder.

Eli working the sonar equipment.
Eli working the sonar equipment.

Tuesday, I helped Survey Tech Christie Rieser and Physical Scientist Fernando Ortiz with night processing.  When the launches come back after acquiring sonar data, someone has to make all that data make sense and apply it to the charts, so we can determine what needs to be completed the following day.  Making sense of the data is what night processing is all about.  First, we converted the raw data into a form that the program for charting (CARIS) can understand.  The computer does the converting, but we have to tell it to do so.  Then, we apply all of the correctors that I spoke about in a previous blog in the following order: POS/MV (Position and Orientation Systems for Marine Vessels) corrector, Tides corrector, and CTD (Conductivity, Temperature, and Depth) corrector.  POS/MV corrects for the rocking of the boat.  For the tides corrector, we use predicted tides for now, and once all the data is collected from our tidal stations, we will add that in as well.  Finally, the CTD corrects for the change in sound velocity due to differences in the water as I discussed above.

After applying all of the correctors, we have the computer use an algorithm (basically a complicated formula) to determine, based on the data, where the sea floor is.  Basically, when you are collecting sonar data there is always going to be some noise (random data that is meaningless) due to reflection, refraction, kelp, fish, and even the sound from the boat.  The algorithm is usually able to recognize this noise and doesn’t include it when calculating the location of the seafloor.  The last step is manually cleaning the data.  This is where you hide the noise, so you can get a better view of the ocean floor.  Also, when you are cleaning, you are double checking the algorithm in a way, because some things that are easy for a human to distinguish as noise may have thrown off the algorithm a bit, so you can manually correct for that. Cleaning the data took the longest amount of time.  It took a couple of hours.  While processing the data, we did notice a possible ship wreck, but the data we have isn’t detailed enough to say whether it’s a shipwreck or a rock.  Senior Tech Jackson noted in the acquisition log that it was “A wreckish looking rock or a rockish looking wreck.”  We are going to have the launches go over that area several more times today to get a more clear picture of is going on at that spot.

H12662_DN195_2804 This is an example of noisy data. In this case, the noise was so great that the algorithm thought the seafloor went down 100 extra meters. Manually cleaning the data can adjust for this so our end product is accurate. The actual seafloor in this case is the relatively straight line at about 100 meters depth.
This is an example of noisy data. In this case, the noise was so great that the algorithm thought the seafloor went down 100 extra meters. Manually cleaning the data can adjust for this so our end product is accurate. The actual seafloor in this case is the relatively straight line at about 100 meters depth.

Personal Log 

Monday was the most spectacular day for wildlife viewing!  First, I saw a bald eagle.  Then, I saw more sea otters.  The most amazing experience of my trip so far happened next.  Orcas were swimming all around us.  They breached (came up for air) less than 6 feet from the boat.  They were so beautiful!  I got some good pictures, too!  As if that wasn’t good enough, we also saw another type of whale from far away.  I could see the blow (spray) from the whale and a dorsal fin, but I am not sure if it is was a Humpback Whale or a Fin Whale.  Too cool!

Bald Eagle Sighting!
Bald Eagle Sighting!

Sea otter
Sea otter

TeacheratSea 067 (4)
Orca!

Very close orca!
Very close orca!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Did You Know? 

Killer whales are technically dolphins, because they are more closely related to other dolphins than they are to whales.

Lauren Wilmoth: Shore Party, October 12, 2014

NOAA Teacher at Sea
Lauren Wilmoth
Aboard NOAA Ship Rainier
October 4 – 17, 2014

Mission: Hydrographic Survey
Geographical area of cruise: Kodiak Island, Alaska
Date: Sunday, October 12, 2014

Weather Data from the Bridge
Air Temperature: 1.92 °C
Wind Speed: 13 knots
Latitude: 58°00.411′ N
Longitude: 153°10.035′ W

Science and Technology Log

The top part of a tidal station.  In the plastic box is a computer and the pressure gauge.
The top part of a tidal station. In the plastic box is a computer and the pressure gauge.

In a previous post, I discussed how the multibeam sonar data has to be corrected for tides, but where does the tide data come from?  Yesterday, I learned first hand where this data comes from.  Rainier‘s crew sets up temporary tidal stations that monitor the tides continuously for at least 30 days.  If we were working somewhere where there were permanent tidal station, we could just use the data from the permanent stations.  For example, the Atlantic coast has many more permanent tidal stations than the places in Alaska where Rainier works.  Since we are in a more remote area, these gauges must be installed before sonar data is collected in an area.

We are returning to an area where the majority of the hydrographic data was collected several weeks ago, so I didn’t get to see a full tidal station install, but I did go with the shore party to determine whether or not the tidal station was still in working condition.

A tidal station consists of several parts: 1) an underwater orifice 2) tube running nitrogen gas to the orifice 3) a nitrogen tank 4) a tidal gauge (pressure sensor and computer to record data) 5) solar panel 6) a satellite antennae.

Let me explain how these things work.  Nitrogen is bubbled into the orifice through the tubing.  The pressure gauge that is located on land in a weatherproof box with a laptop computer is recording how much pressure is required to push those bubbles out of the orifice.  Basically, if the water is deep (high tide) there will be greater water pressure, so it will require more pressure to push bubbles out of the orifice.  Using this pressure measurement, we can determine the level of the tide.  Additionally, the solar panel powers the whole setup, and the satellite antennae transmits the data to the ship.  For more information on the particulars of tidal stations click here

Tidal station set-up.  Drawing courtesy of Katrina Poremba.
Tidal station set-up. Drawing courtesy of Katrina Poremba.

Rainier is in good hands.
Rainier is in good hands.

The tidal station in Terror Bay did need some repairs.  The orifice was still in place which is very good news, because reinstalling the orifice would have required divers.  However, the tidal gauge needed to be replaced.  Some of the equipment was submerged at one point and a bear pooped on the solar panel.  No joke!

After the tidal gauge was installed, we had to confirm that the orifice hadn’t shifted.  To do this, we take manual readings of the tide using a staff that the crew set-up during installation of the tidal station.  To take manual (staff) observations, you just measure and record the water level every 6 minutes.   If the manual (staff) observations match the readings we are getting from the tidal gauge, then the orifice is likely in the correct spot.

Just to be sure that the staff didn’t shift, we also use a level to compare the location of the staff to the location of 5 known tidal benchmarks that were set when the station was being set up as well.  As you can see, accounting for the tides is a complex process with multiple checks and double checks in place.  These checks may seem a bit much, but a lot of shifting and movement can occur in these areas.  Plus, these checks are the best way to ensure our data is accurate.

Micki and Adam setting up the staff, so they can make sure it hasn't moved.
ENS Micki and LTJG Adam setting up the staff, so the surveyor can make sure it hasn’t moved.

Mussels and barnacles on a rock in Terror Bay.
Mussels and barnacles on a rock in Terror Bay.

Leveling to ensure staff and tidal benchmarks haven't moved.
Leveling to ensure staff and tidal benchmarks haven’t moved.

 

 

 

 

 

 

 

 

Today, I went to shore again to a different area called Driver Bay.  This time we were taking down the equipment from a tidal gauge, because Rainier is quickly approaching the end of her 2014 season.  Driver Bay is a beautiful location, but the weather wasn’t quite as pretty as the location.  It snowed on our way in!  Junior Officer Micki Ream who has been doing this for a few years said this was the first time she’d experienced snow while going on a tidal launch.  Because of the wave action, this is a very dynamic area which means it changes a lot.

In fact, the staff that had been originally used to manually measure tides was completely gone, so we just needed to take down the tidal gauges, satellite antenna, solar panels, and orifice tubing.  The orifice itself was to be removed later by a dive team, because it is under water.  After completing the tidal gauge breakdown, we hopped back on the boat for a very bumpy ride back to Rainier.  I got a little water in my boots when I was hopping back aboard the smaller boat, but it wasn’t as cold as I had expected.  Fortunately, the boat has washers and driers.  It looks like tonight will be laundry night.

Raspberry Bay
Driver Bay

Personal Log 

The food here is great!  Last night we had spaghetti and meatballs, and they were phenomenal.  Every morning I get eggs cooked to order.  On top of that, there is dessert for every lunch and dinner!  Don’t judge me if I come back 10 lbs. heavier.  Another cool perk is that we get to see movies that are still in the theaters!  They order two movies a night that we can choose from.  Lastly, I haven’t gotten seasick.  Our transit from Seward to Kodiak was wavy, but I don’t think it was as bad as we were expecting.  The motion sickness medicines did the trick, because I didn’t feel sick at all.

Did You Know? 

NOAA (National Oceanic and Atmospheric Administration) contains several different branches including the National Weather Service which is responsible for forecasting weather and issuing weather alerts.

Animal Spotting

There are sea otters everywhere!

Sea otter (Enhydra lutris) sighting.
Sea otter (Enhydra lutris) sighting.

 

Lauren Wilmoth: Officially a Teacher at Sea! October 10, 2014

NOAA Teacher at Sea
Lauren Wilmoth
Aboard NOAA Ship Rainier
October 4 – 17, 2014

Mission: Hydrographic Survey
Geographical area of cruise: Kodiak Island, Alaska
Date: Friday, October 10, 2014

Weather Data from the Bridge
Air Temperature: 10.6 °C
Wind Speed: 13 knots
Latitude: 59°00.742′ N
Longitude: 150°53.517′ W

Science and Technology Log

On Thursday, I got to sit in on Junior Officer Steve Wall and Survey Tech Christie’s discussion of their holiday plan.  This does NOT mean they were talking about what they were doing for Thanksgiving or Christmas.  A holiday is a space in an area that has already been surveyed where there still isn’t sufficient data.  This can happen for a number of reasons.  Think about mowing the lawn.  If the lawn mower is going back and forth in lines, just as the ship does, sometimes you can still miss a spot (I know I do).  With the lawn mower though, it is easy to see where you missed a spot, so you can go back over it immediately.  This is not the case with the ship.  What’s more, when you are mowing the lawn it is relatively easy to push the lawn mower in a straight line.  It is not as easy to drive a ship in a straight line, because currents and weather can be pushing and pulling it in different directions.  The purpose of a holiday plan then is to find these missed spots, so a smaller boat can be sent over to fill in those gaps in the data.  The holiday plan also tries to figure out how this can be done most efficiently.  For example, if holidays are close together you can send out one boat one time to take care of multiple holidays.

The holidays are the places outlined in yellow.  This shows the area were are about to survey in Kodiak.
This is part of the holiday plan that Christie and Steve put together for this next part of our trip.  The holidays are the places outlined in yellow and the black are the places where there is already sufficient data.

While I have been aboard the ship, I have constantly be learning more about NOAA corps.  If you were interested in joining the NOAA corps, the first step would be get a four year (Bachelor’s) degree in a STEM (Science, Technology, Engineering, or Math) field.  Many corps members have degrees in Marine Biology.  The greatest need is for people with engineering degrees.  Once you have your four year degree, you can apply to be in the NOAA corps.  If you are accepted in to the program, you will have training for 5 months.  This is a combination of class work and hands-on training.  When you successfully complete your training, you will be assigned to a ship.  You will work on that ship for 2 to 3 years.  During those years, your jobs progress in difficulty and vary, so that you can slowly learn how to do it all.  All NOAA corps officers are trained on navigating the ship!  Even though you are assigned to a ship for 2 to 3 years, you won’t be “gone” the entire time.  Each ship has a season when it operates.  For example, the Rainier‘s season runs from April to November.   When the ship is out of season, it stays in the home port.  Rainier‘s home port is Newport, Oregon.  Just because the ship is out of season doesn’t mean you don’t work.  You still report to the ship daily and work aboard the ship.  It is just docked during that time.   In the off-season, you may do additional training that would occur off of the ship.  Also, many people take their leave during the off-season.  NOAA corps officers get 30 days of paid leave a year!  After your 2 to 3 years on a ship, you work on land for 2 or 3 years.  When you return for your second ship assignment, you will likely have moved up in the ranks.

Today, we finally got underway!  I was invited to listen in on the evolution required to get the ship underway.  Evolution, I quickly learned, has a different meaning in the military then has when we talk about evolution in biology class.  An evolution is a set, step-by-step process.  To ensure that everything is done properly, there is a check list that must be completed before departure.  Some tasks begin an entire day ahead of time.  Some of the items required for the checklist include checking the fire doors, heating up the engine (for about 30 minutes), and much much more.  Just untying the ship involves multiple steps because of the ship’s size.  We actually had to leave two crew members behind to undo the lines.  Then, they hopped on one of Rainier‘s smaller boats (called a skiff) and rode back the ship.  After they got off of the skiff, Rainier hoisted the skiff up and puts it back in its place.

TeacheratSea 004
The skiff coming to the ship after the ship was untied from the pier.

TeacheratSea 006
The skiff being hoisted onto the ship with a crane.

 

 

 

 

 

 

 

 

 

 

 

 

 

Quickly after getting underway, we had our required emergency drills.  I had NO idea how realistic the fire drill would be!  I thought it would be like a school drill where we just go to our spot and stand around.  This was definitely NOT the case.  I was sitting in my stateroom (where I sleep) when the alarm sounded which announced it was a drill.  The announcement proceeded to say where the fire was located which was the XO’s (Executive Officer) room a few doors down from me.  By the time I was in the hall there was smoke, pretend smoke, but smoke!  People were going to their stations, some were getting on their fire fighting gear, and in no time, they were fighting the pretend fire with gear on and hoses unwound.  I was sent on border control, so basically, I had to go to a bordering area and monitor if the fire was spreading by feeling for heat.  The drill was so realistic that there was even an unconscious victim that had to be treated by the medical officer.  It is vital to have these realistic drills, because unlike on shore, you cannot just call the fire department.  You have to be your own fire department!  Almost immediately after the fire drill, we had an abandon ship drill.   My group mustered (gathered) at life raft #8 and then, we had to put on our red survival suits.

My emergency billet that tells me where to go and what to do in case of an emergency.
My emergency billet that tells me where to go and what to do in case of an emergency.

Personal Log

On Thursday, Meclizine was passed out in the dispensary.  This is a medication to prevent motion sickness.  I will definitely be taking some.  Even if it doesn’t work 100%, I have been given some tips on how to settle the feelings of nausea.  It was recommended for one that I get further down in the ship and closer to the center of the ship.  There is a lounge with couches called the ward room that is in a more ideal place to reduce motion sickness than my berthing area, so I may go there if I start feeling bad.  If my nausea is still bad, I have been told to go the back of the ship (the fantail) and watch the horizon.  You might wonder why watching the horizon off the back of the ship would help.  Motion sickness is caused when your senses are giving you conflicting information.  So if you are in a ship, your inner ear ,which controls your balance, knows your body is moving, but visually, since the boat is moving with you, your eyes are telling you a different story.  This explains why it can be helpful to go to the fantail.  Your visual sensory input (what you see) will match more with what your inner ear is telling your brain if you are watching the movement.