George Hademenos: A Day in the Life…of a Marine Science Researcher, August 25, 2022

NOAA Teacher at Sea

George Hademenos

Aboard R/V Tommy Munro

July 19 – 27, 2022

Mission: Gulf of Mexico Summer Groundfish Survey

Geographic Area of Cruise: Eastern Gulf of Mexico

Date: August 25, 2022

In this post, I would like to walk you through my interactions and observations with the science research being conducted aboard the R/V Tommy Munro, in particular, the steps that were taken during a trawling process. The entire process involved three stages: Preparing for Sampling, Conducting the Sampling, and Analyzing the Sampling with each stage consisting of six distinct steps.

View the following steps in an interactive tour here: Trawl Sampling Process (Genially)

I. Preparing for Sampling

Step 1: The ship travels to designated coordinates for sampling sites as determined for the particular leg of the Survey by SEAMAP (Southeast Area Monitoring and Assessment Program).

screenshot of a computer screen showing the path that R/V Tommy Munro traveled among sampling sites. The ship's path is a bold blue line connecting sample sites marked in yellow. It's superimposed on an electronic nautical chart. This survey occurred southeast of Florida's Apalachicola Bay and St. George Island.
Ship Transport to Sampling Site

Step 2: Once the ship reaches the site, a Secchi disk is attached to a cable and lowered into the water off the side of the ship to determine visibility. When the disk can no longer be seen, the depth is recorded and the disk is raised and secured on ship. 

a scientist wearing a life vest stands on a small grated platform that has folded down off the fantail of R/V Tommy Munro. With his left land, he grasps a cable hanging from an A-Frame that extends out of the photo. The cable is attached to a white disk, about the size of an old record, with a weight underneath.
Deployment of Secchi Disk

Step 3: A CTD (Conductivity, Temperature, and Depth) unit is then prepared for deployment. It is a rectangular chamber with sensors designed to measure physical properties of the water below including dissolved oxygen, conductivity, transmissivity, and depth. 

a conductivity, temperature, and depth probe, mounted inside a rectangular metal cage about 1 foot square and about 3 feet high, sits on deck. a crew member wearing white shrimp boots hooks a cable onto the top of the CTD frame. Another person, mostly out of frame, touches the CTD frame with their right hand, covered in a blue latex glove.
Preparation of CTD Unit

Step 4: The CTD unit is powered on and first is submerged just below the surface of the water and left there for three minutes for sensors to calibrate. It is then lowered to a specified depth which is 2 meters above the floor of the body of water to protect the sensors from damage. 

the CTD unit, attached to a cable, sinks into dark blue water.
Deployment of CTD Unit

Step 5: Once the CTD unit has reached the designated depth, it remains there only for seconds until it is raised up and secured on board the ship.  

a science team member, wearing a blue hat, a blue life vest, and blue latext gloves, stands on the deployment platform out the back of R/V Tommy Munro. He grasps the top of the CTD frame as a cable lifts it back out of the water.
Recovery of CTD Unit

Step 6: The CTD unit is then turned off and the unit is connected through a cable to a computer in the dry lab for data upload. Once the data upload is completed, the CTD unit is flushed with deionized water using a syringe and plastic tubing and then secured on the side of the ship.   

the CTD unit sits on deck, now connected to a computer via a cable to upload the data it collected.
Data Upload from CTD Unit

II. Conducting the Sampling

Step 1: The trawling process now begins with the trawl nets thrown off the back of the ship. The nets are connected to two planks, each weighing about 350 lbs, which not only submerges the nets but also provide an angled resistance which keeps the nets open in the form of a cone – optimal for sampling while the ship is in motion.

a view of the fantail of R/V Tommy Munro, from an upper deck. we are looking through the rigging of the trawl frames. two large planks rest on the lower deck, connected to ropes and lines. the trawl net, connected to the planks, extends out the back of the fantail. It is just visible below the surface, a turquoise-colored cone submerged in a blue sea.
Preparation of the Trawling Process Part 1
another view of the fantail of R/V Tommy Munro from an upper deck, through extensive rigging and frames. the trawl net is further extended; now the large planks are lowering off the back deck as well, suspended by lines connected to a pulley in an A-frame. it is a clear day and the water is very smooth.
Preparation of the Trawling Process Part 2

Step 2: Once the trawl nets have been released into the water from the ship, the ship starts up and continues on its path for 30 minutes as the nets are trapping marine life it encounters.

a view of the fantail of R/V Tommy Munro from an upper deck. the trawl net is fully deployed and no longer visible. a crew member sweeps the deck.
Onset of the Trawling Process

Step 3: After 30 minutes has transpired, a siren sounds and the ship comes to a stop. The two weighted planks are pulled upon the ship followed by the trawl nets.

a view of the A-frame at the fantail R/V Tommy Munro as the trawl net rises from the ocean. The two spreader panels are suspended from separate lines running through the central pulley. behind those, the top of the trawl net is visible above the water. a crew member guides the spreader doors with his left hand, holding the lines with his right hand.
Conclusion of the Trawling Process Part 1
the spreader doors are now resting on the fantail deck again. two crewmembers, wearing life jackets, pull the trawl net back on board.
Conclusion of the Trawling Process Part 2

Step 4: The trawl nets are raised and hoisted above buckets for all specimens to be collected. Then begins the process of separation. In the first separation, the marine life is separated from seaweed, kelp and other debris. The buckets with marine life and debris are then weighed and recorded.

a crewmember (only partially visible) empties the contents of the trawl net into a blue plastic basket. it looks like it's mostly sargassum.
Content Collection from the Trawl Part 1
four plastic baskets on deck hold the sorted contents of the trawl. one has larger fish; another contains only a single fish; a third is a jumble of seaweed and sargassum, and may represent the remainder to sort; the contents of the fourth are not visible. a crewmember wearing a life vest and gloves leans over the baskets. another crewmember, only partially visible, looks on.
Content Collection from the Trawl Part 2

Step 5: The bucket(s) with marine life are emptied upon a large table on the ship’s stern for separation according to species.

a pile of fish on a large metal sorting table. we can see snappers, a trigger fish, and many lionfish. a stack of white sorting baskets rests adjacent to the pile.
Separation Based on Species Part 1
a gloved hand reaches toward the pile of fish on the metal sorting table. (this photo was taken from the same vantage point as the previous one.)
Separation Based on Species Part 2

Step 6: Each species of marine life is placed in their own tray for identification, examination, and measurements inside the wet lab. 

two gloved crewmembers sort fish into smaller white baskets on a large metal sorting table. the table is on the back deck of the ship, and we can see smooth ocean conditions in the background. the crewmember in the foreground considers a small fish he has picked up from the remaining unsorted pile. the other crewmember looks on.
Species Sorted in Trays Part 1
a close-up view of the sorting basket containing only lionfish.
Species Sorted in Trays Part 2

III. Analyzing the Sampling

Step 1: After all species were grouped in their trays, all trays were taken into the wet lab for analysis. Each species was positively identified, counted, and recorded.  

a direct view of three fish of different species, lined up on the metal sorting table. the third is a spotfin butterflyfish.
Tray Transport to Wet Lab

Step 2: Once each species was identified and counted, the total number of species was weighed while in the tray (accounting for the mass of the tray) and recorded on a spreadsheet to a connected computer display system.   

a view of a scale.
Total Weight Measurements

Step 3: For each species, the length of each specimen was recorded using a magnetic wand with a sensor that facilitated the electronic recording of the value into a spreadsheet.   

two hands, wearing latex gloves, measure a small lionfish on the electronic measuring board. the scientist holds the fish against the board with his left hand and with his right hand marks the length with the magnetic stylus.
Individual Length Measurements

Step 4: Weights of the collected species were recorded for the first sample and every fifth one that followed.   

the gloved arm places the small lionfish on the scale behind the fish measuring board.
Individual Weight Measurements

Step 5: If time permitted between samplings, the sex of selected specimens for a species was determined and recorded.   

gloved hands cut into a small lionfish to remove the fish's gonads.
Individual Species Sex Identification

Step 6:Once the entire sampling was analyzed, selected samples of specimens were placed in a baggie and stored in a freezer for further analysis with the remaining specimens returned to a larger bucket and thrown overboard into the waters. The separation table was cleaned with a hose and buckets were piled in preparation for the next sampling. 

view out the fantail of R/V Tommy Munro from the lower deck. the trawl net and spreader doors lay on the deck, not currently in use. the sun shines on calm seas.
Finalize Process and Prepare for Next

In this installment of my exercise of the Ocean Literacy Framework, I would like to ask you

to respond to three questions about the fifth essential principle (The ocean supports a great diversity of life and ecosystems.), presented in a Padlet accessed by the following link:

https://tinyurl.com/427xp9p3

Remember, there are no right or wrong answers – the questions serve not as an opportunity to answer yes or no, or to get answers right or wrong; rather, these questions serve as an opportunity not only to assess what you know or think about the scope of the principle but also to learn, explore, and investigate the demonstrated principle. If you have any questions or would like to discuss further, please indicate so in the blog and I would be glad to answer your questions and initiate a discussion.

George Hademenos: (Working) 9 to 5…and Then Some When at Sea, August 24, 2022

NOAA Teacher at Sea

George Hademenos

Aboard R/V Tommy Munro

July 19 – 27, 2022

Mission: Gulf of Mexico Summer Groundfish Survey

Geographic Area of Cruise: Eastern Gulf of Mexico

Date: August 24, 2022

In the prior blog post, I focused my attention on the ship that I would be sailing on during Leg 1 of the Summer SEAMAP Groundfish Survey and then took you on a virtual tour of the various compartments and areas of the R/V Tommy Munro. The ship is an enclosed, confined space and thus I found myself spending much of my time in most of the compartments and areas of the ship during my time on the cruise. In this post, I would like to describe what life was like on the ship as a member of the science team.  

Work schedule

My primary role as a Teacher at Sea was to participate in the research process for this cruise – Summer Groundfish Survey. The detailed step-by-step description of the preparation, collecting, measuring, and analysis of sampling specimens of marine life will be covered in the following blog post. However, regarding the work conducted on the ship, research is ongoing continuously on a 24-hour schedule. The science research team was grouped into two teams with each team working a 12-hour shift. The two teams worked either the AM shift (12:00 am Midnight – 12:00 pm Noon) or the PM shift (12:00 pm Noon – 12:00 am Midnight), seven days a week. I was assigned the PM shift, which took a little getting used to but after the first full shift, the schedule became a routine schedule.

Small living quarters

One of things I should have packed prior to the cruise was a football helmet. Why you might ask? In the prior post as I took you on a tour of the R/V Tommy Munro, I showed pictures of my living quarters on the ship and my bed which provided limited space. If you will recall, my bed was the bottom bunk to the left in the photo below.

A collage of two images. On the left, a view of a closed door (simple, wooden, with a knob, could be in a house.) Several pieces of laminated paper are taped to the door. One reads: State Quarters 2. The next are the two pages of the Emergency Station Bill (not close enough to read). On the right, a photo looking inside the stateroom, where we can see four bunks.
My living quarters aboard the R/V Tommy Munro.

In fact, as I retired to my bed on the first night, I bumped my head. I then got up to go to the bathroom and I bumped my head. Returning to the bed and positioning myself under the covers, I bumped my head yet again. After bumping my head an additional 1,374 times (not really but it seemed like an accurate enough number), I wish I had thought to pack a football helmet but I was not the only one having trouble moving in my bed without bumping my head. My bunkmates experienced the same thing – apparently a normal occurrence in life at sea.

Meals

            One thing to note that while aboard the ship, I never… and I mean never… found myself hungry. There were all sorts of food to accommodate all tastes for all workers at all hours of the day and night. The cook on board the R/V Tommy Munro, John Z., was an amazing cook and continuously worked his magic in the kitchen to prepare three square meals for the crew and research staff. The three meals were breakfast at 5:30 am, lunch at 11:30 am, and dinner at 5:30 pm. One of my many pleasant memories after working one of my shifts and getting to bed by 1:30 am was being awoken by the smell of bacon wafting through the ship. Although I was going on 4 hours of sleep and was dead tired, the bacon was calling… no, scratch that… screaming my name and I was dressed and had a seat at the dining table within 15 minutes. Because of the long shifts often involving hard, strenuous work, many of the crew would sleep through a meal or two. However, leftovers of the prior meal were always available to those sleeping in to be heated up and enjoyed later. Lunch was the one meal that could be enjoyed by the PM crew before starting their shift and be the AM crew as they completed their shift on their way to bed. Some examples of meals that I enjoyed during my time on the R/V Tommy Munro is shown in the collage below.

A collage of four photos of meals arranged on paper plates: chicken cordon bleu with pasta, burrito and fires, a breakfast of bacon eggs hash browns, and a burger with beans and tater tots. The collage is titled: 
"Sample (and Incredibly Tasty) Meals I Enjoyed Aboard the R/V Tommy Munro"
Meals that I enjoyed during my time aboard the R/V Tommy Munro.

DO NOT Touch that Fish but… Bon Appétit!

As an educator interested in any and all things science, I would always look forward to the end of the sampling process and the emptying of the nets to survey our catch – a grab bag of a variety of different types of marine life and species. I had seen images of several types of marine life contained within the nets and recognized even fewer numbers by their name, but again this was an opportunity to learn and every sampling increased my library of marine science knowledge. During one such sampling (as shown in the photo below), I noted a multitude of one species of fish that were unique in their presence and I quickly understood them to be a species of lionfish.

a pile of fish on deck next to a stack of empty sorting bins. there are at least four, maybe as many as seven, lionfish visible in the pile. They are easily identifiable by their pink, orange, and white stripes and marbling and their frilly fins.
The collection of fish from a sampling.

I was somewhat familiar with lionfish and knew them to be an invasive species, detrimental to marine ecosystems. For those interested in learning more about lionfish, please review the two graphics below:

a poster about invasive and venomous lionfish. "With their distinctive venomous spines and aggressive nature, this invasive species has thrived in U.S. coastal waters because they have no natural predators--until now. Whole Foods stores in Florida are selling the 'white, buttery meat' of the fish, hoping to take a bite out of the non-native species hurting Florida's offshore reefs."
An infographic describing the features and habitat of the lionfish.
Credit: Hiram Henriquez / H2H Graphics & Design Inc.
Office of National Marine Sanctuaries, National Oceanic and Atmospheric Administration. Invasive Lionfish By the Numbers. Biology: 50,000 eggs every 3 days. 1 Year to Maturity. 30 Year Lifespan. 18 venomous spines. Distribution: 17x density in Atlantic vs. native Pacific range. Reach depths of 1,000 feet. 1985: year first found off Miami, FL. 4 U.S. national marine sanctuaries invaded: 1) Monitor, 2) Gray's Reef, 3) Florida Keys, 4) Flower Garden Banks. Map of invaded area (Gulf of Mexico, Caribbean, eastern U.S. coast) and area projected for invasion (Brazilian coast.) Control: 164 restaurants serving lionfish. 51,420 lbs of commercial lionfish caught in U.S. 28,770 lionfish removed during REEF sanctioned lionfish derbies. Impacts: Invasive species threaten coral reefs. Before invasion: (illustration of diverse fish assemblage on reef) after invasion: (mostly lionfish.) Over 100 prey fish species. 1,000 lionfish can consume 5 million prey fish in 1 year. 0 known predators.
An infographic depicting invasive lionfish by the numbers. Download full version here: https://sanctuaries.noaa.gov/lionfish/invasive-lionfish-by-the-numbers.pdf

and access the Invasive Lionfish Web portal at:

http://lionfish.gcfi.org/education-outreach#front_page_accordion-block-5

Lionfish adversely impact coral reefs by feeding on herbivores which in turn feed on and keep a check of algae growth as well as pose a danger to any organism that comes in direct contact with them. They carry venomous spines which contain a deadly poison that can initiate a severe and painful allergic reaction in humans and can be fatal when in contact with other marine species. This is exactly why I was warned several times to avoid touching the lionfish… orders I followed to a T. When the sampling was brought into the wet lab for analysis, I asked Andre D. and my team members Kyle A. and Jacob G. questions about lionfish to find out more information about this interesting species of fish. We were discussing its detrimental impact to marine ecosystems, and the efforts currently underway to curtail the population of lionfish, when the ship’s cook, John Z., mentioned that they are very delicious and often served in seafood dishes like fish tacos. He went on to explain that one strategy to control the population of lionfish was to see if they could be eaten and if people would find it palatable. It turned out that this was the case for lionfish. I did not know that lionfish could be eaten and expressed surprise. He waited until the analysis of the sampling was over and then took two lionfish to the kitchen, cooked them, and brought the prepared fish to us in the wet lab to taste. I did and John Z. was right – it was very delicious!

a collage of two photos titled, "Lionfish Just Caught... and Just Cooked." on the left, a basket of lionfish sorted out from the sample. on the right, a paper plate with cooked lionfish meat.
Lionfish captured…and consumed!

Seasickness

            During the Orientation webinar for all Teacher at Sea educators who would be sailing this season, the topic of seasickness came up and it was strongly suggested to have Dramamine on hand to relieve the unpleasant symptoms of motion sickness. Nawww, I’ll be OK. It would be one less thing to worry about during packing. My wife thought differently and urged me to take some with me…just to have on hand. So, I did pack some Dramamine just in case I need it. Well, on the first night of my cruise, it turned out that I needed it. As much as I thought I would be OK once the ship set sail, my stomach thought otherwise and experienced a mild case of nausea. I did take some Dramamine and allowed me to get some restful sleep and everything was fine. Dramamine did come in handy a couple of other times, particularly when the waters became more choppier than usual, but for the most part, I feel that I adjusted to life at sea quite well. Nevertheless, I was glad I had Dramamine with me.

No Wi-Fi

As a science teacher engaged in a once-in-a-lifetime opportunity like Teacher at Sea, I am particularly excited about sharing my experiences…as they happen in real time. However, updating blog posts, uploading photos to Facebook, or engaging followers through social media can only happen if Wi-Fi is available. The NOAA fleet of research vessels are equipped with Wi-Fi which as I was reminded on frequent occasions can be weak and intermittent. However, the R/V Tommy Munro was not part of NOAA and had no Wi-Fi. It was not possible for me to communicate my observations, my photos, and my narratives as a Teacher at Sea while it was happening. It just meant I would have to wait until the end of the cruise to begin sharing my experience.

On Deck scenic views

Although many might think that the lack of Wi-Fi would be a major inconvenience, I actually found it to be refreshing, offering me opportunities to simply relax. After a long shift and getting some rest, I would often go up to the top deck and just look gaze all around. At what you are probably wondering? Enjoy a sample of the breathtaking views I enjoyed from my perch atop the deck of the R/V Tommy Munro.

a collage of five photos titled, "Breathtaking Views of the Scenery Aboard the R/V Tommy Munro." Clockwise from top left: 1) the sun shines on water out the fantail of the R/V Tommy Munro. 2) sunsets in an  orange sky over the water. 3) the wake of R/V Tommy Munro breaks otherwise smooth waters at daytime. 4) another view over the water at sunset. 5) somewhat choppier conditions and rain visible on the horizon.
Scenic views from aboard the R/V Tommy Munro.

In this installment of my exercise of the Ocean Literacy Framework, I would like to ask you to respond to three questions about the fourth essential principle:

The ocean made Earth habitable.

presented in a Padlet accessed by the following link:

https://tinyurl.com/32kdpx3e

Remember, there are no right or wrong answers – the questions serve not as an opportunity to answer yes or no, or to get answers right or wrong; rather, these questions serve as an opportunity not only to assess what you know or think about the scope of the principle but also to learn, explore, and investigate the demonstrated principle. If you have any questions or would like to discuss further, please indicate so in the blog and I would be glad to answer your questions and initiate a discussion.

David Madden: Otolithia and The Tragedy of the Commons, July 27, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fishery-Independent Survey (SEFIS)

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

On board off the coast of North Carolina – about 45 miles east of Wilmington, NC (34°18’ N, 77°4’ W)

Pisces Route
Pisces Route as of July 27, 2019


Date: July 27, 2019

Weather Data from the Bridge:

Latitude: 34°18’ N
Longitude: 77°4’ W
Wave Height: 3-4 feet
Wind Speed: 6.68 knots
Wind Direction: 42°
Visibility: 10 nm
Air Temperature: 28.0°C 
Barometric Pressure: 1022.4 mb
Sky: Partly cloudy


Science and Technology Log

Today, with the help of friends Zeb and Todd, I’d like to take a deep dive into the mission of this cruise.  Starting with the fish work up process aboard Pisces, first explained in blog #3.  Below is a picture flowchart I drew up to help visualize what’s going on. 

NOAA Fish Protocol (color)
NOAA SEFIS Fish Survey Protocol

This sequential process is rather straight forward following steps 1-8, rinse (the gear) and repeat. It’s the before and after; what comes before step 1 and after step 8, that’s important; How and where is the data used.  If you follow along into steps 9, 10, 11… you start with the laboratory analysis of the biological samples – otoliths and gonads – used to age the fish, and determine reproductive activity and spawning seasons, respectively.  This information is vital to proper management of fisheries.  Here’s why. 

This cruise, and SEFIS in general, originally came into existence because of red snapper.  Scientists determined around 2009 that the red snapper population in the SE Atlantic was at historically low levels.  Strict regulations were put in place to help the species rebound.  This on its own was a good measure, but only one step.  In order to assess the effect of the regulations, scientists would have to monitor the abundance of red snapper in the region.  However, charting changes in abundance would not be enough with this species (or with many others) due to the nature of its life cycle and reproduction.  See, all populations have a natural age structure balance.  This includes species specific traits – like its survivorship curve (how likely it is for an individual to die at different points in their life – for red snapper and many other reef-associated species it’s incredibly high at their larval and juvenile stages).  It also includes pertinent developmental characteristics such as when the species is reproductively mature.  Like many similar fish, older, mature red snapper have greatly increased reproductive potential, also known as fecundity.  So while the population has been bouncing back in terms of numbers, the number of older, mature, more fecund fish is still considerably lower than historical levels; thus the population is still recovering.  *this information is gathered from the data collected by scientist here on our SEFIS mission, and others like them. 

SEFIS survey site locations
SEFIS survey site locations.

The next step is to share this data with other scientists who will then, in conjunction with other information on the species, analyze the data and bring the results and conclusions of their analyses to policy makers (FYI, the government is moving towards making governmentally gathered scientific data available to the public).  Discussion ensues, and climbs the political decision-making-ladder until allowable catch regulations are determined.  Florida fishers, check here for your current snapper regulations or maybe this Fish Rules app will help.  Fish safe, my friends!

Morning Crew
Morning crew: Mike, Dave, Brad, Me, Todd, Oscar the Octopus, Mike, Zeb
gear
Macabre medieval cutlery? Or otolith extraction gear?

Ultimately this is a tricky and tangled issue of sustainability.  Commercial fishermen are understandably upset, as this can threaten their livelihood.  Although real, this concern is inherently short sighted, as their long term earnings depend on healthy and robust populations, and ecosystems.  The difficult part is to gather the necessary scientific data (very challenging, especially for marine organisms) and marry that to the many financial, social, and political concerns.  Comment below with thoughts and suggestions.  And while you’re at it, here’s a lovely and quick (fish-related) tutorial overview of this situation in general – the tragedy of the commons – and the challenges of managing our resources. 

A quick note about otoliths.  Within the fish processing protocol (above) – the most satisfying part is otolith extraction.  On board competitions abound: people vie for first chair (the spot in the lab that’s the coolest and best lit) and for the sharpest knives and scissors.  Much like a wild west showdown, most important is fastest extraction times.  Dave H opts for the classic chisel-through-the-gills technique, while the rest of us opt for the saw-through-the-skull-with-a-knife-and-crack-the-head-open-just-behind-the-eyes technique.  While Brad looks to perform the “double-extraction” – both otoliths removed in the tweezers at the same time, I look to perform the please-don’t-slice-my-hand-open extraction.  The quest for otoliths is usually straight forward.  But sometimes an ill-sliced cut can leave you digging for the tiny ear bones forever. 

This leaves us with: Why otoliths?  These tiny little ear bones help function in the fish’s vestibular system.  That’s a fancy way of saying the balance and orientation system of the fish.  They help vertebrates detect movement and acceleration, and they help with hearing.  These little bones help you determine your head and body orientation – turn your head sideways, it’s your otoliths who will send the message.  All vertebrates, including you, gentle reader, have them.  This makes me wonder if folks with exceptional balance and proprioception and court awareness have bigger otoliths?  Fish requiring more balance, those that sit and wait to hunt vs. those that swim predominantly in straight lines, have bigger otoliths. 

Otoliths are made of layered calcium carbonate (side question – does ocean acidification impact otolith formation?  Like it does with other calcium carbonate structures in the ocean?)  The fish secretes new layers as it ages: thicker layers during good times, thinner layers during lean times – correlated with summer and winter seasonality – just like with tree rings.  Once you dig out the otoliths, they can be analyzed by on-shore scientists who slice ‘em in half and take a really thin slice, deli-meat-style.  Voila! You can then count up the rings to tell how old the fish is. 

Fish Otolith
From Andrews et al 2019, published in the Journal of Marine and Freshwater Research: Illustration of a red snapper (top right), a photo of a red snapper otolith (top left), and an image of a cross-section of that otolith (bottom) http://www.publish.csiro.au/MF/fulltext/MF18265
cod otolith
From Hardie and Hutchings 2011, published in the journal Arctic: A cross-section of the sagittal otolith of an Atlantic cod.

Retrieved from https://www.researchgate.net/publication/255711740_The_Ecology_of_Atlantic_Cod_Gadus_morhua_in_Canadian_Arctic_Lakes

Black sea bass otoliths
Black sea bass otoliths with fingers for size comparison. Photos from Dave Hoke
Fish Count July 25th
Yesterday’s Fish Count.


Personal Log:

I’ve been continuing my work aboard the Pisces.  Lately the focus has been on conversations with scientists and ship personnel.  The source of most of today’s blog came primarily from conversations with Zeb and Todd.  They were both super helpful and patient in communicating the goals and mission of this cruise and SEFIS.  I’m also trying to contribute some things that might be useful to the NOAA scientists after the cruise is completed, and things that will be helpful to my students now and during the school year – like the drawings and diagrams, along with some upcoming videos (topics include: CTD color and pressure, Underwater footage featuring a tiger shark and hammerhead shark, Waves, All Hands on Deck, and a general cruise video). 

The food and mood of the cruise continues to be good.  * note: my salad eating has taken a hit with the expiration of spinach and leafy greens – it’s amazing they lasted as long as they did – the stewards, Rey and Dana, are amazing! 

General Updates:

  1. The other night I had my first bit of troubled sleeping.  The seas were roaring!  Actually, just about 6 feet.  But it was enough to rock the boat and keep me from falling asleep.  It was almost a hypnic jerk every time the ship rolled from one side to the other.  Special sensations for when my head dipped below my feet. 
  2. Two more book recommendations:  a. Newberry Book Award Winner: Call it Courage, by Armstrong Sperry.  I loved this book as a little boy.  I did a book report on it in maybe the 2nd or 3rd grade.  I spent more time drawing the cover of the report than I did writing it.    B.  A few years ago I read The Wave, by Susan Casey.  Great book about the science of waves and also the insane culture of big wave surfers. 
  3. I haven’t seen all that much lately in terms of cool biodiversity.  The traps did catch some cute swimming crabs, a lionfish, and a pufferfish.   * more below.
  4. Zeb won the Golden Sombrero Award the other day.  This is a momentous achievement awarded to a chief scientist after six consecutive empty fish traps!
  5. Lauren crafted us an extra special tie-dye octopus named Oscar.  He’s wearing the Golden Sombrero in the photo above.     
  6. Only 2.5 days till I’m back home.  Can’t wait to see my family. 

 

Neato Facts =

Back to general update #3 and today’s neato fact.  Both lionfish and pufferfish are toxic.  But are they poisonous? Or venomous?  Wait.  What’s the difference?  Both poisons and venoms are characterized as toxins, and often they are used interchangeably.  The distinction lies in the means of entry into your body.  Venoms get into you via something sharp – you’re either bitten with fangs or stung with stingers or spines.  Examples include our friend the lionfish, snakes, and bees.  Poisons, conversely, get into you when you eat it.  Examples include pufferfish, poison dart frogs,

Here’s a simple way to remember: Injection = Venom, Ingestion = Poison.  Click these links for interesting lists of poisonous animals, poisonous plants, and venomous animals

Pufferfish
Pufferfish from today’s fish trap.
Lionfish and Pufferfish
Lionfish (Venomous) and Pufferfish (Poisonous). Injection = Venom, Ingestion = Poison http://www.peakpx.com/487337/lion-fish-and-blue-puffer-fish

Please let me know if you have any questions or comments. 

Jeff Peterson: The Work in the Eastern Gulf, July 19, 2018

NOAA Teacher at Sea

Jeff Peterson

Aboard NOAA Ship Oregon II

July 9 – 20, 2018

 

Mission: Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 19, 2018

 

Weather Data from the Bridge

Date: 2018/07/19

Time: 16:34:47

Latitude: 29 57.6 N

Longitude: 087 02.60 W

Speed over ground: 7.3 knots

Barometric pressure: 1014.49

Relative humidity: 84%

Air temperature: 26.8 C

Sea wave height: 1 m

 

Science and Technology Log

We arrived off the coast of Florida on the evening of Sunday, July 15, and sampled stations in the eastern Gulf until the afternoon of Thursday, July 19. We used the same fishing method during this part of the cruise (bottom trawling), but added a step in the process, deploying side scan sonar in advance of every trawl. This measure was taken both to protect sea life on the ocean floor (sponges and corals) and to avoid damaging equipment. The sea bottom in this part of the Gulf—east of the DeSoto Canyon—is harder (less muddy) and, in addition to coral and sponge, supports a number of species markedly different than those seen in the western Gulf.

 

Side Scan Sonar

In contrast to single-beam sonar, which bounces a single focused beam of sound off the bottom to measure depth, side scan sonar casts a broader, fan-like signal, creating nuanced readings of the contour of the ocean floor and yielding photo-like images.

Towed Side Scan
How side scan sonar works: The harder the object, the stronger the image returned. See: https://oceanservice.noaa.gov/education/seafloor-mapping/how_sidescansonar.html#

 

Side scan sonar device
Side scan sonar device in its cradle.

 

 

Rigged and ready for deployment.
Rigged and ready for deployment. Signals from the sonar are conducted up the cable and picked up by the electrically powered lead on the block.

 

on its way in
Side scan sonar on its way in astern.

 

descending
Side scan sonar just beneath the surface & descending.

 

When we arrive a station in this part of the Gulf, we begin by traversing, covering the usual distance (1.5 miles), but then turn around, deploy the side scan sonar, and retrace our course. Once we’ve returned to our starting point, we recover the sonar, turn around again, and—provided the path on the sea bottom looks clear—resume our course through the station, this time lowering the trawl. If the side scan reveals obstructions, it’s a no-go and the station is “ditched.”

 

Coming about
Coming about before deploying the side scan sonar.

 

 

And Now for Something Completely Different . . . Fish of the Eastern Gulf

Panama City, Florida
Off Panama City, Florida – Tuesday morning, July 17, 2018

We spent the first half of this leg of the survey in the western Gulf of Mexico, going as far west as the Texas-Louisiana border. The second half we’re spending in the eastern Gulf, going as far east as Panama City. From here we’ll work our way westward, back to our homeport in Pascagoula.

Thanks to different submarine terrain in the northeastern Gulf—not to mention the upwelling of nutrients from the DeSoto Canyon—it’s a different marine biological world off the coast of Florida.

Here’s a closer look at the submarine canyon that, roughly speaking, forms a dividing line between characteristic species of the western Gulf and those of the eastern Gulf:

Bathymetric map of the Gulf of Mexico
Bathymetric map of the Gulf of Mexico, with proposed dive sites for Operation Deep-Scope 2005 indicated by red arrows and yellow numbers. Site #1 is on the southwest Florida Shelf in the Gulf of Mexico, where deep-water Lophilia coral lithoherms are found. #2 is DeSoto Canyon, a deep erosional valley where upwelling of deep nutrient rich water means greater animal abundances. #3 is Viosca Knoll, the shallowest site, where spectacular stands of Lophelia provide abundant habitat for other species. See: https://oceanexplorer.noaa.gov/explorations/05deepscope/background/geology/media/map.html

 

And here’s a selection of the weird and wonderful creatures we sampled in the eastern Gulf. As this basket suggests, they’re a more brightly colored, vibrant bunch:

Basket of catch
A basket of fish. Upper right: Lane Snapper, Lutjanus synagris. On the left: Sand Perch, Diplectrum formosum. The plentiful scallops? Argopecten gibbus.

 

 

Sand Perch, Diplectrum formosum
Sand Perch, Diplectrum formosum

Razorfish, Xyrichtys novacula
Razorfish, Xyrichtys novacula

A basket of Xyrichtys novacula
A basket of Xyrichtys novacula

 

Angelfish, Holacanthus bermudensis
Angelfish, Holacanthus bermudensis

Angelfish closeup
Holacanthus bermudensis details: tail fins (front specimen), pectoral fin & gill (behind)

 

Jackknife Fish, Equetus lanceolatus
Jackknife Fish, Equetus lanceolatus

Lined Seahorse, Hippocampus erectus
Lined Seahorse, Hippocampus erectus

 

 

Argopecten gibbus
Argopecten gibbus (all 2,827 of them)

Pink Shrimp, Farfantepenaeus duorarum.
Pink Shrimp, Farfantepenaeus duorarum. Note the signature “pink” spot by my thumb.

 

Calamus
Calamus

 

Lionfish, Pterois volitans
Invasive scourge of the Gulf: Lionfish, Pterois volitans

Lionfish, Pterois volitans
Lionfish, Pterois volitans

 

Burrfish, Chilomycterus schoepfii
Burrfish, Chilomycterus schoepfii

 

 

Scorpionfish (aka Barbfish), Scorpaena brasiliensis
Scorpionfish (aka Barbfish), Scorpaena brasiliensis

 

Southern Stargazer, Astroscopus y-graecum (juvenile)
Southern Stargazer, Astroscopus y-graecum (juvenile)

 

Ocellated Moray Eels, Gymnothorax saxicola
Ocellated Moray Eels, Gymnothorax saxicola

 

Trumpetfish, Aulostomus maculatus
Trumpetfish, Aulostomus maculatus

 

 

Video credit: Will Tilley

 

debris
Mysterious debris: A bottom-dwelling payphone?

 

Personal Log

Our move into the eastern Gulf marks the midpoint of the cruise, and we’ll be back to Pascagoula in a few short days. The seas haven’t been as serenely flat as they were in the eastern Gulf, nor has the sky (or sea) been its stereotypically Floridian blue, but I’ve found life aboard ship just as pleasurable and stimulating.

storm
A squall on Monday morning, July 16, 2018. Off the stern there to starboard, Blackfin Tuna were jumping.

 

In my final blog post, I’ll have more to say about all the great folks I’ve met aboard NOAA Ship Oregon II—from its Deck Department members and Engineers, to its Stewards and NOAA Corps officers and inimitable Captain—but here want to reiterate just how thoughtful and generous everybody’s been. The “O2” is a class act—a community of professionals who know what they’re about and love what they do—and I couldn’t be more grateful to have visited their world for a while and shared their good company.

Busy as we’ve been, I haven’t had much time for sketching during this part of the cruise, and, as the selection of photos above suggests, I’ve concentrated more on taking pictures than making them. Still, I’ve begun a small sketch of the ship that I hope to complete before we reach Pascagoula. It’s based on a photograph that hangs in the galley, and that I’m going to attempt to reproduce actual size (3 3/8” x 7”) . Here’s where things stand early on in the process:

IMG_8230 2.jpg
Work in progress: sketch of NOAA Ship Oregon II

 

Did You Know?

Any of the western Gulf fish in the basket from my last blog post? Here it is again:

Basket of Fish from Western Gulf
Basket of Fish from Western Gulf

And here is a visual key to the four species I was fishing for, each figuring prominently in my blog post for July 15:

Basket of fish revision
Basket of Fish from Western Gulf: now color-coded

1: Red Snapper, Lutjanus campechanus

2: Longspined Porgy, Stenotomus caprinus

3: Gulf Butterfish, Peprilus burti

4: Brown Shrimp, Farfantepenaeus aztecus

A few Stenotomus caprinus and Peprilus burti have been left unhighlighted. Can you find them?

Anna Levy: What Tummies Tell Us, July 15, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10 – 20, 2017

 

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 15, 2017

 

Weather Data from the Bridge

Scattered, mild storms continue, causing some delays in our fishing. However, they do lead to beautiful sunsets!

IMG_1087
Beautiful Gulf of Mexico sunset

Latitude: 29 18.790 N

Longitude: 84 52.358 W

 

Air temp: 28.7 C

Water temp: 29.7 C

Wind direction: light and variable

Wind speed: light and variable

Wave height: 0.3 meter

Sky: 80% cloud cover, no rain

 

Science and Technology Log

IMG_5442
TAS Anna Levy removes the stomach of a red snapper.

Data about the number and size of individual organisms can tell us a lot about the health of an overall population of a species. However, it doesn’t tell us much about the role that species plays in its community. If we want to understand that better, we need to know more about how it fits into its food web – what it eats and what eats it. If you were trying to collect information about what a fish eats, where would you look first? Its stomach!

So, after we measure certain species, we dissect them and remove their stomachs. We place each stomach in its own tiny bag, with a bar code that identifies which individual fish it belonged to. Back at a lab on land, scientists will carefully examine the contents of the stomachs to better understand what each species was eating.

IMG_1079
The bar codes that we use to label specimens.

 

factc_240
This map shows the native range of lionfish. Credit: http://oceanservice.noaa.gov/facts/lionfish-facts.html

For example, one of the fish currently under investigation in the Gulf of Mexico is the lionfish. This is an invasive species, which means that it is not native to the area. Its natural habitat is in parts of southern Pacific and Indian oceans, but it was first spotted in the Atlantic, off the coast of North Carolina, in 2002. Lionfish were most likely introduced to this area by humans, when they no longer wanted the fish as an aquarium pet. By 2010, its range had expanded to include the Gulf. And, with no natural predators in this area and rapid rates of reproduction, its numbers have increased exponentially.

Early dietary studies, which were focused on the lionfish in the Atlantic, show that the lionfish is a generalist. This means that, while it prefers to eat small reef fish, it is able to eat a wide variety of organisms including benthic invertebrates (like crabs) and other fish. This flexibility makes lionfish even more resilient and able to spread. These studies also found that lionfish stomachs were rarely empty, suggesting that they are highly successful predators, able to out-compete other top predators for food.

This has wildlife experts concerned about the impact lionfish will have on natural ecosystems. It is possible that lionfish will over-consume native species, causing native ecosystems to collapse. It is also possible that lionfish will out-compete and displace native, high level predators, like snapper and grouper. Scientists are working now to develop methods to try to manage this invasion.

Because ecosystems here are different from those in the Atlantic, scientists are now turning their attention to studying the lionfish in the Gulf of Mexico. The work that we did on the boat today should help them do just that!

To see the results of one such study, completed in 2014, see:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105852

For more information and photos about the lionfish, please see:

https://oceanservice.noaa.gov/education/stories/lionfish/lion02_invade.html

https://oceanservice.noaa.gov/facts/lionfish-facts.html

http://www.fisheries.noaa.gov/mediacenter/2015/05/21_05.html

 

Personal Log

Often times, we teachers struggle to convince our students that, while all of the modern technology we have is great, they also need to understand how to solve problems without relying on it. (Most of us have probably been on at least one side of the old, “no, you don’t need a calculator to multiply by 10!” argument at some point in life.)   Well, in the past couple of days, I’ve seen two great examples of this onboard the ship.

The first relates directly to our survey work. Our CTD, the equipment mentioned in last post, has two sensors that both detect how much dissolved oxygen is in the water. Having two instruments collecting the same information (sometimes called redundancy) is important, not only so that there is a back-up in case one breaks, but also so that we can tell if they are measuring accurately.

The two oxygen sensors have been reading differently – one was about 0.7 mg/L lower than the other. This is an indication that one needs to be calibrated – but which one? To find out, Alonzo Hamilton, one of the senior NOAA scientists, used a classical chemical analysis technique called titration.

IMG_1082
This is the titration equipment found in the chemical lab on board the ship.

In a chemical titration, one substance is slowly added to another, while the scientist watches for a chemical reaction to occur. If you know how the two substances react, you can determine how much of the second substance is present, based on how much of the first was added to make the reaction happen.

Based on the results of his titration, Alonzo was able to determine which of the oxygen sensors was reading accurately. So, it definitely goes to show that there are important applications for that classic high school chemistry!

IMG_1173
The binnacle that houses the ship’s magnetic compass.

The other example relates more to the ability to navigate the ship. NOAA Ship Oregon II is equipped with advanced electronic navigation software, Gyro compass, radar, and GPS systems. However, when I was exploring the top deck (flying bridge) of the ship, I came upon this strangely low-tech looking instrument. I asked ENS Chelsea Parrish, a NOAA Corps Officer and member of the wardroom, about it. She explained that it is called a “binnacle,” a safeguard that houses a magnetic compass! The magnetic compass is the same type of technology used by mariners back in the 1300’s. It is critical to have in case of a power outage or other disruption to the ship’s electronic navigation technology.

 

 

Did You Know?

While they typically live in cold waters, there is one pod of orca whales (aka killer whales) that resides, year-round, in the Gulf of Mexico. It’s rare to see them, but I’m keeping my eyes peeled!

Dolphins, on the other hand, seem to be everywhere out here. I’ve caught at least a glimpse of them every day so far. In fact, a group of them swam up to investigate our CTD today as it was being lowered into the water.

 

Questions to Consider:

Research: Some other famous invasive species in our oceans include the green crab (Carcinus maenas), killer algae (Caulerpa taxifolia), a jellyfish-like animal called a sea walnut (Mnemiopsis leidyi), a marine snail called rapa whelk (Rapana venosa), and the zebra mussel (Dreissena polymorpha). Where did each of these originate? How did they come to inhabit their invaded areas? What impact are they having?

Brainstorm: What measures could you imagine taking to manage some of these species?

Research: The specific type of titration used to determine the amount of dissolved oxygen in water is called the Winkler method. How does the Winkler method work?

 

 

 

Melissa Barker: On to the Emerald Coast, July 4, 2017

Lionfish!

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22-July 6

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 4, 2017

Weather Data from the Bridge:

Latitude: 29 49.65 N

Longitude: 86 59.92 W

Air temp: 29.7 C

Water temp: 31.6 C

Wind direction: 337 degrees

Wind speed: 1.88 knots

Wave height: 0.5 meters

Sky: partly cloudy

 

Science and Technology Log

We are now off the coast of Western Florida. After completing many stations in East Texas and Louisiana, we headed over to the Emerald Coast. State agencies in Louisiana and Mississippi, who are SEAMAP partners, have already completed stations in their states using the same trawling protocol which allowed us to push on to Florida.

The change in species has been dramatic. We are now trawling in sandy bottom areas, which have also been shallower than most of our Texas trawls with muddy bottoms. Generally, the fish here in Florida have more coloration and our catches have been smaller with fewer, but often slightly larger fish. Below is a side by side comparison of fish diversity between a Texas trawl catch and a Florida trawl catch.

The increased coloration in the fish actually helps the fish hide better in the sandy bottomed blue waters, yet at the same time allowing potential mates to find each other more easily. In the murky bottom waters of Texas, the fish tend to blend in better with duller colors. Here are some of the interesting species we found in the Emerald Coast waters.

One new fish we have caught in Florida is the lionfish (Pterois volitans ). In less than 10 years, the Lionfish has become widely established as an invasive species in the US Southeast and Caribbean coastal waters. It is native to the Indo-Pacific region, but was introduced into this area of the Gulf.

It is believed that lionfish were introduced off the Florida coast in the mid-1980’s, then expanded their way up the east coast. By 2004, NOAA scientists confirmed breeding populations off the coast of North Carolina which then worked their way into the Gulf of Mexico by 2005-2008. Lionfish are a popular aquarium fish and it is hypothesized that people released them into the Atlantic when they no longer wanted them as aquarium pets. Their large eggs masses floated up the coast via the gulf steam allowing them to spread easily. According to the National Centers for Coastal Ocean Sciences, it is estimated that their population has reached roughly 1,000 per acre in some locations of the Gulf.

Lionfish are top predators which compete for food and habitat with native predators that have been overfished like snapper and grouper.

Lionfish Infographic by the National Centers for Coastal Ocean Science (NCCOS)

They consume over 50 species including some that are economically and ecologically important. For example, they can consume important algae-eating parrot fish, allowing for too much vegetation build in reef areas. They have no known predators and reproduce all year long. You have to be careful when handing lionfish because they can deliver a venomous sting with their spines that can cause pain, sweating and respiratory distress. There has been a push to encourage harvesting lionfish for consumption in an attempt to reduce their population, but unfortunately there is currently no known mechanism to control or eliminate the population. (Source: NOAA National Ocean Services)

 

 

Interviews with the People of the Oregon II- PART 2

I’ve spent some time talking with people who work on the ship from the different departments trying to understand their jobs and their desire to work at sea. I have posted three interviews in my previous blog and have three more to share with you here.

 

Commanding Officer Dave Nelson

Captain Dave Nelson in the captain’s chair

Captain Nelson’s number one responsibility is safety on board. He is also responsible for the operations, such as getting the data that the scientists need. Additionally, he has a significant teaching and mentoring role for the Ensigns, new Officers. He is one of only two civilian captains in the NOAA fleet and has been training junior officers for 15 years. In 2016, the Oregon II won NOAA Ship of the Year, partially due to the culture that Captain Nelson has cultivated on the ship. Since he worked his way up from the deck, he really can appreciate the role that each individual on the boat plays and says it is critical that everyone works together for the safety and the success of the science mission of the ship.

What did you do before working for NOAA?

After high school, I fished commercially and worked as crew on oil field supply boats. I captained a shrimp boat, but knew I wanted to find a career.

How did you get to where you are today?

I started as a deck hand and worked my way up to Third mate, then Operations Officer (OPS), Executive Officer (XO) and finally Commanding Officer (CO) over the course 25 years. I had all the nautical knowledge and NOAA gave me the opportunity to take the Master Captains License test. I had to go back to the books to study hard and then passed with flying colors.

 What do you enjoy most about working on the Oregon II?

I enjoy training the Junior Officers and seeing them make progress. And of course, the joy of going to sea.

What advice or words of wisdom do you have for my students?

Set a goal and stick to it. Don’t let anyone get in your way. At 47, I had to go back to the books and study harder than I ever had for my Master Captains exam. There will be set backs and hard work will be required, but sticking with your goal is worth it in the end.

 

Science Field Party Chief Andre DeBose

Field Party Chief Andre DeBose holding a Sphoerodies pachygaster (Blunthead Puffer)

Andre has been working at the NOAA Mississippi Lab in Pascagoula as the education coordinator and a member of the trawl unit for 21 years. He has been working on the Oregon II for 19 years. When at the lab he coordinates the education interns, collects and compiles trawl data and compiles historical trawl protocols. He is also the foreign national coordinator and get them cleared for sea duty. I’ve worked closely with Andre on the boat and appreciate all his patience and willingness to share his knowledge and insight with me.

 What does it mean to be Science Field Party Chief?

I am the liaison between the lab and the ship and help mediate requests from both parties. On board, I supervise all scientific activities and personal.

 What did you do before working for NOAA?

My degree is in general biology, which I linked to aquaculture. Right out of college, I worked at the Sea Chick aquaculture plant raising large mouth and hybrid striped bass. The facility was trying to make farmed grown fish as important as farmed raised chicken.

How did you come to work for NOAA?

I was hired as a temporary scientist for a Groundfish survey for 40 days aboard NOAA Ship Chapman. After that, I worked with a Red Drum tagging crew aboard the R/V Caretta then was hired on permanently by NOAA and been working at the lab ever since.

Tell me about one challenging aspect of your job?

Being out at sea. I miss my family and my normal day to day life.

What do you enjoy most about working on the Oregon II?

Going to sea. Even though it is hard to be away, I love being out there and the work we do.

What advice or words of wisdom do you have for my students?

The goals that you desire may become your livelihood, always make sure to make your work fun and it will never bore you.

 

Second Engineer Darnell Doe

Second Engineer Darnell Doe

Darnell has been the Second Engineer aboard the Oregon II for three years. His job is a critical one as he is responsible for the maintenance and upkeep of the engines and generators. We are typically running on one engine and one generator with a second of each for back up. He changes filters, checks oil sump levels and makes sure everything is running smoothly.

What did you do before working for NOAA?

I worked in the Navy for 20 years as an engineer doing repair as a machinist through three wars. Then I worked doing combat support for the military sea lift command.

Why work for NOAA?

A friend told me about a job opening on a NOAA ship. I applied and got it.

Tell me about one challenging aspect of your job?

I’m used to working on much bigger ships, so working on the Oregon II is like working on a lawn mower in comparison. I tackle problems in a routine way and solve them as they arise.

What do you enjoy most about working on the Oregon II?

Working on this ship is new and interesting, which I like. I’ve seen some weird stuff come out of that water and enjoy learning about the science that is happening onboard.

What advice or words of wisdom do you have for my students?

If your mind is set on something, proceed on that road and keep persisting. Stick with your goal.

 

Personal Log

It’s the 4th of July and folks are getting patriotic on the Oregon II. The ship got a new flag today and we had festive lunch, which is typically the biggest meal on the ship due to the shift change. The day shift folks eat first and then start their shift, while the night shift folks end their shift, eat and head to bed.

Yesterday we saw land. It has been 10 days since I’ve seen hard ground which is a lot for this land lover. I’m not sure why, but for some reason I imagined we would be close enough to see land more often. However, it was strange to see beach hotels and condos at a distance today; we are between 3.5-8 miles off shore for a few of our stations. I’ve come to enjoy the endless sea view.

Tire pulled up in our trawl net

While trawling yesterday we caught a tire. We’ve actually found very little trash in our trawls, so the tire was a bit of a surprise. Then we caught another tire in the next trawl. Apparently, it is common for people to dump tires and other large trash items into the ocean and GPS the location. These items are used as fish aggregating devices. Vegetation will grow on them and attract small fish. Larger fish are then drawn to the area to feed. Using the GPS location, people will come back to fish this area. I guess it is helpful that we are picking up the tires.

It is hard to believe that I am almost at the end of my journey. We’ve finished our trawling and are making the trek back to Pascagoula, MS. It feels strange to be awake with no fish work to do, but I’m enjoying a little down time as it has been a busy two weeks full of fun and learning.

Did You Know?

The northwest coast of Florida from Pensacola Beach to Panama City Beach is referred to as the Emerald Coast, which is where we are now. According to the Northwest Florida Daily News, the term Emerald Coast was coined in 1983 by a junior high school student who won $50 in the contest for a new area slogan.

Dawson Sixth Grade Queries

What is the coolest/craziest animal you found? (Alexa, Lorna, Blaine)

Lionfish (Pterois volitans)

Of all the fascinating new species I’ve seen, I think lionfish are the coolest and craziest organism of them all. I also find it interesting that a native species in one area of the world can be problematic and invasive in another part of the world.

Why do you think we only discovered/explored only 5% of the ocean? (Kale)

There are several reasons when we have explored so little of the ocean. One main reason is that ocean exploration is expensive, roughly $10,000 per day. Fish and other aquatic organisms are concentrated by the coast, so that is the area that is prioritized for exploration and where our major fisheries are located.

How many fish died for the research? (Mia, Bennett)

Most of the fish that come aboard end up dying for the purpose of science. I would estimate that in a typical trawl we have might pull in between 250 to 300 organisms. This is a pretty small amount when compared to the amount of fish removed by the commercial finishing industry and the unintended catch associated with the fishing industry. We often split the catch and end up sending half of the organisms back into the ocean fairly quickly. However, the ones we keep aboard give us important data that allow fisheries manager to assess the health of the fisheries in their states. We also keep and freeze certain species for other researchers who will use them off the boat. Ultimately the ones we don’t keep are returned to the ocean and will be eaten by larger fish and marine mammals.

Leah Johnson: All About the Fish, July 24, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Friday, July 24, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 033.235230
Longitude -077.298950
Water Temperature 25.88 °C
Salinity -No Data-
Air Temperature 28.3 °C
Relative Humidity 78 %
Wind Speed 5.76 knots
Wind Direction 355.13 degrees
Air Pressure 1011.3 mbar

Science and Technology Log:
When the traps are reeled in, the GoPro camera attachments are unclipped and brought into the dry lab. The cameras are encased in waterproof housing that can withstand the higher pressure at the seafloor. One camera is placed on the front of the trap, and one camera is placed on the back. Each video card captures ~45 minutes of footage. The videos will be carefully scrutinized at a later date to identify the fish (since many do not enter the traps), describe the habitat, and also describe the fish behavior. While aboard the ship, the videos are downloaded and watched just to make sure that the cameras worked properly, and to gain a general idea of what was happening around the trap. Occasionally, there are some really exciting moments, like when a tiger shark decided to investigate our trap!

tiger sharkThis tiger shark appeared in the video from both trap cameras as it circled.

While the cameras are being prepped in the dry lab for the next deployment, we are busy in the wet lab with the fish caught in the traps. The first step is identification. I could not identify a single fish when the first trap landed on the deck! However, I am slowly learning the names and distinctive features of the local fish. Here are a few examples of the fish that we have hauled in so far:

Once the fish are identified, they are sorted into different bins. We record the mass of each bin and the lengths of each fish. Most of the smaller fish are returned to the ocean once the measurements are recorded. Some fish are kept for further measuring and sampling. For each of these fish, we find the mass, recheck the total length (snout to tail), and also measure the fork length (snout to fork in tail) and standard length (snout to start of tail).

I measured the fish while one of my crew mates recorded the data.

I measured the fish while one of my crew mates recorded the data.

The fish is then ready for sampling. Depending on the species of fish, we may collect a variety of other biological materials:

  • Otoliths (ear stones) are made of calcium carbonate, and are located near the brain. As the fish grows, the calcium carbonate accumulates in layers. As a result, otoliths can be used – similarly to tree rings – to determine the age of the fish. I retrieved my first set of otoliths today!
  • Muscle tissue (the part of the fish that we eat) can be used to test for the presence of mercury. Since mercury is toxic, it is important to determine its concentration in fish species that are regularly consumed.
  • Gonads (ovaries in females or testes in males) can be examined to determine if a fish is of reproductive age, and whether it is just about to spawn (release eggs / sperm into the water).
  • The stomach contents indicate what the fish has eaten.

This toadfish had snail shells in its stomach!

This toadfish had snail shells in its stomach!

The soft tissues are kept in bags and preserved in a freezer in the wet lab. Sample analyses will take place in various onshore labs.

Personal Log:
It is important to remember that this ship is home to most of the people on board. They live and work together in very close quarters. There are daily routines and specific duties that individuals fill to keep Pisces running smoothly. Cooperation is key. I do my best to be useful when I can, and step aside when I cannot. Despite my inexperience at sea, everyone has been incredibly kind, patient, and helpful. I am lucky to be surrounded by so many amazing people who are willing to show me the ropes!

Did You Know?
The lionfish is an invasive species in the Atlantic Ocean. Its numbers are increasing in waters off the Southeastern U.S. coast. These fish have few predators, and they are consuming smaller fish and invertebrates which also sustain local snapper and grouper populations.

lionfish

This lionfish was in one of our traps yesterday.

David Walker: Florida, Speciation, and Learning All Over Again (Days 13-15), July 8, 2015

Survey Plot

NOAA Teacher at Sea
David Walker
Aboard NOAA Ship Oregon II
June 24 – July 9, 2015

Mission: SEAMAP Bottomfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: July 8, 2015

Weather Data from the Bridge

Weather Log 7/7/15
NOAA Ship Oregon II Weather Log 7/7/15

The seas have remained incredibly calm, again with waves normally no higher than 1 ft.  July 7, 2015 was a beautiful day, with few (FEW, 1-2 oktas) clouds in the sky (see above weather log from the bridge).  Visibility from the bridge was 10 nautical miles (nm) throughout the day.

Science and Technology Log

After a run of around 16 hours, we finally arrived on the west coast of Florida to continue the survey.

Wow!  The organisms caught on the west coast of Florida were entirely different from those caught west of the Mississippi.  In our first trawl catch, I almost didn’t recognize a single species.

Fisheries biologist Kevin Rademacher shared with me an article, “Evidence of multiple vicariance in a marine suture-zone in the Gulf of Mexico” (Portnoy and Gold, 2012), that offers a potential explanation  for the many differences observed.  The paper is based on what are called “suture-zones.”  A suture-zone, as defined previously in the literature, is “a band of geographic overlap between major biotic assemblages, including pairs of species or semispecies which hybridize in the zone” (Remington, 1968).  In other words, it is a barrier zone of some kind, allowing for allopatric speciation, yet also containing overlap for species hybridization.  As noted by Hobbes, et al. (2009), such suture-zones are more difficult to detect in marine environments, and accordingly, have received less attention in the literature.  Such zones, however, have been discovered and described in the northern Gulf of Mexico, between Texas and Florida (Dahlberg, 1970; McClure and McEachran, 1992).

Portnoy and Gold note that “at least 15 pairs of fishes and invertebrates described as ‘sister taxa’ (species, subspecies, or genetically distinct populations) meet in this region, with evidence of hybridization occurring between several of the taxa” (Portnoy and Gold, 2012).  The below table delineates these sister taxa.  On this table, I have highlighted species that we have found on this survey.

Sister Taxa
Sister taxa found in the northern Gulf of Mexico. Highlighted are species we have encountered on this survey (Portnoy and Gold, 2012).

The figure below geographically illustrates distribution patterns of two pairs of sister species within the northern Gulf of Mexico.  We have seen all four of these species on this survey, and our observations have been consistent with these distribution patterns.

Distributions of sister taxa within the northern Gulf of Mexico
Distributions of “sister taxa” within the northern Gulf of Mexico (Portnoy and Gold, 2012)

Prior to Portnoy and Gold, hypothesized reasons for the suture-zone and allopatric speciation in the northern Gulf included “(1) a physical barrier, similar to the Florida peninsula, that arose c. 2.5 million years ago (Ma) during the Pliocene (Ginsburg, 1952), (2) an ecological barrier, perhaps a river that drained the Tennessee River basin directly into the Gulf, that existed approximately 2.4 Ma (Simpson, 1900; Ginsburg, 1952), (3) a strong current that flowed from the Gulf to the Atlantic through the Suwanee Straits approximately 1.75 Ma (Bert, 1986), and (4) extended cooling during early Pleistocene glaciations occurring c. 700–135 thousand years ago (ka) (Dahlberg, 1970)” (Portnoy and Gold, 2012).  Another explanation has been offered by Hewitt (1996), involving marine species being forced into different areas of refuge during the glacial events of the Pleistocene, allowing for allopatric speciation.  Following the retreat of the glaciers, according to this hypothesis, these species would have been allowed to come into contact again, allowing for hybridization.

Portnoy and Gold used mitochondrial and microsatellite DNA sequence data from Karlsson et al. (2009) to “determine if estimated divergence times in lane snapper were consistent with the timing of [the above] hypothesized variance events in the suture-zone area, in order to distinguish whether the Gulf suture-zone is characterized by a single or multiple vicariance event(s)” (Portnoy and Gold, 2012).

Their results suggest that the divergence of lane snapper in the northern Gulf occurred much more recently than the hypothesized events described by Ginsberg (1952), Bert (1970), and Dahlberg (1970).  These results also suggest that the explanation offered by Hewitt (1996) is an unlikely explanation for the divergence of lane snapper, for even though the time of multiple glaciations is consistent with the time of lane snapper divergence, water temperatures across the Gulf are estimated to have been within the thermal tolerance of lane snapper during these glaciations.  Evidence also suggests that a shallow shelf existed during these glaciations, representing a habitat in which lane snapper could have lived.

The explanation that Portnoy and Gold favor, in terms of explaining lane snapper divergence, is one suggested by Kennett and Shackleton (1975), as well as by Aharon (2003).  This explanation involves “large pulses of freshwater from the Mississippi River caused by a recession of the Laurentide Ice Sheet between 16 and 9 ka” (Portnoy and Gold, 2012).  This explanation would have also allowed for potential sympatric or parapatric speciation, because it contains multiple lane snapper habitat types (carbonate sediment, as well as mud and silt bottom).

Notably, the fact that the above explanation is favored by Portnoy and Gold for lane snapper divergence does not discount the explanations of Ginsberg (1952), Bert (1970), Dahlberg (1970), and Hewitt (1996), in terms of explaining the many other examples of species divergence exhibited within the northern Gulf.  It is most probable that many geological and ecological causes worked, sometimes in confluence, to create the divergences and hybridizations in species observed today.  A geographical depiction of many of the hypothesized explanations described by Portnoy and Gold is below.

Geographic Depiction
Geographical depiction of hypothesized triggers of species divergence in the northern Gulf of Mexico (Portnoy and Gold, 2012)

In addition to the species divergence observed in our survey, another interesting difference noted in our catches along the western coast of Florida was the emergence of lionfish.  These invasive species are native to the Indian Ocean and southwest Pacific Ocean, and they were most likely introduced by humans into the waters surrounding Florida.  There are two lionfish species that are invasive in Florida, P. miles and P. volitans (Morris, Jr. et al., 2008), and the earliest records of their introduction into Florida’s waters are from 1992 (Morris, Jr. et al., 2008).  Many characteristics have allowed these species to be successful alien invaders in these waters – (1) they are formidable, with venomous spines and an intimidating appearance, (2) they reproduce incredibly quickly, breed year-round, and mature at a young age, (3) they outcompete native predators for food and habitat, (4) they are indiscriminate feeders with voracious appetites, and (5) they take advantage of a sea that is over-fished, in which many of their predators are regularly being eliminated by humans (Witherington, 2012).

Life cycle of the lionfish
Life cycle of the lionfish

This invasion mechanism hauntingly reminds me of that of the Cane Toad, a very famous alien invader which has decimated the flora and fauna of Australia.  One of the main worrisome effects of lionfish around Florida is on coral reefs.  Lionfish “can reduce populations of juvenile and small fish on coral reefs by up to 90 percent…[and] may indirectly affect corals by overconsuming grazing parrotfishes, which normally prevent algae from growing over corals” (Witherington, 2012).

One of the ways in which Floridians are trying to eliminate this problem is through lionfish hunting tournaments.  CJ Duffie, a volunteer on this survey from Florida, has participated in these tournaments and also participates in lionfish research directed by the Florida Fish and Wildlife Commission.  CJ harvested the gonads of the lionfish we caught on Day 13 to take back to the lab for further analysis.  Floridians also actively promote the lionfish as a delicacy, in an attempt to encourage more people to eat the invasive species.  CJ described the fish as the best he has ever tried, so I was very easily intrigued.  A fillet was prepared from the large lionfish caught on Day 13 fish, and Second Cook (2C) Lydell Reed was able to cook it on the spot.  I agree with CJ – white, flakey, slightly sweet, this is the best fish I have ever tasted.

Personal Log

The survey is nearly over, and this will be my last post.  We are in transit back to Pascagoula, Mississippi, the ship’s home port.  I leave by plane from Mobile, Alabama for Austin on Friday, July 10, 2015.  I am eagerly anticipating walking on land, as I’ve heard it’s strange at first after being on a boat for awhile.  Apparently this weird feeling has a semi-formal name — “dock rock”.

This experience has truly been one of the best of my life, especially in terms of the raw amount I have learned every day.  Coming in, the sole knowledge of fish life I had derived from my stints fly fishing with my father, and most of this knowledge concerns freshwater fish.  I now feel as though I have a much more comprehensive knowledge of the biodiversity that exists in the Gulf of Mexico and a much greater appreciation for the diversity of life as a whole.  I have taken over 200 photos to document this biodiversity, accumulated a diverse collection of preserved specimens, and collected a wide variety of resources (textbooks, scientific papers, etc.) on marine life in the Gulf of Mexico.  These resources will surely make the preparation of a project-based activity for my students focused on this research a much easier feat.

Sharksucker (Echeneis naucrates)
Having fun with a sharksucker (Echeneis naucrates) during analysis of the last trawl catch

I have also learned how a large portion of marine field research is conducted.  We have surveyed dissolved oxygen levels in the water, plankton biodiversity, and bottomfish biodiversity throughout the northern Gulf, using established (and quite popular) research methods.  The knowledge I have gained here can be applied to the biodiversity project portion of my geobiology class, in which students conduct biodiversity surveys in local Austin-area parks and preserves.  I anxiously await the comprehensive results of this summer’s NOAA survey – the complete dissolved oxygen contour map, the biodiversity indexes for different regions of the Gulf, and plankton biodiversity data from Poland.  These data will definitely help me come to even more conclusions about the marine life in the Gulf and the factors affecting it.

Through this experience, I have also gained much appreciation for the diversity of careers that exist on board a NOAA research vessel.  I have learned about the great work of the NOAA Corps, a Commissioned Service of the United States.  I have learned from the fisherman, engineers, stewards, and other personnel on the boat, all required for a successful research survey.

First and foremost, I have to thank the science team on the night watch – fisheries biologists Kevin Rademacher and Alonzo Hamilton, FMES Warren Brown, and volunteer CJ Duffie.  These individuals were instrumental in helping me identify organisms, label my photos, and craft my blog posts and photo captions.  Kevin Rademacher provided me with most of the papers which I have referenced in this blog, and with no internet connectivity on the boat for around half of the trip, his library of information was essential.  For the “Notable Species Seen” section of this blog, Kevin also individually went through all of my species photos with me to help me add common and scientific names in the photo captions.  This took a great deal of his time, almost every day, and I am incredibly appreciative.

Night Watch
The rest of the night watch. From left to right — FMES Warren Brown and NOAA Fisheries Biologists Kevin Rademacher and Alonzo Hamilton

I also definitely need to thank Lead Fisherman Chris Nichols and Skilled Fisherman Chuck Godwin for their mentorship with CTD data collection and plankton sampling.  In addition, many thanks to Field Party Chief Andre Debose and Lieutenant Commander Eric Johnson for proofreading my blog entries and ensuring that my experience on the ship was a good one.  I enjoy learning from people much more than I enjoy learning from books, and these have been some of best (and most patient) teachers I have ever had.

Lastly, thanks so much to the NOAA Teacher at Sea staff for your work on this great program.  It truly makes a difference for many teachers and many students.  I have had an amazing time, and I am positive my students will benefit from what I have learned.

Survey Plot
The ship’s path during the survey, thus far. I have been on the boat for Leg 2, drawn in black.

Did You Know?

Lionfish venom is not contained within the tips of the fish’s spines.  Rather, glandular venom-producing tissue is located in two grooves that run the length of  each spine.  When skin is punctured by a spine, this glandular tissue releases the venom (a neurotoxin), which travels up the spine and into the wound by means of the grooves (Witherington, 2012).

Venomous Spines
Anatomy of the lionfish spine

Notable Species Seen

John Bilotta: A World of Wonder under the Waves, Days 1-4 in the South Atlantic MPAs, June 20, 2014

NOAA Teacher at Sea

John Bilotta

Aboard NOAA Ship Nancy Foster

June 17 – 27, 2014

 

Mission: South Atlantic Marine Protected Area Survey

Geographical area of cruise: South Atlantic

Date: June 20, 2014

Weather: Sunny with clouds.  26.6 Celsius.  Wind 13 knots from 251 degrees (west).  1-2m seas from the north.

 ** Note: Upon request, note that if you click on any picture it should open full screen so you can the detail much better!

 

Science and Technology Log

Research mission objectives – what am I doing out here?

Gathering data on habitat and fish assemblages of seven species of grouper and tilefish in the South Atlantic MPAs . These species are considered to be at risk due to current stock levels and life history characteristics which make them vulnerable to overfishing.   Information gathered will help assess the health of the MPAs, the impact management is having, and the effectiveness of ROV exploratoration to make these health assessments.

Science Part I:  Multibeam sea floor mapping  Multibeam sonar sensors — sometimes called multibeam acoustic sensors echo-sounders (MB for short)  are a type of sound transmitting and receiving system that couple with GPS to produce high-resolution maps of the sea floor bottom. See how it works by checking out this cool NOAA animation. MB mapping is occurring all night long on the Nancy Foster by a team of expert mappers including Kayla Johnson, Freidrich Knuth, Samantha Martin, and Nick Mitchell (more on them and their work and NOAA careers in a future blog).  Our Chief Scientist Stacey Harter has identified areas to map.

OK, so we aren't exactly MB mapping in this photo but I wanted to introduce everyone to my host Chief Scientist in one of my first pictures.
OK, so we aren’t exactly MB mapping in this photo but I wanted to introduce everyone to my host Chief Scientist Stacey Harter in one of my first pictures.

By morning, after the mappers have worked their magic on the data, Stacey is able to see a visual representation of the sea floor.  She is looking for specific characteristics including a hard sea floor bottom, relief, and ridge lines – important characteristics for the groupers, tilefish, hinds, and other fish species under protection and management.   Stacey uses these maps to determine transects for ROV exploration.  Those transect lines are used by both the scientists driving the ROV and the navigation crew aboard the Nancy Foster.  Once down on the ocean floor, the ROV pilot follows this transect and so must the ship high above it in the waves driven by the crew.  Although 3 floors apart – it’s amazing to hear the necessary communication between them.  (Watch for one of my future posts that will highlight a MB map and a sample transect line.)

Science Part II:  ROV exploration – Completion of 8 dives

By the time this posts, we will have made 8 dives with the SubAtlantic Mohawk 18 ROV from University of North Carolina. (perhaps we will have made more dives because internet via satellites is slow and I am uncertain when this will really get posted.)

JB and ROVs first date aboard the aft deck on the Nancy Foster
JB and ROVs first date aboard the aft deck on the Nancy Foster

The ROV joined the mission with its two pilots, Lance Horn and Jason White.  Pilots extraordinaire but I otherwise see them as the ROV’s parents guiding and caring for its every move.  The technology aboard the ROV is incredible including a full spectrum video camera, a digital camera, sensors to measure depth and temperature, and 4 horizontal thrusters and one vertical thruster with twin propellers.   The ROV has donned a pair of lasers which when projected on the sea floor allow the scientists to measure items.

JB attaching the CTD probe to the ROV with instructions from Steve Matthews.
JB attaching the CTD probe to the ROV with instructions from Steve Matthews.

John receiving launch instructions from Andy David; including about how the cable attaches to the ROV and the fiber optic line.
John receiving ROV deployment instructions from Andy David; including about how the cable attaches to the ROV and the fiber optic line.

 

ROV deployment
ROV deployment

 

The ROV control station is daunting!  As one may imagine, it does include three joysticks accompanied by multiple switches, buttons, lights and alarms – all just a fingertip away from the ROV pilot.   Five monitors surround the pilot – some of them are touch screen activated adding more to the selection of options at their fingertips.  Is a Play Station a part of your daily routine?  Perhaps you should consider a career at NOAA as a ROV pilot!

ROV operations station. 1. Power supply, 2. Joystick controllers, 3. Multiple switches, 4. Four monitors for the ROV pilot alone, 5. Two monitors for the video and digital pictures, 6.  Laptop controlling digital pictures, and 7.  Multiple DVD recorders.
ROV operations station. 1. Power supply, 2. Joystick controllers, 3. Multiple switches, 4. Four monitors for the ROV pilot alone, 5. Two monitors for the video and digital picture technician, 6. Laptop controlling digital pictures, and 7. Multiple DVD recorders.

 

While the ROV drives and explores a set transect line, six additional scientists and assistants identify and record habitat, fish species, invertebrates, and other items that come into vision on any one of the monitors scattered around the lab located inside the ship.  Two scientists are recording fish species and a scientist accompanied by me the past two days are identifying habitat and invertebrates.

JB Invertebrate Logging
John assisting Stephanie Farrington (not pictured) with habitat and invertebrate identification and logging.

Of course, the ROV is on the move constantly, so fish and items of interest are flying by – you don’t have time to type or write so the scientists use short cut keyboards pre-coded with species and habitat descriptors.   Meanwhile another scientist is narrating the entire dive as everything is being recorded and yet another is controlling DVD video recording and centering and zooming the digital camera capturing hundreds of pictures during a dive.  You would be surprised by the number of computers running for this operation!  What is amazing is that everything will be linked together through a georeferrenced database using latitude and longitude coordinates.

Science Part III.  What have we seen and discovered?

On June 19th & 20th we completed 8 dives.  Some of the first species we saw included the shortbigeye, triggerfish, reef butterflyfish, and hogfish (Here is a good link of fish species on the reefs located here.)   We also observed a few stingrays and speckled hind.  For invertebrates, we saw a lot of Stichopathes (tagged as dominate during the dives) and fields of Pennatulacea (long white feathers).  We also saw echinoderms and solitary cap coral (a singular, white tube coral) and discovered a Demospongiae that Stephanie, one of the Research Biologists (see below) hadn’t seen yet; we called it a bubble-wrap sponge in my hand-written notes.

Dive053089 15 52 18

Dive053061 15 28 29 Cubya Dive052019 12 23 13 ???????????????????????????????

 

Things that we saw today that we wished we hadn’t seen: 

Pollution  So with much of my teaching centered around clean water and pollution prevention and mitigation, I was saddened to discover the following items on the ocean floor during the first five dives: Plastic bags, cans, a barrel, a clearly visible rubber surgical glove, and an artillery shell. Interesting – from the ROV you can easily spot what the scientists call ‘human debris’ as it often has straight lines and corners, distinctly human crafted shapes – not like mother nature engineers.

Plastic balloon found during dive #2 at about 60 meters.
Plastic balloon found during dive #2 at about 60 meters. Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Black plastic garbage bag found at about 60 meters.  NOAA UNCW. Mowak ROV June 2014.
Black plastic garbage bag found at about 60 meters. NOAA UNCW. Mohawk ROV June 2014.

 Invasive species – Lionfish are everywhere!  Why are Lionfish undesirablehttp://oceanservice.noaa.gov/facts/lionfish.html 

Lionfish - multiple sitings today.  Photo credit:  NOAA UNCW
Lionfish – multiple sitings today. Photo credit: NOAA UNCW Mohawk ROV. June 2014.

 

Career highlight:  Stephanie Farrington, Biological Research Specialist

Harbor Branch Oceanographic Institution at Florida Atlantic University

Masters of Science in Marine Biology.  Bachelors of Science in Marine Science and Biology.

Stephanie’s expertise is in collecting, classifying, and mapping marine biology with emphasis in habitats and invertebrates.  She is also proficient in ArcGIS for mapping and maintaining a database of everything she sees, discovers, and observes.  During this research trip, she is the scientist charged with identifying the habitat with an emphasis on the invertebrate species that speckle the sea floor.  For the past two days I have shadowed her side – watching the video feed from the ROV and logging.  She is a wealth of information and I really appreciate sitting next to her the past two days.  She is a master in biology and a master in buttons – and a fun spirit too.

 

Personal Log

Day 2 was spent almost entirely in transit – getting north from Mayport to Georgia, almost 9 hours.  Part of that time was spent getting to know the research team and participating in safety drills.  Sorry everyone; I did not get a picture of me in my red gumby suit (aka the life saving immersion suit).  Upon recommendation from a colleague (you know who you are) I also spent two hours on a bench on the bow reading The Big Thirst by Charles Fishman

“If Earth were the size of a Honda Odyssey minivan, the amount of water on the planet would be in a single half-liter bottle of Poland Spring in one of the van’s thirteen cup holders.” 

Although I have been out on the ocean before as well as the Great Lakes, on this day I simply felt tiny in a vast sea of blue.

For those who know me during my off-work hours, I also hit the ship’s gym -yes, that’s right, I am keeping up my routine with one exception.  My Paleo diet is now nearly broken – too much great food here from the ship’s chef’s, including ice cream.

Last night, at the end of Day 3 (Thursday) I spent the evening on the beach!  Well actually, what they call steal beach – a platform aft (behind) the ship’s bridge equipped with lounge recliners to watch the sunsets.  I sat up for seemingly hours trying to write all my excitements and discoveries in a log I am keeping.  Don’t worry though, I won’t make you read it all; my blog readers will only see a small snapshot of all I have been seeing and discovering!

 

Glossary to Enhance Your Mind

Each of my logs is going to have a list of new vocabulary to enhance your knowledge.  I am not going to post the definitions; that might be a future student assignment.  NOAA’s Coral Reef Watch has a great site of definitions HERE.  

  • Immersion suit
  • Transect
  • MPA
  • Invertebrates
  • Rugosity
  • Multibeam mapping
  • Bathymetry
  • Dominate species
  • Habitat
  • Echinoderms
  • CTD probe

Jamie Morris: Time to Plan, Prepare, & Revise, April 23, 2014

NOAA Teacher at Sea
Jamie Morris
Aboard NOAA Ship Nancy Foster
April 19 – May 1, 2014

Mission:  Gray’s Reef National Marine Sanctuary Southeast Regional Ecosystem Assessment
Geographical Area of Cruise: Gray’s Reef National Marine Sanctuary (GRNMS)
Date: Wednesday, April 23, 2014

 

Weather Data from the Bridge
Weather: Clear
Visibility: 10 nautical miles
Wind: 7 knots
Swell Waves: 1.3 feet
Air Temperature: 68.5ºF
Seawater Temperature: 67.6ºF

 

Science and Technology Log

Today was our third day at sea.  We again were very fortunate to have had beautiful weather.  We are continuing to “mow the lawn” and are creating the seafloor map.

Lowering the dive boat.  This is right before the Hydraulic Fluid leaked.
Lowering the dive boat. This is right before the Hydraulic Fluid leaked.

Since it was a relatively quiet day, the crew decided to practice launching and running two of the dive boats.  As they were lowering the first dive boat into the water one of the guide ropes snapped.  The crew worked quickly to reattach a new rope.  Once the boat was under control, the passengers boarded and they sailed away to practice marking dive locations.  A few minutes later the crew launched a second dive boat.  The boat was lowered into the water with no problems and the passengers boarded.  Right before they unhooked from the crane, the line carrying the hydraulic fluid on the crane popped off.  Hydraulic fluid shot all over. (The hydraulic fluid is biodegradable so it is safe, but a mess to clean up).

The engineers were able to work quickly to repair the crane.  Meanwhile, both dive boats went on their practice missions.  The second boat was the first to return and was reloaded onto the Nancy Foster without any problems.  The first boat, however, did not return on its own.  It ended up having engine problems.  The Nancy Foster had to stop mapping the seafloor and go retrieve the dive boat and its passengers.  What was supposed to be a quiet morning turned into an eventful one, but fortunately no one was injured.  The only causality was a boat.

We are now down to only two dive boats.  This means that a third of the planned worked might not be able to get accomplished.  Chief Scientist Sarah Fangman had to revise the mission’s plans to try to accomplish as much as we can with only two boats.  She first had to prioritize the different projects.  It was determined that the Fish Acoustics and Telemetry projects would be completed first.  The Fish Acoustics study involves two divers going to 6 specific sites.  One diver will identify and record the fish species that are present.  The other diver will be filming the animals seen.  The Telemetry teams will be replacing the receivers that are currently positioned throughout the sanctuary.  These receivers record information from micro chipped fish that swim past.  New receivers will be placed in the water and the old ones will be brought on board and the data will be uploaded onto a computer.  While these projects are being conducted, the divers will also be looking for sea turtles and Lionfish.  Data will be gathered about the sea turtles and photos will be taken.  If Lionfish are located, they will be speared and brought on board the Nancy Foster where information such as length and weight will be gathered.  Lionfish are an invasive species and need to be removed from the ecosystem.  For a detailed description of Lionfish, please visit the Mission’s Website at: http://graysreef.noaa.gov/science/expeditions/2014_nancy_foster/welcome.html Once these projects are complete, the Marine Debris Survey will begin.

Preparing the recievers.  They are first wrapped in electrical tape and than placed inside nylon stockings.
Preparing the recievers. They are first wrapped in electrical tape and than placed inside nylon stockings.

Today we did prep for the different missions.  Sarah and I organized all the supplies that will be used.  This included filling a dive bag with the receivers and tools needed to secure the receivers under water as well as tools to remove the current receivers.  Yesterday we had prepped the receivers.  Sarah replaced the batteries and then we wrapped the receivers in electrical tape and then placed them inside nylon stockings.  This is to protect the receivers and to keep them clean.  When they are under the water different organisms will start to grow on them.  When we retrieve the receivers, we can cut away the stockings removing any organisms growing there and then unwrap the tape and the receivers will look brand new.

We also gathered the supplies for the Lionfish removal.  These included dive bags to hold the lionfish, gloves for removing the fish, and placing the spear guns into the dive holsters (designed by a GRNMS member made out of PVC pipes).  We copied all the dive logs onto waterproof paper and organized the paperwork for the dives.  We also prepared all the underwater cameras.  Hopefully we are all set for when the divers arrive tomorrow.

Spear Gun Holster
Chief Scientist Sarah Fangman models the spear gun holster.

First Assistant Engineer, Sabrina Tarabolletti fixes the underwater lights for the GO Pro camera.
First Assistant Engineer, Sabrina Tarabolletti, fixes the underwater lights for the GO Pro camera.

Today’s lesson was flexibility.  It is so important to be flexible.  On a ship, no plan is going to work out perfectly.  There are many uncontrollable factors such as the weather or mechanical issues.  It is important to always have backup plans and be able to adjust if problems arise.

 

Did You Know?

You can identify sea turtles using the scales on their neck.  This pattern is unique to each individual sea turtle.  Just like how fingerprints can identify humans.

 

Animals Seen Today

Hammerhead Shark – spotted from the bridge; estimated to be 10-12 feet long; it is very uncommon to see one in GRNMS (sorry no picture)

 

Personal Log

Amy Rath and I enjoyed writing our blogs on the Steel Beach.  We were working very hard in the beautiful weather
Amy Rath and I enjoyed writing our blogs on the Steel Beach. We were working very hard in the beautiful weather

I am truly having a wonderful time on this trip.  I am meeting so many amazing people and learning a lot from everyone.  The crew and all the scientific party are really nice people with many interesting stories.

Every day Keith Martin, the Electronics technician, makes Cuban coffee.  I was teasing him today about the cups he uses to pass out the coffee.  Cuban coffee is incredibly strong so you do not drink it like typical coffee.  You drink only a tiny amount.  Keith was using coffee cups to pass out the coffee.  I asked him where are the tiny cups (plastic cups about the size of the paper cups you use at fast food restaurants to get ketchup)?  He said that you can only find them in Miami.  That led to a conversation about Miami.  It turns out that he is a graduate of Miami Palmetto Senior High.  (Ms. Evans taught him Biology, Coach Delgado was his Drivers Ed teacher, Mr. Moser taught him weight training, and he was a member of TVP).  It really is a small world!

I do not know if I will be posting tomorrow, so I want to give an early shout out to my Seniors.  I hope that you have a wonderful time at Grad Bash.  Make sure to ride the Hulk for me (I prefer the 1st row).  Have fun!!

Me with Keith Martin the Electronics Technician who is a Miami Palmetto Alumni Photo: Amy Rath
Me with Keith Martin the Electronics Technician who is a Miami Palmetto Alumni
Photo: Amy Rath

Sam Martin enjoying some Cuban Coffee
Sam Martin enjoying some Cuban Coffee