John Bilotta, Totally Awesome Turtle, An Ocean of Stars, and Fancy Fish – Days 7-9 in the South Atlantic MPAs, June 25, 2014

NOAA Teacher at Sea

John Bilotta

Aboard NOAA Ship Nancy Foster

June 17 – 27, 2014

 

Mission: South Atlantic Marine Protected Area Survey

Geographical area of cruise: South Atlantic

Date: June 25, 2014

 

Weather: Partly cloudy to sunshine.  27 degree Celsius.  8.0 knot wind from the southwest.

Locations:  North Cape Lookout 3 Proposed MPA, South Cape Lookout Proposed MPA (both off the coast of North Carolina) and the Edisto MPA (off the coast of South Carolina.)

LAT 32°24’N, 79°6’W  LON 32°24’N, 79°6’W

 

Hint:  See the pictures LARGER.

If you click on any of the pictures in any of my blogs, they should open up full screen so you can see the detail better.

 

Science and Technology Log  with more than 20 ROV dives completed, here are five new items to share

Science Part I.  Totally Awesome Turtle!

On Tuesday, June 24th during our first of four dives of the day a Loggerhead sea turtle came for a visit in front of the ROV.  Loggerheads are common for the MidAtlantic and other oceans in the mid-latitude regions. Loggerheads grow up to 250lbs and are named for their relatively large heads.

Loggerhead sea turtle. Photo credit to NOAA / UNCW ROV June 2014.

Loggerhead sea turtle. Photo credit to NOAA / UNCW ROV June 2014.

This was a dream come true for me.  I have always had this fascination with turtles stemming from catching them on Keller Lake in my early childhood to the snappers that have been visiting and nesting in our gardens the past few years at Goose Lake.  Every turtle is entitled to a name, this one I am calling “TJ.” (Hi Taylor!)   I hope we will see more.

Science Part II.  Discoveries of Dives in the Deep – the fish

Scamp Grouper

Scamp Grouper & Cubbya Dive067054 12 04 27

Scamp Grouper & Cubbyu. This grouper is probably 16-22 inches. Photo credit to NOAA / UNCW ROV. June 2014

Scamp Grouper. Photo by NOAA / UNCW ROV June 2014.

Scamp Grouper. Photo by NOAA / UNCW ROV June 2014.

Speckled Hind

Speckled Hind.  Photo by NOAA / UNCW ROV. June 2014.

Speckled Hind. Photo by NOAA / UNCW ROV. June 2014

Cornetfish

Cornetfish.  Photo by NOAA / UNCW ROV June 2014.

Cornetfish. Can grow to be 2-4 feet in length, 6 feet maximum. Although not possible to fully detect, when we photographed these it appears two males were courting a female. They almost danced together in the water. Photo by NOAA / UNCW ROV June 2014.

Science Part III.  An Ocean of Stars – Echinoderms and other Invertebrates

A brief bit of science, then you can see the pictures.  Echinoderms have three main characteristics:

1.  A body plan with 5-part radial symmetry
2.  A calcite skeleton
3.  A water-vascular system

Here are a few we have found on the ocean floor the past few days with the ROV.  By the way, it’s also a sky of stars at night from the ‘iron beach’ on the top deck aft of the bridge of the Nancy Foster.

Asterporpa Star wrapped around the backside of a diodiordia photographed during ROV dive.  Photo credit to NOAA / UNCW. June 2014.

Asteroporpa Star wrapped around the backside of a diodogorgia photographed during ROV dive. Look hard past the purple and you can see it. Photo credit to NOAA / UNCW. June 2014.

Seastar photographed during ROV dive.  Photo by NOAA / UNCW June 2014

Sea star photographed during ROV dive. Photo by NOAA / UNCW June 2014

Brittlestars photographed  during ROV dive.  Photo by NOAA / UNCW.  June 2014

Brittlestars photographed during ROV dive. I magnified this photo so you could see two close up, but in one of the photos we took with the ROV there were more than five visible. Photo by NOAA / UNCW. June 2014

Longspine Erchin.  Photo by NOAA / UNCW ROV. June 2014.

Longspine Urchin. Photo by NOAA / UNCW ROV. June 2014.

One of the mollusks we found. 

Thorny Oysters.  There are three in this picture.  Photo by NOAA / UNCW ROV 2014.

Thorny Oysters. There are three in this picture; the middle one is slightly open. Photo by NOAA / UNCW ROV 2014.

Science Part IV.  Iceberg Scours dead ahead!

Many of the ridges and valleys Stacey Harter our chief scientist choose for us to investigate with the ROV are actually scours along the Atlantic Ocean seafloor created by icebergs that moved in a southwesternly direction towards the Carolina’s. Yes, I said icebergs!  These scours I learned were probably created during the last deglaciation period, (~29,000-15,000 BP (before people)). I found this great blog post that summarizes some research on these and has a good graphic too.   The scours are revealed through the multibeam mapping (MB) that the science mapping team conducts overnight. The image below is a MB map that shows the ridges and valleys (iceberg scours) and the red dots that form the line our ROV took exploring it on Sunday.

Multibeam (MB) Map showing iceberg scours and ROV dive track.  Image courtesy of NOAA and Harbor Creek.  June 2014.

Multibeam (MB) Map showing iceberg scours. The red dotted line near the middle of the image is our ROV track from the dive, going east to west. Image courtesy of NOAA and Harbor Branch Oceanographic Institute . June 2014.

The earth science education I teach with the Earth Balloon and Earth Walk programs cover processes that shape and form the planet and I can’t wait to incorporate iceberg scours and the habitat they now provide into these programs!

A call out to Jennifer Petro and her class at Everitt Middle School in Panama City, Florida. Jennifer participated as a TAS in 2013 on this same research project. Her class sent a collection of decorated styrofoam cups with Andy David from the Panama City NOAA lab for us to bring to the bottom during one of our dives.  This is what happens when Styrofoam is subject to increasing pressure.

Styrofoam cups predive

Styrofoam cups postdive

Science Part V.  I think we placed it here…I think it is here…It is here!

Earlier this spring, the South Carolina Department of Natural Resources in cooperation with the Army Corp of Engineers sank two barges to create artificial reef systems and habitat for groupers, tilefish, and countless other species.

Artificial reef barge sank spring 2014 by the South Carolina Department of Natural Resources with cooperation from the Corp of Engineers.

Artificial reef barge sank spring 2014 by the South Carolina Department of Natural Resources with cooperation from the Corps of Engineers. Its difficult to say for sure, but to give you a sense of scale, typical shipping containers like the green on one on top are are 40-50 feet in length.

During the overnight hours of June 24th & 25th the mapping science team (see below) set out to find these two barges somewhere within a 2 square mile box using the MB aboard the Nancy Foster; that’s a lot of ocean to cover!    I stayed up late with them and at about 10:00pm images began to emerge that resembled the barges.  By 10:30pm, the mapping team had combed through the data and generated 3D maps that were strong evidence they had found them.

MB barge1

3D multibeam image of one of the sunken barges near the Edisto MPA. The barge is the rectangle, however there appears to be a mass of objects off one of its corners – keep reading.

However, a hypothesis emerged; one of the barges may have flipped upside-down during its initial sinking and that some of the cargo containers had actually fallen off and came to rest on the ocean floor separate from the barge.  During this discussion with the mapping team, I had this huge smile and was in awe with what they could do with sound waves!

So on Wednesday afternoon, June 25th the ROV team went to work to explore the sunken barges.  I watched as Lance Horn slowly guided the ROV down below 100 meters.  Eventually we could make out the barge.  Lance had to use his many years of ROV piloting to carefully maneuver.   We could not let the umbilical fiber optic and power cord get caught on any of the metal debris and towers that projected outward.  What did we discover?  Unfortunately I am unable to show you the pictures.  At 90 meters in depth it was so dark, the digital camera could not capture quality images – even with two LED lights.  However, the HD video gave us clear visual and conclusions.  The barge settled upright on the sea floor (it wasn’t upside down).  However, we speculate that it came down with such force that the shipping containers and structures collapsed and broke away.  Indeed four of them are lying on the ocean floor off the northwest corner of the barge. It’s only been a few months so habitat and few fish have yet to call it home, but schools of Amberjack were all around.

 

Career highlight: 

Kayla Johnson and Freidrich Knuth are our mapping scientists we brought on board as part of the science team and Samantha Martin and Nick Mitchell are fulltime NOAA mapping scientists assigned to the Nancy Foster.  All four of them have very interesting stories about how they use their education and expertise to be eyes through the water column deep into the ocean.  Freidrich and Kayla accompanied the science team as graduates from the Department of Geology and Environmental Geosciences at Charleston College.

Mapping science crew aboard the Nancy Foster.  From left to right:  Freidrich Knuth, Nick Mitchell,Kayla Johnson.  Not pictured - Samantha Martin.

Mapping science crew aboard the Nancy Foster. From left to right: Freidrich Knuth, Nick Mitchell,Kayla Johnson. Not pictured – Samantha Martin.

It is really inspiring to hear about their experiences in MB mapping in many of the oceans worldwide.  They are experts of combing through data we receive through a number of ship-mounted devices, applying complex GIS software (geographic information systems), and creating 2D & 3D maps that the science team can use to direct the ROV to the next day – which means this team works through the overnight hours and sleeps during the day.

Personal Log:

I have been running on the treadmill which is located in a small fitness center low in the ship.  It’s a very awkward feeling when there are large waves and the treadmill and I are going up and down and swaying side to side.  The way I look at it I am running on water so it has to be easier on my knees.

I have lost track of the number of birthdays we have celebrated while offshore.  From somewhere, seemingly daily, birthday cards and cakes emerge.

And for another quote from The Big Thirst by Charles Fishman that I am reading while aboard the Nancy Foster.

“Water is a pleasure.  It is fun.  Our sense of water, our connection to water, is primal.  Anyone who has ever given a bath to a nine-month-old baby – and received a soaking in return – knows that the sheer exuberance of creating splashing cascades of water is born with us.  We don’t have to be taught to enjoy water.”  (p760)

We are sailing for the Florida MPA overnight tonight (10-12 hours) and will be ready to launch the ROV again tomorrow.

Glossary to Enhance Your Mind

Each of my logs is going to have a list of new vocabulary to enhance your knowledge.  I am not going to post the definitions; that might be a future student assignment.  In the meantime, some might have links to further information. 

NOAA’s Coral Reef Watch has a great site of definitions at

http://coralreefwatch.noaa.gov/satellite/education/workshop/docs/workbook_definitions.pdf

  • Ehinoderms
  • Radial symmetry
  • A ‘clip’
  • Latitude/Longitude
  • Heading
  • Hypothesis
  • GIS
  • TED – turtle exclusion device (Andy and I had a conversation about other work NOAA is doing in the Gulf related to turtles, TEDs and their work on trawlers.   Perhaps another NOAA at sea adventure for me in the future.)

Sue Zupko: 4 Winning Answer #1

The first creature I saw when I boarded the Pisces was the Laughing Gull.  Almost everyone who answered this survey said Sea Gull would be the first creature I would see.  Good job!  The gulls were flying all over the harbor.  Ironically, this is the picture I chose to use in my first entry to this blog.  Later that day I saw Dolphins, Mullet, a Brown Pelican, Sargassum, a Loggerhead Sea TurtleFlying Fish, and Moon Jellies.  Still waiting on a whale and the Lophelia.  We have only been out a short time.

Gull silhouette landing on a ship stair in the evening

Gull landing at dusk


New survey.  What do you think these are?

pink and yellow rods lying side by side

What is this #2?

Robert Lovely, April 5, 2008

NOAA Teacher at Sea
Robert Lovely
Onboard NOAA Ship Gordon Gunter
March 31 – April 12, 2008

Mission: Reef Fish Ecological Survey
Geographical area of cruise: Pulley Ridge and the West Florida Shelf, Gulf of Mexico
Date: April 5, 2008

This sea anemone was part of a remarkably diverse community found on Pulley Ridge at a depth of about 212 feet.

This sea anemone was part of a remarkably diverse community on Pulley Ridge at about 212 feet.

Weather Data from the Bridge 
Visibility: 7-8 miles
Wind Direction:  140 degrees (SE)
Wind Speed:  13 knots
Sea Wave Height:  1-2 feet
Swell Wave Height:  2-3 feet
Seawater Temp.: 24.7 degrees C.
Present Weather:  Clear

Science and Technology Log 

Today we made three two-hour ROV dives on Pulley Ridge.  We documented an impressive amount of biodiversity along three transects at depths that ranged from about 190 to 225 feet. Downward still images of the bottom were taken at regular four minute intervals; forward facing still shots were taken whenever something of interest presented itself; and a continuous forward-looking video recording was made of the entire transect.

Agaricia sp., a hermatypic (reef-building) coral we found at about 215 feet.

Agaricia sp., reef-building coral we found at 215 feet.

The ideal cruising speed for the ROV video recording is a very slow one-half knot, which presents significant challenges for the people on the bridge. In fact the Commanding Officer, LCDR Brian Parker, remarked on how good a training exercise this cruise is for his team.  Upon our return to port, and for weeks afterwards, fishery biologist Stacey Harter will analyze the video to derive density estimates for the fishes observed.  She will determine the area covered by each video transect and count individuals of each species that intercepted our transect line.  Abundance estimates then can be extrapolated per unit area.  Others will use similar techniques to determine the aerial extent of living corals.  These data, in turn, will be useful to authorities responsible for managing the fisheries. Pulley Ridge is a drowned barrier island system that formed about 14,000 years ago, when sea levels were lower because a larger portion of the Earth’s water was locked up in glacial ice. While the presence of photosynthetic corals, such as Agaricia spp. was patchy on our dives, we did encounter large fields of green algae in relatively high densities.

The green algae, Anadyomene menziesii, dominated large areas in the southern portion of Pulley Ridge.

The green algae, Anadyomene menziesii, dominated large areas in the southern portion of Pulley Ridge.

This species no doubt is the Anadyomene menziesii described by Robert Halley and his group at the USGS. These striking seascapes resembled large fields of lettuce.  At the southern end of Pulley Ridge this green algae dominated the seabed.  As we moved northward from station to station, however, it occurred in much lower densities, and we began to see higher proportions of the calcareous green algae Halimeda spp. Various species of red coralline algae were also common on Pulley Ridge. Apart from the abundance of Anadyomene menziesii, the other striking observation one makes on this deep coral reef is the presence of conical-shaped mounds and pits.  These structures are almost certainly constructed by fish, such as the sand tilefish (Malacanthus plumieri) and red grouper (Epinephelus morio). Sand tilefish in particular burrow into the coral rubble and pile it up for cover. Red grouper are also industrious excavators.

 A red grouper (Epinephelus morio) at rest in a small pit on Pulley Ridge.


A red grouper at rest in a small pit on Pulley Ridge.

The mounds and pits introduce an element of topographic relief into an otherwise flat seascape along the top of Pulley Ridge.  Because so many other species of fish are attracted to these structures, I would suggest that (at least among the fish) sand tilefish and red grouper represent keystone species in this unique ecosystem.  The removal of these two species would have a significant impact on the rest of the community. Other fauna we observed today were typical of what one might encounter on a shallow-water reef, including sponges, tunicates, lobsters, bryozoans, amberjacks, angelfish, reef butterflyfish, snapper, barracuda, and a loggerhead turtle.

Personal Log 

My favorite place on the ship is the boatswain’s chair way up on the bow. No one else seems to know about it, for I have yet to find it occupied when I want to use it.  It is the quietest, most scenic spot on the ship.  Whenever I get a chance, I sneak up there to watch the flying fish. They are flushed by the ship, and some of them can remain in flight for long periods, perhaps 20 seconds or more. If I am especially lucky, I also get to watch dolphins riding our bow. This is a real treat because they seem so playful.

Our ROV disturbs the nap of a loggerhead turtle (Caretta caretta).

Our ROV disturbs the nap of a loggerhead turtle (Caretta caretta).

A pod of dolphins bow-riding the GORDON GUNTER.

A pod of dolphins bow-riding the ship.