Kaci Heins: September 21-23, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

NOAA Ship Rainier

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Friday, September 23, 2011


Weather Data from the Bridge

Clouds: Overcast
Visibility: 10 Nautical Miles
Wind: 25 kts
Waves: 1- 2 feet
Temperature
Dry Bulb: 10.3 degrees Celsius
Barometer: 1002.6 millibars
Latitude: 55 degrees North
Longitude: 133 degrees West

Science and Technology

Rainier Skiff Boat

Now that there is a small window of clear weather I am able to go out on one of the small boats called a skiff.  This boat holds about 8 people max and is mainly being used to move people and equipment around to the different stations.  The night before I was scheduled to leave I learned that my task on this outing was going to be reading the tide staff every six minutes for 3 hours.  I know the initial reaction might be, “Why would you want to do that?”  Well, it is actually really important for the data that we are collecting.  When the equipment (primary benchmark, tide gauge, tide staff, orifice, etc.) was placed on Block Island this allowed the scientists to be able to know what the actual water levels would be for the launches when they head out. This in turn, is important because the height of the water levels will affect the data that is being collected on the launches (survey boats).  The first few hours started giving us pretty good data, but then we stopped getting anything at all.  We had been hit by a storm so numerous scenarios were being brainstormed so we could be prepared for anything that we might find when we got there to fix the problem.

Garmin Route to Block Island Courtesy of Todd Walsh

We traveled from the Rainier to Block Island, which was about 19 miles away.  When we got there the tide staff was in good shape and even the antennas and GPS looked good.  However, upon further inspection they found that there were glitches in the software files that had made it stop collecting data.  Once they got it going again, my partner Starla, and I went straight to work collecting the high and low wave of the tide.  We then used this data to calculate the mean (average) of the two.  We had to collect this data every six minutes for three hours because that is the same data that the tide gauge is collecting.

Tide staff at Block Island

We had to use GPS time–which was the same as the tide gauge–and not our own watches. This is because we needed the same time stamp for the data, which allows the scientists to see that the data was collected at exactly the same time.  Scientists can then look to see if the data we collected and the data the tide gauge collected are the same or if there are errors.  Then, they can see if it was human error or if something is still wrong with the tide gauge.  These first three hours were very important for the data collection, but the scientists will continue to monitor the station every three to four days for one hour throughout the month to make sure it is collecting data properly.

Mrs. Heins Taking Tide Staff Measurements

As we collected the data, one of us would watch the clock while the other would very intently watch the tide staff.  Once it would come to the time we would have to collect the data she would say “Mark!” and that would be my cue to note the high and low of the wave against the tide staff.  I would tell her my observations up to four digits, such as 1.967 meters.  However, because we would use quick observations to collect our data, our precision would probably be only to three significant figures. Significant figures are digits of a number that carry meaning and factor  into its precision. Starla would record the data and then we would wait six minutes until the next time to make our observations. When we were done, we downloaded the data from the tide gauge, packed up the skiff, and head back to the Rainier. Overall, it was a really great day being able to collect this important data and contribute to the mission of the ship.

Heading Back to the Rainier

Personal Log

Calculating Radar Ranges on a Nautical Chart

Math, math everywhere!!  Since the first day I have been on the Rainier I have seen math being used all day, every day.  Even though I don’t specifically teach math I do integrate it within science and social studies.  However, I have heard from students, “Why do I have to learn this?” in regards to their math homework.  There isn’t always enough time in the day to give a thorough explanation of how different math skills are used in the real world.  However, from my past NASA experiences and now with NOAA on the Rainier, I am here to tell you that once you enter the real world, especially if you enter a science, math or engineering field, then you will be immersed in math.  It will become a part of your daily routine without you really realizing it.  One place where math is used constantly, and is also one of my favorite places on the ship, is the bridge.

Math is used in navigation, such as setting a course, calculating distances, speeds, and times.  I also got some practice with calculating radar ranges, which can give the officers their location based off of 3-4 points of land nearby.  GPS is being used all day, every day and there are multiple GPS systems in case one fails.  Again, the officers use this information in their calculations throughout the day while we are at sea.  When I have been collecting weather data on the bridge math is being used to calculate the wind speed and direction.

Finding an Azimuth

Then there are conversions being calculated because some of the charts are in meters, some are in feet, and some are in fathoms.  A fathom is used more for deeper water because 1 fathom equals 6 feet.  Because these are dealing with depths it is very important to make sure the conversions are correct so that the ship stays safe.  Then of course there is math used in other ways on the ship.  For example, the Executive Officer (XO) has to work with the ship’s budget, the cooks work with measurements in the galley, and the scientists work with math formulas as they process the data in their projects.

Overall, I highly encourage my students and any other young minds that are reading this to do your best in math and ask for help if you need it.  It can be an intimidating subject area at times, but if you want to work for NOAA, be a scientist, or engineer then it will be an important part of your job.  Once you have an idea of what kind of job you want to have when you get older, try to find out what kind of skills you need to have and start early.  See how the math is used in the real world, the job you are interested in, and learn how to have fun with it!

Student Questions Answered!

Animals Seen

Sea Lion

Whales (not sure of the species)

California Sea Lion

Moon Jellyfish

Question of the Day