Marsha Lenz: And We’re Off, June 9, 2017

NOAA Teacher at Sea

Marsha Lenz

Aboard Oscar Dyson

June 8-28, 2017

Mission: MACE Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: June 9, 2017

Weather Data from the Bridge

Latitude: 57° 38’ 38” N

Longitude: 52° 23 48” W

Time: 07:31

Sky: Overcast with fog

Visibility: 3 Nautical Miles

Wind Direction: 130.96

Wind Speed: 2.41 Knots

Sea Wave Height: <1 foot swell

Barometric Pressure: 1003.4 Millibars

Sea Water Temperature: 9.3°C

Air Temperature: 9.6°C

Science and Technology Log

There such is so much science and technology aboard this vessel. I had a tour of the various labs that the research will take place in as well as the various types of equipment and technology that we will be using. We are holding stationary position right now, calibrating the acoustic equipment and have not actually collected any biological data yet. During my tour of the boat, I observed some of the various roles that different people play on this research cruise. It became very clear to me that it is a composition of talents, specialized skills, communication, and respect that is the underlying thread to the success of this research.

19046554_10211513685215855_349902721_n
It’s a bit overcast in the Gulf of Alaska.

There are so many specialized skills that are needed for this cruise. Everyone on board has a specific function and it is essential that that function be carried out flawlessly. The central element in all of this is the National Oceanic and Atmospheric Administration (NOAA), because everyone on board, from the engineers, to the deck crew, scientists and officers, work for NOAA. NOAA is an agency within the Department of Commerce that was founded in 1970. It merged three different agencies (the U.S. Coast and Geodetic Survey, The Weather Bureau, and the U.S. Commission of Fish and Fisheries) into one. Its mission is to “understand and predict changes in climate, weather, oceans, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources”. This is easily condensed into three words: Science, Service and Stewardship.

The boat is run by the NOAA Commissioned Officer Corps (NOAA Corps). NOAA Corps is one of the nation’s seven uniformed services. The officers are (obviously) a part of NOAA, where they support nearly all of NOAA’s programs and missions. They are trained in many areas, including engineering, earth sciences, oceanography, meteorology, and fisheries science.

Becoming a NOAA Corps officer is a career path that some people may choose to pursue. One must have a baccalaureate degree, (preferably in a major course of study related to NOAA’s scientific or technical activities) and attend a 19-week Basic Officer Training Class. This course is very demanding and fast-paced. Once a candidate has completed the training, they are assigned to a NOAA ship for up to three years.

So, what exactly am I doing out here?

That’s a really good question, one that I have been asked many times. I will try to explain it in a nutshell. As you may already know, the fisheries in Alaska are a key part of the economies of Alaska as well as the U.S. Seafood is Alaska’s largest export. According to a study conducted by the McDowell Group in 2015, in 2014, close to 3 billion pounds of seafood product were processed in Alaska with a wholesale value of $4.2 billion. The total seafood harvest for the year was 5.7 billion pounds! That’s a lot of fish.

Needless to say, fishing has always been a way of life for the people of Alaska. Unfortunately, overfishing and poor fishing practices have resulted in a decline in marine health.   Fishing regulations are now in place to ensure that the fisheries can continue to be a vital part of the economy while being sustainable at the same time.

19075262_10211512800633741_339744207_n
Fishing and crabbing are a vital part of Alaska’s economy.

NOAA’s marine scientists conduct surveys to collect data on various aspects of the ocean to share with not only the fisheries, but the public as well. Ultimately, they are responsible for monitoring the conditions of the climate and environment, and additionally, taking steps to preserve them. The surveys are designed to monitor changes in the marine ecosystems and set sustainable catch limits for the fisheries.

The purpose of this cruise is to conduct a survey of walleye pollock in the Gulf of Alaska. The scientists will determine the abundance and distribution of pollock and provide the data to stock assessment managers that set pollock catch limits for the following year. The science team is from the Midwater Assessment and Conservation Engineering (MACE) group of the Alaska Fisheries Science Center (AFSC) in Seattle, Washington. They primarily conduct surveys on the status of walleye pollock in the Gulf of Alaska and the Bering Sea. This is the first of 3 legs of the summer assessment. They will conduct the surveys on randomized transect lines using both the net catches and acoustic technology. Though the main focus is to gather data on the walleye pollock, everything that is caught will be weighted, measured, and entered into the data system.

19046979_10211512816114128_473807376_n
Alaska Fisheries Science Center and Midwater Assessment and Conservation Engineering work together to conduct the walleye pollock surveys.

You might be wondering what pollock are. Do you eat fish sticks? Have you ever had imitation crab at a sushi restaurant? Then you have most likely eaten pollock. Alaska pollock is a white fish that is wild caught in the Gulf of Alaska, mostly with trawl vessels. They are used in many fish products, including Filet-O-Fish. It has consistently been one of the top five seafood species consumed in the U.S. That’s a pretty popular fish!

Screen Shot 2017-06-09 at 4.12.13 PM
Pollock makes up over half of the fish harvested in Alaska (photo credit: FishWatch.gov)

Trawl vessels use trawling as a way to get their fish. It involves dragging or pulling a large net through the water behind one or more boats. We will be using midwater trawls to catch the fish we will be collecting data from.

19075083_10211513176683142_1384070222_n
An Aleutian Wing Trawl is 140 meters long and can  gather fish from  30 to 1,000 meters underwater. 

Personal Log

I arrived in Kodiak on Tuesday afternoon and was met at the airport by the scientists who will be conducting the pollock survey. My flight into Kodiak was fairly uneventful. I was, however, a bit baffled though when we entered the plane from the rear and only the back half of the plane was designated for passengers. The front half of the plane was for cargo. There are two primary ways to get things to Kodiak: cargo planes and freighters.

We took a quick 10-minute car ride to the dock. The weather reminded me of Humboldt County. It was drizzly, cool, and people had on their layers. They took me aboard and gave me a quick tour of the vessel where we will be spending the next three weeks.  The NOAA ship Oscar Dyson is said to be one of the most technologically advanced fisheries survey vessels in the world and was named after Oscar Dyson, who was a well-known fishing activist in Alaska. Mr. Dyson was dedicated to managing and improving the industry for those that make their living at sea.

19113311_10211512799993725_1683385038_n

19046801_10211512800153729_416847501_n
The Oscar Dyson is a survey vessel used by the National Oceanic and Atmospheric Administration.

Of course I got lost immediately and spent a good 10 minutes trying to find my way back to my room. After a dinner of tacos back in town, we all went to sleep. The rocking of the boat was a nice way to be lulled to sleep. I do not yet know if I will feel the same way once we are out on the open ocean.

A95954757
The city of Kodiak has a population of about 6,000 people. (photo credit: Matthew Phillips)

On Thursday, we fueled up. The ship has an 110,00 gallon capacity and uses about 2,100 gallons of gas a day. (Here is a task for my class: Can you calculate how much it costs per day to drive the boat if the cost of gas is $3.00/ gallon?) Fueling up a ship this size is quite a task. It requires a lot of people and a lot of communication. Fuel spill booms are put around the boat to protect the water should there be a gas spill. After the fuel up (which takes over 4 hours!), the booms are removed again. We left the pier and started out. The sky was gray and there was some light rain, but I was still mesmerized by the pure beauty surrounding us. We pulled into a nearby quiet bay so the scientists could calibrate their equipment.

This slideshow requires JavaScript.

Leaving the Port of Kodiak

The scientists have been working hard to calibrate the machinery. This requires many hours, many hands, and minds all working together. Once all of the machinery is calibrated, we can set sail to the starting point near the Islands of the Four Mountains in the Aleutian Islands. It should take us 2 and half days (760 miles) to get there. The Oscar Dyson can go 12.5 knots. A “knot” is 1.151 miles/hour.

current location june8 930pm
We are currently holding stationary position while the scientists calibrate their equipment (photo credit: marinetraffic.com)

We have started adjusting to our 12-hour shifts. My shift will be from 4 am to 4 pm. This means that I will be setting my alarm for 3:30 every morning, grabbing a cup of coffee (well, a double latte, actually!) and heading down to the “Wet lab”. There we will be pull up the hauls of fish, sort them by species, separate males and females, measure their lengths, and remove the otoliths (ear bones). The purpose of studying the otolith is to determine the age of the fish. An otolith is a calcium carbonate structure in the inner ear of the fish. They are very similar to the rings of a tree. They add a new layer every year and give the scientists valuable data on the age structure of the population.

Did You Know?

  • All Pollock is wild-caught in the ocean. There is no commercial aquaculture for this species.
  • Since 2001, U.S. commercial landings of Alaskan Pollock (primarily in Alaska) have been well over 2 billion pounds each year.

Andrea Schmuttermair, Pollock Processing Gone Wild, July 12, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oscar Dyson
July 6 – 25, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 12, 2015

Weather Data from the Bridge:
Latitude: 55 25.5N
Longitude: 155 44.2W
Sea wave height: 2ft
Wind Speed: 17 knots
Wind Direction: 244 degrees
Visibility: 10nm
Air Temperature: 11.4 C
Barometric Pressure: 1002.4 mbar
Sky:  Overcast

Science and Technology Log

I’m sure you’re all wondering what the day-to-day life of a scientist is on this ship. As I said before, there are several projects going on, with the focus being on assessing the walleye pollock population. In my last post I talked about the transducers we have on the ship that help us detect fish and other ocean life beneath the surface of the ocean. So what happens with all these fish we are detecting?

The echogram that shows data from the transducers.
The echogram that shows data from the transducers.

The transducers are running constantly as the ship runs, and the information is received through the software on the computers we see in the acoustics lab. The officers running the ship, who are positioned on the bridge, also have access to this information. The scientists and officers are in constant  communication, as the officers are responsible for driving the ship to specific locations along a pre-determined track. The echograms (type of graph) that are displayed on the computers show scientists where the bottom of the ocean floor is, and also show them where there are various concentrations of fish.

This is a picture of pollock entering the net taken  from the CamTrawl.
This is a picture of pollock entering the net taken from the CamTrawl.

When there is a significant concentration of pollock, or when the data show something unique, scientists might decide to “go fishing”. Here they collect a sample in order to see if what they are seeing on the echogram matches what comes up in the catch. Typically we use the Aleutian wing trawl (AWT) to conduct a mid-water trawl. The AWT is 140 m long and can descend anywhere from 30-1,000 meters into the ocean. A net sounder is mounted at the top of the net opening. It transmits acoustic images of fish inside and outside of the net in real time and is displayed on a bridge computer to aide the fishing operation. At the entrance to the codend (at the end of the net) a CamTrawl takes images of what is entering the net.

This slideshow requires JavaScript.

Once the AWT is deployed to the pre-determined depth, the scientists carefully monitor acoustic images to catch an appropriate sample. Deploying the net is quite a process, and requires careful communication between the bridge officers and the deck crew. It takes about an hour for the net to go from its home on deck to its desired depth, and sometimes longer if it is heading into deeper waters. They aim to collect roughly 500 fish in order to take a subsample of about 300 fish. Sometimes the trawl net will be down for less than 5 minutes, and other times it will be down longer. Scientists are very meticulous about monitoring the amount of fish that goes into the net because they do not want to take a larger sample than needed. Once they have determined they have the appropriate amount, the net is hauled back onto the back deck and lowered to a table that leads into the wet lab for processing.

Here the scientists, LT Rhodes, and ENS Kaiser assess the catch.
Here the scientists, LT Rhodes, and ENS Kaiser assess the catch.

We begin by sorting through the catch and pulling out anything that is not pollock. We don’t typically have too much variety in our catches, as pollock is the main fish that we are after. We have, however, pulled in a few squid, isopods, cod, and several jellies. All of the pollock in the catch gets weighed, and then a sub-sample of the catch is processed further. A subsample of 30 pollock is taken to measure, weigh, collect otoliths from, and occasionally we will also take ovaries from the females. There are some scientists back in the lab in Seattle that are working on special projects related to pollock, and we also help these scientists in the lab collect their data.

The rest of the sub-sample (roughly 300 pollock) is sexed and divided into a male (blokes) and female (sheilas) section of the table. From there, the males and females are measured for their length. The icthystick, the tool we use to measure the length of each fish, is pretty neat because it uses a magnet to send the length of the fish directly to the computer system we use to collect the data, CLAMS. CLAMS stands for Catch Logger for Acoustic Midwater Survey. In the CLAMS system, a histogram is made, and we post the graphs in the acoustics lab for review. The majority of our pollock so far have been year 3. Scientists know this based on the length of pollock in our catch. Once all of the fish have been processed, we have to make sure to clean up the lab too. This is a time I am definitely thankful we have foul weather gear, which consists of rubber boots, pants, jackets and gloves. Fish scales and guts can get everywhere!

This slideshow requires JavaScript.

Personal Log

Here is one of many jellies that we caught. .
Here is one of many jellies that we caught. .

I am finally adjusting to my nighttime shift schedule, which took a few days to get used to. Luckily, we do have a few hours of darkness (from about midnight until 6am), which makes it easier to fall asleep. My shift runs from 4pm-4am, and I usually head to bed not long after my shift is over, and get up around noontime to begin my day. It’s a little strange to be waking up so late in the day, and while it is clearly afternoon time when I emerge from my room, I still greet everyone with a good morning. The eating schedule has taken some getting used to- I find that I still want to have breakfast when I get up. Dinner is served at 5pm, but since I eat breakfast around 1 or 2pm, I typically make myself a plate and set it aside for later in the evening when I’m hungry again. I’ll admit it’s a little strange to be eating dinner at midnight. There is no shortage of food on board, and our stewards make sure there are plenty of snacks available around the clock. Salad and fruit are always options, as well as some less healthy but equally tasty snacks. It’s hard to resist some of the goodies we have!

Luckily, we are equipped with some exercise equipment on board to battle those snacks, which is helpful as you can only walk so far around the ship. I’m a fan of the rowing machine, and you feel like you’re on the water when the boat is rocking heavily. We have some free weights, an exercise bike and even a punching bag. I typically work out during some of my free time, which keeps me from going too crazy when we’re sitting for long periods of time in the lab.

Up on the bridge making the turn for our next transect.
Up on the bridge making the turn for our next transect.

During the rest of my free time, you might find me hanging out in the lounge watching a movie (occasionally), but most of the time you’ll find me up on the bridge watching for whales or other sea life. The bridge is probably one of my favorite places on the ship, as it is equipped with windows all around, and binoculars for checking out the wildlife. When the weather is nice, it is a great place to sit outside and soak in a little vitamin D. I love the fact that even the crew members that have been on this ship for several years love seeing the wildlife, and never tire of looking out for whales. So far, we’ve seen orcas, humpbacks, fin whales, and Dall’s porpoises.

 

 

 

Did you know? Otoliths, which are made of calcium carbonate, are unique to each species of fish.

Where on the ship is Wilson?

Wilson the ring tail camo shark is at it again! He has been exploring the ship even more and made his way here. Can you guess where he is now?

Where's Wilson?
Where’s Wilson?
Where's Wilson?
Where’s Wilson?

Kacey Shaffer: All Good Things… August 13, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 13, 2014

Weather information from the Bridge:

Air Temperature: 12º C

Wind Speed: 10 knots

Wind Direction: 306.62 º

Weather Conditions: Clear

Latitude: 53º 51.38 N

Longitude: 166º 34.85 W

Science and Technology Log:

Before we get into detail about data and where all of it ends up, let’s talk acronyms. This trip has been a lot like working in the Special Education world with what we like to call “Alphabet Soup.” We use acronyms a lot and so does the NOAA Science world. Here are a few important acronyms…

AFSC – Alaska Fisheries Science Center (located in Seattle, WA)

MACE – Midwater Assessment and Conservation Engineering Program (also in Seattle)

CLAMS – Catch Logger for Acoustic Midwater Surveys

Drop TS – Dropped Target Strength System

CTD – Conductivity, Temperature and Depth System

SBE – Sea-bird Electronics Temperature-Depth Recorder

We recorded data in a program called CLAMS as we processed each haul. The CLAMS (see above: Catch Logger for Acoustic Midwater Surveys) software was written by two NOAA Scientists. Data can be entered for length, weight, sex and development stage. It also assigns a specimen number to each otolith vial so the otoliths can be traced back to a specific fish. This is the CLAMS screen from my very first haul on the Oscar Dyson.

Kacey's first haul on the Oscar Dyson.
Kacey’s first haul on the Oscar Dyson.

From the Species List in the top left corner you can see I was measuring the length of Walleye Pollock- Adult. In that particular haul we also had Age 2 Pollock, a Chum Salmon and Chrysaora melanaster (a jellyfish or two). There is the graph in the lower left corner that plots the sizes in a bar graph and the summary tells me how many fish I measured – 462! When we finish in the Wet Lab we all exit out of CLAMS and Robert, a zooplankton ecologist working on our cruise, ducks into the Chem Lab to export our data. There were a total of 142 hauls processed during the 2014 Summer Walleye Pollock Survey (June 12 – August 13) so this process has happened 142 times in the last two months!

Next, it is time to export the data we collected onto a server known as MACEBASE. MACEBASE is the server that stores all the data collected on a Pollock survey. Not only will the data I helped collect live in infamy on MACEBASE, all the data collected over the last several years lives there, too. CLAMS data isn’t the only piece of data stored on MACEBASE. Information from the echosounding system, and SBE (Sea-bird Electronics temperature depth recorder) are uploaded as well.

We’ve reached the end of the summer survey. Now what? 142 hauls, two months of echosounder recordings, four Drop TS deployments and 57 CTD’s. There have also been 2660 sets of otoliths collected. Scientists who work for the MACE program will analyze all of this information and a biomass will be determined. What is a biomass? Some may think of it as biological material derived from living or recently living organisms. In this case, biomass refers to the total population of Walleye Pollock in the Bering Sea. In a few weeks our Chief Scientist Taina Honkalehto will present the findings of the survey to the Bering Sea Plan Team.

That team reviews the 2014 NOAA Fisheries survey results and Pollock fishing industry information and makes science-based recommendations to the North Pacific Fishery Management Council, who ultimately decide on Walleye Pollock quotas for 2015. Think about Ohio’s deer hunting season for a minute. Each hunter is given a limit on how many deer they can tag each year. In Pickaway & Ross counties we are limited to three deer – two either sex permits and one antlerless permit. If every deer hunter in Ohio was allowed to kill as many deer as they pleased the deer population could be depleted beyond recovery. The same goes for Pollock in the Bering Sea. Commercial fisheries are given quotas and that is the maximum amount of Pollock they are allowed to catch during a given year. The scientific research we are conducting helps ensure the Pollock population remains strong and healthy for years to come.

Personal Log:

Earlier today I took a trip down to the Engine Room. I can’t believe I waited until we were almost back to Dutch Harbor to check out this part of the ship. The Oscar Dyson is pretty much a floating city! Put on some ear protection…it’s about to get loud!

Kacey stands by one of four diesel engines on the Oscar Dyson.
Kacey stands by one of four diesel engines on the Oscar Dyson. (Photo credit: Sweet William)

Why must we wear ear protection? That large machine behind me! It is a 3512 Caterpillar diesel engine.  The diesel engine powers an electric generator. The electric generator gives power to an electric motor which turns the shaft. There are four engine/generator set ups and one shaft on the Dyson. The shaft turns resulting in the propeller turning, thus making us move! When we are cruising along slowly we can get by with using one engine/generator to turn the shaft. Most of the time we are speeding along at 12 knots, which requires us to use multiple engines/generators to get the shaft going. Here is a shot of the shaft.

The shaft of the Oscar Dyson.
The shaft of the Oscar Dyson.

 

Engineering Operation Station
Engineering Operation Station

The EOS, or Engineering Operation Station, is the fifth location where the ship can be controlled. The other four locations are on the Bridge.

Engine Data Screen provides information about the engines, generators and shaft.
Engine Data Screen provides information about the engines, generators and shaft.

This screen provides Engineers with important info about the generators (four on board) and how hard they’re working. At the time of my tour the ship was running on two generators (#1 and #2) as shown on the right side of the screen. #3 and #4 were secured, or taking a break. The Officer of the Deck, who is on the Bridge, can also see this screen. You can see an Ordered Shaft RPM (revolutions per minute) and an Actual Shaft RPM boxes. The Ordered Shaft RPM is changed by the Officer on Deck depending on the situation. During normal underway conditions the shaft is running at 100-110 RPMs. During fishing operations the shaft is between 30 and 65 RPMs.

The port side winch of the Oscar Dyson.
The port side winch of the Oscar Dyson.

When I talked about the trawling process I mentioned that the Chief Boatswain is able to extend the opening of the net really far behind the stern (back) of the ship. This is the port side winch that is reeled out during trawling operations. There are around 4300 meters of cable on that reel! How many feet is that?

When Lt. Ostapenko and ENS Gilman were teaching me how to steer this ship they emphasized how sensitive the steering wheel is. Only a little fingertip push to the left can really make a huge difference in the ship’s course. This is the hydraulic system that controls the rudder, which steers the ship left or right. The actual rudder is hidden down below, under water. I’m told it is a large metal plate that stands twice as tall as me.  This tour really opened my eyes to a whole city that operates below the deck I’ve been working on for the last 18 days. Without all of these pieces of equipment long missions would not be possible. Because the Oscar Dyson is well-equipped it is able to sail up to forty days at a time. What keeps it from sailing longer voyages? Food supply!

And just like that I remembered all good things must come to an end. This is the end of the road for the Summer Walleye Pollock Survey and my time with the Oscar Dyson. We have cleaned and packed the science areas of the ship. Next we’ll be packing our bags and cleaning our staterooms. In a matter of hours we’ll be docking and saying our goodbyes. There have been many times over the last 19 days where I’ve stood, staring out the windows of the Bridge and thinking about how lucky I am. I will never be able to express how thankful I am for this opportunity and how it will impact my life for many, many years. A huge THANK YOU goes to the staff of NOAA Teacher at Sea. My fellow shipmates have been beyond welcoming and patient with me. Thank you, thank you, THANK YOU to everyone on board the Dyson!! I wish you safe travels and happy fishing!

To Team Bluefin Tuna (night shift Science Crew), thank you for your guidance, ice cream eating habits, card game instruction, movie watching enthusiasm, many laughs and the phrase “It is time.” Thanks for the memories! I owe y’all big time!  

Did you know? The ship also has a sewage treatment facility and water evaporation system onboard. The MSD is a septic tank/water treatment machine and the water evaporation system distills seawater into fresh potable (drinking and cooking) water.