Sian Proctor: Nothing But Net!, July 12, 2017

NOAA Teacher at Sea

Sian Proctor

Aboard Oscar Dyson

July 2 – 22, 2017

Mission: Gulf of Alaska Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 12, 2017

Me next to chafing gear from AWT. Image by Meredith Emery.

 

Weather Data from the Bridge

  • Latitude:   56° 46.8 N
  • Longitude: 154° 13.7 W
  • Time: 0800
  • Sky:Clear
  • Visibility: 10 nautical miles
  • Wind Direction: 279
  • Wind Speed: 9 Knots
  • Sea Wave Height: 1-2 foot swell
  • Barometric Pressure: 1019.9 millibars
  • Sea Water Temperature:   11.1°C
  • Air Temperature:   12.0°C
  • Sunrise: 0531
  • Sunset: 2300

Science and Technology Log: Nothing But Net!

Once the scientists determine where and how deep they want to fish, based on analyzing the echogram, then the boat moves into position and the net is deployed. Safety is the top priority when working on the vessel. The deckhands all have to wear life jackets, hard hats, and good boots when working on deck because the conditions can be sunny one moment and stormy the next.  There is some serious hardware at the back of boat. There are cranes, winches, and spools of wire ropes & chains. The Chief Boatswain is responsible for all deck operations and deploying any gear overboard. The following video illustrates the sampling process using an Aleutian Wing Trawl net.

There is a camera (aka camtrawl) attached to the net along with a small pocket net. The pocket net is designed to catch tiny animals that slip through the AWT meshes. The pocket mesh only catches a small amount of escaping animals which can then be used to determine what was in the water column with the bigger pollock. The camtrawl has a pair of cameras that shoot stereo images of what is entering the net. The camtrawl was developed by NOAA scientists and its goal is to estimate the size and identify the species that enter the net using visual recognition software from University of Washington. The ultimate goal of the camtrawl is to be able to identify everything entering the net without ever having to actually catch the fish.

 

This slideshow requires JavaScript.

A limitation of the AWT is that it can’t go closer than a few meters from the sea floor. Pollock are semi-pelagic so they are sometimes down at the sea floor and a different net is used. The Poly Nor’Easter (PNE) is used to trawl along the bottom of the Gulf of Alaska because the bottom can be rocky. The PNE has roller gear along its bottom to keep it from getting stuck. The opening of the PNE is 6 meters tall and 15 meters wide and also funnels to a codend.

There is a third net on Oscar Dyson called the Methot and it is used to catch large plankton such as krill. The Methot is so small that it sits on the deck and is easily lifted and put into the water. The net you use is determined by what you are trying to catch and where they are located in the water column.

Interview with Ryan Harris

Chief Boatswain

Chief Boatswain Ryan Harris managing Oscar Dyson crane.

  • Official Title
    • Chief Boatswain
  • Normal Job Duties
    • I am in charge of the deck operations on board the ship from deploying gear over the side to up keep of the ship.
  • How long have you been working on Oscar Dyson?
    • 15 months
  • What is your favorite thing about going to sea on Oscar Dyson?
    • I get to see things normal people do not.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • 11 years ago I fell in love with the excitement of travel.
  • What are some of the challenges with your job?
    • Trying to keep all the gear working to complete the mission.
  • What are some of the rewards with your job?
    • I get to serve my country and leave something behind that me and my family can be proud of.
  • Describe a memorable moment at sea.
    • Seeing killer Whales 5 feet away.

Interview with Tom Stucki

Lead Fishermen

Lead Fishermen Tom Stucki on the NOAA ship Oscar Dyson. Image by Matthew Phillips.

  • Official Title
    • Lead Fishermen
  • Normal Job Duties
    • I run the winches for trawls, Maintain and fix the nets, help with maintenance of our equipment. Paint and preserve the ship when time and weather allows, clean up inside of ship.
  •  How long have you been working on Oscar Dyson?
    • 2 months this time and a month long trip last year. I am a relief pool employee. I fill in where the fleet needs me.
  • Why the ocean? What made you choose a career at sea?
    • I grew up on the coast in a fishing community.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • The crew and work we do.
  • Why is your work (or research) important?
    • Our work is translated back to the commercial fleets so we don’t end up overfishing.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • Once I got out of the Army and went on my first successful Salmon fishing trip.
  • What part of your job with NOAA (or contracted to NOAA) did you least expect to be doing?
    • Traveling as a relief pool employee.
  • What are some of the challenges with your job?
    • Working 12 hour days for months at a time.
  • What are some of the rewards with your job?
    • Knowing that the work I am helping with actually matters and hopefully will have positive implications down the road.
  • Describe a memorable moment at sea.
    • There are lots but its always nice in the middle of a trawl when you look up the sun is setting the water is flat calm and you think to yourself “yeah, I get paid for doing this.

Interview with Jay Michelsen

Skilled Fisherman

  • Official Title
    • Skilled Fisherman
  • Normal Job Duties
    • Operations of equipment to facilitate the needs of the science party.
  •  How long have you been working on Oscar Dyson?
    • two years
  • Why the ocean? What made you choose a career at sea?
    • I love the challenge of creating something stable from something so uncertain and ever changing as the ocean.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • Seeing some of the creatures that the ocean has living in its depth.
  • Why is your work (or research) important?
    • My work is important more for personal reasons, I am able to support my family and make their lives more comfortable. My work on the ship is nothing special besides understanding the rigging and being able to trouble shoot issues that arise just as quickly as they show up.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • I have wanted to pursue a career on the water for as long as I can remember, however it was my mother five years ago who pushed me to follow that desire.
  • What are some of the rewards with your job?
    • I enjoy seeing the creatures that we pull up from the ocean. The pay isn’t bad. If you are able to stay in for a long period of time, you can get a stable retirement.
  • Describe a memorable moment at sea.
    • There was a time that we brought up a salmon shark in the net and I was able to get it back into the water by cutting a hole in the net and pulling it out with the help of another deckhand. It was exhilarating!

Personal Log

Me in the survival suit.

I will admit that my biggest concern with going to sea was the thought of falling overboard. Now that I have been on Oscar Dyson I have learned that safety is a top priority and there are a lot of procedures for keeping everyone productive yet safe. Every week there are safety drills such as fire, abandon ship, and person overboard. The one I like the most is the abandon ship because I get to try on the survival suit. The waters here are so cold that survival overboard is unlikely without the survival suit.

It is comforting to know that the crew of Oscar Dyson work hard to keep themselves and everyone on board safe. I am no longer afraid of falling overboard because I’ve learned to be safe when navigating around the vessel and I have finally developed my sea legs – well sort of! The weather has been amazing with smooth sailing almost everyday. We did have a few days with some rolling seas and I had to put a seasickness patch behind my ear.

 

Education Tidbit: NOAA Fisheries Website

Another cool NOAA website that lets you explore deeper into fisheries and this video shows you how to find information for educators and students.

Did You Know?

The average size of a Bering Sea commercial fishing net is 60m tall by 120m wide.

Kelly Dilliard: Plankton Nets and a Right Whale Calf, June 2, 2015

NOAA Teacher at Sea
Kelly Dilliard
Onboard NOAA Ship Gordon Gunter

May 15 – June 5, 2015

Mission: Right Whale Survey
Geographical area of cruise: Northeast Atlantic Ocean
Date: June 2, 2015

Weather Data from the Bridge:

Air Pressure: 1017.02 mb
Air Temperature: 12.5 degrees C
Relative Humidity: 96%
Wind Speed: 7 knots
Wind Direction: 355 degrees

Science and Technology Log:

Sarah Fortune

Sarah Fortune with a full cod end.

Sarah Fortune, a graduate student at the University of British Columbia (UBC) was testing her plankton net a few days ago and I thought that it would be fun to describe the process.  A plankton net is hoisted overboard on a similar winch and winch cable as the CTD and is used to collect samples of plankton from the ocean.  A single plankton net has a large hoop at the opening, about 50 cm in diameter that then tapers down to a collection container, called a cod end, at the other end.  The plankton net is a little over 3 meters long.  Many plankton nets are actually paired side by side and commonly referred to as “bongo” nets for due to the two hoops looking like bongo drums.  The mesh of the net is made of nylon and can vary in mesh size.  This particular net has a mesh of 330 microns or a third of a millimeter.  This allows researchers to capture very small plankton (millimeter sized).

Plankton net fully extended after being down at about a depth of 150 meters.

Plankton net fully extended after being down at about a depth of 150 meters.

trip mechanism

Trip mechanism used to open and close the plankton net.

The plankton net that Sarah will be using for her research on bowhead whales is designed to open and close at specific depths using a special clasp, called a double trip mechanism.  A rolled up net is lowered to the target depth, a weight is sent down the winch cable and opens the double trip mechansim and the net.  As the boat moves, ever so slightly, organisms are collected in the net.  The net is then brought back to the surface using the winch and then closed again with a weight at another target depth.  I gathered that the double trip mechanism was a bit finicky, so Sarah was practicing the technique.

Plankton net

Washing down the plankton net.

Once the net was out of the water, it was washed down with a hose to make sure that all of the organisms were in the cod end.  Further washing occurred on deck.  The cod end also contains mesh in spots, so the excess water flushes out and the organisms are left in the container (the cod end).  If there is a lot of excess water and organisms these are dumped into a bucket and then brought up to the wet lab to be processed.  A subset of the sample was poured into a test tube, via a funnel, and put in a freezer for further examination off the ship.  If there is excess water, the sample is poured through a mesh sieve to remove the excess water.  Other samples were also saved in beakers.

cod end

Cod end with lots of Calinus finmarchicus.

Sieve

Collection being sieved. The red coloring of the sample comes from Calinus finmarchicus.  There are also some clear jellyfish in there, but they are difficult to see.

Sarah also had a stereoscopic microscope along to examine the catch, though this is a somewhat difficult task as the specimens move around a lot with the ship’s motion.  The target specimen was Calanus finmarchicus, the primary food of the North Atlantic Right Whale.  These are incredibly tiny organisms, typically ranging in size from 2-4 millimeters.  At one point Dr. Baumgartner had one on his finger and even that was difficult to see except for the red pigment.  He also related to us onlookers an interesting analogy of how much an individual right whale would need to consume in one day.  Basically, every right whale needs to eat the weight of a Volkswagen Beetle of Calanus finmarchicus every day.  That is a lot of very small organisms.  Some other interesting organisms that were captured in the plankton net over the day included microscopic starfish, jellyfish, krill, and a fish (which was thrown back into the ocean).

Sample

View of sample using the light of the microscope.  The red organisms with out black eyes are Calinus finmarchicus.  The organisms with two black eyes are krill.

Personal Log:

In past few days we have encountered patches of thick fog that in some cases have lasted for hours.  This has hampered our whale observations, one because we cannot see them in the fog, and two we cannot stand up on the fly bridge (above the bridge) when the fog horn is on (very loud).  So, our sighting numbers are significantly down, with a whole day in which we did not see a single whale of any kind.  One evening, though, we had a really good show from a mother and calf North Atlantic right whale.  We have seen these two before on two occasions.  The mother is 1950.  Her calf was up near the surface for nearly an hour shaking its fluke and flippers, breaching, and rolling onto its back.  The calf also rolled all over the mom when she was at the surface.  This all occurred very close to the ship so everyone on the fly bridge and the bridge was able to watch and see the action pretty clearly.  I was able to capture several photographs and tried a few videos with my camera.  It is not very easy to shoot videos on a boat that is rocking up and down, but I think they turned out okay.

Right whale calf

Various images of right whale calf: “V” shaped blow, characteristics of right whales (upper left), fluke (upper right), calf swimming on its back with flippers flapping (middle row), and a head shot (bottom row). Images collected under MMPA research permit #17355. These photos are cropped images of photographs taken with a telephoto lens.

Breaching right whale

Right whale calf breaching. Images collected under MMPA research permit #17355. These photos are cropped images of photographs taken with a telephoto lens.

Right whale

Right whale calf rolling over the back of its mom, 1950. Notice the callosities pattern on the mom and the two blow holes. Images collected under MMPA research permit #17355. These photos are cropped images of photographs taken with a telephoto lens.

Only a few more days on the ship.  Unfortunately with the fog and the lack of right whale sightings the scientists have not necessarily accomplished all of their objectives, including testing out a new tag that could be used to track a whale for several days.  We come into port early Friday, June 5th.

Group shot

Group shot of the scientists on board (minus Eric Matzen who was only on for the first leg).  Back row from left to right: Mark Baumgartner, Lisa (Grace) Conger, Corey Accardo, Sarah Fortune, and Hansen Johnson.  Front row from left to right: Kelly Dilliard (me), Sabena Siddiqui, Jenn Gatzke, Suzanne Yin, Peter Duley (chief scientist), Divya Panicker, and Chris Tremblay.

Whale poop (strangely colored area) from a fin whale.   Images collected under MMPA research permit #17355. These photos are cropped images of photographs taken with a telephoto lens.

Whale poop (strangely colored area) from a fin whale. Images collected under MMPA research permit #17355. These photos are cropped images of photographs taken with a telephoto lens.

Sue Zupko, Destination: Calibration, September 7, 2014

NOAA Teacher at Sea
Sue Zupko
Aboard NOAA Ship Henry B. Bigelow
September 7-19, 2014

Mission: Autumn Bottom Trawl Leg I
Geographic Area of Cruise: Atlantic Ocean from Cape May, NJ to Cape Hatteras, NC
Date: September 7, 2014

Weather Data from the Bridge
Lat 41°31.3’N     Lon 071°20.8W
Present Weather PC
Visibility 10 nm
Wind 010° 9kts
Sea Level Pressure 1019.8
Sea Wave Height 1-2 ft
Temperature: Sea Water 22°C  Air 28°

Science and Technology Log

Flexibility is the key. Our sail date was changed several times due to mechanical issues. I’m ok with that. It beats getting out in the middle of the ocean and not having things work properly. We weren’t sure exactly when the Bigelow would sail as of Thursday, but were pretty sure it would be today at 10:00 am. NOAA had me fly out to get onboard.

Arrival at airport

Arrival at airport

 

What a blessing that was. I was able to get acclimated (used to) to the ship, meet some crew members, and organize my belongings.

Mrs. Zupko beside the Henry B. Bigelow.

Mrs. Zupko beside the Henry B. Bigelow.

That is a big deal since when docked, nothing is moving. Once we got underway, the ship rocks and rolls. Pencils loose in a drawer aren’t a good idea. Where to store the flashlight? Can I find my necklace in the morning? It’s about routine. The locker (my closet) is noisy to open and close and must be kept closed when underway. Try not to forget things since you have to open that door again–and you have to hold the door since it swings and will bang. Someone is always sleeping. Right now my roommate is sleeping so I am thankful I have a quiet keyboard. She has earplugs in and told me I wouldn’t bother her. I also got to pick my berth (bed), which is on the bottom. There will be four of us in the room when everyone arrives tonight–all scientists.

So far I have had no “duties” other than blogging. When we start trawling, I will work noon-midnight. One of the scientists on my watch, Nicole, gave me a tour today and explained what I will be doing. My foul weather gear consists of heavy orange bib coveralls, a heavy yellow jacket with super long sleeves, and big rubber boots which come up to my knees. I brought inserts to go in the boots since I’ll be standing–a lot. Bought some new shoes that are slip-ons so I can get out of my foul weather gear as soon as we are done processing the fish. I learned that we probably will have over 100 trawls on this leg of the Autumn Trawl Survey and we will climb in and out of our gear often.

Let me explain a bit about how things will happen. Over the ship’s intercom, which will be heard everywhere except our staterooms, the galley, and the lounge, there is a (Bing….Bong….) “Attention on the Bigelow. Streaming….” This means the nets are being let out and will be at the bottom about 20 minutes. What can I do for 20 minutes? Help me out and vote on my poll.

The blue trawl doors on the deck will be added to the net.

The blue trawl doors on the deck will be added to the net.

As the net is let out, blue “trawl doors” attached to the net sink to the bottom, holding the net down and keeping the mouth of the net open. Now, the amount of time it takes to bring the net up varies. The net could have been 24 m down or 350 m down. When they start bringing in the net, the NOAA crew will make an announcement (Bing….Bong….)”Haul back.” They will show me how to find the depth on the equipment so I will be able to judge when to be ready. When the net comes up, the fish will be dumped on a table called a checker. If there are too many, they get dumped on the deck (called a deck tow). I hope it fits in the checker since it will be less work. Imagine picking up all those fish from the deck and putting them in containers.

Once in the checker, they will be fed to a conveyor belt which takes them into the wet lab for processing. We will sort the critters and organic “trash” into buckets by species. (I cringed at the word trash being used for wonderful creatures such as sponges and corals. However, Nicole explained that these are just not our main animals of interest. It is similar to weeds. A weed is any plant you don’t want in a specific flower bed. I love wildflowers, but they don’t always work well in my garden.)

The person in charge (called the “watch” chief) will weigh and label the fish and send the container on. Some fish will be selected for extra information. Others will be released into the sea. Animals that we keep will be for further research.

The work we are doing is very important to monitor the ocean’s health. Health to the ocean, means health to us. If the ocean isn’t healthy, we had better find out why and correct it. It’s like a nurse takes your temperature and looks at your symptoms when you are sick. We are the nurses checking on the sea. Others will analyze the symptoms and come up with a plan to correct any problems. I will give more information on our work later.

Meet the NOAA Crew

Ensign Erick Estela Gomez is originally from Puerto Rico. Most of my dealings when I boarded the ship were with him since he was the OOD, Officer of the Deck, for the weekend. In between his filling in reports and checking on the ship’s systems, we had a chance to talk. He is very personable and has a brilliant smile. Maybe his smile is infectious since he just got engaged to be married and is very happy. Added to his many abilities, he speaks four languages. He explained that he received an Environmental Science degree from the University of Puerto Rico. Most NOAA officers have a science or engineering degree or 60 credit hours in math and science. I need to check my records and see if I have that much. Maybe I could be a NOAA Corps officer.

Ensign Estela’s favorite part of his job is steering the ship. I enjoyed doing that when aboard the Pisces. It is a challenge. While he was off doing a chore, I sat in one of the two tall chairs on the bridge (operations center of ship). When he was done, he explained, very politely, that it is ship’s custom that no one except the captain sit in those chairs. He has been an ensign 1.5 years and said he will not sit in one of those as a sign of respect until he has earned it himself by being appointed to be a captain of a ship. I guess I always figured it was like Captain Kirk leaving Scotty or Spock in charge and they would sit in his chair to give orders. But, Ensign Estela has a lot of respect for earning one’s rank and will sit there when appropriate. So, no cool chair for me on the bridge now.

Ensign Estela paused to really consider what tool he couldn’t live without when doing his job since he uses a lot of important tools. He decided on radar. It can be very foggy and this tool helps avoid collisions (crashes). If he invented a tool, it would be a fog-clearing machine to be able to see smaller vessels (boats) or obstructions.

There are collateral (other) duties for him. He is responsible for inventorying all the equipment on board. Every computer. Every pillow. He also needs to make sure things are in working order. If boots wear out, he needs to order more. That means managing a lot of paper so he needs organization skills. His main duty, however, is navigation officer. He checks the tides and currents and posts all that information on a white board on the bridge. Maintaining charts, ship’s routes, and flags indicating our status are part of his job.  I enjoyed learning a bit more from Ensign Estela on plotting the course using triangles. Triangles provide a nice straight edge.

His advice to my students, and any young person, is to keep up your math and science. Don’t sit in front of the TV or computer, get outside and do things. It’s obvious he does since he bicycles, fishes, and enjoys salsa dancing for relaxation. We call this Sharpening the Saw.

Personal Log

This is the ships call sign.

This is the ships call sign.

This week my students are studying how to communicate across distances on the ocean. How do ships communicate, for example? A ship might not have a radio. Flags work. There is a flag which states what country you are from. There are flags that say you have a net or a diver in the water. There are flags which tell your call sign if you want to speak by radio. There is even a flag for every letter of the alphabet. All these flags are up on the flying bridge, the highest deck on the ship.

Did You Know?

The ship usually uses true north for navigation. However, if that system fails, it uses magnetic north. North is 0°. That is like 90° on a coordinate grid. That is a bit confusing. We use degrees on maps all the time. Just remember that 0°N is used for navigation and wind direction.

Question of the Day 

Something to Think About

A tradition on board a ship is to remove one’s hat in the mess hall (dining area) and to not wear foul weather gear there. The mess hall was used during war as the hospital. People died on those tables and it is a sign of respect to remove one’s hat. Hats are often used to show respect. People remove their hats at a ball game to sing the national anthem. Men tip their hats to acknowledge a woman’s presence. People remove their hats in eating establishments. It is good to learn a country’s or culture’s (such as a ship) customs so as not to offend someone. That is also a sign of respect. When visiting churches while a tourist in Russia, I covered my head and wore a skirt, as is their custom. On board ship, once I leave my room for my watch, I shouldn’t return until my watch is over. That means carrying my computer, cameras, notes, jacket, phone, cup, water bottle, etc. with me so I don’t disturb those asleep. It’s just like being quiet in the halls at school. Guess what? They don’t want us talking in these halls either since someone is always sleeping. It is rude to disturb others, whether it be their sleep or learning.