Ragupathy Kannan: Petrels to Pilot Whales, August 30, 2019

NOAA Teacher at Sea

Ragupathy Kannan

Aboard NOAA Ship Gordon Gunter

August 15-30, 2019


Mission: Summer Ecosystem Monitoring

Geographic Area of Cruise: Northeast U.S. Atlantic Ocean

Date: August 30, 2019


Weather Data from the Bridge

Latitude: 40.72218
Longitude: -69.45301
Water temperature: 19.8 degrees Celsius
Wind Speed: 5.25 knots
Wind Direction: 87.06 degrees
Air temperature: 23.2 degrees Celsius
Atmospheric pressure: 1006.85 millibars
Sky: Cloudy


Science and Technology Log

We’ve had a flurry of whale sightings as we passed over the famous Stellwagen Bank National Marine Sanctuary.  It’s a small underwater plateau in Massachusetts Bay flanked by steep drop offs.  Nutrients from the depths rise up by upwelling along the sides, feeding phytoplankton in the shallow light-abundant waters, and this creates perfect feeding habitat for whales.

Much of my time aboard this ship has been on the flying bridge (the highest point of access for us on the ship) scanning the seas for marine vertebrates.  I have basically been an extra pair of eyes to assist my colleagues Chris Vogel and Allison Black, the seabird observers on board.  From nearly 50 feet high above the water, the flying bridge gives nearly unimpeded 360° views of the horizon all around.  I call out any vertebrate animal seen—fish, birds, reptiles, or mammals.  Chris and Allison enter all of our data in a specific format in a software program called SeaScribe. 

To calculate densities of each species, we need an estimate of how far the animal is from the ship for each sighting.  For that we use a rather low tech but effective piece of equipment.  The pencil! 

Pencil as observation tool
Pencil as observation tool

This is how it works. The observer holds the pencil (photo above) upright with arm outstretched, aligning the eyes and tip of the eraser to the horizon (see photo below), and simply reads the distance band (Beyond 300m, 300-200, 200-100, or 100-50m) in which the animal is seen.  Thanks to some fancy trigonometry, scientists found a way to estimate distance by using the height of the observer’s eyes from the water surface, the distance from the observer’s eyes to the eraser tip of the pencil when it’s held upright with arm outstretched, and the distance to the horizon from the height of observer’s eyes above water.  I’ll spare you the trigonometric details but those curious to learn more can find the paper that introduced the technique here.

Kannan and range finder
Here I am using the range finder

Seabirds are a challenge for a rain forest biologist like me.  They move fast and vanish by the time you focus the binoculars! And the fact that the deck heaves up and down unexpectedly adds to the challenge.  But slowly I got the hang of it, at least the very basics.  I’ve recorded hundreds of shearwaters, storm-petrels, boobies, gannets, jaegers, and skuas.  Whales (sea mammals) seen include Finbacks, Humpbacks, Minkes, and Pilots.  I am hoping to see a Right Whale but I know that the odds are against me.  Time is running out, both for our voyage, and for them.  Unfortunately, only a few 100 are left and the ocean is huge—the proverbial needle in the haystack.  Chief Scientist Harvey Walsh tells me that this year so far, 8 Right Whales have died due to accidental collisions or net entanglements.  Sadly, the future looks bleak for this magnificent animal.  (More on Right Whales at the end of this blog).

Great Shearwater ebird
Great Shearwater is one of the most common seabirds we have recorded. This bird nests only in a few islands in the South Atlantic Ocean and wanders widely. Photo by Derek Rogers, from ebird.org

I note that marine vertebrate biologists are good at extrapolating what little they can see.  Much of their subjects are underwater and out of sight.  So they have become good at identifying species based on bits and pieces they see above water.  All they need often is a mere fleeting glimpse.  Sharks are told by the size, shape, and distance between the fins that stick out, sea turtles by the shape and pattern on their carapace (top shell–see photos below); whales based on their silhouette and shape of back; and Molas based simply on the fact that they lazily wave one large fin in and out of the water as they drift by.  (I thought it was the pectoral fin they waved, but it’s actually the massive dorsal fin.  I’ve noted that the pectoral is rather small and kept folded close to the body). 

leatherback sea turtle A. Black
A fleeting glimpse is all that is needed to identify a Leatherback Sea Turtle, thanks to its diagnostic longitudinal ridges (Photo by Allison Black).
shark fins
We’ve had several shark sightings such as this. The size, shape, and the relative locations of the fins indicate that this could be a whale shark (Photo by Allison Black)

Scientists can identify individual humpbacks based solely on the indentations and color patterns on their tail flukes.  In effect, each individual animal’s tail fluke is its unique fingerprint. Since the tail fluke is often seen when the animal dives from the surface, scientists have a huge photographic database of humpback tail flukes (see photo below).  And they track individuals based on this.  My ecology students should know that scientists also estimate populations based on a modification of the capture-recapture method because each time an individual’s fluke is photographed, it is in effect, “tagged”.  We do a nice lab exercise of this method by using marked lima beans masquerading as whales in my ecology lab.

humpback tail flukes
Researchers use variation on humpback whale flukes to identify and track whales (from Wildwhales.org)
Finback whale
Finback Whales are easily identified by the fin on the back (From aboutanimals.com)


Career Corner

I spoke with Allison Black, one of our seabird observers on board.

Q. Tell us something about yourself

A. I really love seabirds.  I’m fortunate to have been able to do my Master’s work on them and observe them in their natural habitat.  I have an undergrad degree in zoo and wildlife biology from Malone University in Canton, Ohio. 

Q. You’re a graduate student now in which university?

A. Central Connecticut State University

Q. What’s your research project?

A. I conducted a diet study of Great Black-backed and Herring Gulls on Tuckernuck and Muskeget Islands, Massachusetts.

Q. You have done these NOAA seabirds surveys before?

A. Yes, this is my third.

Q. What happens next, now that you are close to finishing your Masters?

A. I’m looking for full time employment, and would like to work for a non-profit doing conservation work. But until the right opportunity arises you can find me on a ship, looking for seabirds and marine mammals!

Q. What’s your advice to anyone interested in marine science?

A. I had a major career change after I did my undergrad.  I thought I’d always be a zoo keeper, which I did for about two years until I decided that birds are really my passion, and I needed to explore the career possibilities with them.  To focus on that avenue I decided to return to graduate school.  So I would encourage undergrads to really find what drives them, what they’re really passionate about.  I know it’s hard at the undergraduate level since there are so many fields and avenues under the Biology umbrella.  And it’s OK if you haven’t figured that out for a while.  I had a real change in direction from captive wildlife to ornithology, and I’m here at sea in a very different environment.  I’m so glad I did though because following my passion has opened up some exciting avenues.  I’m lucky to be getting paid to do what I really love right now.  So grab any opportunity that comes by. It’s never too late to evaluate your career path.

Allison Black
Allison Black entering our observations in SeaScribe


Personal Log

My feelings are bitter-sweet as this wonderful 16-day voyage nears its end.  My big thanks to NOAA, the ship’s wonderful command officers and staff, our Chief Scientist Harvey Walsh, and my colleagues and student volunteers aboard for making the past 2 weeks immensely absorbing.  Above all, kudos to the ship’s designers, who have clearly gone out of their way to make life aboard as easy as possible.  In addition to the unexpected luxuries covered in my previous blogs, there is even a movie lounge on board with an impressive DVD collection of over 700 movies! Yesterday I saw our student volunteers play bean bag toss on the winch deck. Yes, you can throw darts too.  The ship’s command even organized a fun sea animals-bingo game one evening, with winners getting goodies from the ship store (see below).

movie lounge
The movie lounge on board
The ship’s store
The ship’s store


The engine rooms tour

As part of our grand finale, we were given a tour of the engine rooms (which are usually off bounds for non-crew members) by our genial First Engineer, Kyle Fredricks.

engine room
A glimpse of the intricate innards of the ship. To the right is the massive shaft that ties the two rudders together.
sensors and monitors
Sensors and monitors keep tabs on engine function 24/7
1st E Kyle Fredricks
First Engineer Kyle Fredricks explains the desalination system on board. It works by reverse osmosis. All explanations are done by gestures or written notes because of noise in the background. Note ear plugs on all of us!


Did You Know?

NOAA has strict policies to avoid collision with whales, especially the highly endangered Right Whale.

right whale ship strick reduciton rule
This poster is prominently displayed on board. Vessels have to comply with rules to avoid accidental strikes with Right Whales

Interesting Animals Seen Lately

South Polar Skua

Great Skua

Pomarine Jaeger

Black Tern

Manx Shearwater

Sooty Shearwater

Leach’s Storm-petrel

Northern Gannet

Brown Booby

Great Black-backed Gull

Humpback Whale

Pilot Whale

Ocean Sunfish

Catherine Fuller: From Microplankton to Megafauna, July 13, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019

Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 13, 2019

Science and Technology Log:

Through the Microscope

Gwenn with microscope
Gwenn using one of the microscopes to look at phytoplankton.
Gwenn and labels
The Lady of a Thousand Labels, hard at work.

Dr. Gwenn Hennon will be starting as an Assistant Professor with the University of Alaska in the fall.  Her interest is in the types of microbes, especially phytoplankton, that are in the water and what they are doing. She is studying what limits them, whether it is nutrients, light or other factors.  She finds it interesting to try to find interactions between phytoplankton and other organisms, such as ciliates that are filled with chloroplasts that they steal, termed “kleptoplasts.”  She investigates what microbes they stole them from, how the ciliate steals the plastid and how they maintain it. While a lot of algae have photosynthetic genes and controls in the nucleus, ciliates wouldn’t be expected to have those controls, but they must have some in order to keep plastids alive, and these need to have specific genes in order to control specific plastids.  There is a trade-off between specificity of genes for certain plastids and being able to keep the plastids alive for a long time.  Ciliates can also live by just eating other organisms, so another field of investigation would be to look at which genetics are used when organisms are switching between strategies. One goal of this research would be that, when looking at samples from various stations, someone would be able to say what the ciliates are doing without having to do experiments. 

The NGA is a very complex ecosystem, and this cruise has shown me that any scientific investigation needs to have a very specific focus rather than a shotgun approach, in order to have productive results. There is so much to be studied that the potential amount of data that can be gathered is staggering.  

Because the LTER has been funded for many years, there are great sets of time series to look at for some studies, but molecular data is fairly new and adds a lot to the picture.  Gwenn’s work, and the work of others at the molecular level are just the beginning of an understanding of life at the microscopic end of the scale. 

observation deck
Dan and Gwenn on the observation deck. Dan’s always on the lookout!

Through the Binoculars:

Fin whale
Fin whales come fairly close to us out in the deeper Gulf waters.

Dan Cushing is the U.S. Fish and Wildlife seabird and mammal specialist and is here to investigate organisms at the large end of the size spectrum, compared to everyone else on board. His workstation is primarily the bridge of the ship, where he is on the lookout for birds and mammals. He records the species and number spotted, and the time and the GPS location of each sighting. He also logs environmental conditions such as fog and wave height that can affect visibility.

Dan comes from a small fishing town with a population of 3000. He wasn’t necessarily interested in birds specifically when he was young, but developed a gradual interest in them. He likes that working with seabirds combines aspects of being a wildlife biologist with aspects of being a marine biologist. Dan has done both land-based projects at seabird breeding sites and ocean-based surveys on small boats and large research ships. One project that he worked on included attaching sensors to diving birds to record water temperature, depth, and location. This provided information about water conditions as well as about the behaviors of the birds and their feeding patterns in those conditions.

The variation in distribution and feeding strategies of bird species make them a good indicator of what is happening to the environment at different levels in the ecosystem. For example, Dan used small-boat surveys to look at changes in marine bird populations in Prince William Sound. He found that, over a period of two decades, declines had occurred in almost half of the species he looked at. In general, species that occurred farther from shore and fed on zooplankton and fish had greater declines than those that fed on prey along the shoreline and the nearby seafloor.

Studying the changes in a bird population leads to investigations that connect down the food chain through fish species to plankton (which, of course, is the focus of this cruise) and finally to climate change. Dan sees changes in the availability of fish species having a direct effect on the economic health of Alaskan communities that depend on fishing to survive. Coming from a fishing community, this hits home for him. As smaller species respond to climate change, a ripple effect works its way up the food web and so human populations must also alter their survival strategies as well.

coming in for a landing
One of Dan’s feathered friends coming in for a landing off the working deck.
albatross
An albatross follows along behind us.
Gulls
Gulls watch the working deck with interest in hopes of food (not going to happen).


Personal Log:

The longer I’m on board, the more the pieces of the puzzle seem to come together.  On thing that really strikes me about the teams on board is the intensity of their research and the drive they have.  Each person here is making the most of their opportunity for data gathering. Gwenn, for instance, I have nicknamed “the lady of a thousand labels” because her work ethic and preparedness are so impeccable.  She is just one example of the discipline and passion I see on board. 

There is enough potential data to be gathered here to provide for years of research.  Each of these researchers is not only singularly focused on their specialty but also well aware of the underlying premise of their research, i.e. that what they’re studying will serve to document climate change.  Already, this year has brought anomalous weather to the Gulf, which, in a sense, makes conclusions about how and why changes occur a bit difficult.  Another thing that is noteworthy on this cruise is that, because there are PIs (Principal Investigators) on board, there is a lot of discussion of ideas and plans for collaboration.  Already, Gwenn, Suzanne, Hana and Clay have been talking about a potential project where their ideas intersect.  The amount of time we’re out allows for more interaction between people and more room for ideas to develop. 

Finally, as I ask each person what they want kids or the public to know from their research, the answers I am getting all focus on the same thing: change is happening and every organism on the planet is affected by it.

map of the shelf
An image of the shelf; the data station lines cross over this to get a complete range of samples from shallow to deep in order to understand the complexity of the ecosystem and the changes happening within it.


What do you want kids to know about your research?

Gwenn: All things are related to each other.  All species on earth developed from the same ancestral single-celled organisms.

Dan: If you don’t pay attention to what’s around you, you won’t see how it changes.

Roy Moffitt: Observing Whales Today and for the Next Year, August 8, 2018

NOAA Teacher at Sea

Roy Moffitt

Aboard USCGC Healy

August 7 – 25, 2018

 

Mission: Healy 1801 –  Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: August 8, 2018

Current location:/conditions Evening of August 8th: Near King Island, AK the most southern part of the trip – Air temp 49F, sea depth 50 ft, surface water temp 52F

 

Mammal and Bird Observations

Up on the observation deck formal bird and mammal observations are taking place for the extent of the trip. When recording sighting of birds, observers observe an approximate 300m square area in the front of the ship.  Any seabird that flies or swims through that zone is counted and recorded. Doing these observations over time can give approximations on bird population trends. Here is a picture I took of a Crested Auklet who floated close by to the ship. Crested Auklets eat primarily plankton and breed in the number of millions in nearby islands of the Bering Sea.

Crested Auklet

Crested Auklet

The same can be done for whales. In this case the visible range is used.  With the low angle sunlight, it is easy to see the whale spout from a whale on the horizon, however closer range views of whales is needed for identification. That’s most effectively done on the long range by taking pictures of the whale’s tail.  Here is a picture I took today of a gray whale’s tail.

Gray Whale tail

Gray Whale’s tail

Gray whales frequent the area for its shallow sea and dive to the bottom to eat bottom dwelling sea life such as crustaceans by scooping up the bottom of the sea and filtering out the seabed leaving the food.  But how do you observe whales when you are not in the Arctic?  You eavesdrop on them…..

 

Observing whales acoustically for the next year.

Today I was observing with help of binoculars and a camera to see whales that were in view of the ship.  But how do you know if a whale visited when you where gone?  Record their voices.

Primary investigator Katherine Berchok assisted by Stephanie Grassia are retrieving and replacing acoustic (sound) monitoring devices suspended above the sea floor.  Today one of these instruments that was placed on the sea floor a year ago is now being retrieved.  Within the retrieved equipment is a recording of acoustics that have occurred in the last year.  The sound waves were recorded in a pattern of 80 minutes every 5 hours for an entire year.  That is a lot to listen to, so recordings will go through processing through different software to see if any sound wave patterns are close to those created by different whale species.  Though this data cannot give an accurate count of how many whales are in an area at a particular time, it does allow scientist to verify what species of whales and also walruses visit the study area.

Acoustic Mooring

Acoustic Mooring

This picture here shows the new underwater microphone or hydrophone (the white tube) being prepared to be lowered into the sea to be retrieved next year.  Once lowered in the area pictured here it will be covered in about 30 meters of ocean.  So how will it be found next year?   There is transmitter (the small gray tube) that will allow scientist to find it, send a signal and have the instruments released from the weight and float to the surface.  This year’s instrument will be cleaned up and reused next year.

 

Looking forward

As we move northward the species of mammals (whales, walruses) and birds being observed will change, look for updates in the coming weeks! ​

Susan Dee: From the Bottom of the Food Chain to the Top, June 3, 2018

NOAA Teacher at Sea

Susan Dee

Aboard NOAA Ship Henry B. Bigelow 

May 23 – June 7, 2018

Mission:  Spring Ecosystem Monitoring Survey

Geographic Area of Cruise: Northeastern Coast of U.S.

Date:  June 3, 2018

Weather From Bridge

Latitude: 43°47.1′
Longitude: 068°40.41′
Sea Wave Height: 4-6 ft
Wind Speed:  20 knots
Wind Direction:  NE
Visibility:  10
Air Temperature:  10°C
Sky:  few clouds

 

Science and Technology Log

Birds on water

Sea Birds

As the Henry B. Bigelow traverses the Gulf of Maine sampling the microorganisms at stations, another pair of scientists are observing bird and marine mammal populations. Much of my time between sampling stations, I head up to the flying bridge and join  Nicholas Metheny and John Loch, Seabird Observers, on the lookout for the seabird and marine mammals. The seabirds most commonly observed in the Gulf of Maine are the Wilson Storm Petrel and the Sooty Shearwater.  These two species account for 60% of the birds seen.  These pelagic seabirds live offshore and only return to land to breed, often on remote islands.

birders on deck

Seabird Observers on Observation Deck

 

South Polar Skua

South Polar Skua (photo by Nicolas Methany)

All the samplings taken with bongo nets are samplings of the producers and primary consumers, the small organisms in the food chain.  On the observation deck, the fish and marine mammals that rely on a healthy bottom food chain are observed.  Spotting  marine mammals adds much to the excitement of the day. The bridge will announce a sighting and if possible, one gets to the flying bridge to see the wildlife.   One of the first sightings was of humpback whales in the distance, followed by sperm whale and pilot whale sightings.

Sperm Whale

Sperm Whale (Photo by Nicholas Methany)

 

Short Beaked Common Dolphin

Short beaked Common Dolphins (Photo by Nicholas Methany)

 

The most fascinating sightings were of Mola Mola- Ocean Sunfish.  They were spotted often and very close to the ship.

Mola Mola  - Ocean Sunfish

Mola Mola – Ocean Sunfish (Photo by Nicolas Methany)

 

Blue Shark

Blue Shark (Photo by Nicholas Methany)

 

Personal Log

The science crew is kept busy sampling at each station.  There is some down time steaming from station to station at 12 knots but it is enjoyable. I spend the down time talking to crew and scientists.  Chief Scientist Jerry Prezioso has been an awesome mentor and photographer! I am learning so much and am so excited to bring it back into my classroom next year. The seas have been relatively calm but the forecast for the end of the cruise is not favorable for sampling due to high winds. If winds are over 30 knots, the crew has difficulty deploying the nets so sampling is suspended.  The science crew has taken samples from 114 stations.  These samples will be sent off to be analyzed at different labs.

Filled jar samples

Samples collected, boxed and ready to be shipped to analyze

work deck

Science Lab Work Deck

Deck Crew

Andrew and AJ helping deploy instruments

The deck crew and scientist party have been a pleasure to work with. I have learned so much from each of them

Science Party

Science Party Day Crew: Jerry P, Mark, and Chris T

Route map shows path of cruise

Final Day of Cruise Route map shows path of cruise

The cruise was cut short by two days due to high winds.  The last sampling station was in Cape Cod Bay. Tomorrow the ship will  head back to port through the Cape Cod Canal, ending a fantastic cruise.  I am so excited to see the data from  all these samples.  Thanks Teacher at Sea program for a great adventure!

Teacher at Sea Susan Dee

Teacher at Sea Susan Dee

Staci DeSchryver: Listening with Your Eyes – How the Acoustics Team “Sees” in Sound, July 10, 2017

NOAA Teacher at Sea

Staci DeSchryver

Aboard NOAA Ship Oscar Elton Sette

July 6 – August 2, 2017

Mission:  HICEAS Cetacean Study

Geographic Area:  Kona Coast, Hawaii

Date:  July 10, 2017

Weather Data from the Bridge:

TAS DeScrhryver_weather data

Location and Weather Data

 

Science Log

While the visual team is working hard on the flying bridge, scanning the waters for our elusive cetacean friends, acoustics is down in the lab listening for any clues that there might be “something” out there.

TAS DeSchryver array

The hydrophone array is a long microphone pulled behind the ship

At any given time, two acousticians are listening to the sounds of the ocean via a hydrophone array. This array is a long microphone pulled behind the ship as she cuts through the water.  When the acousticians hear a click or a whistle, a special computer program localizes (or determines the distance to) the whistle or the click.

But it’s not quite as simple as that. There’s a lot of noise in the ocean.  The array will pick up other ship noise, cavitation (or bubbles from the propeller) on our ship, or anything it “thinks” might be a cetacean.  The acoustics team must determine which sounds are noise and which sounds belong to a mammal.  What the acousticians are looking for is something called a “click train.” These are sound produced by dolphins when they are foraging or socializing and are a good indicator of a nearby cetacean. On the computer screen, any ambient noise shows up as a plotted point on an on-screen graph.  When the plotted points show up in a fixed or predictable pattern, then it could be a nearby cetacean.

The acousticians are also listening to the sounds on headphones.  When they hear a whistle or a click, they can find the sound they’ve heard on the plotted graph.  On the graphical representation of the sounds coming in to the hydrophone, the x-axis of the graph is time, and the y-axis is a “bearing” angle.  It will tell which angle off the ship from the front the noise is coming from.  For example, if the animal is right in front of the bow of the ship, the reading would be 0 degrees.  If it were directly behind the ship, then the plotted point would come in at 180 degrees.  With these two pieces of information, acousticians can narrow the location of the animal in question down to two spots on either side of the ship.  When they think they have a significant sound, the acousticians will use the information from the graph to localize the sound and plot it on a map.  Often times they can identify the sound directly to the species, which is an extraordinary skill.

Here’s where things go a little “Fight Club.”  (First rule of fight club?  Don’t talk about fight club.)  Once the acousticians localize an animal, they must determine if it is ahead of the ship or behind it.   Let’s say for example an acoustician hears a Pilot Whale.  He or she will draw a line on a computerized map to determine the distance the whale is to the ship using the data from the graph.

DeSchryver HICEAS-AC20

This is a “clean” localization of a marine mammal. Notice the two spots where the lines cross – those are the two possible locations of the mammal we are tracking. The ship is the red dot, the blue dots are the hydrophone as it is towed behind the ship.

Because the hydrophones are in a line, the location provided from the array shows on the left and the right sides.  So, the map plots both of those potential spots.  The two straight lines from the ship to the animal make a “V” shape.  As the ship passes the animal, the angle of the V opens up until it becomes a straight line, much like opening a book to lay it flat on the table and viewing how the pages change from the side.  As long as the animal or animal group is ahead of the ship, the acousticians will alert no one except the lead scientist, and especially not the marine observers.  If a crew member or another scientist who is not observing mammals just so happens to be in the acoustics lab when the localization happens, we are sworn to secrecy, as well.  Sometimes an acoustician will send a runner to get the lead scientist to discreetly tell her that there is something out there.

TAS DeSchryver HICEAS-AC25

The screenshot on the left shows a series of spotted dolphin “click trains.” Notice the marks all in a line along the graph. The right photo shows the various localizations that the acoustics team has picked up from the click train graph. The red dot is the ship, the gray line is the “track line”, and the two blue dots behind the ship are the hydrophone arrays. Notice the V shape gradually goes to a straight line and then turns in the opposite direction.

 

This way, the lead scientist can begin the planning stages for a chase on the mammals to do a biopsy, or send the UAS out to get photos with the Hexacopter.  (More on this later.)

As the mammals “pass the beam” (the signal is perfectly on either side of the ship, and starting to make an upside down V from the ship), the acousticians can alert the visual team of the sighting.  As soon as everyone is aware the mammals are out there, either by sight or sound, the whole scientific group goes “off effort,” meaning we funnel our energy in to counting and sighting the mammals we have found.  When this happens, communication is “open” between the acoustics team and the visual team.  The visual team can direct the bridge to head in any direction, and as long as it’s safe to do so, the bridge will aid in the pursuit of the mammals to put us in the best position to get close enough to hopefully identify the species.  Today, one mammal observer had a sighting almost 6 miles away from the ship, and she could identify the species from that distance, as well!  Even cooler is that it was a beaked whale, which is an elusive whale that isn’t often sighted.   They have the capability of diving to 1000m to forage for food!

When the visual team has a sighting, the three visual observers who are on shift have the responsibility to estimate the group size.

TAS DeSchryver chris takes photos

Chris captures photos of Melon Headed Whales for Photo ID.

 

Here we go with Fight Club again – no one can talk to one another about the group sizes.  Each mammal observer keeps their totals to themselves.  This is so that no one can sway any other person’s opinion on group size and adds an extra element of control to the study.  It is off limits to talk about group sizes among one another even after the sighting is over. We must always be vigilant of not reviewing counts with one another, even after the day is done.  The scientific team really holds solid to this protocol.

Once the sighting is over, all parties resume “on effort” sightings, and the whole process starts all over again.

Now, you might be thinking, “Why don’t they just wait until acoustics has an animal localized before sending the mammal team up to look for it?

TAS DeSchryver ernesto big eyes

Ernesto on the “Big Eyes” during a Melon Headed Whale Visual Chase

Surely if acoustics isn’t hearing anything, then there must not be anything out there.”  As I am writing this post, the visual team is closing in on a spotted dolphin sighting about 6.5 miles away.  The acoustics did not pick up any vocalizations from this group.

TAS DeSchryver acoustics lab 2

Shannon and Jen in the acoustics lab “seeing” the sounds of the ocean.

This also happened this morning with the beaked whale.  Both teams really do need one another in this process of documenting cetaceans.  Further, the acoustics team in some cases can’t determine group sizes from the vocals alone.  They need the visual team to do that.  Each group relies on and complements one another with their own talents and abilities to conduct a completely comprehensive search.  When adding in the hexacopter drone to do aerial photography, we now have three components working in tandem – a group that uses their eyes to see the surface, a group that uses the ocean to “see” the sounds, and a group that uses the air to capture identifying photographs.  It truly is an interconnected effort.

 

Personal Log

I haven’t gotten the chance to discuss just how beautiful Hawai’i is.  I would think that it is generally understood that Hawai’i is beautiful – it’s a famed tourist destination in an exotic corner of the Pacific Ocean. But you have to see it to believe it.

TAS DeSchryver melon-headed whales

Melon-Headed Whales take an evening ride alongside the starboard side of Sette.

I’ve been lucky enough to see the islands from a unique perspective as an observer from the outside looking inland, and I just can’t let the beauty of this place pass without mention and homage to its stunning features.

Hawai’i truly is her own artist.  Her geologic features create the rain that builds her famed rainbows, which in turn gives her the full color palate she uses to create her own landscape.  The ocean surrounding the shores of Hawai’i are not just blue – they are cerulean with notes of turquoise, royal, and sage.  She will not forget to add her contrasting crimson and scarlet in the hibiscus and bromeliads that dot the landscape. At night when the moon shines on the waters, the ocean turns to gunmetal and ink, with wide swaths of brass and silver tracing the way back up to the moon that lights our path to the sea.  With time, all of her colors come out to dance along the landscape – including the sharp titanium white foam that crashes against the black cliffs along Kona.  And if a hue is errantly missed in her construction of the landscape, early morning showers sprout wide rainbows as a sign of good fortune, and as a reminder that she forgets no tones of color as she creates.

It is our responsibility to protect these waters, this landscape – this perfect artistry.  It is critically important to protect the animals that live in the ocean’s depths and the ones that cling to the island surface in their own corner of paradise.  I like to think that this study takes on this exact work.  By giving each of these species a name and identifying them to each individual group, we share with the world that these cetaceans are a family of their own with a habitat and a purpose.  When we “re-sight” whales that the team has seen in past studies, we further solidify that those animals have families and a home amongst themselves.   The photo identification team counts every new scar, marking, and change in these animals to piece together the story of their lives since they last met with the scientists.  Everyone on Oscar Elton Sette  talks about the new calves as if we were at the hospital with them on the day of their birth, celebrating the new life they’ve brought forth to continue their generations.  I like to think we all make a little room in the corner of our hearts for them as a part of our family, as well.

Did you know?

The Frigate bird has a Hawaiian name, “Iwa”, which means “thief.”  They call this bird “thief” because they steal prey right from the mouths of other birds!

 

“Spyhopping” is the act of a whale poking his head out of the water and bobbing along the surface.

 

It is legal for research ships to fish off the ship, so long as we eat what we catch while underway.  This led to the shared consumption of some delicious mahi mahi, fresh from the depths for lunch today.  Yes.  It was as good as it sounds.

 

Oscar Elton Sette knows how to celebrate!  Yesterday was Adam’s birthday, a marine mammal observer.  They decorated the mess in birthday theme, cranked up the dinnertime music, and the stewards made Adam his favorite – blueberry cheesecake for dessert!

 

Much of the crew likes to pitch in with food preparation.  The on ship doctor, “Doc”, makes authentic eastern dishes, and the crew made barbeque for everyone a few nights ago at dinner.

Christine Hedge, August 29, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: August 29, 2009

Science Party Profile – George Neakok 

George Neakok (left) and Justin Pudenz watch for marine mammals from the bridge of the Healy.

George Neakok (left) and Justin Pudenz watch for marine mammals from the bridge of the Healy.

George Neakok is on board the Healy as our Community Observer from the North Slope Borough. A borough is like a county government.  Except, since Alaska is so huge, the North Slope Borough is roughly the size of the state of Minnesota.  George acts as the eyes of the Inupiat (native people of the North Slope) community while on board the Healy. The Inupiat people are subsistence hunters. They live off the animals and plants of the Arctic and have a real stake in how other people are using the same lands and waters they depend on for survival. George spends hours on the bridge each day looking for life outside the Healy and noting any encounters the ship has with wildlife in general and marine mammals in particular. He is a resident of Barrow, Alaska (one of the 7 villages in the Borough) and has acted as an observer for 2 years traveling on 5 different expeditions. George says he was selected for the Community Observer job because he is a good hunter and has good eyes.  He is too humble.  His life experience has endowed him with fascinating knowledge about the ice, animals, and the Arctic world in general.  George can see a polar bear a kilometer away and know how old it is, how healthy, and what sex.

I asked George to share a little about his life and the kinds of changes he has observed in the Arctic. He has always lived in Barrow except for 2 years when he went away to Kenai Peninsula College to study Petroleum Technology. His dad died while he was away and so he returned home to help his mother.  He has worked in the natural gas fields near Barrow and expects to work in the new field southwest of Barrow in the future.  George has 7 children ranging in age from 20 years to 9 months.  His youngest daughter is adopted, which he says is very common in his culture. There are no orphans.  If a child needs a home, another family will take that child in.  Although his children are being raised in a world with cell phones and snowmobiles – they are still learning to live the way their ancestors have always lived.

Erosion on the coast of Barrow, Alaska is an ever increasing problem.

Erosion on the coast of Barrow, Alaska is an ever increasing problem.

George and his community are a part of  both an ancient and a modern world.  With each season comes another type of food to hunt or collect. The Neakok family hunts caribou, bowhead whale, seals, walrus, beluga, and geese each in its’ own season.  They fish in fresh water and in the Chukchi Sea. They collect berries, roots, greens and eggs, storing them in seal oil to preserve them until they are needed.  Food is stored in ice cellars.  These are underground rooms that can keep food frozen all year round. The animals that are hunted are used for more than just food.  The Inupiat make boats from seal or walrus skin.  In Inupiat culture, the blubber, oil, tusks, baleen and meat are all useful in some way.  If one community has a very successful hunt, they share with their neighbors.  If a community has a bad hunt, they know that other villages will help them out.  Villages come together to meet, celebrate, trade and share what they have caught.  George says this is just the way it is.  People take care of their neighbors.

FOR MY STUDENTS: What can we learn from the people of the North Slope about community? 

A polar bear, spotted by George, travels over thin ice by spreading out his body weight.  (Photo courtesy of Pat Kelley USCG)

A polar bear travels over thin ice by spreading out his body weight. (Photo courtesy of Pat Kelley)

George has witnessed much change in his life.  He notes that the seasons are coming earlier and staying later. The shore ice used to start forming in late August but lately it has been forming in late September or early October. When there is less ice close to land, there are fewer animals to hunt.  Whaling off the ice is getting more and more dangerous. The ice is more “rotten” and camping on the ice during the hunt can be treacherous. In recent years, more and more hunters have lost their equipment when the ice gave way.

Erosion of the coastline is another recent problem.  Without ice to protect the shoreline the wave action eats away at the permafrost causing coastlines to collapse.  George has seen a coastal hillside where he used to sled – crumble into the ocean. Entire villages have been moved farther inland as the coastal erosion eats away at the land. George is hopeful that although the Arctic is changing fast, the Inupiat people and culture will handle these changes and continue to live and thrive on the North Slope of Alaska.    

Greta Dykstra-Lyons, August 15, 2005

NOAA Teacher at Sea
Greta Dykstra-Lyons
Onboard NOAA Ship David Starr Jordan
August 1 – 20, 2005

Mission: Cetacean Abundance Survey
Geographical Area: U.S. West Coast
Date: August 15, 2005

Science and Technology Log

Last night I was invited to attend an early morning session in the oceanography lab with oceanographer Candy Hall. Like most mornings on this cruise, she and colleague Liz Zele were collecting water samples from 1000 meters and up with a device known as the CDT (Conductivity, temperature with depth).  These samples are used to test things like  nutrient, salt, and chlorophyll levels. Candy also runs a primary productivity test on the samples.  This test will identify the rate at which phytoplankton grow.

After a short nap, I was off to the flying bridge.  Due to the fact that the sun was shining (a first in over 2 wks) and the seas were calm, it felt like a promising day.  There was the typical early morning fin whale sighting, followed by a lull.  During this let-up it must have been decided that our time would be best spent fishing for albacore (as several trawlers were within sight). Almost as soon as the fishing lines were tossed over a blue whale appeared not far from the boat.  The sun on the whale’s back made for a beautiful sight in and out of the water.  It did not take long to get the small boat launched and on the trail of the whale for a biopsy and photographs.  The time between mammal sightings was spent watching birds. My highlight today was observing a flock of arctic terns headed to Antarctica. This I am told is the longest migration of any animal.  Today became more fruitful when four adorable Dall’s porpoises flirted with our bow for several minutes.  To top it all off…as we were beginning to enjoy our first visible sunset and the rising of a nearly full moon, observers found spunky dolphins engaging in acrobatics worthy of gold medals near the horizon.  It was not long before they graced us with their playful presence. Several of us took turns in the bow chamber and caught some underwater glances as well as auditory treats!  Smiles all around.

Yesterday, Monday, a somewhat elusive whale species showed itself despite the horrid weather. Two Baird’s beaked whales appeared around the boat for several surfacings.  Luckily, the photographers were able to get a few good head shots. And, like most days, there was the morning fin whale sighting! Due to poor visibility, observers went off effort a bit early.  Sunday also supplied us with less than perfect condition, but a fin whale was recorded before noon. The JORDAN picked up a worn-out, far from home hitchhiker in the afternoon.  The deck of the ship hosted this cowbird for the evening. She hasn’t been seen since.

Saturday’s conditions were similar to Sundays, but it was even colder.  The only sighting was…you guessed it, a morning fin whale. When there are few sighting to report and animals to observe, the members of the JORDAN become curious about floating objects. During these “slow times” the ship has collected a few things, three buoys to be exact. Two of them are your standard orange plastic fishing buoys (probably headed for the dumpster).  These buoys provided bonus entertainment because they had lines attached to them and thus “things” attached to the lines. The other buoy is a much more prized and sought after glass fishing buoy once used by Japanese fishermen.  It was given to the captain.

Tomorrow is our last full day of the cruise.  Currently we are about 60 miles from the coast. Due to our position and course, tomorrow has the potential to be an outstanding day for observing marine mammals and birds.