Ruth Meadows, July 11, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: July 11, 2009

Waiting to see what animals we can spot off the bow

Waiting to see what animals we can spot off the bow

Weather Data from the Bridge 
Temperature 18o C
Humidity 61%
Wind speed 4.2 knots

Science and Technology Log 

Today is our last day at sea and the weather is certainly cooperating with us. We have beautiful blue skies, warm temperatures and calm waters.  It is a perfect day for observing marine life.  Several of us spent most of the day on the bow of the ship looking for any type of marine life.  Throughout the day, we spotted three Mola mola fish, which is a very large ocean sunfish that can be found in temperate oceans.

A humpback whale breaches the water off the bow of the Bigelow.

A humpback whale breaches off the bow.

One went right by the ship so we were able to see the entire body of this fish through the water.  Another one was just lying on its side but we were too far away to see it very well. Finally it was suppertime and we all went to the galley eat, somewhat disappointed that we had not seen more sea life. During supper, the call we had all been hoping to hear came, “Humpback whale off the bow.”  We all left the galley and quickly ran up to the deck afraid we would miss seeing this majestic creature.  We were in for a treat.  It was as if the whale knew we were watching and performed for us.  For over 40 minutes, the humpback whale slapped its pectoral fins, slapped its tail and even breached out of the water twice.  It was an amazing sight.

The fluke of the humpback

The fluke of the humpback

As the whale slowly swam around, the ship carefully followed at a safe distance giving us an amazing opportunity to observe this massive mammal in its natural habitat. At one point, the whale was floating on its back and slapping both of its pectoral fins in the water at the same time.  We were close enough to actually hear the sound of the fins hitting the water.  Many members of the ship’s crew came to the bow to watch also. While we were watching, the chief engineer standing next to me looked down at the water next to the ship in time to point out a Mako shark swimming just below the surface moving slowly toward the rear of the ship. The afternoon turned into an amazing good bye present to the entire crew of the Bigelow. After the humpback whale made its final dive deep into the ocean, many of us stayed outside to enjoy our last sunset over the Atlantic Ocean.

Personal Log 

The past four weeks on board the NOAA ship, Henry B. Bigelow, have been an amazing experience for me.  We traveled over 5,000 nautical miles to search for rare and unusual animals that live in the deep ocean along the Charlie-Gibbs Fracture Zone in the Mid-Atlantic Ridge.  I was truly fortunate to have been selected for this particular scientific cruise.  The scientific crew, NOAA corps and crew were second to none. Everyone worked around the clock to make sure the goals of the cruise were accomplished.  In addition to the professionalism of all the members of this cruise, everyone seemed to truly enjoy working together to complete all parts of the mission. Everyone, from the captain of the ship, the engineers, the deck hands, the cooks and the scientific crew, made me feel welcome and included in all the activities on board. I will take many things with me from this opportunity I was lucky enough to be selected for.

A beautiful sunset on the Atlantic

A beautiful sunset on the Atlantic

I knew I would learn a lot about the ocean and the organisms that live there.  What I didn’t know before I left was how much I would enjoy getting to know the people that were a part of the MAR-ECO cruise. Thank you for allowing me to be a small part of this wonderful experience.

Ruth Meadows, July 9, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: July 9, 2009

Venda, Shannon and Amy cleaning the baskets.

Venda, Shannon and Amy cleaning the baskets.

Weather Data from the Bridge 
Temperature: 14.2o C
Humidity: 61%
Wind: 6.5 kts

Scientific and Technology Log 

One of the last things to be completed before arriving in Newport, Rhode Island is a final clean up of the lab. Once all the sampling is finished it is important to leave all the equipment used in good shape for the next cruise. Everyone from both watches worked together to get everything clean. The baskets and trays that were used to hold the samples were scrubbed down and rinsed off. Luckily, the day was beautiful for working outside.

Shannon and I help Tom clean his suit.

Shannon and I help Tom clean his suit.

While some of us cleaned the baskets, others rinsed them off and then placed them in the sun to dry.  Once they were dry, then they were returned to the correct location for storage. Once the baskets were cleaned the next step was to clean our foul weather gear.  These overalls and jackets had been used while collecting samples and they had all types of “dirt” on them, from “fish guts” to grease from the cables.  The easiest way to clean them was to scrub them while you had them on.  Someone would help make sure the back was clean and then someone would spray them with clean water.  It was simple, effective and fun all at the same time.

The serving line.

The serving line.

Personal Log 

Mealtime is a very important time aboard the ship.  Not only do we eat a variety of foods, but it is also a time when both the scientific crew and the working crew get a chance to talk and visit with each other.  The galley is a large open room with tables bolted to the floor to keep them from moving.  Some tables are for four people and others are for eight.  Each day the menu is posted before the food line and you may select what you want and how much.  There are usually two entrées (main dishes) and several side dishes to go along with them.  In addition, there is a fruit and salad bar that you can select. At the end of the cruise, you notice that some of the menu that some of the menu items have changed – we are out of lettuce and ketchup. We have been at sea for four weeks and some things just can’t be kept fresh that long. We still have apples, oranges, nectarines and ice cream!

The mess hall

The mess hall 

Ruth Meadows, July 7, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: July 7, 2009

Tom Letessier holds a sea urchin fully inflated with water.

Tom Letessier holds a sea urchin still fully inflated.

Weather Data from the Bridge 
Temperature: 8o C
Humidity: 91%
Wind: 9.75 kts

Science and Technology Log 

Usually by the time the catch was on board, the sea urchins were deflated and very flat. These are commonly known as collapsible or flat urchins. When it is taken out of the water, it collapses into a flat shape. There is a red shrimp on the right side. We caught many different sizes of the Bathysaurus during the benthic trawls.  It has a very bony head, large mouth and lots of sharp teeth.  It normally rests stationary on the bottom of the ocean floor with its head slightly elevated.  It feeds primarily on fishes and decapods (type of crustacean).

Lizardfish

Lizardfish

A deep sea crab, Neolithodes grimaldii, was found in two different benthic catches. Its spines are very long and sharp. They were both in remarkably good physical shape and were carefully preserved so their spines would not break.

A deep sea crab, Neolithodes grimaldii, was found in two different benthic catches. Its spines are long and sharp. They were in remarkably good shape and were carefully preserved so their spines would not break.

We are finished with our trawls and are heading back to Newport, Rhode Island.  The trip back will take about 7 days.  During this time, the information that was entered into the computers will be analyzed and checked for any errors. In addition, the organisms that are preserved will be sorted and packaged for delivery to various locations.  Many of the samples will be going to the Virginia Institute of Marine Science (VIMS) and later distributed to various scientists to use in their research. Dr. Tracey Sutton will even send some specimens to me in Opelika for my students to observe.

Personal Log 

Occasionally, when the weather and work schedule allows, the deck chairs come out and we relax and visit with one another outside.  The crew calls this “The Stinky Sailor”. There will be soft drinks, slushy type drinks, sometimes candy and if we are lucky Andrew entertains us with his music. This part of the ship is called the O2 deck, two floors up from the main deck.  The Stinky Sailor is set behind the superstructure of the ship so it is protected from the wind.  When we were sailing east, the afternoon sun would warm the area making it a very pleasant place to visit and relax. 

Screen shot 2013-04-28 at 10.23.07 PM

Ruth Meadows, July 5, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: July 5, 2009

dumbo octopus

Dumbo octopus

Weather Data from the Bridge 
Temperature: 10.3o C
Humidity: 93%
Wind: 8.9 kts

Science and Technology Log 

Dr. Mike Vecchione holds a very large dumbo octopus from one of the deep sea trawls. This octopus got its name from the large fins that look like the ears of “Dumbo” the elephant. It is a benthic cephalopod (an ancient group in the phylum Mollusca) that lives above the floor of the ocean. It probably feed on copepods and other small crustaceans, but we don’t know much about its biology. This particular species (Cirrothauma magna) has only been caught a few times before.

a very large example of a slickhead

A very large example of a slickhead

John Galbraith and Tom Letessier hold a very large example of a slickhead. These fish are dark in color and their exterior is slippery. These soft-bodied soggy fish are common in waters greater than 1000m deep. They get their common name from the slimy look of their head. They lack a swim bladder and make themselves as light as possible by having weak bones and watery flesh. Chimeras are distantly related to sharks and rays and can be found at depths up to 2500m. These fish have cartilage instead of bones. We caught several of these in the benthic trawls, but this one was the largest.  Most of these fish have a venomous spine at the back of its dorsal fin.

This is a chimaera that weighed in at 12 kilograms.

This is a chimaera that weighed in at 12 kilograms.

Basti (from Germany) is holding another chimaera, Venda (from Portugal) has a slickhead and Meridith (from Boston) has a lizardfish from the last benthic trawl of the cruise.

Basti (from Germany) with a chimaera, Venda (from Portugal) has a slickhead and Meridith (from Boston) has a lizardfish.

Do You Know? 

What would happen between a shark and an octopus? Find out here.   

Ruth Meadows, July 3, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: July 3, 2009

Weather Data from the Bridge 
Temperature: 6.2oC
Humidity: 81%
Wind: 16.47 kts

This is one of the glass floats encased in plastic that can withstand the pressure of the deep waters.

This is one of the glass floats encased in plastic that can withstand the pressure of the deep waters.

Science and Technology Log 

High winds and high waves put a temporary stop to our fishing with the nets.  When the waves are too high, the safety of the crew comes first and we wait for the weather to clear before we can start using the trawl again. The waves finally calmed down enough for the net to be used today.  We are using a different type of net to fish the deep bottom (benthic trawling) than was used to fish the mid-water (pelagic trawling). This net is much simpler in design. It is a very large net lowered to the bottom of the ocean and then pulled behind the ship. The top part of the net is held open by floats. These floats were bought specifically for this cruise.  The pressure on the bottom of the ocean is so great that normal floats would collapse.  The new floats are made of glass spheres with a hard plastic covering. Only glass can withstand the amount of pressure that is found at these depths.

This is the net used for deep bottom trawling that has the yellow floats attached to it.

This is the net used for deep bottom trawling that has the yellow floats attached to it.

There are rubber tire-like rollers that move along the bottom to help prevent snags and also to stir up the sea floor and cause the fish and other organisms to move into the net where they are then funneled back into the narrow end of the net (cod-end). There are weights on the bottom section of the net to keep it on the ground.  Of course, there are always obstacles on the bottom of the ocean floor and occasionally the net will get caught on one of these. This is a particular problem here because of the mountainous terrain.  When the net gets hung up the crew works very carefully to release it from the obstacle.  Sometimes the ship moves backwards as the winches try to pull on the net to release it.  Sometimes the ship moves in a circle to try and pull the net clear.    

The full net after it’s been retrieved on deck.

The full net after it’s been retrieved on deck.

So far the benthic net has gotten caught twice but the crew successfully retrieved the net without damage. Once the net is on deck, the cod-end is opened and everybody comes out of the lab with foul weather gear (waterproof boots, overalls, jackets, life preserver and hardhats) on to collect the catch. We use lots of baskets to do a quick rough sort of the organisms caught.  If the net is full, it takes a while to complete the first sort.  Some of the fishes are large and some of the organisms have been torn. The organisms found on the floor of the deep floor are very different from the ones found in the mid-waters. They are much larger in size and very different in coloration.

Personal Log 

A bucket with squid and other fishes.

A bucket with squid and other fishes.

The scientific crew is divided into three groups.  We have a “day” shift, called a watch, that works from 12 noon to 12 midnight, and a “night” watch that works from 12 midnight to 12 noon, and then one group that works whenever a net comes up.  I am on the day watch and we have all gotten into a pattern of who does what in the lab.  My watch chief scientist is Dr. Shannon Devaney from Los Angeles.  She works at the Natural History Museum there.  Dr. Amy Heger from Luxembourg, Tom Letessier from Norway, CJ Sweetman from Connecticut and Randy Singer from Georgia rounds out our crew.  CJ takes DNA samples, Tom takes care of the crustaceans, Randy removes the ototliths (this helps the scientist figure out the age) from the fishes, and Amy and I use the computer to enter the data.  With some species we remove the stomach, liver and gonads from the fishes.   These body parts are then measured and either frozen or preserved for scientists that are not on the trip.  It has been fun relearning how to do some of the procedures.

The first sort of the catch.

The first sort of the catch.

Ruth Meadows, June 26, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: June 26, 2009

Weather Data from the Bridge 
Temperature: 10.8oC
Humidity: 83%
Wind: 20.11 kts

Science and Technology Log 

We are collecting lots of specimens for the scientists to take back with them and study further.  Some of the animals are very abundant, showing up in every trawl, and others are rarer.  The most common fish collected is the Cyclothone.  This small fish (1 – 2 inches in length) is the most abundant vertebrate (has a backbone) in the world. We have caught them by the hundreds at all depths. It has a large mouth for such a small fish.

A Cyclothone, commonly known as a bristlemouth or anglemouth

A Cyclothone, commonly known as a bristlemouth or anglemouth 

Chauliodus sloani, commonly known as a viperfish, is larger than the Cyclothone.  It normally lives in deep water from 1000 to 2000 meters but it can migrate to shallower water during the night. We try to collect samples both at night and in the daytime so we can compare the depths the organisms are found.  As you can see these fish have very large teeth.  This one had a copper color to most of its body.  My finger is at the bottom of the jaw so you can have an idea of the size of the teeth.

Chauliodus sloani, commonly known as a viperfish

Chauliodus sloani, commonly known as a viperfish

One of the most interesting fish caught so far is an anglerfish. We have only caught three since they are not as abundant as many of the other types of fish. When the first one was brought out of the net, Dr. Mike Vecchione immediately knew it was a female.  I asked how he knew so quickly because the sex of the other types of fish we previously caught could not be identified by just looking at it. The male angler fish is very small when it is young.  When he finds a female, he attaches to her side and most of his organs disintegrate so he is totally dependent on the female for food.  When the female is ready to lay her eggs, the male is right there ready to fertilize them.

An anglerfish—see the bioluminescent tip of the lure located at the top of the head? (photo by David Shale)

An anglerfish—see the bioluminescent tip of the lure located at the top of the head? (photo by David Shale)

She has her own “fishing pole” and lure located at the top of her head.  The tip of the lure has a bioluminescent organ that glows with a blue- green light. The fish uses this like a fishing lure, waving it back and forth to attract its next meal.  The jaw can be extended to an incredible size and the fish can swallow prey twice as large as it is.  Food in this area of the ocean can be scarce at times, so the anglerfish can stock up on food when she finds it.

Dr. John Galbraith looks for animals.

Dr. John Galbraith looks for animals.

Personal Log 

It took five days of travel to arrive at our first sampling location.  During this time we had a chance to get to know each other and to rest up for the work to come. Everybody enjoys the outdoors and when the sun is shining there are usually at least some people on deck looking for animals or just enjoying the day.

A nap in a hammock is just what Zach Baldwin needs

A nap in a hammock is just what Zach Baldwin needs

Reading and enjoying the fresh air at sea on the flying bridge

Reading and enjoying the fresh air at sea on the flying bridge

Ruth Meadows, June 19, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: June 19, 2009

Weather Data from the Bridge 
Temperature: 9oC
Humidity: 95%
Wind: 4.36 kts

Scientific and Technology Log 

We are currently working in the pelagic zone of the ocean.  Pelagic refers to the open ocean away from the bottom. The word pelagic comes from a Greek word that means “open ocean”.  The pelagic area is divided by depth into subzones.  .

  • The epipelagic , or sunlit zone, is the top layer where there is enough sunlight for photosynthesis to occur. From 0 – about 200 meters (656 feet)deep
  • The mesopelagic, or twilight zone, receives some light but not enough for plants to grow.  From 200 – 1000 meters (3281 feet)
  • The bathypelagic, or midnight zone, is the deep ocean where no sunlight penetrates. From 1000 – 4000 meters(13,124 feet)
  • The abyssal zone is pitch black, extremely cold and has very high pressure.  From 4000 – 6000 meters.(19,686feet)
  • Hadalpelagic zone is the deepest part of the ocean. These zones are located at trenches where one tectonic plate is being subducted under another plate. 6,000 meters to over 10,000 meters. (35, 797 feet)
Setting up the net that will collect organisms

Setting up the net that will collect organisms

Today we are using a special trawling net to capture organisms that live in the mid-water area around 3000 meters deep. The closed net is lowered slowly from the rear of the ship until it arrives at the correct depth. The length of the wire released is measured by the winches as they unwind. A timer is used to open the cod-ends (containers at the end of the net).  It is then pulled underwater very slowly. The five cod-ends are set to open and close at different times so there will be samples of organisms from different depths.  After a specific amount of time the net is slowly reeled in. It takes about 8 hours to fully deploy and retrieve the trawl.  Each cod-end should have samples from different depths. Once the net is back on board the ship, it is very important that the material collected from each cod-end be kept separate and labeled correctly.

All the blue buckets contain various organisms

All the blue buckets contain various organisms

The second trawl came in around 4:30 in the afternoon. We were really excited to see the organisms that were collected in each of the cod-ends. Each container was emptied into a large bucket and a picture was taken to record the catch. One set of material was left out to begin sorting and the other containers were put into the freezer to remain cold.  David Shale, the professional photographer for the cruise, selected the best samples to use for his photographs. Then the actual sorting began. Several of us would do a rough sort, all the crustaceans (different types of shrimp-like animals) in one container, fishes in another, and jellyfishes in another. After the rough sort then the final sort is started (dividing all the organisms into groups by specie or family). 

Certain types of organisms were abundant – hundreds of them, others were rarer – only one or two of each species. As soon as we are finished with one species, information about them is entered into the computer (number, length, mass) and then the organism is saved for later investigations by either freezing or placing in a preservative.  A printed label is included in all samples so they can be identified by name, depth and location of trawl.

Personal Log 

A viperfish

A viperfish

Everyone on board the ship is always interested in any sightings of marine mammals.  The officer on the bridge will often announce to the lounge area if he spots any type of animal, “Whales off the bow.”  As soon as the announcement comes on, we bolt out of the lounge to the outside as fast as we can.  Sometimes you are fast enough and sometimes you aren’t. The dolphins usually are the easiest to spot as they swim in groups and surface frequently as they are swimming.  The whales, however, are a little more difficult to see.  They are usually far off so the distance makes them difficult to spot.  When they surface, the spray from the blowhole is usually your first indication of where they are.  After that, most of them dive again and you may not get a second chance to see them.  So far the type of whales spotted have been pilot whales, sei whales and a sperm whale.  They knew it was a sperm whale because the spray from the blowhole was at an angle. It is much more difficult to see these animals than I thought it would be. It is like trying to find a needle in a haystack – a very big haystack…

Did You Know? 

The Mola mola is the heaviest known bony fish in the world.  It eats primarily jellyfish which doesn’t have a lot of nutrition in is so they have to eat LOTS of them.  It looks like a fish with only a head and a tail, no middle part.

Dr. Mike Vecchione took this picture of a Mola mola, a very large ocean sunfish, at the beginning of the cruise off the coast of Rhode Island.

Dr. Mike Vecchione took this picture of a Mola mola, a very large ocean sunfish, at the beginning of the cruise off the coast of Rhode Island.