Jeff Peterson: The Work in the Eastern Gulf, July 19, 2018

NOAA Teacher at Sea

Jeff Peterson

Aboard NOAA Ship Oregon II

July 9 – 20, 2018

 

Mission: Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 19, 2018

 

Weather Data from the Bridge

Date: 2018/07/19

Time: 16:34:47

Latitude: 29 57.6 N

Longitude: 087 02.60 W

Speed over ground: 7.3 knots

Barometric pressure: 1014.49

Relative humidity: 84%

Air temperature: 26.8 C

Sea wave height: 1 m

 

Science and Technology Log

We arrived off the coast of Florida on the evening of Sunday, July 15, and sampled stations in the eastern Gulf until the afternoon of Thursday, July 19. We used the same fishing method during this part of the cruise (bottom trawling), but added a step in the process, deploying side scan sonar in advance of every trawl. This measure was taken both to protect sea life on the ocean floor (sponges and corals) and to avoid damaging equipment. The sea bottom in this part of the Gulf—east of the DeSoto Canyon—is harder (less muddy) and, in addition to coral and sponge, supports a number of species markedly different than those seen in the western Gulf.

 

Side Scan Sonar

In contrast to single-beam sonar, which bounces a single focused beam of sound off the bottom to measure depth, side scan sonar casts a broader, fan-like signal, creating nuanced readings of the contour of the ocean floor and yielding photo-like images.

Towed Side Scan

How side scan sonar works: The harder the object, the stronger the image returned. See: https://oceanservice.noaa.gov/education/seafloor-mapping/how_sidescansonar.html#

 

Side scan sonar device

Side scan sonar device in its cradle.

 

 

Rigged and ready for deployment.

Rigged and ready for deployment. Signals from the sonar are conducted up the cable and picked up by the electrically powered lead on the block.

 

on its way in

Side scan sonar on its way in astern.

 

descending

Side scan sonar just beneath the surface & descending.

 

When we arrive a station in this part of the Gulf, we begin by traversing, covering the usual distance (1.5 miles), but then turn around, deploy the side scan sonar, and retrace our course. Once we’ve returned to our starting point, we recover the sonar, turn around again, and—provided the path on the sea bottom looks clear—resume our course through the station, this time lowering the trawl. If the side scan reveals obstructions, it’s a no-go and the station is “ditched.”

 

Coming about

Coming about before deploying the side scan sonar.

 

 

And Now for Something Completely Different . . . Fish of the Eastern Gulf

Panama City, Florida

Off Panama City, Florida – Tuesday morning, July 17, 2018

We spent the first half of this leg of the survey in the western Gulf of Mexico, going as far west as the Texas-Louisiana border. The second half we’re spending in the eastern Gulf, going as far east as Panama City. From here we’ll work our way westward, back to our homeport in Pascagoula.

Thanks to different submarine terrain in the northeastern Gulf—not to mention the upwelling of nutrients from the DeSoto Canyon—it’s a different marine biological world off the coast of Florida.

Here’s a closer look at the submarine canyon that, roughly speaking, forms a dividing line between characteristic species of the western Gulf and those of the eastern Gulf:

Bathymetric map of the Gulf of Mexico

Bathymetric map of the Gulf of Mexico, with proposed dive sites for Operation Deep-Scope 2005 indicated by red arrows and yellow numbers. Site #1 is on the southwest Florida Shelf in the Gulf of Mexico, where deep-water Lophilia coral lithoherms are found. #2 is DeSoto Canyon, a deep erosional valley where upwelling of deep nutrient rich water means greater animal abundances. #3 is Viosca Knoll, the shallowest site, where spectacular stands of Lophelia provide abundant habitat for other species. See: https://oceanexplorer.noaa.gov/explorations/05deepscope/background/geology/media/map.html

 

And here’s a selection of the weird and wonderful creatures we sampled in the eastern Gulf. As this basket suggests, they’re a more brightly colored, vibrant bunch:

Basket of catch

A basket of fish. Upper right: Lane Snapper, Lutjanus synagris. On the left: Sand Perch, Diplectrum formosum. The plentiful scallops? Argopecten gibbus.

 

 

Sand Perch, Diplectrum formosum

Sand Perch, Diplectrum formosum

Razorfish, Xyrichtys novacula

Razorfish, Xyrichtys novacula

A basket of Xyrichtys novacula

A basket of Xyrichtys novacula

 

Angelfish, Holacanthus bermudensis

Angelfish, Holacanthus bermudensis

Angelfish closeup

Holacanthus bermudensis details: tail fins (front specimen), pectoral fin & gill (behind)

 

Jackknife Fish, Equetus lanceolatus

Jackknife Fish, Equetus lanceolatus

Lined Seahorse, Hippocampus erectus

Lined Seahorse, Hippocampus erectus

 

 

Argopecten gibbus

Argopecten gibbus (all 2,827 of them)

Pink Shrimp, Farfantepenaeus duorarum.

Pink Shrimp, Farfantepenaeus duorarum. Note the signature “pink” spot by my thumb.

 

Calamus

Calamus

 

Lionfish, Pterois volitans

Invasive scourge of the Gulf: Lionfish, Pterois volitans

Lionfish, Pterois volitans

Lionfish, Pterois volitans

 

Burrfish, Chilomycterus schoepfii

Burrfish, Chilomycterus schoepfii

 

 

Scorpionfish (aka Barbfish), Scorpaena brasiliensis

Scorpionfish (aka Barbfish), Scorpaena brasiliensis

 

Southern Stargazer, Astroscopus y-graecum (juvenile)

Southern Stargazer, Astroscopus y-graecum (juvenile)

 

Ocellated Moray Eels, Gymnothorax saxicola

Ocellated Moray Eels, Gymnothorax saxicola

 

Trumpetfish, Aulostomus maculatus

Trumpetfish, Aulostomus maculatus

 

 

Video credit: Will Tilley

 

debris

Mysterious debris: A bottom-dwelling payphone?

 

Personal Log

Our move into the eastern Gulf marks the midpoint of the cruise, and we’ll be back to Pascagoula in a few short days. The seas haven’t been as serenely flat as they were in the eastern Gulf, nor has the sky (or sea) been its stereotypically Floridian blue, but I’ve found life aboard ship just as pleasurable and stimulating.

storm

A squall on Monday morning, July 16, 2018. Off the stern there to starboard, Blackfin Tuna were jumping.

 

In my final blog post, I’ll have more to say about all the great folks I’ve met aboard NOAA Ship Oregon II—from its Deck Department members and Engineers, to its Stewards and NOAA Corps officers and inimitable Captain—but here want to reiterate just how thoughtful and generous everybody’s been. The “O2” is a class act—a community of professionals who know what they’re about and love what they do—and I couldn’t be more grateful to have visited their world for a while and shared their good company.

Busy as we’ve been, I haven’t had much time for sketching during this part of the cruise, and, as the selection of photos above suggests, I’ve concentrated more on taking pictures than making them. Still, I’ve begun a small sketch of the ship that I hope to complete before we reach Pascagoula. It’s based on a photograph that hangs in the galley, and that I’m going to attempt to reproduce actual size (3 3/8” x 7”) . Here’s where things stand early on in the process:

IMG_8230 2.jpg

Work in progress: sketch of NOAA Ship Oregon II

 

Did You Know?

Any of the western Gulf fish in the basket from my last blog post? Here it is again:

Basket of Fish from Western Gulf

Basket of Fish from Western Gulf

And here is a visual key to the four species I was fishing for, each figuring prominently in my blog post for July 15:

Basket of fish revision

Basket of Fish from Western Gulf: now color-coded

1: Red Snapper, Lutjanus campechanus

2: Longspined Porgy, Stenotomus caprinus

3: Gulf Butterfish, Peprilus burti

4: Brown Shrimp, Farfantepenaeus aztecus

A few Stenotomus caprinus and Peprilus burti have been left unhighlighted. Can you find them?

Anna Levy: What Tummies Tell Us, July 15, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10 – 20, 2017

 

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 15, 2017

 

Weather Data from the Bridge

Scattered, mild storms continue, causing some delays in our fishing. However, they do lead to beautiful sunsets!

IMG_1087

Beautiful Gulf of Mexico sunset

Latitude: 29 18.790 N

Longitude: 84 52.358 W

 

Air temp: 28.7 C

Water temp: 29.7 C

Wind direction: light and variable

Wind speed: light and variable

Wave height: 0.3 meter

Sky: 80% cloud cover, no rain

 

Science and Technology Log

IMG_5442

TAS Anna Levy removes the stomach of a red snapper.

Data about the number and size of individual organisms can tell us a lot about the health of an overall population of a species. However, it doesn’t tell us much about the role that species plays in its community. If we want to understand that better, we need to know more about how it fits into its food web – what it eats and what eats it. If you were trying to collect information about what a fish eats, where would you look first? Its stomach!

So, after we measure certain species, we dissect them and remove their stomachs. We place each stomach in its own tiny bag, with a bar code that identifies which individual fish it belonged to. Back at a lab on land, scientists will carefully examine the contents of the stomachs to better understand what each species was eating.

IMG_1079

The bar codes that we use to label specimens.

 

factc_240

This map shows the native range of lionfish. Credit: http://oceanservice.noaa.gov/facts/lionfish-facts.html

For example, one of the fish currently under investigation in the Gulf of Mexico is the lionfish. This is an invasive species, which means that it is not native to the area. Its natural habitat is in parts of southern Pacific and Indian oceans, but it was first spotted in the Atlantic, off the coast of North Carolina, in 2002. Lionfish were most likely introduced to this area by humans, when they no longer wanted the fish as an aquarium pet. By 2010, its range had expanded to include the Gulf. And, with no natural predators in this area and rapid rates of reproduction, its numbers have increased exponentially.

Early dietary studies, which were focused on the lionfish in the Atlantic, show that the lionfish is a generalist. This means that, while it prefers to eat small reef fish, it is able to eat a wide variety of organisms including benthic invertebrates (like crabs) and other fish. This flexibility makes lionfish even more resilient and able to spread. These studies also found that lionfish stomachs were rarely empty, suggesting that they are highly successful predators, able to out-compete other top predators for food.

This has wildlife experts concerned about the impact lionfish will have on natural ecosystems. It is possible that lionfish will over-consume native species, causing native ecosystems to collapse. It is also possible that lionfish will out-compete and displace native, high level predators, like snapper and grouper. Scientists are working now to develop methods to try to manage this invasion.

Because ecosystems here are different from those in the Atlantic, scientists are now turning their attention to studying the lionfish in the Gulf of Mexico. The work that we did on the boat today should help them do just that!

To see the results of one such study, completed in 2014, see:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105852

For more information and photos about the lionfish, please see:

https://oceanservice.noaa.gov/education/stories/lionfish/lion02_invade.html

https://oceanservice.noaa.gov/facts/lionfish-facts.html

http://www.fisheries.noaa.gov/mediacenter/2015/05/21_05.html

 

Personal Log

Often times, we teachers struggle to convince our students that, while all of the modern technology we have is great, they also need to understand how to solve problems without relying on it. (Most of us have probably been on at least one side of the old, “no, you don’t need a calculator to multiply by 10!” argument at some point in life.)   Well, in the past couple of days, I’ve seen two great examples of this onboard the ship.

The first relates directly to our survey work. Our CTD, the equipment mentioned in last post, has two sensors that both detect how much dissolved oxygen is in the water. Having two instruments collecting the same information (sometimes called redundancy) is important, not only so that there is a back-up in case one breaks, but also so that we can tell if they are measuring accurately.

The two oxygen sensors have been reading differently – one was about 0.7 mg/L lower than the other. This is an indication that one needs to be calibrated – but which one? To find out, Alonzo Hamilton, one of the senior NOAA scientists, used a classical chemical analysis technique called titration.

IMG_1082

This is the titration equipment found in the chemical lab on board the ship.

In a chemical titration, one substance is slowly added to another, while the scientist watches for a chemical reaction to occur. If you know how the two substances react, you can determine how much of the second substance is present, based on how much of the first was added to make the reaction happen.

Based on the results of his titration, Alonzo was able to determine which of the oxygen sensors was reading accurately. So, it definitely goes to show that there are important applications for that classic high school chemistry!

IMG_1173

The binnacle that houses the ship’s magnetic compass.

The other example relates more to the ability to navigate the ship. NOAA Ship Oregon II is equipped with advanced electronic navigation software, Gyro compass, radar, and GPS systems. However, when I was exploring the top deck (flying bridge) of the ship, I came upon this strangely low-tech looking instrument. I asked ENS Chelsea Parrish, a NOAA Corps Officer and member of the wardroom, about it. She explained that it is called a “binnacle,” a safeguard that houses a magnetic compass! The magnetic compass is the same type of technology used by mariners back in the 1300’s. It is critical to have in case of a power outage or other disruption to the ship’s electronic navigation technology.

 

 

Did You Know?

While they typically live in cold waters, there is one pod of orca whales (aka killer whales) that resides, year-round, in the Gulf of Mexico. It’s rare to see them, but I’m keeping my eyes peeled!

Dolphins, on the other hand, seem to be everywhere out here. I’ve caught at least a glimpse of them every day so far. In fact, a group of them swam up to investigate our CTD today as it was being lowered into the water.

 

Questions to Consider:

Research: Some other famous invasive species in our oceans include the green crab (Carcinus maenas), killer algae (Caulerpa taxifolia), a jellyfish-like animal called a sea walnut (Mnemiopsis leidyi), a marine snail called rapa whelk (Rapana venosa), and the zebra mussel (Dreissena polymorpha). Where did each of these originate? How did they come to inhabit their invaded areas? What impact are they having?

Brainstorm: What measures could you imagine taking to manage some of these species?

Research: The specific type of titration used to determine the amount of dissolved oxygen in water is called the Winkler method. How does the Winkler method work?

 

 

 

Melissa Barker: On to the Emerald Coast, July 4, 2017

Lionfish!

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22-July 6

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 4, 2017

Weather Data from the Bridge:

Latitude: 29 49.65 N

Longitude: 86 59.92 W

Air temp: 29.7 C

Water temp: 31.6 C

Wind direction: 337 degrees

Wind speed: 1.88 knots

Wave height: 0.5 meters

Sky: partly cloudy

 

Science and Technology Log

We are now off the coast of Western Florida. After completing many stations in East Texas and Louisiana, we headed over to the Emerald Coast. State agencies in Louisiana and Mississippi, who are SEAMAP partners, have already completed stations in their states using the same trawling protocol which allowed us to push on to Florida.

The change in species has been dramatic. We are now trawling in sandy bottom areas, which have also been shallower than most of our Texas trawls with muddy bottoms. Generally, the fish here in Florida have more coloration and our catches have been smaller with fewer, but often slightly larger fish. Below is a side by side comparison of fish diversity between a Texas trawl catch and a Florida trawl catch.

The increased coloration in the fish actually helps the fish hide better in the sandy bottomed blue waters, yet at the same time allowing potential mates to find each other more easily. In the murky bottom waters of Texas, the fish tend to blend in better with duller colors. Here are some of the interesting species we found in the Emerald Coast waters.

One new fish we have caught in Florida is the lionfish (Pterois volitans ). In less than 10 years, the Lionfish has become widely established as an invasive species in the US Southeast and Caribbean coastal waters. It is native to the Indo-Pacific region, but was introduced into this area of the Gulf.

It is believed that lionfish were introduced off the Florida coast in the mid-1980’s, then expanded their way up the east coast. By 2004, NOAA scientists confirmed breeding populations off the coast of North Carolina which then worked their way into the Gulf of Mexico by 2005-2008. Lionfish are a popular aquarium fish and it is hypothesized that people released them into the Atlantic when they no longer wanted them as aquarium pets. Their large eggs masses floated up the coast via the gulf steam allowing them to spread easily. According to the National Centers for Coastal Ocean Sciences, it is estimated that their population has reached roughly 1,000 per acre in some locations of the Gulf.

Lionfish are top predators which compete for food and habitat with native predators that have been overfished like snapper and grouper.

Lionfish Infographic by the National Centers for Coastal Ocean Science (NCCOS)

They consume over 50 species including some that are economically and ecologically important. For example, they can consume important algae-eating parrot fish, allowing for too much vegetation build in reef areas. They have no known predators and reproduce all year long. You have to be careful when handing lionfish because they can deliver a venomous sting with their spines that can cause pain, sweating and respiratory distress. There has been a push to encourage harvesting lionfish for consumption in an attempt to reduce their population, but unfortunately there is currently no known mechanism to control or eliminate the population. (Source: NOAA National Ocean Services)

 

 

Interviews with the People of the Oregon II- PART 2

I’ve spent some time talking with people who work on the ship from the different departments trying to understand their jobs and their desire to work at sea. I have posted three interviews in my previous blog and have three more to share with you here.

 

Commanding Officer Dave Nelson

Captain Dave Nelson in the captain’s chair

Captain Nelson’s number one responsibility is safety on board. He is also responsible for the operations, such as getting the data that the scientists need. Additionally, he has a significant teaching and mentoring role for the Ensigns, new Officers. He is one of only two civilian captains in the NOAA fleet and has been training junior officers for 15 years. In 2016, the Oregon II won NOAA Ship of the Year, partially due to the culture that Captain Nelson has cultivated on the ship. Since he worked his way up from the deck, he really can appreciate the role that each individual on the boat plays and says it is critical that everyone works together for the safety and the success of the science mission of the ship.

What did you do before working for NOAA?

After high school, I fished commercially and worked as crew on oil field supply boats. I captained a shrimp boat, but knew I wanted to find a career.

How did you get to where you are today?

I started as a deck hand and worked my way up to Third mate, then Operations Officer (OPS), Executive Officer (XO) and finally Commanding Officer (CO) over the course 25 years. I had all the nautical knowledge and NOAA gave me the opportunity to take the Master Captains License test. I had to go back to the books to study hard and then passed with flying colors.

 What do you enjoy most about working on the Oregon II?

I enjoy training the Junior Officers and seeing them make progress. And of course, the joy of going to sea.

What advice or words of wisdom do you have for my students?

Set a goal and stick to it. Don’t let anyone get in your way. At 47, I had to go back to the books and study harder than I ever had for my Master Captains exam. There will be set backs and hard work will be required, but sticking with your goal is worth it in the end.

 

Science Field Party Chief Andre DeBose

Field Party Chief Andre DeBose holding a Sphoerodies pachygaster (Blunthead Puffer)

Andre has been working at the NOAA Mississippi Lab in Pascagoula as the education coordinator and a member of the trawl unit for 21 years. He has been working on the Oregon II for 19 years. When at the lab he coordinates the education interns, collects and compiles trawl data and compiles historical trawl protocols. He is also the foreign national coordinator and get them cleared for sea duty. I’ve worked closely with Andre on the boat and appreciate all his patience and willingness to share his knowledge and insight with me.

 What does it mean to be Science Field Party Chief?

I am the liaison between the lab and the ship and help mediate requests from both parties. On board, I supervise all scientific activities and personal.

 What did you do before working for NOAA?

My degree is in general biology, which I linked to aquaculture. Right out of college, I worked at the Sea Chick aquaculture plant raising large mouth and hybrid striped bass. The facility was trying to make farmed grown fish as important as farmed raised chicken.

How did you come to work for NOAA?

I was hired as a temporary scientist for a Groundfish survey for 40 days aboard NOAA Ship Chapman. After that, I worked with a Red Drum tagging crew aboard the R/V Caretta then was hired on permanently by NOAA and been working at the lab ever since.

Tell me about one challenging aspect of your job?

Being out at sea. I miss my family and my normal day to day life.

What do you enjoy most about working on the Oregon II?

Going to sea. Even though it is hard to be away, I love being out there and the work we do.

What advice or words of wisdom do you have for my students?

The goals that you desire may become your livelihood, always make sure to make your work fun and it will never bore you.

 

Second Engineer Darnell Doe

Second Engineer Darnell Doe

Darnell has been the Second Engineer aboard the Oregon II for three years. His job is a critical one as he is responsible for the maintenance and upkeep of the engines and generators. We are typically running on one engine and one generator with a second of each for back up. He changes filters, checks oil sump levels and makes sure everything is running smoothly.

What did you do before working for NOAA?

I worked in the Navy for 20 years as an engineer doing repair as a machinist through three wars. Then I worked doing combat support for the military sea lift command.

Why work for NOAA?

A friend told me about a job opening on a NOAA ship. I applied and got it.

Tell me about one challenging aspect of your job?

I’m used to working on much bigger ships, so working on the Oregon II is like working on a lawn mower in comparison. I tackle problems in a routine way and solve them as they arise.

What do you enjoy most about working on the Oregon II?

Working on this ship is new and interesting, which I like. I’ve seen some weird stuff come out of that water and enjoy learning about the science that is happening onboard.

What advice or words of wisdom do you have for my students?

If your mind is set on something, proceed on that road and keep persisting. Stick with your goal.

 

Personal Log

It’s the 4th of July and folks are getting patriotic on the Oregon II. The ship got a new flag today and we had festive lunch, which is typically the biggest meal on the ship due to the shift change. The day shift folks eat first and then start their shift, while the night shift folks end their shift, eat and head to bed.

Yesterday we saw land. It has been 10 days since I’ve seen hard ground which is a lot for this land lover. I’m not sure why, but for some reason I imagined we would be close enough to see land more often. However, it was strange to see beach hotels and condos at a distance today; we are between 3.5-8 miles off shore for a few of our stations. I’ve come to enjoy the endless sea view.

Tire pulled up in our trawl net

While trawling yesterday we caught a tire. We’ve actually found very little trash in our trawls, so the tire was a bit of a surprise. Then we caught another tire in the next trawl. Apparently, it is common for people to dump tires and other large trash items into the ocean and GPS the location. These items are used as fish aggregating devices. Vegetation will grow on them and attract small fish. Larger fish are then drawn to the area to feed. Using the GPS location, people will come back to fish this area. I guess it is helpful that we are picking up the tires.

It is hard to believe that I am almost at the end of my journey. We’ve finished our trawling and are making the trek back to Pascagoula, MS. It feels strange to be awake with no fish work to do, but I’m enjoying a little down time as it has been a busy two weeks full of fun and learning.

Did You Know?

The northwest coast of Florida from Pensacola Beach to Panama City Beach is referred to as the Emerald Coast, which is where we are now. According to the Northwest Florida Daily News, the term Emerald Coast was coined in 1983 by a junior high school student who won $50 in the contest for a new area slogan.

Dawson Sixth Grade Queries

What is the coolest/craziest animal you found? (Alexa, Lorna, Blaine)

Lionfish (Pterois volitans)

Of all the fascinating new species I’ve seen, I think lionfish are the coolest and craziest organism of them all. I also find it interesting that a native species in one area of the world can be problematic and invasive in another part of the world.

Why do you think we only discovered/explored only 5% of the ocean? (Kale)

There are several reasons when we have explored so little of the ocean. One main reason is that ocean exploration is expensive, roughly $10,000 per day. Fish and other aquatic organisms are concentrated by the coast, so that is the area that is prioritized for exploration and where our major fisheries are located.

How many fish died for the research? (Mia, Bennett)

Most of the fish that come aboard end up dying for the purpose of science. I would estimate that in a typical trawl we have might pull in between 250 to 300 organisms. This is a pretty small amount when compared to the amount of fish removed by the commercial finishing industry and the unintended catch associated with the fishing industry. We often split the catch and end up sending half of the organisms back into the ocean fairly quickly. However, the ones we keep aboard give us important data that allow fisheries manager to assess the health of the fisheries in their states. We also keep and freeze certain species for other researchers who will use them off the boat. Ultimately the ones we don’t keep are returned to the ocean and will be eaten by larger fish and marine mammals.

Leah Johnson: All About the Fish, July 24, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Friday, July 24, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 033.235230
Longitude -077.298950
Water Temperature 25.88 °C
Salinity -No Data-
Air Temperature 28.3 °C
Relative Humidity 78 %
Wind Speed 5.76 knots
Wind Direction 355.13 degrees
Air Pressure 1011.3 mbar

Science and Technology Log:
When the traps are reeled in, the GoPro camera attachments are unclipped and brought into the dry lab. The cameras are encased in waterproof housing that can withstand the higher pressure at the seafloor. One camera is placed on the front of the trap, and one camera is placed on the back. Each video card captures ~45 minutes of footage. The videos will be carefully scrutinized at a later date to identify the fish (since many do not enter the traps), describe the habitat, and also describe the fish behavior. While aboard the ship, the videos are downloaded and watched just to make sure that the cameras worked properly, and to gain a general idea of what was happening around the trap. Occasionally, there are some really exciting moments, like when a tiger shark decided to investigate our trap!

tiger sharkThis tiger shark appeared in the video from both trap cameras as it circled.

While the cameras are being prepped in the dry lab for the next deployment, we are busy in the wet lab with the fish caught in the traps. The first step is identification. I could not identify a single fish when the first trap landed on the deck! However, I am slowly learning the names and distinctive features of the local fish. Here are a few examples of the fish that we have hauled in so far:

Once the fish are identified, they are sorted into different bins. We record the mass of each bin and the lengths of each fish. Most of the smaller fish are returned to the ocean once the measurements are recorded. Some fish are kept for further measuring and sampling. For each of these fish, we find the mass, recheck the total length (snout to tail), and also measure the fork length (snout to fork in tail) and standard length (snout to start of tail).

I measured the fish while one of my crew mates recorded the data.

I measured the fish while one of my crew mates recorded the data.

The fish is then ready for sampling. Depending on the species of fish, we may collect a variety of other biological materials:

  • Otoliths (ear stones) are made of calcium carbonate, and are located near the brain. As the fish grows, the calcium carbonate accumulates in layers. As a result, otoliths can be used – similarly to tree rings – to determine the age of the fish. I retrieved my first set of otoliths today!
  • Muscle tissue (the part of the fish that we eat) can be used to test for the presence of mercury. Since mercury is toxic, it is important to determine its concentration in fish species that are regularly consumed.
  • Gonads (ovaries in females or testes in males) can be examined to determine if a fish is of reproductive age, and whether it is just about to spawn (release eggs / sperm into the water).
  • The stomach contents indicate what the fish has eaten.

This toadfish had snail shells in its stomach!

This toadfish had snail shells in its stomach!

The soft tissues are kept in bags and preserved in a freezer in the wet lab. Sample analyses will take place in various onshore labs.

Personal Log:
It is important to remember that this ship is home to most of the people on board. They live and work together in very close quarters. There are daily routines and specific duties that individuals fill to keep Pisces running smoothly. Cooperation is key. I do my best to be useful when I can, and step aside when I cannot. Despite my inexperience at sea, everyone has been incredibly kind, patient, and helpful. I am lucky to be surrounded by so many amazing people who are willing to show me the ropes!

Did You Know?
The lionfish is an invasive species in the Atlantic Ocean. Its numbers are increasing in waters off the Southeastern U.S. coast. These fish have few predators, and they are consuming smaller fish and invertebrates which also sustain local snapper and grouper populations.

lionfish

This lionfish was in one of our traps yesterday.

David Walker: Florida, Speciation, and Learning All Over Again (Days 13-15), July 8, 2015

NOAA Teacher at Sea
David Walker
Aboard NOAA Ship Oregon II
June 24 – July 9, 2015

Mission: SEAMAP Bottomfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: July 8, 2015

Weather Data from the Bridge

Weather Log 7/7/15

NOAA Ship Oregon II Weather Log 7/7/15

The seas have remained incredibly calm, again with waves normally no higher than 1 ft.  July 7, 2015 was a beautiful day, with few (FEW, 1-2 oktas) clouds in the sky (see above weather log from the bridge).  Visibility from the bridge was 10 nautical miles (nm) throughout the day.

Science and Technology Log

After a run of around 16 hours, we finally arrived on the west coast of Florida to continue the survey.

Wow!  The organisms caught on the west coast of Florida were entirely different from those caught west of the Mississippi.  In our first trawl catch, I almost didn’t recognize a single species.

Fisheries biologist Kevin Rademacher shared with me an article, “Evidence of multiple vicariance in a marine suture-zone in the Gulf of Mexico” (Portnoy and Gold, 2012), that offers a potential explanation  for the many differences observed.  The paper is based on what are called “suture-zones.”  A suture-zone, as defined previously in the literature, is “a band of geographic overlap between major biotic assemblages, including pairs of species or semispecies which hybridize in the zone” (Remington, 1968).  In other words, it is a barrier zone of some kind, allowing for allopatric speciation, yet also containing overlap for species hybridization.  As noted by Hobbes, et al. (2009), such suture-zones are more difficult to detect in marine environments, and accordingly, have received less attention in the literature.  Such zones, however, have been discovered and described in the northern Gulf of Mexico, between Texas and Florida (Dahlberg, 1970; McClure and McEachran, 1992).

Portnoy and Gold note that “at least 15 pairs of fishes and invertebrates described as ‘sister taxa’ (species, subspecies, or genetically distinct populations) meet in this region, with evidence of hybridization occurring between several of the taxa” (Portnoy and Gold, 2012).  The below table delineates these sister taxa.  On this table, I have highlighted species that we have found on this survey.

Sister Taxa

Sister taxa found in the northern Gulf of Mexico. Highlighted are species we have encountered on this survey (Portnoy and Gold, 2012).

The figure below geographically illustrates distribution patterns of two pairs of sister species within the northern Gulf of Mexico.  We have seen all four of these species on this survey, and our observations have been consistent with these distribution patterns.

Distributions of sister taxa within the northern Gulf of Mexico

Distributions of “sister taxa” within the northern Gulf of Mexico (Portnoy and Gold, 2012)

Prior to Portnoy and Gold, hypothesized reasons for the suture-zone and allopatric speciation in the northern Gulf included “(1) a physical barrier, similar to the Florida peninsula, that arose c. 2.5 million years ago (Ma) during the Pliocene (Ginsburg, 1952), (2) an ecological barrier, perhaps a river that drained the Tennessee River basin directly into the Gulf, that existed approximately 2.4 Ma (Simpson, 1900; Ginsburg, 1952), (3) a strong current that flowed from the Gulf to the Atlantic through the Suwanee Straits approximately 1.75 Ma (Bert, 1986), and (4) extended cooling during early Pleistocene glaciations occurring c. 700–135 thousand years ago (ka) (Dahlberg, 1970)” (Portnoy and Gold, 2012).  Another explanation has been offered by Hewitt (1996), involving marine species being forced into different areas of refuge during the glacial events of the Pleistocene, allowing for allopatric speciation.  Following the retreat of the glaciers, according to this hypothesis, these species would have been allowed to come into contact again, allowing for hybridization.

Portnoy and Gold used mitochondrial and microsatellite DNA sequence data from Karlsson et al. (2009) to “determine if estimated divergence times in lane snapper were consistent with the timing of [the above] hypothesized variance events in the suture-zone area, in order to distinguish whether the Gulf suture-zone is characterized by a single or multiple vicariance event(s)” (Portnoy and Gold, 2012).

Their results suggest that the divergence of lane snapper in the northern Gulf occurred much more recently than the hypothesized events described by Ginsberg (1952), Bert (1970), and Dahlberg (1970).  These results also suggest that the explanation offered by Hewitt (1996) is an unlikely explanation for the divergence of lane snapper, for even though the time of multiple glaciations is consistent with the time of lane snapper divergence, water temperatures across the Gulf are estimated to have been within the thermal tolerance of lane snapper during these glaciations.  Evidence also suggests that a shallow shelf existed during these glaciations, representing a habitat in which lane snapper could have lived.

The explanation that Portnoy and Gold favor, in terms of explaining lane snapper divergence, is one suggested by Kennett and Shackleton (1975), as well as by Aharon (2003).  This explanation involves “large pulses of freshwater from the Mississippi River caused by a recession of the Laurentide Ice Sheet between 16 and 9 ka” (Portnoy and Gold, 2012).  This explanation would have also allowed for potential sympatric or parapatric speciation, because it contains multiple lane snapper habitat types (carbonate sediment, as well as mud and silt bottom).

Notably, the fact that the above explanation is favored by Portnoy and Gold for lane snapper divergence does not discount the explanations of Ginsberg (1952), Bert (1970), Dahlberg (1970), and Hewitt (1996), in terms of explaining the many other examples of species divergence exhibited within the northern Gulf.  It is most probable that many geological and ecological causes worked, sometimes in confluence, to create the divergences and hybridizations in species observed today.  A geographical depiction of many of the hypothesized explanations described by Portnoy and Gold is below.

Geographic Depiction

Geographical depiction of hypothesized triggers of species divergence in the northern Gulf of Mexico (Portnoy and Gold, 2012)

In addition to the species divergence observed in our survey, another interesting difference noted in our catches along the western coast of Florida was the emergence of lionfish.  These invasive species are native to the Indian Ocean and southwest Pacific Ocean, and they were most likely introduced by humans into the waters surrounding Florida.  There are two lionfish species that are invasive in Florida, P. miles and P. volitans (Morris, Jr. et al., 2008), and the earliest records of their introduction into Florida’s waters are from 1992 (Morris, Jr. et al., 2008).  Many characteristics have allowed these species to be successful alien invaders in these waters – (1) they are formidable, with venomous spines and an intimidating appearance, (2) they reproduce incredibly quickly, breed year-round, and mature at a young age, (3) they outcompete native predators for food and habitat, (4) they are indiscriminate feeders with voracious appetites, and (5) they take advantage of a sea that is over-fished, in which many of their predators are regularly being eliminated by humans (Witherington, 2012).

Life cycle of the lionfish

Life cycle of the lionfish

This invasion mechanism hauntingly reminds me of that of the Cane Toad, a very famous alien invader which has decimated the flora and fauna of Australia.  One of the main worrisome effects of lionfish around Florida is on coral reefs.  Lionfish “can reduce populations of juvenile and small fish on coral reefs by up to 90 percent…[and] may indirectly affect corals by overconsuming grazing parrotfishes, which normally prevent algae from growing over corals” (Witherington, 2012).

One of the ways in which Floridians are trying to eliminate this problem is through lionfish hunting tournaments.  CJ Duffie, a volunteer on this survey from Florida, has participated in these tournaments and also participates in lionfish research directed by the Florida Fish and Wildlife Commission.  CJ harvested the gonads of the lionfish we caught on Day 13 to take back to the lab for further analysis.  Floridians also actively promote the lionfish as a delicacy, in an attempt to encourage more people to eat the invasive species.  CJ described the fish as the best he has ever tried, so I was very easily intrigued.  A fillet was prepared from the large lionfish caught on Day 13 fish, and Second Cook (2C) Lydell Reed was able to cook it on the spot.  I agree with CJ – white, flakey, slightly sweet, this is the best fish I have ever tasted.

Personal Log

The survey is nearly over, and this will be my last post.  We are in transit back to Pascagoula, Mississippi, the ship’s home port.  I leave by plane from Mobile, Alabama for Austin on Friday, July 10, 2015.  I am eagerly anticipating walking on land, as I’ve heard it’s strange at first after being on a boat for awhile.  Apparently this weird feeling has a semi-formal name — “dock rock”.

This experience has truly been one of the best of my life, especially in terms of the raw amount I have learned every day.  Coming in, the sole knowledge of fish life I had derived from my stints fly fishing with my father, and most of this knowledge concerns freshwater fish.  I now feel as though I have a much more comprehensive knowledge of the biodiversity that exists in the Gulf of Mexico and a much greater appreciation for the diversity of life as a whole.  I have taken over 200 photos to document this biodiversity, accumulated a diverse collection of preserved specimens, and collected a wide variety of resources (textbooks, scientific papers, etc.) on marine life in the Gulf of Mexico.  These resources will surely make the preparation of a project-based activity for my students focused on this research a much easier feat.

Sharksucker (Echeneis naucrates)

Having fun with a sharksucker (Echeneis naucrates) during analysis of the last trawl catch

I have also learned how a large portion of marine field research is conducted.  We have surveyed dissolved oxygen levels in the water, plankton biodiversity, and bottomfish biodiversity throughout the northern Gulf, using established (and quite popular) research methods.  The knowledge I have gained here can be applied to the biodiversity project portion of my geobiology class, in which students conduct biodiversity surveys in local Austin-area parks and preserves.  I anxiously await the comprehensive results of this summer’s NOAA survey – the complete dissolved oxygen contour map, the biodiversity indexes for different regions of the Gulf, and plankton biodiversity data from Poland.  These data will definitely help me come to even more conclusions about the marine life in the Gulf and the factors affecting it.

Through this experience, I have also gained much appreciation for the diversity of careers that exist on board a NOAA research vessel.  I have learned about the great work of the NOAA Corps, a Commissioned Service of the United States.  I have learned from the fisherman, engineers, stewards, and other personnel on the boat, all required for a successful research survey.

First and foremost, I have to thank the science team on the night watch – fisheries biologists Kevin Rademacher and Alonzo Hamilton, FMES Warren Brown, and volunteer CJ Duffie.  These individuals were instrumental in helping me identify organisms, label my photos, and craft my blog posts and photo captions.  Kevin Rademacher provided me with most of the papers which I have referenced in this blog, and with no internet connectivity on the boat for around half of the trip, his library of information was essential.  For the “Notable Species Seen” section of this blog, Kevin also individually went through all of my species photos with me to help me add common and scientific names in the photo captions.  This took a great deal of his time, almost every day, and I am incredibly appreciative.

Night Watch

The rest of the night watch. From left to right — FMES Warren Brown and NOAA Fisheries Biologists Kevin Rademacher and Alonzo Hamilton

I also definitely need to thank Lead Fisherman Chris Nichols and Skilled Fisherman Chuck Godwin for their mentorship with CTD data collection and plankton sampling.  In addition, many thanks to Field Party Chief Andre Debose and Lieutenant Commander Eric Johnson for proofreading my blog entries and ensuring that my experience on the ship was a good one.  I enjoy learning from people much more than I enjoy learning from books, and these have been some of best (and most patient) teachers I have ever had.

Lastly, thanks so much to the NOAA Teacher at Sea staff for your work on this great program.  It truly makes a difference for many teachers and many students.  I have had an amazing time, and I am positive my students will benefit from what I have learned.

Survey Plot

The ship’s path during the survey, thus far. I have been on the boat for Leg 2, drawn in black.

Did You Know?

Lionfish venom is not contained within the tips of the fish’s spines.  Rather, glandular venom-producing tissue is located in two grooves that run the length of  each spine.  When skin is punctured by a spine, this glandular tissue releases the venom (a neurotoxin), which travels up the spine and into the wound by means of the grooves (Witherington, 2012).

Venomous Spines

Anatomy of the lionfish spine

Notable Species Seen

John Bilotta: A World of Wonder under the Waves, Days 1-4 in the South Atlantic MPAs, June 20, 2014

NOAA Teacher at Sea

John Bilotta

Aboard NOAA Ship Nancy Foster

June 17 – 27, 2014

 

Mission: South Atlantic Marine Protected Area Survey

Geographical area of cruise: South Atlantic

Date: June 20, 2014

Weather: Sunny with clouds.  26.6 Celsius.  Wind 13 knots from 251 degrees (west).  1-2m seas from the north.

 ** Note: Upon request, note that if you click on any picture it should open full screen so you can the detail much better!

 

Science and Technology Log

Research mission objectives – what am I doing out here?

Gathering data on habitat and fish assemblages of seven species of grouper and tilefish in the South Atlantic MPAs . These species are considered to be at risk due to current stock levels and life history characteristics which make them vulnerable to overfishing.   Information gathered will help assess the health of the MPAs, the impact management is having, and the effectiveness of ROV exploratoration to make these health assessments.

Science Part I:  Multibeam sea floor mapping  Multibeam sonar sensors — sometimes called multibeam acoustic sensors echo-sounders (MB for short)  are a type of sound transmitting and receiving system that couple with GPS to produce high-resolution maps of the sea floor bottom. See how it works by checking out this cool NOAA animation. MB mapping is occurring all night long on the Nancy Foster by a team of expert mappers including Kayla Johnson, Freidrich Knuth, Samantha Martin, and Nick Mitchell (more on them and their work and NOAA careers in a future blog).  Our Chief Scientist Stacey Harter has identified areas to map.

OK, so we aren't exactly MB mapping in this photo but I wanted to introduce everyone to my host Chief Scientist in one of my first pictures.

OK, so we aren’t exactly MB mapping in this photo but I wanted to introduce everyone to my host Chief Scientist Stacey Harter in one of my first pictures.

By morning, after the mappers have worked their magic on the data, Stacey is able to see a visual representation of the sea floor.  She is looking for specific characteristics including a hard sea floor bottom, relief, and ridge lines – important characteristics for the groupers, tilefish, hinds, and other fish species under protection and management.   Stacey uses these maps to determine transects for ROV exploration.  Those transect lines are used by both the scientists driving the ROV and the navigation crew aboard the Nancy Foster.  Once down on the ocean floor, the ROV pilot follows this transect and so must the ship high above it in the waves driven by the crew.  Although 3 floors apart – it’s amazing to hear the necessary communication between them.  (Watch for one of my future posts that will highlight a MB map and a sample transect line.)

Science Part II:  ROV exploration – Completion of 8 dives

By the time this posts, we will have made 8 dives with the SubAtlantic Mohawk 18 ROV from University of North Carolina. (perhaps we will have made more dives because internet via satellites is slow and I am uncertain when this will really get posted.)

JB and ROVs first date aboard the aft deck on the Nancy Foster

JB and ROVs first date aboard the aft deck on the Nancy Foster

The ROV joined the mission with its two pilots, Lance Horn and Jason White.  Pilots extraordinaire but I otherwise see them as the ROV’s parents guiding and caring for its every move.  The technology aboard the ROV is incredible including a full spectrum video camera, a digital camera, sensors to measure depth and temperature, and 4 horizontal thrusters and one vertical thruster with twin propellers.   The ROV has donned a pair of lasers which when projected on the sea floor allow the scientists to measure items.

JB attaching the CTD probe to the ROV with instructions from Steve Matthews.

JB attaching the CTD probe to the ROV with instructions from Steve Matthews.

John receiving launch instructions from Andy David; including about how the cable attaches to the ROV and the fiber optic line.

John receiving ROV deployment instructions from Andy David; including about how the cable attaches to the ROV and the fiber optic line.

 

ROV deployment

ROV deployment

 

The ROV control station is daunting!  As one may imagine, it does include three joysticks accompanied by multiple switches, buttons, lights and alarms – all just a fingertip away from the ROV pilot.   Five monitors surround the pilot – some of them are touch screen activated adding more to the selection of options at their fingertips.  Is a Play Station a part of your daily routine?  Perhaps you should consider a career at NOAA as a ROV pilot!

ROV operations station. 1. Power supply, 2. Joystick controllers, 3. Multiple switches, 4. Four monitors for the ROV pilot alone, 5. Two monitors for the video and digital pictures, 6.  Laptop controlling digital pictures, and 7.  Multiple DVD recorders.

ROV operations station. 1. Power supply, 2. Joystick controllers, 3. Multiple switches, 4. Four monitors for the ROV pilot alone, 5. Two monitors for the video and digital picture technician, 6. Laptop controlling digital pictures, and 7. Multiple DVD recorders.

 

While the ROV drives and explores a set transect line, six additional scientists and assistants identify and record habitat, fish species, invertebrates, and other items that come into vision on any one of the monitors scattered around the lab located inside the ship.  Two scientists are recording fish species and a scientist accompanied by me the past two days are identifying habitat and invertebrates.

JB Invertebrate Logging

John assisting Stephanie Farrington (not pictured) with habitat and invertebrate identification and logging.

Of course, the ROV is on the move constantly, so fish and items of interest are flying by – you don’t have time to type or write so the scientists use short cut keyboards pre-coded with species and habitat descriptors.   Meanwhile another scientist is narrating the entire dive as everything is being recorded and yet another is controlling DVD video recording and centering and zooming the digital camera capturing hundreds of pictures during a dive.  You would be surprised by the number of computers running for this operation!  What is amazing is that everything will be linked together through a georeferrenced database using latitude and longitude coordinates.

Science Part III.  What have we seen and discovered?

On June 19th & 20th we completed 8 dives.  Some of the first species we saw included the shortbigeye, triggerfish, reef butterflyfish, and hogfish (Here is a good link of fish species on the reefs located here.)   We also observed a few stingrays and speckled hind.  For invertebrates, we saw a lot of Stichopathes (tagged as dominate during the dives) and fields of Pennatulacea (long white feathers).  We also saw echinoderms and solitary cap coral (a singular, white tube coral) and discovered a Demospongiae that Stephanie, one of the Research Biologists (see below) hadn’t seen yet; we called it a bubble-wrap sponge in my hand-written notes.

Dive053089 15 52 18

Dive053061 15 28 29 Cubya Dive052019 12 23 13 ???????????????????????????????

 

Things that we saw today that we wished we hadn’t seen: 

Pollution  So with much of my teaching centered around clean water and pollution prevention and mitigation, I was saddened to discover the following items on the ocean floor during the first five dives: Plastic bags, cans, a barrel, a clearly visible rubber surgical glove, and an artillery shell. Interesting – from the ROV you can easily spot what the scientists call ‘human debris’ as it often has straight lines and corners, distinctly human crafted shapes – not like mother nature engineers.

Plastic balloon found during dive #2 at about 60 meters.

Plastic balloon found during dive #2 at about 60 meters. Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Black plastic garbage bag found at about 60 meters.  NOAA UNCW. Mowak ROV June 2014.

Black plastic garbage bag found at about 60 meters. NOAA UNCW. Mohawk ROV June 2014.

 Invasive species – Lionfish are everywhere!  Why are Lionfish undesirablehttp://oceanservice.noaa.gov/facts/lionfish.html 

Lionfish - multiple sitings today.  Photo credit:  NOAA UNCW

Lionfish – multiple sitings today. Photo credit: NOAA UNCW Mohawk ROV. June 2014.

 

Career highlight:  Stephanie Farrington, Biological Research Specialist

Harbor Branch Oceanographic Institution at Florida Atlantic University

Masters of Science in Marine Biology.  Bachelors of Science in Marine Science and Biology.

Stephanie’s expertise is in collecting, classifying, and mapping marine biology with emphasis in habitats and invertebrates.  She is also proficient in ArcGIS for mapping and maintaining a database of everything she sees, discovers, and observes.  During this research trip, she is the scientist charged with identifying the habitat with an emphasis on the invertebrate species that speckle the sea floor.  For the past two days I have shadowed her side – watching the video feed from the ROV and logging.  She is a wealth of information and I really appreciate sitting next to her the past two days.  She is a master in biology and a master in buttons – and a fun spirit too.

 

Personal Log

Day 2 was spent almost entirely in transit – getting north from Mayport to Georgia, almost 9 hours.  Part of that time was spent getting to know the research team and participating in safety drills.  Sorry everyone; I did not get a picture of me in my red gumby suit (aka the life saving immersion suit).  Upon recommendation from a colleague (you know who you are) I also spent two hours on a bench on the bow reading The Big Thirst by Charles Fishman

“If Earth were the size of a Honda Odyssey minivan, the amount of water on the planet would be in a single half-liter bottle of Poland Spring in one of the van’s thirteen cup holders.” 

Although I have been out on the ocean before as well as the Great Lakes, on this day I simply felt tiny in a vast sea of blue.

For those who know me during my off-work hours, I also hit the ship’s gym -yes, that’s right, I am keeping up my routine with one exception.  My Paleo diet is now nearly broken – too much great food here from the ship’s chef’s, including ice cream.

Last night, at the end of Day 3 (Thursday) I spent the evening on the beach!  Well actually, what they call steal beach – a platform aft (behind) the ship’s bridge equipped with lounge recliners to watch the sunsets.  I sat up for seemingly hours trying to write all my excitements and discoveries in a log I am keeping.  Don’t worry though, I won’t make you read it all; my blog readers will only see a small snapshot of all I have been seeing and discovering!

 

Glossary to Enhance Your Mind

Each of my logs is going to have a list of new vocabulary to enhance your knowledge.  I am not going to post the definitions; that might be a future student assignment.  NOAA’s Coral Reef Watch has a great site of definitions HERE.  

  • Immersion suit
  • Transect
  • MPA
  • Invertebrates
  • Rugosity
  • Multibeam mapping
  • Bathymetry
  • Dominate species
  • Habitat
  • Echinoderms
  • CTD probe

Jamie Morris: Time to Plan, Prepare, & Revise, April 23, 2014

NOAA Teacher at Sea
Jamie Morris
Aboard NOAA Ship Nancy Foster
April 19 – May 1, 2014

Mission:  Gray’s Reef National Marine Sanctuary Southeast Regional Ecosystem Assessment
Geographical Area of Cruise: Gray’s Reef National Marine Sanctuary (GRNMS)
Date: Wednesday, April 23, 2014

 

Weather Data from the Bridge
Weather: Clear
Visibility: 10 nautical miles
Wind: 7 knots
Swell Waves: 1.3 feet
Air Temperature: 68.5ºF
Seawater Temperature: 67.6ºF

 

Science and Technology Log

Today was our third day at sea.  We again were very fortunate to have had beautiful weather.  We are continuing to “mow the lawn” and are creating the seafloor map.

Lowering the dive boat.  This is right before the Hydraulic Fluid leaked.

Lowering the dive boat. This is right before the Hydraulic Fluid leaked.

Since it was a relatively quiet day, the crew decided to practice launching and running two of the dive boats.  As they were lowering the first dive boat into the water one of the guide ropes snapped.  The crew worked quickly to reattach a new rope.  Once the boat was under control, the passengers boarded and they sailed away to practice marking dive locations.  A few minutes later the crew launched a second dive boat.  The boat was lowered into the water with no problems and the passengers boarded.  Right before they unhooked from the crane, the line carrying the hydraulic fluid on the crane popped off.  Hydraulic fluid shot all over. (The hydraulic fluid is biodegradable so it is safe, but a mess to clean up).

The engineers were able to work quickly to repair the crane.  Meanwhile, both dive boats went on their practice missions.  The second boat was the first to return and was reloaded onto the Nancy Foster without any problems.  The first boat, however, did not return on its own.  It ended up having engine problems.  The Nancy Foster had to stop mapping the seafloor and go retrieve the dive boat and its passengers.  What was supposed to be a quiet morning turned into an eventful one, but fortunately no one was injured.  The only causality was a boat.

We are now down to only two dive boats.  This means that a third of the planned worked might not be able to get accomplished.  Chief Scientist Sarah Fangman had to revise the mission’s plans to try to accomplish as much as we can with only two boats.  She first had to prioritize the different projects.  It was determined that the Fish Acoustics and Telemetry projects would be completed first.  The Fish Acoustics study involves two divers going to 6 specific sites.  One diver will identify and record the fish species that are present.  The other diver will be filming the animals seen.  The Telemetry teams will be replacing the receivers that are currently positioned throughout the sanctuary.  These receivers record information from micro chipped fish that swim past.  New receivers will be placed in the water and the old ones will be brought on board and the data will be uploaded onto a computer.  While these projects are being conducted, the divers will also be looking for sea turtles and Lionfish.  Data will be gathered about the sea turtles and photos will be taken.  If Lionfish are located, they will be speared and brought on board the Nancy Foster where information such as length and weight will be gathered.  Lionfish are an invasive species and need to be removed from the ecosystem.  For a detailed description of Lionfish, please visit the Mission’s Website at: http://graysreef.noaa.gov/science/expeditions/2014_nancy_foster/welcome.html Once these projects are complete, the Marine Debris Survey will begin.

Preparing the recievers.  They are first wrapped in electrical tape and than placed inside nylon stockings.

Preparing the recievers. They are first wrapped in electrical tape and than placed inside nylon stockings.

Today we did prep for the different missions.  Sarah and I organized all the supplies that will be used.  This included filling a dive bag with the receivers and tools needed to secure the receivers under water as well as tools to remove the current receivers.  Yesterday we had prepped the receivers.  Sarah replaced the batteries and then we wrapped the receivers in electrical tape and then placed them inside nylon stockings.  This is to protect the receivers and to keep them clean.  When they are under the water different organisms will start to grow on them.  When we retrieve the receivers, we can cut away the stockings removing any organisms growing there and then unwrap the tape and the receivers will look brand new.

We also gathered the supplies for the Lionfish removal.  These included dive bags to hold the lionfish, gloves for removing the fish, and placing the spear guns into the dive holsters (designed by a GRNMS member made out of PVC pipes).  We copied all the dive logs onto waterproof paper and organized the paperwork for the dives.  We also prepared all the underwater cameras.  Hopefully we are all set for when the divers arrive tomorrow.

Spear Gun Holster

Chief Scientist Sarah Fangman models the spear gun holster.

First Assistant Engineer, Sabrina Tarabolletti fixes the underwater lights for the GO Pro camera.

First Assistant Engineer, Sabrina Tarabolletti, fixes the underwater lights for the GO Pro camera.

Today’s lesson was flexibility.  It is so important to be flexible.  On a ship, no plan is going to work out perfectly.  There are many uncontrollable factors such as the weather or mechanical issues.  It is important to always have backup plans and be able to adjust if problems arise.

 

Did You Know?

You can identify sea turtles using the scales on their neck.  This pattern is unique to each individual sea turtle.  Just like how fingerprints can identify humans.

 

Animals Seen Today

Hammerhead Shark – spotted from the bridge; estimated to be 10-12 feet long; it is very uncommon to see one in GRNMS (sorry no picture)

 

Personal Log

Amy Rath and I enjoyed writing our blogs on the Steel Beach.  We were working very hard in the beautiful weather

Amy Rath and I enjoyed writing our blogs on the Steel Beach. We were working very hard in the beautiful weather

I am truly having a wonderful time on this trip.  I am meeting so many amazing people and learning a lot from everyone.  The crew and all the scientific party are really nice people with many interesting stories.

Every day Keith Martin, the Electronics technician, makes Cuban coffee.  I was teasing him today about the cups he uses to pass out the coffee.  Cuban coffee is incredibly strong so you do not drink it like typical coffee.  You drink only a tiny amount.  Keith was using coffee cups to pass out the coffee.  I asked him where are the tiny cups (plastic cups about the size of the paper cups you use at fast food restaurants to get ketchup)?  He said that you can only find them in Miami.  That led to a conversation about Miami.  It turns out that he is a graduate of Miami Palmetto Senior High.  (Ms. Evans taught him Biology, Coach Delgado was his Drivers Ed teacher, Mr. Moser taught him weight training, and he was a member of TVP).  It really is a small world!

I do not know if I will be posting tomorrow, so I want to give an early shout out to my Seniors.  I hope that you have a wonderful time at Grad Bash.  Make sure to ride the Hulk for me (I prefer the 1st row).  Have fun!!

Me with Keith Martin the Electronics Technician who is a Miami Palmetto Alumni Photo: Amy Rath

Me with Keith Martin the Electronics Technician who is a Miami Palmetto Alumni
Photo: Amy Rath

Sam Martin enjoying some Cuban Coffee

Sam Martin enjoying some Cuban Coffee