David Madden: Otolithia and The Tragedy of the Commons, July 27, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fishery-Independent Survey (SEFIS)

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

On board off the coast of North Carolina – about 45 miles east of Wilmington, NC (34°18’ N, 77°4’ W)

Pisces Route
Pisces Route as of July 27, 2019


Date: July 27, 2019

Weather Data from the Bridge:

Latitude: 34°18’ N
Longitude: 77°4’ W
Wave Height: 3-4 feet
Wind Speed: 6.68 knots
Wind Direction: 42°
Visibility: 10 nm
Air Temperature: 28.0°C 
Barometric Pressure: 1022.4 mb
Sky: Partly cloudy


Science and Technology Log

Today, with the help of friends Zeb and Todd, I’d like to take a deep dive into the mission of this cruise.  Starting with the fish work up process aboard Pisces, first explained in blog #3.  Below is a picture flowchart I drew up to help visualize what’s going on. 

NOAA Fish Protocol (color)
NOAA SEFIS Fish Survey Protocol

This sequential process is rather straight forward following steps 1-8, rinse (the gear) and repeat. It’s the before and after; what comes before step 1 and after step 8, that’s important; How and where is the data used.  If you follow along into steps 9, 10, 11… you start with the laboratory analysis of the biological samples – otoliths and gonads – used to age the fish, and determine reproductive activity and spawning seasons, respectively.  This information is vital to proper management of fisheries.  Here’s why. 

This cruise, and SEFIS in general, originally came into existence because of red snapper.  Scientists determined around 2009 that the red snapper population in the SE Atlantic was at historically low levels.  Strict regulations were put in place to help the species rebound.  This on its own was a good measure, but only one step.  In order to assess the effect of the regulations, scientists would have to monitor the abundance of red snapper in the region.  However, charting changes in abundance would not be enough with this species (or with many others) due to the nature of its life cycle and reproduction.  See, all populations have a natural age structure balance.  This includes species specific traits – like its survivorship curve (how likely it is for an individual to die at different points in their life – for red snapper and many other reef-associated species it’s incredibly high at their larval and juvenile stages).  It also includes pertinent developmental characteristics such as when the species is reproductively mature.  Like many similar fish, older, mature red snapper have greatly increased reproductive potential, also known as fecundity.  So while the population has been bouncing back in terms of numbers, the number of older, mature, more fecund fish is still considerably lower than historical levels; thus the population is still recovering.  *this information is gathered from the data collected by scientist here on our SEFIS mission, and others like them. 

SEFIS survey site locations
SEFIS survey site locations.

The next step is to share this data with other scientists who will then, in conjunction with other information on the species, analyze the data and bring the results and conclusions of their analyses to policy makers (FYI, the government is moving towards making governmentally gathered scientific data available to the public).  Discussion ensues, and climbs the political decision-making-ladder until allowable catch regulations are determined.  Florida fishers, check here for your current snapper regulations or maybe this Fish Rules app will help.  Fish safe, my friends!

Morning Crew
Morning crew: Mike, Dave, Brad, Me, Todd, Oscar the Octopus, Mike, Zeb
gear
Macabre medieval cutlery? Or otolith extraction gear?

Ultimately this is a tricky and tangled issue of sustainability.  Commercial fishermen are understandably upset, as this can threaten their livelihood.  Although real, this concern is inherently short sighted, as their long term earnings depend on healthy and robust populations, and ecosystems.  The difficult part is to gather the necessary scientific data (very challenging, especially for marine organisms) and marry that to the many financial, social, and political concerns.  Comment below with thoughts and suggestions.  And while you’re at it, here’s a lovely and quick (fish-related) tutorial overview of this situation in general – the tragedy of the commons – and the challenges of managing our resources. 

A quick note about otoliths.  Within the fish processing protocol (above) – the most satisfying part is otolith extraction.  On board competitions abound: people vie for first chair (the spot in the lab that’s the coolest and best lit) and for the sharpest knives and scissors.  Much like a wild west showdown, most important is fastest extraction times.  Dave H opts for the classic chisel-through-the-gills technique, while the rest of us opt for the saw-through-the-skull-with-a-knife-and-crack-the-head-open-just-behind-the-eyes technique.  While Brad looks to perform the “double-extraction” – both otoliths removed in the tweezers at the same time, I look to perform the please-don’t-slice-my-hand-open extraction.  The quest for otoliths is usually straight forward.  But sometimes an ill-sliced cut can leave you digging for the tiny ear bones forever. 

This leaves us with: Why otoliths?  These tiny little ear bones help function in the fish’s vestibular system.  That’s a fancy way of saying the balance and orientation system of the fish.  They help vertebrates detect movement and acceleration, and they help with hearing.  These little bones help you determine your head and body orientation – turn your head sideways, it’s your otoliths who will send the message.  All vertebrates, including you, gentle reader, have them.  This makes me wonder if folks with exceptional balance and proprioception and court awareness have bigger otoliths?  Fish requiring more balance, those that sit and wait to hunt vs. those that swim predominantly in straight lines, have bigger otoliths. 

Otoliths are made of layered calcium carbonate (side question – does ocean acidification impact otolith formation?  Like it does with other calcium carbonate structures in the ocean?)  The fish secretes new layers as it ages: thicker layers during good times, thinner layers during lean times – correlated with summer and winter seasonality – just like with tree rings.  Once you dig out the otoliths, they can be analyzed by on-shore scientists who slice ‘em in half and take a really thin slice, deli-meat-style.  Voila! You can then count up the rings to tell how old the fish is. 

Fish Otolith
From Andrews et al 2019, published in the Journal of Marine and Freshwater Research: Illustration of a red snapper (top right), a photo of a red snapper otolith (top left), and an image of a cross-section of that otolith (bottom) http://www.publish.csiro.au/MF/fulltext/MF18265
cod otolith
From Hardie and Hutchings 2011, published in the journal Arctic: A cross-section of the sagittal otolith of an Atlantic cod.

Retrieved from https://www.researchgate.net/publication/255711740_The_Ecology_of_Atlantic_Cod_Gadus_morhua_in_Canadian_Arctic_Lakes

Black sea bass otoliths
Black sea bass otoliths with fingers for size comparison. Photos from Dave Hoke
Fish Count July 25th
Yesterday’s Fish Count.


Personal Log:

I’ve been continuing my work aboard the Pisces.  Lately the focus has been on conversations with scientists and ship personnel.  The source of most of today’s blog came primarily from conversations with Zeb and Todd.  They were both super helpful and patient in communicating the goals and mission of this cruise and SEFIS.  I’m also trying to contribute some things that might be useful to the NOAA scientists after the cruise is completed, and things that will be helpful to my students now and during the school year – like the drawings and diagrams, along with some upcoming videos (topics include: CTD color and pressure, Underwater footage featuring a tiger shark and hammerhead shark, Waves, All Hands on Deck, and a general cruise video). 

The food and mood of the cruise continues to be good.  * note: my salad eating has taken a hit with the expiration of spinach and leafy greens – it’s amazing they lasted as long as they did – the stewards, Rey and Dana, are amazing! 

General Updates:

  1. The other night I had my first bit of troubled sleeping.  The seas were roaring!  Actually, just about 6 feet.  But it was enough to rock the boat and keep me from falling asleep.  It was almost a hypnic jerk every time the ship rolled from one side to the other.  Special sensations for when my head dipped below my feet. 
  2. Two more book recommendations:  a. Newberry Book Award Winner: Call it Courage, by Armstrong Sperry.  I loved this book as a little boy.  I did a book report on it in maybe the 2nd or 3rd grade.  I spent more time drawing the cover of the report than I did writing it.    B.  A few years ago I read The Wave, by Susan Casey.  Great book about the science of waves and also the insane culture of big wave surfers. 
  3. I haven’t seen all that much lately in terms of cool biodiversity.  The traps did catch some cute swimming crabs, a lionfish, and a pufferfish.   * more below.
  4. Zeb won the Golden Sombrero Award the other day.  This is a momentous achievement awarded to a chief scientist after six consecutive empty fish traps!
  5. Lauren crafted us an extra special tie-dye octopus named Oscar.  He’s wearing the Golden Sombrero in the photo above.     
  6. Only 2.5 days till I’m back home.  Can’t wait to see my family. 

 

Neato Facts =

Back to general update #3 and today’s neato fact.  Both lionfish and pufferfish are toxic.  But are they poisonous? Or venomous?  Wait.  What’s the difference?  Both poisons and venoms are characterized as toxins, and often they are used interchangeably.  The distinction lies in the means of entry into your body.  Venoms get into you via something sharp – you’re either bitten with fangs or stung with stingers or spines.  Examples include our friend the lionfish, snakes, and bees.  Poisons, conversely, get into you when you eat it.  Examples include pufferfish, poison dart frogs,

Here’s a simple way to remember: Injection = Venom, Ingestion = Poison.  Click these links for interesting lists of poisonous animals, poisonous plants, and venomous animals

Pufferfish
Pufferfish from today’s fish trap.
Lionfish and Pufferfish
Lionfish (Venomous) and Pufferfish (Poisonous). Injection = Venom, Ingestion = Poison http://www.peakpx.com/487337/lion-fish-and-blue-puffer-fish

Please let me know if you have any questions or comments. 

Jeff Peterson: The Work in the Eastern Gulf, July 19, 2018

NOAA Teacher at Sea

Jeff Peterson

Aboard NOAA Ship Oregon II

July 9 – 20, 2018

 

Mission: Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 19, 2018

 

Weather Data from the Bridge

Date: 2018/07/19

Time: 16:34:47

Latitude: 29 57.6 N

Longitude: 087 02.60 W

Speed over ground: 7.3 knots

Barometric pressure: 1014.49

Relative humidity: 84%

Air temperature: 26.8 C

Sea wave height: 1 m

 

Science and Technology Log

We arrived off the coast of Florida on the evening of Sunday, July 15, and sampled stations in the eastern Gulf until the afternoon of Thursday, July 19. We used the same fishing method during this part of the cruise (bottom trawling), but added a step in the process, deploying side scan sonar in advance of every trawl. This measure was taken both to protect sea life on the ocean floor (sponges and corals) and to avoid damaging equipment. The sea bottom in this part of the Gulf—east of the DeSoto Canyon—is harder (less muddy) and, in addition to coral and sponge, supports a number of species markedly different than those seen in the western Gulf.

 

Side Scan Sonar

In contrast to single-beam sonar, which bounces a single focused beam of sound off the bottom to measure depth, side scan sonar casts a broader, fan-like signal, creating nuanced readings of the contour of the ocean floor and yielding photo-like images.

Towed Side Scan
How side scan sonar works: The harder the object, the stronger the image returned. See: https://oceanservice.noaa.gov/education/seafloor-mapping/how_sidescansonar.html#

 

Side scan sonar device
Side scan sonar device in its cradle.

 

 

Rigged and ready for deployment.
Rigged and ready for deployment. Signals from the sonar are conducted up the cable and picked up by the electrically powered lead on the block.

 

on its way in
Side scan sonar on its way in astern.

 

descending
Side scan sonar just beneath the surface & descending.

 

When we arrive a station in this part of the Gulf, we begin by traversing, covering the usual distance (1.5 miles), but then turn around, deploy the side scan sonar, and retrace our course. Once we’ve returned to our starting point, we recover the sonar, turn around again, and—provided the path on the sea bottom looks clear—resume our course through the station, this time lowering the trawl. If the side scan reveals obstructions, it’s a no-go and the station is “ditched.”

 

Coming about
Coming about before deploying the side scan sonar.

 

 

And Now for Something Completely Different . . . Fish of the Eastern Gulf

Panama City, Florida
Off Panama City, Florida – Tuesday morning, July 17, 2018

We spent the first half of this leg of the survey in the western Gulf of Mexico, going as far west as the Texas-Louisiana border. The second half we’re spending in the eastern Gulf, going as far east as Panama City. From here we’ll work our way westward, back to our homeport in Pascagoula.

Thanks to different submarine terrain in the northeastern Gulf—not to mention the upwelling of nutrients from the DeSoto Canyon—it’s a different marine biological world off the coast of Florida.

Here’s a closer look at the submarine canyon that, roughly speaking, forms a dividing line between characteristic species of the western Gulf and those of the eastern Gulf:

Bathymetric map of the Gulf of Mexico
Bathymetric map of the Gulf of Mexico, with proposed dive sites for Operation Deep-Scope 2005 indicated by red arrows and yellow numbers. Site #1 is on the southwest Florida Shelf in the Gulf of Mexico, where deep-water Lophilia coral lithoherms are found. #2 is DeSoto Canyon, a deep erosional valley where upwelling of deep nutrient rich water means greater animal abundances. #3 is Viosca Knoll, the shallowest site, where spectacular stands of Lophelia provide abundant habitat for other species. See: https://oceanexplorer.noaa.gov/explorations/05deepscope/background/geology/media/map.html

 

And here’s a selection of the weird and wonderful creatures we sampled in the eastern Gulf. As this basket suggests, they’re a more brightly colored, vibrant bunch:

Basket of catch
A basket of fish. Upper right: Lane Snapper, Lutjanus synagris. On the left: Sand Perch, Diplectrum formosum. The plentiful scallops? Argopecten gibbus.

 

 

Sand Perch, Diplectrum formosum
Sand Perch, Diplectrum formosum

Razorfish, Xyrichtys novacula
Razorfish, Xyrichtys novacula

A basket of Xyrichtys novacula
A basket of Xyrichtys novacula

 

Angelfish, Holacanthus bermudensis
Angelfish, Holacanthus bermudensis

Angelfish closeup
Holacanthus bermudensis details: tail fins (front specimen), pectoral fin & gill (behind)

 

Jackknife Fish, Equetus lanceolatus
Jackknife Fish, Equetus lanceolatus

Lined Seahorse, Hippocampus erectus
Lined Seahorse, Hippocampus erectus

 

 

Argopecten gibbus
Argopecten gibbus (all 2,827 of them)

Pink Shrimp, Farfantepenaeus duorarum.
Pink Shrimp, Farfantepenaeus duorarum. Note the signature “pink” spot by my thumb.

 

Calamus
Calamus

 

Lionfish, Pterois volitans
Invasive scourge of the Gulf: Lionfish, Pterois volitans

Lionfish, Pterois volitans
Lionfish, Pterois volitans

 

Burrfish, Chilomycterus schoepfii
Burrfish, Chilomycterus schoepfii

 

 

Scorpionfish (aka Barbfish), Scorpaena brasiliensis
Scorpionfish (aka Barbfish), Scorpaena brasiliensis

 

Southern Stargazer, Astroscopus y-graecum (juvenile)
Southern Stargazer, Astroscopus y-graecum (juvenile)

 

Ocellated Moray Eels, Gymnothorax saxicola
Ocellated Moray Eels, Gymnothorax saxicola

 

Trumpetfish, Aulostomus maculatus
Trumpetfish, Aulostomus maculatus

 

 

Video credit: Will Tilley

 

debris
Mysterious debris: A bottom-dwelling payphone?

 

Personal Log

Our move into the eastern Gulf marks the midpoint of the cruise, and we’ll be back to Pascagoula in a few short days. The seas haven’t been as serenely flat as they were in the eastern Gulf, nor has the sky (or sea) been its stereotypically Floridian blue, but I’ve found life aboard ship just as pleasurable and stimulating.

storm
A squall on Monday morning, July 16, 2018. Off the stern there to starboard, Blackfin Tuna were jumping.

 

In my final blog post, I’ll have more to say about all the great folks I’ve met aboard NOAA Ship Oregon II—from its Deck Department members and Engineers, to its Stewards and NOAA Corps officers and inimitable Captain—but here want to reiterate just how thoughtful and generous everybody’s been. The “O2” is a class act—a community of professionals who know what they’re about and love what they do—and I couldn’t be more grateful to have visited their world for a while and shared their good company.

Busy as we’ve been, I haven’t had much time for sketching during this part of the cruise, and, as the selection of photos above suggests, I’ve concentrated more on taking pictures than making them. Still, I’ve begun a small sketch of the ship that I hope to complete before we reach Pascagoula. It’s based on a photograph that hangs in the galley, and that I’m going to attempt to reproduce actual size (3 3/8” x 7”) . Here’s where things stand early on in the process:

IMG_8230 2.jpg
Work in progress: sketch of NOAA Ship Oregon II

 

Did You Know?

Any of the western Gulf fish in the basket from my last blog post? Here it is again:

Basket of Fish from Western Gulf
Basket of Fish from Western Gulf

And here is a visual key to the four species I was fishing for, each figuring prominently in my blog post for July 15:

Basket of fish revision
Basket of Fish from Western Gulf: now color-coded

1: Red Snapper, Lutjanus campechanus

2: Longspined Porgy, Stenotomus caprinus

3: Gulf Butterfish, Peprilus burti

4: Brown Shrimp, Farfantepenaeus aztecus

A few Stenotomus caprinus and Peprilus burti have been left unhighlighted. Can you find them?

Anna Levy: What Tummies Tell Us, July 15, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10 – 20, 2017

 

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 15, 2017

 

Weather Data from the Bridge

Scattered, mild storms continue, causing some delays in our fishing. However, they do lead to beautiful sunsets!

IMG_1087
Beautiful Gulf of Mexico sunset

Latitude: 29 18.790 N

Longitude: 84 52.358 W

 

Air temp: 28.7 C

Water temp: 29.7 C

Wind direction: light and variable

Wind speed: light and variable

Wave height: 0.3 meter

Sky: 80% cloud cover, no rain

 

Science and Technology Log

IMG_5442
TAS Anna Levy removes the stomach of a red snapper.

Data about the number and size of individual organisms can tell us a lot about the health of an overall population of a species. However, it doesn’t tell us much about the role that species plays in its community. If we want to understand that better, we need to know more about how it fits into its food web – what it eats and what eats it. If you were trying to collect information about what a fish eats, where would you look first? Its stomach!

So, after we measure certain species, we dissect them and remove their stomachs. We place each stomach in its own tiny bag, with a bar code that identifies which individual fish it belonged to. Back at a lab on land, scientists will carefully examine the contents of the stomachs to better understand what each species was eating.

IMG_1079
The bar codes that we use to label specimens.

 

factc_240
This map shows the native range of lionfish. Credit: http://oceanservice.noaa.gov/facts/lionfish-facts.html

For example, one of the fish currently under investigation in the Gulf of Mexico is the lionfish. This is an invasive species, which means that it is not native to the area. Its natural habitat is in parts of southern Pacific and Indian oceans, but it was first spotted in the Atlantic, off the coast of North Carolina, in 2002. Lionfish were most likely introduced to this area by humans, when they no longer wanted the fish as an aquarium pet. By 2010, its range had expanded to include the Gulf. And, with no natural predators in this area and rapid rates of reproduction, its numbers have increased exponentially.

Early dietary studies, which were focused on the lionfish in the Atlantic, show that the lionfish is a generalist. This means that, while it prefers to eat small reef fish, it is able to eat a wide variety of organisms including benthic invertebrates (like crabs) and other fish. This flexibility makes lionfish even more resilient and able to spread. These studies also found that lionfish stomachs were rarely empty, suggesting that they are highly successful predators, able to out-compete other top predators for food.

This has wildlife experts concerned about the impact lionfish will have on natural ecosystems. It is possible that lionfish will over-consume native species, causing native ecosystems to collapse. It is also possible that lionfish will out-compete and displace native, high level predators, like snapper and grouper. Scientists are working now to develop methods to try to manage this invasion.

Because ecosystems here are different from those in the Atlantic, scientists are now turning their attention to studying the lionfish in the Gulf of Mexico. The work that we did on the boat today should help them do just that!

To see the results of one such study, completed in 2014, see:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105852

For more information and photos about the lionfish, please see:

https://oceanservice.noaa.gov/education/stories/lionfish/lion02_invade.html

https://oceanservice.noaa.gov/facts/lionfish-facts.html

http://www.fisheries.noaa.gov/mediacenter/2015/05/21_05.html

 

Personal Log

Often times, we teachers struggle to convince our students that, while all of the modern technology we have is great, they also need to understand how to solve problems without relying on it. (Most of us have probably been on at least one side of the old, “no, you don’t need a calculator to multiply by 10!” argument at some point in life.)   Well, in the past couple of days, I’ve seen two great examples of this onboard the ship.

The first relates directly to our survey work. Our CTD, the equipment mentioned in last post, has two sensors that both detect how much dissolved oxygen is in the water. Having two instruments collecting the same information (sometimes called redundancy) is important, not only so that there is a back-up in case one breaks, but also so that we can tell if they are measuring accurately.

The two oxygen sensors have been reading differently – one was about 0.7 mg/L lower than the other. This is an indication that one needs to be calibrated – but which one? To find out, Alonzo Hamilton, one of the senior NOAA scientists, used a classical chemical analysis technique called titration.

IMG_1082
This is the titration equipment found in the chemical lab on board the ship.

In a chemical titration, one substance is slowly added to another, while the scientist watches for a chemical reaction to occur. If you know how the two substances react, you can determine how much of the second substance is present, based on how much of the first was added to make the reaction happen.

Based on the results of his titration, Alonzo was able to determine which of the oxygen sensors was reading accurately. So, it definitely goes to show that there are important applications for that classic high school chemistry!

IMG_1173
The binnacle that houses the ship’s magnetic compass.

The other example relates more to the ability to navigate the ship. NOAA Ship Oregon II is equipped with advanced electronic navigation software, Gyro compass, radar, and GPS systems. However, when I was exploring the top deck (flying bridge) of the ship, I came upon this strangely low-tech looking instrument. I asked ENS Chelsea Parrish, a NOAA Corps Officer and member of the wardroom, about it. She explained that it is called a “binnacle,” a safeguard that houses a magnetic compass! The magnetic compass is the same type of technology used by mariners back in the 1300’s. It is critical to have in case of a power outage or other disruption to the ship’s electronic navigation technology.

 

 

Did You Know?

While they typically live in cold waters, there is one pod of orca whales (aka killer whales) that resides, year-round, in the Gulf of Mexico. It’s rare to see them, but I’m keeping my eyes peeled!

Dolphins, on the other hand, seem to be everywhere out here. I’ve caught at least a glimpse of them every day so far. In fact, a group of them swam up to investigate our CTD today as it was being lowered into the water.

 

Questions to Consider:

Research: Some other famous invasive species in our oceans include the green crab (Carcinus maenas), killer algae (Caulerpa taxifolia), a jellyfish-like animal called a sea walnut (Mnemiopsis leidyi), a marine snail called rapa whelk (Rapana venosa), and the zebra mussel (Dreissena polymorpha). Where did each of these originate? How did they come to inhabit their invaded areas? What impact are they having?

Brainstorm: What measures could you imagine taking to manage some of these species?

Research: The specific type of titration used to determine the amount of dissolved oxygen in water is called the Winkler method. How does the Winkler method work?

 

 

 

Melissa Barker: On to the Emerald Coast, July 4, 2017

Lionfish!

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22-July 6

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 4, 2017

Weather Data from the Bridge:

Latitude: 29 49.65 N

Longitude: 86 59.92 W

Air temp: 29.7 C

Water temp: 31.6 C

Wind direction: 337 degrees

Wind speed: 1.88 knots

Wave height: 0.5 meters

Sky: partly cloudy

 

Science and Technology Log

We are now off the coast of Western Florida. After completing many stations in East Texas and Louisiana, we headed over to the Emerald Coast. State agencies in Louisiana and Mississippi, who are SEAMAP partners, have already completed stations in their states using the same trawling protocol which allowed us to push on to Florida.

The change in species has been dramatic. We are now trawling in sandy bottom areas, which have also been shallower than most of our Texas trawls with muddy bottoms. Generally, the fish here in Florida have more coloration and our catches have been smaller with fewer, but often slightly larger fish. Below is a side by side comparison of fish diversity between a Texas trawl catch and a Florida trawl catch.

The increased coloration in the fish actually helps the fish hide better in the sandy bottomed blue waters, yet at the same time allowing potential mates to find each other more easily. In the murky bottom waters of Texas, the fish tend to blend in better with duller colors. Here are some of the interesting species we found in the Emerald Coast waters.

One new fish we have caught in Florida is the lionfish (Pterois volitans ). In less than 10 years, the Lionfish has become widely established as an invasive species in the US Southeast and Caribbean coastal waters. It is native to the Indo-Pacific region, but was introduced into this area of the Gulf.

It is believed that lionfish were introduced off the Florida coast in the mid-1980’s, then expanded their way up the east coast. By 2004, NOAA scientists confirmed breeding populations off the coast of North Carolina which then worked their way into the Gulf of Mexico by 2005-2008. Lionfish are a popular aquarium fish and it is hypothesized that people released them into the Atlantic when they no longer wanted them as aquarium pets. Their large eggs masses floated up the coast via the gulf steam allowing them to spread easily. According to the National Centers for Coastal Ocean Sciences, it is estimated that their population has reached roughly 1,000 per acre in some locations of the Gulf.

Lionfish are top predators which compete for food and habitat with native predators that have been overfished like snapper and grouper.

Lionfish Infographic by the National Centers for Coastal Ocean Science (NCCOS)

They consume over 50 species including some that are economically and ecologically important. For example, they can consume important algae-eating parrot fish, allowing for too much vegetation build in reef areas. They have no known predators and reproduce all year long. You have to be careful when handing lionfish because they can deliver a venomous sting with their spines that can cause pain, sweating and respiratory distress. There has been a push to encourage harvesting lionfish for consumption in an attempt to reduce their population, but unfortunately there is currently no known mechanism to control or eliminate the population. (Source: NOAA National Ocean Services)

 

 

Interviews with the People of the Oregon II- PART 2

I’ve spent some time talking with people who work on the ship from the different departments trying to understand their jobs and their desire to work at sea. I have posted three interviews in my previous blog and have three more to share with you here.

 

Commanding Officer Dave Nelson

Captain Dave Nelson in the captain’s chair

Captain Nelson’s number one responsibility is safety on board. He is also responsible for the operations, such as getting the data that the scientists need. Additionally, he has a significant teaching and mentoring role for the Ensigns, new Officers. He is one of only two civilian captains in the NOAA fleet and has been training junior officers for 15 years. In 2016, the Oregon II won NOAA Ship of the Year, partially due to the culture that Captain Nelson has cultivated on the ship. Since he worked his way up from the deck, he really can appreciate the role that each individual on the boat plays and says it is critical that everyone works together for the safety and the success of the science mission of the ship.

What did you do before working for NOAA?

After high school, I fished commercially and worked as crew on oil field supply boats. I captained a shrimp boat, but knew I wanted to find a career.

How did you get to where you are today?

I started as a deck hand and worked my way up to Third mate, then Operations Officer (OPS), Executive Officer (XO) and finally Commanding Officer (CO) over the course 25 years. I had all the nautical knowledge and NOAA gave me the opportunity to take the Master Captains License test. I had to go back to the books to study hard and then passed with flying colors.

 What do you enjoy most about working on the Oregon II?

I enjoy training the Junior Officers and seeing them make progress. And of course, the joy of going to sea.

What advice or words of wisdom do you have for my students?

Set a goal and stick to it. Don’t let anyone get in your way. At 47, I had to go back to the books and study harder than I ever had for my Master Captains exam. There will be set backs and hard work will be required, but sticking with your goal is worth it in the end.

 

Science Field Party Chief Andre DeBose

Field Party Chief Andre DeBose holding a Sphoerodies pachygaster (Blunthead Puffer)

Andre has been working at the NOAA Mississippi Lab in Pascagoula as the education coordinator and a member of the trawl unit for 21 years. He has been working on the Oregon II for 19 years. When at the lab he coordinates the education interns, collects and compiles trawl data and compiles historical trawl protocols. He is also the foreign national coordinator and get them cleared for sea duty. I’ve worked closely with Andre on the boat and appreciate all his patience and willingness to share his knowledge and insight with me.

 What does it mean to be Science Field Party Chief?

I am the liaison between the lab and the ship and help mediate requests from both parties. On board, I supervise all scientific activities and personal.

 What did you do before working for NOAA?

My degree is in general biology, which I linked to aquaculture. Right out of college, I worked at the Sea Chick aquaculture plant raising large mouth and hybrid striped bass. The facility was trying to make farmed grown fish as important as farmed raised chicken.

How did you come to work for NOAA?

I was hired as a temporary scientist for a Groundfish survey for 40 days aboard NOAA Ship Chapman. After that, I worked with a Red Drum tagging crew aboard the R/V Caretta then was hired on permanently by NOAA and been working at the lab ever since.

Tell me about one challenging aspect of your job?

Being out at sea. I miss my family and my normal day to day life.

What do you enjoy most about working on the Oregon II?

Going to sea. Even though it is hard to be away, I love being out there and the work we do.

What advice or words of wisdom do you have for my students?

The goals that you desire may become your livelihood, always make sure to make your work fun and it will never bore you.

 

Second Engineer Darnell Doe

Second Engineer Darnell Doe

Darnell has been the Second Engineer aboard the Oregon II for three years. His job is a critical one as he is responsible for the maintenance and upkeep of the engines and generators. We are typically running on one engine and one generator with a second of each for back up. He changes filters, checks oil sump levels and makes sure everything is running smoothly.

What did you do before working for NOAA?

I worked in the Navy for 20 years as an engineer doing repair as a machinist through three wars. Then I worked doing combat support for the military sea lift command.

Why work for NOAA?

A friend told me about a job opening on a NOAA ship. I applied and got it.

Tell me about one challenging aspect of your job?

I’m used to working on much bigger ships, so working on the Oregon II is like working on a lawn mower in comparison. I tackle problems in a routine way and solve them as they arise.

What do you enjoy most about working on the Oregon II?

Working on this ship is new and interesting, which I like. I’ve seen some weird stuff come out of that water and enjoy learning about the science that is happening onboard.

What advice or words of wisdom do you have for my students?

If your mind is set on something, proceed on that road and keep persisting. Stick with your goal.

 

Personal Log

It’s the 4th of July and folks are getting patriotic on the Oregon II. The ship got a new flag today and we had festive lunch, which is typically the biggest meal on the ship due to the shift change. The day shift folks eat first and then start their shift, while the night shift folks end their shift, eat and head to bed.

Yesterday we saw land. It has been 10 days since I’ve seen hard ground which is a lot for this land lover. I’m not sure why, but for some reason I imagined we would be close enough to see land more often. However, it was strange to see beach hotels and condos at a distance today; we are between 3.5-8 miles off shore for a few of our stations. I’ve come to enjoy the endless sea view.

Tire pulled up in our trawl net

While trawling yesterday we caught a tire. We’ve actually found very little trash in our trawls, so the tire was a bit of a surprise. Then we caught another tire in the next trawl. Apparently, it is common for people to dump tires and other large trash items into the ocean and GPS the location. These items are used as fish aggregating devices. Vegetation will grow on them and attract small fish. Larger fish are then drawn to the area to feed. Using the GPS location, people will come back to fish this area. I guess it is helpful that we are picking up the tires.

It is hard to believe that I am almost at the end of my journey. We’ve finished our trawling and are making the trek back to Pascagoula, MS. It feels strange to be awake with no fish work to do, but I’m enjoying a little down time as it has been a busy two weeks full of fun and learning.

Did You Know?

The northwest coast of Florida from Pensacola Beach to Panama City Beach is referred to as the Emerald Coast, which is where we are now. According to the Northwest Florida Daily News, the term Emerald Coast was coined in 1983 by a junior high school student who won $50 in the contest for a new area slogan.

Dawson Sixth Grade Queries

What is the coolest/craziest animal you found? (Alexa, Lorna, Blaine)

Lionfish (Pterois volitans)

Of all the fascinating new species I’ve seen, I think lionfish are the coolest and craziest organism of them all. I also find it interesting that a native species in one area of the world can be problematic and invasive in another part of the world.

Why do you think we only discovered/explored only 5% of the ocean? (Kale)

There are several reasons when we have explored so little of the ocean. One main reason is that ocean exploration is expensive, roughly $10,000 per day. Fish and other aquatic organisms are concentrated by the coast, so that is the area that is prioritized for exploration and where our major fisheries are located.

How many fish died for the research? (Mia, Bennett)

Most of the fish that come aboard end up dying for the purpose of science. I would estimate that in a typical trawl we have might pull in between 250 to 300 organisms. This is a pretty small amount when compared to the amount of fish removed by the commercial finishing industry and the unintended catch associated with the fishing industry. We often split the catch and end up sending half of the organisms back into the ocean fairly quickly. However, the ones we keep aboard give us important data that allow fisheries manager to assess the health of the fisheries in their states. We also keep and freeze certain species for other researchers who will use them off the boat. Ultimately the ones we don’t keep are returned to the ocean and will be eaten by larger fish and marine mammals.

Leah Johnson: All About the Fish, July 24, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Friday, July 24, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 033.235230
Longitude -077.298950
Water Temperature 25.88 °C
Salinity -No Data-
Air Temperature 28.3 °C
Relative Humidity 78 %
Wind Speed 5.76 knots
Wind Direction 355.13 degrees
Air Pressure 1011.3 mbar

Science and Technology Log:
When the traps are reeled in, the GoPro camera attachments are unclipped and brought into the dry lab. The cameras are encased in waterproof housing that can withstand the higher pressure at the seafloor. One camera is placed on the front of the trap, and one camera is placed on the back. Each video card captures ~45 minutes of footage. The videos will be carefully scrutinized at a later date to identify the fish (since many do not enter the traps), describe the habitat, and also describe the fish behavior. While aboard the ship, the videos are downloaded and watched just to make sure that the cameras worked properly, and to gain a general idea of what was happening around the trap. Occasionally, there are some really exciting moments, like when a tiger shark decided to investigate our trap!

tiger sharkThis tiger shark appeared in the video from both trap cameras as it circled.

While the cameras are being prepped in the dry lab for the next deployment, we are busy in the wet lab with the fish caught in the traps. The first step is identification. I could not identify a single fish when the first trap landed on the deck! However, I am slowly learning the names and distinctive features of the local fish. Here are a few examples of the fish that we have hauled in so far:

Once the fish are identified, they are sorted into different bins. We record the mass of each bin and the lengths of each fish. Most of the smaller fish are returned to the ocean once the measurements are recorded. Some fish are kept for further measuring and sampling. For each of these fish, we find the mass, recheck the total length (snout to tail), and also measure the fork length (snout to fork in tail) and standard length (snout to start of tail).

I measured the fish while one of my crew mates recorded the data.

I measured the fish while one of my crew mates recorded the data.

The fish is then ready for sampling. Depending on the species of fish, we may collect a variety of other biological materials:

  • Otoliths (ear stones) are made of calcium carbonate, and are located near the brain. As the fish grows, the calcium carbonate accumulates in layers. As a result, otoliths can be used – similarly to tree rings – to determine the age of the fish. I retrieved my first set of otoliths today!
  • Muscle tissue (the part of the fish that we eat) can be used to test for the presence of mercury. Since mercury is toxic, it is important to determine its concentration in fish species that are regularly consumed.
  • Gonads (ovaries in females or testes in males) can be examined to determine if a fish is of reproductive age, and whether it is just about to spawn (release eggs / sperm into the water).
  • The stomach contents indicate what the fish has eaten.

This toadfish had snail shells in its stomach!

This toadfish had snail shells in its stomach!

The soft tissues are kept in bags and preserved in a freezer in the wet lab. Sample analyses will take place in various onshore labs.

Personal Log:
It is important to remember that this ship is home to most of the people on board. They live and work together in very close quarters. There are daily routines and specific duties that individuals fill to keep Pisces running smoothly. Cooperation is key. I do my best to be useful when I can, and step aside when I cannot. Despite my inexperience at sea, everyone has been incredibly kind, patient, and helpful. I am lucky to be surrounded by so many amazing people who are willing to show me the ropes!

Did You Know?
The lionfish is an invasive species in the Atlantic Ocean. Its numbers are increasing in waters off the Southeastern U.S. coast. These fish have few predators, and they are consuming smaller fish and invertebrates which also sustain local snapper and grouper populations.

lionfish

This lionfish was in one of our traps yesterday.

David Walker: Florida, Speciation, and Learning All Over Again (Days 13-15), July 8, 2015

Survey Plot

NOAA Teacher at Sea
David Walker
Aboard NOAA Ship Oregon II
June 24 – July 9, 2015

Mission: SEAMAP Bottomfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: July 8, 2015

Weather Data from the Bridge

Weather Log 7/7/15
NOAA Ship Oregon II Weather Log 7/7/15

The seas have remained incredibly calm, again with waves normally no higher than 1 ft.  July 7, 2015 was a beautiful day, with few (FEW, 1-2 oktas) clouds in the sky (see above weather log from the bridge).  Visibility from the bridge was 10 nautical miles (nm) throughout the day.

Science and Technology Log

After a run of around 16 hours, we finally arrived on the west coast of Florida to continue the survey.

Wow!  The organisms caught on the west coast of Florida were entirely different from those caught west of the Mississippi.  In our first trawl catch, I almost didn’t recognize a single species.

Fisheries biologist Kevin Rademacher shared with me an article, “Evidence of multiple vicariance in a marine suture-zone in the Gulf of Mexico” (Portnoy and Gold, 2012), that offers a potential explanation  for the many differences observed.  The paper is based on what are called “suture-zones.”  A suture-zone, as defined previously in the literature, is “a band of geographic overlap between major biotic assemblages, including pairs of species or semispecies which hybridize in the zone” (Remington, 1968).  In other words, it is a barrier zone of some kind, allowing for allopatric speciation, yet also containing overlap for species hybridization.  As noted by Hobbes, et al. (2009), such suture-zones are more difficult to detect in marine environments, and accordingly, have received less attention in the literature.  Such zones, however, have been discovered and described in the northern Gulf of Mexico, between Texas and Florida (Dahlberg, 1970; McClure and McEachran, 1992).

Portnoy and Gold note that “at least 15 pairs of fishes and invertebrates described as ‘sister taxa’ (species, subspecies, or genetically distinct populations) meet in this region, with evidence of hybridization occurring between several of the taxa” (Portnoy and Gold, 2012).  The below table delineates these sister taxa.  On this table, I have highlighted species that we have found on this survey.

Sister Taxa
Sister taxa found in the northern Gulf of Mexico. Highlighted are species we have encountered on this survey (Portnoy and Gold, 2012).

The figure below geographically illustrates distribution patterns of two pairs of sister species within the northern Gulf of Mexico.  We have seen all four of these species on this survey, and our observations have been consistent with these distribution patterns.

Distributions of sister taxa within the northern Gulf of Mexico
Distributions of “sister taxa” within the northern Gulf of Mexico (Portnoy and Gold, 2012)

Prior to Portnoy and Gold, hypothesized reasons for the suture-zone and allopatric speciation in the northern Gulf included “(1) a physical barrier, similar to the Florida peninsula, that arose c. 2.5 million years ago (Ma) during the Pliocene (Ginsburg, 1952), (2) an ecological barrier, perhaps a river that drained the Tennessee River basin directly into the Gulf, that existed approximately 2.4 Ma (Simpson, 1900; Ginsburg, 1952), (3) a strong current that flowed from the Gulf to the Atlantic through the Suwanee Straits approximately 1.75 Ma (Bert, 1986), and (4) extended cooling during early Pleistocene glaciations occurring c. 700–135 thousand years ago (ka) (Dahlberg, 1970)” (Portnoy and Gold, 2012).  Another explanation has been offered by Hewitt (1996), involving marine species being forced into different areas of refuge during the glacial events of the Pleistocene, allowing for allopatric speciation.  Following the retreat of the glaciers, according to this hypothesis, these species would have been allowed to come into contact again, allowing for hybridization.

Portnoy and Gold used mitochondrial and microsatellite DNA sequence data from Karlsson et al. (2009) to “determine if estimated divergence times in lane snapper were consistent with the timing of [the above] hypothesized variance events in the suture-zone area, in order to distinguish whether the Gulf suture-zone is characterized by a single or multiple vicariance event(s)” (Portnoy and Gold, 2012).

Their results suggest that the divergence of lane snapper in the northern Gulf occurred much more recently than the hypothesized events described by Ginsberg (1952), Bert (1970), and Dahlberg (1970).  These results also suggest that the explanation offered by Hewitt (1996) is an unlikely explanation for the divergence of lane snapper, for even though the time of multiple glaciations is consistent with the time of lane snapper divergence, water temperatures across the Gulf are estimated to have been within the thermal tolerance of lane snapper during these glaciations.  Evidence also suggests that a shallow shelf existed during these glaciations, representing a habitat in which lane snapper could have lived.

The explanation that Portnoy and Gold favor, in terms of explaining lane snapper divergence, is one suggested by Kennett and Shackleton (1975), as well as by Aharon (2003).  This explanation involves “large pulses of freshwater from the Mississippi River caused by a recession of the Laurentide Ice Sheet between 16 and 9 ka” (Portnoy and Gold, 2012).  This explanation would have also allowed for potential sympatric or parapatric speciation, because it contains multiple lane snapper habitat types (carbonate sediment, as well as mud and silt bottom).

Notably, the fact that the above explanation is favored by Portnoy and Gold for lane snapper divergence does not discount the explanations of Ginsberg (1952), Bert (1970), Dahlberg (1970), and Hewitt (1996), in terms of explaining the many other examples of species divergence exhibited within the northern Gulf.  It is most probable that many geological and ecological causes worked, sometimes in confluence, to create the divergences and hybridizations in species observed today.  A geographical depiction of many of the hypothesized explanations described by Portnoy and Gold is below.

Geographic Depiction
Geographical depiction of hypothesized triggers of species divergence in the northern Gulf of Mexico (Portnoy and Gold, 2012)

In addition to the species divergence observed in our survey, another interesting difference noted in our catches along the western coast of Florida was the emergence of lionfish.  These invasive species are native to the Indian Ocean and southwest Pacific Ocean, and they were most likely introduced by humans into the waters surrounding Florida.  There are two lionfish species that are invasive in Florida, P. miles and P. volitans (Morris, Jr. et al., 2008), and the earliest records of their introduction into Florida’s waters are from 1992 (Morris, Jr. et al., 2008).  Many characteristics have allowed these species to be successful alien invaders in these waters – (1) they are formidable, with venomous spines and an intimidating appearance, (2) they reproduce incredibly quickly, breed year-round, and mature at a young age, (3) they outcompete native predators for food and habitat, (4) they are indiscriminate feeders with voracious appetites, and (5) they take advantage of a sea that is over-fished, in which many of their predators are regularly being eliminated by humans (Witherington, 2012).

Life cycle of the lionfish
Life cycle of the lionfish

This invasion mechanism hauntingly reminds me of that of the Cane Toad, a very famous alien invader which has decimated the flora and fauna of Australia.  One of the main worrisome effects of lionfish around Florida is on coral reefs.  Lionfish “can reduce populations of juvenile and small fish on coral reefs by up to 90 percent…[and] may indirectly affect corals by overconsuming grazing parrotfishes, which normally prevent algae from growing over corals” (Witherington, 2012).

One of the ways in which Floridians are trying to eliminate this problem is through lionfish hunting tournaments.  CJ Duffie, a volunteer on this survey from Florida, has participated in these tournaments and also participates in lionfish research directed by the Florida Fish and Wildlife Commission.  CJ harvested the gonads of the lionfish we caught on Day 13 to take back to the lab for further analysis.  Floridians also actively promote the lionfish as a delicacy, in an attempt to encourage more people to eat the invasive species.  CJ described the fish as the best he has ever tried, so I was very easily intrigued.  A fillet was prepared from the large lionfish caught on Day 13 fish, and Second Cook (2C) Lydell Reed was able to cook it on the spot.  I agree with CJ – white, flakey, slightly sweet, this is the best fish I have ever tasted.

Personal Log

The survey is nearly over, and this will be my last post.  We are in transit back to Pascagoula, Mississippi, the ship’s home port.  I leave by plane from Mobile, Alabama for Austin on Friday, July 10, 2015.  I am eagerly anticipating walking on land, as I’ve heard it’s strange at first after being on a boat for awhile.  Apparently this weird feeling has a semi-formal name — “dock rock”.

This experience has truly been one of the best of my life, especially in terms of the raw amount I have learned every day.  Coming in, the sole knowledge of fish life I had derived from my stints fly fishing with my father, and most of this knowledge concerns freshwater fish.  I now feel as though I have a much more comprehensive knowledge of the biodiversity that exists in the Gulf of Mexico and a much greater appreciation for the diversity of life as a whole.  I have taken over 200 photos to document this biodiversity, accumulated a diverse collection of preserved specimens, and collected a wide variety of resources (textbooks, scientific papers, etc.) on marine life in the Gulf of Mexico.  These resources will surely make the preparation of a project-based activity for my students focused on this research a much easier feat.

Sharksucker (Echeneis naucrates)
Having fun with a sharksucker (Echeneis naucrates) during analysis of the last trawl catch

I have also learned how a large portion of marine field research is conducted.  We have surveyed dissolved oxygen levels in the water, plankton biodiversity, and bottomfish biodiversity throughout the northern Gulf, using established (and quite popular) research methods.  The knowledge I have gained here can be applied to the biodiversity project portion of my geobiology class, in which students conduct biodiversity surveys in local Austin-area parks and preserves.  I anxiously await the comprehensive results of this summer’s NOAA survey – the complete dissolved oxygen contour map, the biodiversity indexes for different regions of the Gulf, and plankton biodiversity data from Poland.  These data will definitely help me come to even more conclusions about the marine life in the Gulf and the factors affecting it.

Through this experience, I have also gained much appreciation for the diversity of careers that exist on board a NOAA research vessel.  I have learned about the great work of the NOAA Corps, a Commissioned Service of the United States.  I have learned from the fisherman, engineers, stewards, and other personnel on the boat, all required for a successful research survey.

First and foremost, I have to thank the science team on the night watch – fisheries biologists Kevin Rademacher and Alonzo Hamilton, FMES Warren Brown, and volunteer CJ Duffie.  These individuals were instrumental in helping me identify organisms, label my photos, and craft my blog posts and photo captions.  Kevin Rademacher provided me with most of the papers which I have referenced in this blog, and with no internet connectivity on the boat for around half of the trip, his library of information was essential.  For the “Notable Species Seen” section of this blog, Kevin also individually went through all of my species photos with me to help me add common and scientific names in the photo captions.  This took a great deal of his time, almost every day, and I am incredibly appreciative.

Night Watch
The rest of the night watch. From left to right — FMES Warren Brown and NOAA Fisheries Biologists Kevin Rademacher and Alonzo Hamilton

I also definitely need to thank Lead Fisherman Chris Nichols and Skilled Fisherman Chuck Godwin for their mentorship with CTD data collection and plankton sampling.  In addition, many thanks to Field Party Chief Andre Debose and Lieutenant Commander Eric Johnson for proofreading my blog entries and ensuring that my experience on the ship was a good one.  I enjoy learning from people much more than I enjoy learning from books, and these have been some of best (and most patient) teachers I have ever had.

Lastly, thanks so much to the NOAA Teacher at Sea staff for your work on this great program.  It truly makes a difference for many teachers and many students.  I have had an amazing time, and I am positive my students will benefit from what I have learned.

Survey Plot
The ship’s path during the survey, thus far. I have been on the boat for Leg 2, drawn in black.

Did You Know?

Lionfish venom is not contained within the tips of the fish’s spines.  Rather, glandular venom-producing tissue is located in two grooves that run the length of  each spine.  When skin is punctured by a spine, this glandular tissue releases the venom (a neurotoxin), which travels up the spine and into the wound by means of the grooves (Witherington, 2012).

Venomous Spines
Anatomy of the lionfish spine

Notable Species Seen

John Bilotta: A World of Wonder under the Waves, Days 1-4 in the South Atlantic MPAs, June 20, 2014

NOAA Teacher at Sea

John Bilotta

Aboard NOAA Ship Nancy Foster

June 17 – 27, 2014

 

Mission: South Atlantic Marine Protected Area Survey

Geographical area of cruise: South Atlantic

Date: June 20, 2014

Weather: Sunny with clouds.  26.6 Celsius.  Wind 13 knots from 251 degrees (west).  1-2m seas from the north.

 ** Note: Upon request, note that if you click on any picture it should open full screen so you can the detail much better!

 

Science and Technology Log

Research mission objectives – what am I doing out here?

Gathering data on habitat and fish assemblages of seven species of grouper and tilefish in the South Atlantic MPAs . These species are considered to be at risk due to current stock levels and life history characteristics which make them vulnerable to overfishing.   Information gathered will help assess the health of the MPAs, the impact management is having, and the effectiveness of ROV exploratoration to make these health assessments.

Science Part I:  Multibeam sea floor mapping  Multibeam sonar sensors — sometimes called multibeam acoustic sensors echo-sounders (MB for short)  are a type of sound transmitting and receiving system that couple with GPS to produce high-resolution maps of the sea floor bottom. See how it works by checking out this cool NOAA animation. MB mapping is occurring all night long on the Nancy Foster by a team of expert mappers including Kayla Johnson, Freidrich Knuth, Samantha Martin, and Nick Mitchell (more on them and their work and NOAA careers in a future blog).  Our Chief Scientist Stacey Harter has identified areas to map.

OK, so we aren't exactly MB mapping in this photo but I wanted to introduce everyone to my host Chief Scientist in one of my first pictures.
OK, so we aren’t exactly MB mapping in this photo but I wanted to introduce everyone to my host Chief Scientist Stacey Harter in one of my first pictures.

By morning, after the mappers have worked their magic on the data, Stacey is able to see a visual representation of the sea floor.  She is looking for specific characteristics including a hard sea floor bottom, relief, and ridge lines – important characteristics for the groupers, tilefish, hinds, and other fish species under protection and management.   Stacey uses these maps to determine transects for ROV exploration.  Those transect lines are used by both the scientists driving the ROV and the navigation crew aboard the Nancy Foster.  Once down on the ocean floor, the ROV pilot follows this transect and so must the ship high above it in the waves driven by the crew.  Although 3 floors apart – it’s amazing to hear the necessary communication between them.  (Watch for one of my future posts that will highlight a MB map and a sample transect line.)

Science Part II:  ROV exploration – Completion of 8 dives

By the time this posts, we will have made 8 dives with the SubAtlantic Mohawk 18 ROV from University of North Carolina. (perhaps we will have made more dives because internet via satellites is slow and I am uncertain when this will really get posted.)

JB and ROVs first date aboard the aft deck on the Nancy Foster
JB and ROVs first date aboard the aft deck on the Nancy Foster

The ROV joined the mission with its two pilots, Lance Horn and Jason White.  Pilots extraordinaire but I otherwise see them as the ROV’s parents guiding and caring for its every move.  The technology aboard the ROV is incredible including a full spectrum video camera, a digital camera, sensors to measure depth and temperature, and 4 horizontal thrusters and one vertical thruster with twin propellers.   The ROV has donned a pair of lasers which when projected on the sea floor allow the scientists to measure items.

JB attaching the CTD probe to the ROV with instructions from Steve Matthews.
JB attaching the CTD probe to the ROV with instructions from Steve Matthews.

John receiving launch instructions from Andy David; including about how the cable attaches to the ROV and the fiber optic line.
John receiving ROV deployment instructions from Andy David; including about how the cable attaches to the ROV and the fiber optic line.

 

ROV deployment
ROV deployment

 

The ROV control station is daunting!  As one may imagine, it does include three joysticks accompanied by multiple switches, buttons, lights and alarms – all just a fingertip away from the ROV pilot.   Five monitors surround the pilot – some of them are touch screen activated adding more to the selection of options at their fingertips.  Is a Play Station a part of your daily routine?  Perhaps you should consider a career at NOAA as a ROV pilot!

ROV operations station. 1. Power supply, 2. Joystick controllers, 3. Multiple switches, 4. Four monitors for the ROV pilot alone, 5. Two monitors for the video and digital pictures, 6.  Laptop controlling digital pictures, and 7.  Multiple DVD recorders.
ROV operations station. 1. Power supply, 2. Joystick controllers, 3. Multiple switches, 4. Four monitors for the ROV pilot alone, 5. Two monitors for the video and digital picture technician, 6. Laptop controlling digital pictures, and 7. Multiple DVD recorders.

 

While the ROV drives and explores a set transect line, six additional scientists and assistants identify and record habitat, fish species, invertebrates, and other items that come into vision on any one of the monitors scattered around the lab located inside the ship.  Two scientists are recording fish species and a scientist accompanied by me the past two days are identifying habitat and invertebrates.

JB Invertebrate Logging
John assisting Stephanie Farrington (not pictured) with habitat and invertebrate identification and logging.

Of course, the ROV is on the move constantly, so fish and items of interest are flying by – you don’t have time to type or write so the scientists use short cut keyboards pre-coded with species and habitat descriptors.   Meanwhile another scientist is narrating the entire dive as everything is being recorded and yet another is controlling DVD video recording and centering and zooming the digital camera capturing hundreds of pictures during a dive.  You would be surprised by the number of computers running for this operation!  What is amazing is that everything will be linked together through a georeferrenced database using latitude and longitude coordinates.

Science Part III.  What have we seen and discovered?

On June 19th & 20th we completed 8 dives.  Some of the first species we saw included the shortbigeye, triggerfish, reef butterflyfish, and hogfish (Here is a good link of fish species on the reefs located here.)   We also observed a few stingrays and speckled hind.  For invertebrates, we saw a lot of Stichopathes (tagged as dominate during the dives) and fields of Pennatulacea (long white feathers).  We also saw echinoderms and solitary cap coral (a singular, white tube coral) and discovered a Demospongiae that Stephanie, one of the Research Biologists (see below) hadn’t seen yet; we called it a bubble-wrap sponge in my hand-written notes.

Dive053089 15 52 18

Dive053061 15 28 29 Cubya Dive052019 12 23 13 ???????????????????????????????

 

Things that we saw today that we wished we hadn’t seen: 

Pollution  So with much of my teaching centered around clean water and pollution prevention and mitigation, I was saddened to discover the following items on the ocean floor during the first five dives: Plastic bags, cans, a barrel, a clearly visible rubber surgical glove, and an artillery shell. Interesting – from the ROV you can easily spot what the scientists call ‘human debris’ as it often has straight lines and corners, distinctly human crafted shapes – not like mother nature engineers.

Plastic balloon found during dive #2 at about 60 meters.
Plastic balloon found during dive #2 at about 60 meters. Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Black plastic garbage bag found at about 60 meters.  NOAA UNCW. Mowak ROV June 2014.
Black plastic garbage bag found at about 60 meters. NOAA UNCW. Mohawk ROV June 2014.

 Invasive species – Lionfish are everywhere!  Why are Lionfish undesirablehttp://oceanservice.noaa.gov/facts/lionfish.html 

Lionfish - multiple sitings today.  Photo credit:  NOAA UNCW
Lionfish – multiple sitings today. Photo credit: NOAA UNCW Mohawk ROV. June 2014.

 

Career highlight:  Stephanie Farrington, Biological Research Specialist

Harbor Branch Oceanographic Institution at Florida Atlantic University

Masters of Science in Marine Biology.  Bachelors of Science in Marine Science and Biology.

Stephanie’s expertise is in collecting, classifying, and mapping marine biology with emphasis in habitats and invertebrates.  She is also proficient in ArcGIS for mapping and maintaining a database of everything she sees, discovers, and observes.  During this research trip, she is the scientist charged with identifying the habitat with an emphasis on the invertebrate species that speckle the sea floor.  For the past two days I have shadowed her side – watching the video feed from the ROV and logging.  She is a wealth of information and I really appreciate sitting next to her the past two days.  She is a master in biology and a master in buttons – and a fun spirit too.

 

Personal Log

Day 2 was spent almost entirely in transit – getting north from Mayport to Georgia, almost 9 hours.  Part of that time was spent getting to know the research team and participating in safety drills.  Sorry everyone; I did not get a picture of me in my red gumby suit (aka the life saving immersion suit).  Upon recommendation from a colleague (you know who you are) I also spent two hours on a bench on the bow reading The Big Thirst by Charles Fishman

“If Earth were the size of a Honda Odyssey minivan, the amount of water on the planet would be in a single half-liter bottle of Poland Spring in one of the van’s thirteen cup holders.” 

Although I have been out on the ocean before as well as the Great Lakes, on this day I simply felt tiny in a vast sea of blue.

For those who know me during my off-work hours, I also hit the ship’s gym -yes, that’s right, I am keeping up my routine with one exception.  My Paleo diet is now nearly broken – too much great food here from the ship’s chef’s, including ice cream.

Last night, at the end of Day 3 (Thursday) I spent the evening on the beach!  Well actually, what they call steal beach – a platform aft (behind) the ship’s bridge equipped with lounge recliners to watch the sunsets.  I sat up for seemingly hours trying to write all my excitements and discoveries in a log I am keeping.  Don’t worry though, I won’t make you read it all; my blog readers will only see a small snapshot of all I have been seeing and discovering!

 

Glossary to Enhance Your Mind

Each of my logs is going to have a list of new vocabulary to enhance your knowledge.  I am not going to post the definitions; that might be a future student assignment.  NOAA’s Coral Reef Watch has a great site of definitions HERE.  

  • Immersion suit
  • Transect
  • MPA
  • Invertebrates
  • Rugosity
  • Multibeam mapping
  • Bathymetry
  • Dominate species
  • Habitat
  • Echinoderms
  • CTD probe

Jamie Morris: Time to Plan, Prepare, & Revise, April 23, 2014

NOAA Teacher at Sea
Jamie Morris
Aboard NOAA Ship Nancy Foster
April 19 – May 1, 2014

Mission:  Gray’s Reef National Marine Sanctuary Southeast Regional Ecosystem Assessment
Geographical Area of Cruise: Gray’s Reef National Marine Sanctuary (GRNMS)
Date: Wednesday, April 23, 2014

 

Weather Data from the Bridge
Weather: Clear
Visibility: 10 nautical miles
Wind: 7 knots
Swell Waves: 1.3 feet
Air Temperature: 68.5ºF
Seawater Temperature: 67.6ºF

 

Science and Technology Log

Today was our third day at sea.  We again were very fortunate to have had beautiful weather.  We are continuing to “mow the lawn” and are creating the seafloor map.

Lowering the dive boat.  This is right before the Hydraulic Fluid leaked.
Lowering the dive boat. This is right before the Hydraulic Fluid leaked.

Since it was a relatively quiet day, the crew decided to practice launching and running two of the dive boats.  As they were lowering the first dive boat into the water one of the guide ropes snapped.  The crew worked quickly to reattach a new rope.  Once the boat was under control, the passengers boarded and they sailed away to practice marking dive locations.  A few minutes later the crew launched a second dive boat.  The boat was lowered into the water with no problems and the passengers boarded.  Right before they unhooked from the crane, the line carrying the hydraulic fluid on the crane popped off.  Hydraulic fluid shot all over. (The hydraulic fluid is biodegradable so it is safe, but a mess to clean up).

The engineers were able to work quickly to repair the crane.  Meanwhile, both dive boats went on their practice missions.  The second boat was the first to return and was reloaded onto the Nancy Foster without any problems.  The first boat, however, did not return on its own.  It ended up having engine problems.  The Nancy Foster had to stop mapping the seafloor and go retrieve the dive boat and its passengers.  What was supposed to be a quiet morning turned into an eventful one, but fortunately no one was injured.  The only causality was a boat.

We are now down to only two dive boats.  This means that a third of the planned worked might not be able to get accomplished.  Chief Scientist Sarah Fangman had to revise the mission’s plans to try to accomplish as much as we can with only two boats.  She first had to prioritize the different projects.  It was determined that the Fish Acoustics and Telemetry projects would be completed first.  The Fish Acoustics study involves two divers going to 6 specific sites.  One diver will identify and record the fish species that are present.  The other diver will be filming the animals seen.  The Telemetry teams will be replacing the receivers that are currently positioned throughout the sanctuary.  These receivers record information from micro chipped fish that swim past.  New receivers will be placed in the water and the old ones will be brought on board and the data will be uploaded onto a computer.  While these projects are being conducted, the divers will also be looking for sea turtles and Lionfish.  Data will be gathered about the sea turtles and photos will be taken.  If Lionfish are located, they will be speared and brought on board the Nancy Foster where information such as length and weight will be gathered.  Lionfish are an invasive species and need to be removed from the ecosystem.  For a detailed description of Lionfish, please visit the Mission’s Website at: http://graysreef.noaa.gov/science/expeditions/2014_nancy_foster/welcome.html Once these projects are complete, the Marine Debris Survey will begin.

Preparing the recievers.  They are first wrapped in electrical tape and than placed inside nylon stockings.
Preparing the recievers. They are first wrapped in electrical tape and than placed inside nylon stockings.

Today we did prep for the different missions.  Sarah and I organized all the supplies that will be used.  This included filling a dive bag with the receivers and tools needed to secure the receivers under water as well as tools to remove the current receivers.  Yesterday we had prepped the receivers.  Sarah replaced the batteries and then we wrapped the receivers in electrical tape and then placed them inside nylon stockings.  This is to protect the receivers and to keep them clean.  When they are under the water different organisms will start to grow on them.  When we retrieve the receivers, we can cut away the stockings removing any organisms growing there and then unwrap the tape and the receivers will look brand new.

We also gathered the supplies for the Lionfish removal.  These included dive bags to hold the lionfish, gloves for removing the fish, and placing the spear guns into the dive holsters (designed by a GRNMS member made out of PVC pipes).  We copied all the dive logs onto waterproof paper and organized the paperwork for the dives.  We also prepared all the underwater cameras.  Hopefully we are all set for when the divers arrive tomorrow.

Spear Gun Holster
Chief Scientist Sarah Fangman models the spear gun holster.

First Assistant Engineer, Sabrina Tarabolletti fixes the underwater lights for the GO Pro camera.
First Assistant Engineer, Sabrina Tarabolletti, fixes the underwater lights for the GO Pro camera.

Today’s lesson was flexibility.  It is so important to be flexible.  On a ship, no plan is going to work out perfectly.  There are many uncontrollable factors such as the weather or mechanical issues.  It is important to always have backup plans and be able to adjust if problems arise.

 

Did You Know?

You can identify sea turtles using the scales on their neck.  This pattern is unique to each individual sea turtle.  Just like how fingerprints can identify humans.

 

Animals Seen Today

Hammerhead Shark – spotted from the bridge; estimated to be 10-12 feet long; it is very uncommon to see one in GRNMS (sorry no picture)

 

Personal Log

Amy Rath and I enjoyed writing our blogs on the Steel Beach.  We were working very hard in the beautiful weather
Amy Rath and I enjoyed writing our blogs on the Steel Beach. We were working very hard in the beautiful weather

I am truly having a wonderful time on this trip.  I am meeting so many amazing people and learning a lot from everyone.  The crew and all the scientific party are really nice people with many interesting stories.

Every day Keith Martin, the Electronics technician, makes Cuban coffee.  I was teasing him today about the cups he uses to pass out the coffee.  Cuban coffee is incredibly strong so you do not drink it like typical coffee.  You drink only a tiny amount.  Keith was using coffee cups to pass out the coffee.  I asked him where are the tiny cups (plastic cups about the size of the paper cups you use at fast food restaurants to get ketchup)?  He said that you can only find them in Miami.  That led to a conversation about Miami.  It turns out that he is a graduate of Miami Palmetto Senior High.  (Ms. Evans taught him Biology, Coach Delgado was his Drivers Ed teacher, Mr. Moser taught him weight training, and he was a member of TVP).  It really is a small world!

I do not know if I will be posting tomorrow, so I want to give an early shout out to my Seniors.  I hope that you have a wonderful time at Grad Bash.  Make sure to ride the Hulk for me (I prefer the 1st row).  Have fun!!

Me with Keith Martin the Electronics Technician who is a Miami Palmetto Alumni Photo: Amy Rath
Me with Keith Martin the Electronics Technician who is a Miami Palmetto Alumni
Photo: Amy Rath

Sam Martin enjoying some Cuban Coffee
Sam Martin enjoying some Cuban Coffee

 

Jennifer Petro: Finding the Fish, July 7, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA Ship Pisces
July 1 — 14, 2013 

Mission: Marine Protected Area Surveys
Geographic area of cruise: Southern Atlantic
Date: July 7, 2013

Weather Data
Air temperature: 27.°C (81.5°F)
Barometer: 1022.50 mb
Humidity: 73%
Wind direction: 195°
Wind speed: 6.1 knots
Water temp: 26.6° C (79.3°F)
Latitude: 34 44.62 N
Longitude: 75 91.98 W

Science and Technology Log

Today we find ourselves off of the coast of northern North Carolina where we will be for the next few days.  An exciting aspect about this cruise is that we will be multi-beam mapping (a blog about that very soon) and sending the ROV down for surveys in new areas off of North Carolina.  For the past few days I have been working with the team from the Panama City Southeast Fisheries Science Center identifying fish.  This can sometimes be a very difficult prospect when the ROV is flying over the fish at 2 knots.  The team from SEFSC consists of Andy David, Stacey Harter and Heather Moe.  David is a 23 year veteran of NOAA and has been working on the MPA project since 2004.  Stacey has been working on this project since its inception as well.  Heather is new to the team and is just coming off of a 1 year assignment with the NOAA Corps at the South Pole.
There are several major objectives of this survey cruise.

There are several major objectives of this survey cruise.

(1)  To survey established MPAs to collect data to compare to previous years’ surveys.

An important aspect of these cruises is to establish the effectiveness of an MPA.  In some MPAs there is usually no fishing allowed.  This includes trolling. bottom fishing (hook and line) as well as all commercial methods of fishing.  The MPAs we are studying are Type II MPAs where trolling is permitted.  They are looking for seven specific target species.

According to Andy, these species have been chosen due to their commercial value.  During each dive a record is taken as to the type of species seen.  We are specifically looking for the target species but we are keeping track of ALL the species that we see.  I think it is fantastic to see scientists get excited about seeing something new.  So far we have seen Oceanic Sunfish (2), Redband Parrotfish, Tautog (a more northerly found fish), Longsnout Butterflyfish and one fish species that we have not identified yet.  There is an emphasis on Lionfish counts to assist in gauging how the introduction of this invasive species is affecting the overall fish populations.  In some areas the Lionfish numbers have increased dramatically over the years.  Today we actually saw one try to eat a smaller fish!  They are very abundant in some locations and not in others but they have been present in 95% of our dives.

A Speckled Hind seen inside the North Florida MPA.
A Speckled Hind seen inside the North Florida MPA.

A Warsaw Grouper seen inside the North Florida MPA.
A Warsaw Grouper seen inside the North Florida MPA.

Stacey Harter, LT JG Heather Moe and I watching the big monitor and calling out the fish that we are seeing to be recorded.
Stacey Harter, LT JG Heather Moe and I watching the big monitor and calling out the fish that we are seeing to be recorded.

(2) Survey outside of the MPAs.

You may ask “Why survey outside the area?”  We want to know if the MPAs are indeed doing what they were designed to do: protect fish species.  That was very evident in Jacksonville where the numbers and size of Gag Grouper and Scamp far exceeded the numbers and size outside the MPA.

Andy David recording for the ROV video log species of fish we are seeing on the dive.
Andy David recording for the ROV video log species of fish we are seeing on the dive.

(3)  Survey new sites for possible MPA designation.

There is a process that is followed when determining if an area is a suitable MPA candidate.  What we are doing on this cruise is both mapping and surveying new areas that have been proposed as MPA sites.  This is the ground level stage.  The MPAs in the region that we are in are ultimately determined by the South Atlantic Fishery Management Council.

A Gray Triggerfish protecting a nest of eggs.  Seen in the Edisto MPA as well as in a proposed site off of North Carolina.
A Gray Triggerfish protecting a nest of eggs. Seen in the Edisto MPA as well as in a proposed site off of North Carolina.

Data during the dives is collected in a few ways.  There are several video monitors that we watch and we call out species that we see.  A data keyboard, like the one Harbor Branch uses for invertebrates counts, is used to keep track of types and number of each species seen.  During every dive a video from the camera on the ROV is recorded and species are highlighted and recorded on to the DVD.  This data will be analyzed thoroughly back at the lab and then sent to the South Atlantic Fishery Management Council.

Personal Log

I am happy to announce that I have finally gotten my sea legs.  It wasn’t as bad as I had envisioned but I was definitely concerned that it would be a major issue.  We had some weather on Thursday, July 4 and that was the worst of it for me.  I now hardly feel the vessel move.  It has been fun over the past several days.  We are in the lab most of the days so we only get to really see the crew at mealtimes and after dinner.  The crew, from the CO to the engineers, are all great people.  They are happy to answer questions, point you in the right direction and are quick to say hi and ask you about your day.  Yesterday afternoon one of the engineers, Steve, gave us a tour of the engine room.  All of the ship’s infrastructure is supported by this room.  The engines run the generators for power, support the a/c, house the desalination filters (all the fresh water on board comes from salt water) as well as getting the boat from point A to point B.  I was impressed!

One of the 4 Caterpillar engines that keep Pisces running ship shape.
One of the 4 Caterpillar engines that keep Pisces running ship shape.

Today after our last ROV dive, a school of Mahi mahi followed it (the ROV) up to the surface.  The fishing was on!  The crew brought out rods, reels and bait and the fishing commenced.  Collectively we managed to land one bull or male and 2 smaller Mahi mahi.  It was a nice diversion for all of us, scientists and crew, as we were back to work all too quickly.  Fish tacos for dinner!

Hoping I can land this one!
Hoping I can land this one!

Fair weather and calm seas.

Jennifer

Did you know that…

Some grouper can grow to be so huge that when they open their mouths to feed, they create a suction that is powerful enough to inhale small prey.

Susan Kaiser: Blue Planet Connections, August 5, 2012

NOAA Teacher at Sea
Susan Kaiser
Aboard NOAA Ship Nancy Foster
July 25 – August 4, 2012

Mission: Florida Keys National Marine Sanctuary Coral Reef Condition, Assessment, Coral Reef Mapping and Fisheries Acoustics Characteristics
Geographical area of cruise: Florida Keys National Marine Sanctuary
Date: August 5, 2012

Weather Data from the Bridge
Latitude:  24 deg 34 min N
Longitude:  81 deg 48 min W
Wind Speed:   2.5 kts
Surface Water Temperature: 32.1 C
Air Temperature:  29 C
Relative Humidity: 71 %

Science and Technology Log

Sunrise on the last day at sea.
Sunrise on the last day at sea.

It is easy to see why the Earth is nicknamed the Blue Planet. Its dominant physical feature is the sea water which covers approximately 70% of the surface making it appear blue even from space.   People have depended on the oceans for centuries not just for the obvious things such as food, transportation, jobs and recreation but also for the very oxygen we breathe and the fresh water we drink to survive.  Humans need the ocean for all these things and more. We are inextricably interconnected to the ocean; our survival depends on it.

The vastness of the ocean allows us to believe that human actions won’t have a major effect on it. For example, pollution that leaks into the ocean would be diluted by the huge amount of water so that no real harm would be done to the habitat or the organisms living in the ocean. This may have been true for a time when the human population was less than the 7 billion people now living on Earth. However, the fact is human actions do influence the ocean and in ways that matter. Often these impacts are unintended or accidental but they still lead to a change in the marine ecosystem.   Sadly, many times these effects are negative such as  the Deepwater Horizon/BP MC252 oil spill In 2010, an explosion on an oil drilling rig in the Gulf  of Mexico released almost 5 million barrels of oil into the ocean immediately changing the marine habitat and harming the organisms that lived there. Scientists are still determining the long term effects of this spill and helping to restore the area. In the past other spills have occurred such as the grounding of the oil tanker Exxon Valdez in 1989 that released 11 million gallons of crude oil along the Alaskan coast.

Not all ocean impacts are large events related to the petroleum industry. Even small individual human decisions can be significant. For example, if a pet owner no longer wants to keep his exotic species pet he might release it into the wild or an environment where that organism isn’t usually found.

Mrs. Kaiser holding a speared Lionfish. Photo by Jeff Renchen.
Mrs. Kaiser holding a speared Lionfish. Photo by Jeff Renchen.

This is probably how the Lionfish,  scientific name Pterois volitans, has become established in the coastal waters near the Carolinas and Florida, according to Paula Whitfield, a NOAA marine scientist. It may seem like a minor problem that the Lionfish is now living in Gulf Coast ocean water. What do you predict will happen to the number of Lionfish in this area knowing that they have everything they need to flourish: food, water, space but no predators to hunt them?  They will reproduce and increase their numbers quickly. Lionfish will out number native species of fish and beat them out for those resources displacing them in their ecosystem. Lionfish will out compete native species decreasing their numbers and the diversity of organisms. While on our cruise the science team encountered groups of Lionfish living under large rocks at depths of 100 feet. They speared a specimen and brought it aboard to examine it closely. Lionfish are invading this marine habitat taking it over from the native species. Any organism that is introduced into a new ecosystem where it can rapidly increase numbers taking over native habitat is called an invasive species. One solution to this problem is to start catching Lionfish to eat! I am told they are yummy. People just need to be taught how to safely remove their poisonous fins and taste them!

These tiny (15-20mm) fresh water bivalves are invasive species.
These tiny (15-20mm) fresh water bivalves are invasive species.

Both animal and plant organisms can be invasive species squeezing out more desirable native organisms. In Nevada, we are on the alert to an invasion of  Quagga Mussels (Dreissena bugensis) that have been detected in Lake Mead near Las Vegas. These fresh water mollusks are transported on boat exteriors or in bilge water to other fresh water lakes across the United States. It is important that boaters carefully inspect and maintain their equipment to halt the progress of this invasive species to other lakes in Nevada and elsewhere.

The Blue Planet is home to us all. Our decisions and actions make a

Roof of the Nancy Foster Complex in Key West, Florida. Note the native plants.
Roof of the Nancy Foster Complex in Key West, Florida. Note the native plants.

difference on both a small and large scale. Each of us has a responsibility to make informed choices about these actions. Realizing our reliance on the ocean and other aspects of the environment and working within in these systems really benefits all of us. For example, when architects designed the Dr. Nancy Foster Florida Keys Environment Complex in Key West, Florida they created a Green Building.  This means they made choices to  “recycle”  a neighboring building saving building materials and using it for a new purpose. Office furniture was re-purposed to fit in the new energy efficient building that is LEED Silver certified. Contributing to the ecosystem, the roof is planted with native species of grasses that provide habitat for insects and birds. The plants are watered by rain. Excess rain water is collected and stored for other uses in the building helping to conserve water. While the Dr. Nancy Foster Complex building design is indirectly related to ocean preservation it represents a human action that benefits our Blue Planet. As with the release of a hand full of Lionfish, so can many small actions together can create a big impact. Choose to be connected to our  ocean in a positive way. Through a small act you do each day we can preserve and even improve our environment and oceans. The Blue Planet is a great place to call home.  Let’s help keep it that way.

Personal Log

Science Team. Photo by Lt. Josh Slater.
Science Team. Photo by Lt. Josh Slater.

As I finish writing this last blog from my home in Reno Nevada, I am reflecting on the many people I have met and the experiences I have had as a  NOAA Teacher at Sea. It is through NOAA’s interest in connecting scientists, mariners and educators that I was able to participate in this amazing experience but also because I took a chance and applied.  I might not have been chosen but I didn’t let that stop me from taking the risk. If I had not made the time to apply and prepared my essays and sample lessons look what I would have missed. The chief scientist, Scott Donahue, also took a chance on me and accepted me as an active participant on his research cruise. He and the science team went out of their way to make sure that I stayed safe and got an outstanding experience as an observer of their research. Everyone took  time to answer my questions and describe their research to reach a larger audience, YOU!

On the last day we sailed into port at Key West, few people aboard knew that

Ensign Richard De Triquet  (right) maneuvers the ship. Executive Officer CM Donn Pratt (left) observes.
Ensign Richard De Triquet (right) maneuvers the ship. Executive Officer CM Donn Pratt (left) observes.

Ensign Richard de Triquet was given the task of bringing the NOAA Ship Nancy Foster into dock.  It was his first time to manage this procedure! Commanding Officer LCDR Holly Jablonski knew he had the skill and took a risk  assigning Ensign De Triquet to maneuver the ship into port. Working as a team, the other officers on the bridge used binoculars to spot potential obstacles in the channel. They discussed the best course for the ship and provided input to Ensign De Triquet who announced the orders.  By the way, the docking was was smoothly accomplished and I got to observe the entire process including the debriefing. Congratulations Ensign De Triquet, nice work!

My NOAA Teacher at Sea experience is one that I will never forget! It was a pleasure to be a part of this science research cruise and to

Mrs. Kaiser snorkeling Ft. Jefferson. Photo by Alejandro Acosta, PhD.
Mrs. Kaiser snorkeling Ft. Jefferson. Photo by Alejandro Acosta, PhD.

meet such a wonderful group of people. My blog would not be complete without acknowledging several individuals in the group who were especially helpful.  Danielle Morley who cheerfully provided me with an overview of the VR2 research including a power point presentation and got me involved in the data collection. Hatsue Bailey who acted as my photographer whenever needed.  Sarah Fangman who provided ground transportation. Alejandro Acosta, PhD who took me snorkeling after a tour of  Ft. Jefferson in the Dry Tortugas. He also was the underwater photographer of the organisms we saw that day. Thank you, everyone!

Just as people are interconnected to the ocean they are also interconnected to each other. All of the people I met on this adventure worked together toward a common purpose. Each one of them making their own contribution to reaching that goal. They did it by doing their best work and trusting that each member of the group would in turn do their part to their best ability. Effort and communication were key to their success. From what I witnessed it worked out perfectly.

These 2 sponges are over 100 years old. They are known as the "Redwoods of the Reef." Photo by Hatsue Bailey.
These 2 sponges are over 100 years old. They are known as the “Redwoods of the Reef.” Photo by Hatsue Bailey

Summer is quickly coming to an end and with it the excitement of a new school grows. My students and I  have the opportunity to make connections, to each other, to the Blue Planet and the organisms that live here. This year, if you are faced with a challenge, be brave and take it on. Assess an opportunity and take the risk to try something unfamiliar. Extend kindness to someone outside your existing circle of friends.  Put your toe in the water and get comfortable listening, observing, thinking and asking questions. You will be amazed what you will learn and the things you will experience. Take a chance. Reflect, communicate and work together.  Scientists and NOAA Ship Nancy Foster officers and crew showed how well this works to get the job done. Let’s follow their example so that your 7th grade year in science a memorable one too.

Mrs. Kaiser wearing the survival suit. Photo by Hatsue Bailey.
Mrs. Kaiser wearing the survival suit. Photo by Hatsue Bailey.

A crab exploring the ocean floor. Photo by Hatsue Bailey
A crab exploring the ocean floor. Photo by Hatsue Bailey

Scientist Danielle Morley changing out a VR2. Photo by Sean Morton.
Scientist Danielle Morley changing out a VR2. Photo by Sean Morton.

Steven Frantz: A Day’s Delay, July 26, 2012

NOAA Teacher at Sea
Steven Frantz
Aboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Tagging Survey
Geographic area of cruise:  Gulf of Mexico and Atlantic off the east coat of Florida.
Date:  July 26, 2012

Personal Log

A DAY’S DELAY

The Oregon II was supposed to leave Pascagoula, Mississippi on Thursday, July 26, 2012. However, a momentous event occurred which delayed our departure by one day. This upcoming mission just so happened to be the Oregon II’s 300th mission. Thursday was set aside as a day to celebrate this milestone.  NOAA employees, media, and public alike joined to reminisce the past and look toward the future. The very first Teacher at Sea sailed upon the Oregon II. Now it is my turn. I am humbled to think of all the great teachers who have gone before me and am honored to now be following in their footsteps.

Oregon II
The Oregon II all decked out and ready to sail

Cake
The cake decorated with the 300th cruise artwork

The day’s delay afforded me the opportunity to see some of the land operations NOAA conducts and a little bit that the Pascagoula area has to offer.

First stop was the NOAA lab. This building was just opened in 2009 as the former lab was destroyed during Hurricane Katrina. After checking in we saw office upon office of researchers working on their projects.

NOAA Labs
NOAA Lab

Alex Fogg was working in the lab. He was busy studying the stomach contents of lionfish. Lionfish were released around the Florida Keys several years ago. Having no predators, this invasive species has been reproducing at an alarming rate. Listen to Alex tell about his research.

 

NOAA also has an educational outreach program. Earlier in the morning a group of four year olds visited and learned how a Turtle Excluder Device (TED) works. TED’s are required to be installed on shrimp nets. Before the advent of TED’s, when a sea turtle was caught in a shrimp net, it usually drowned before the net was hauled up. Now, when a sea turtle gets caught in a net, it travels through the net until it gets to the TED. The TED looks like bars on a jail cell. The smaller shrimp can pass through, but the sea turtle gets pushed up and out through an opening in the net.

Turtle Steve
Mr. Frantz demonstrating how a TED works

The Pascagoula area is known for food: barbecue and seafood. The Shed is a famous outdoor barbecue restaurant, which has been featured on TV. I couldn’t decide what to order, so the sampler, with a little bit of everything fit the bill. A “little bit” has an entirely different meaning here than it does in Ohio. This was a huge meal of ribs, wings, and brisket. It also came with sides of collard greens, macaroni and cheese, and baked beans. There were plenty of leftovers for the next day!

It was also interesting that even though it was very hot and humid and the The Shed was outdoors, it did not feel hot at all. Swamp coolers were installed around the perimeter of the restaurant. What is a swamp cooler? I’ll leave it to you to find out!

Pascagoula, Mississippi is a port town with a rich history. Because of its close affiliations with everything nautical, they use nautical flags in their town logo. See if you can spell out P-A-S-C-A-G-O-U-L-A in the arch of flags. Then, see if you can spell out your own name!

City Hall
City Hall

Nautical Alphabet Flags
Nautical Alphabet Flags

There you have it! One long hot day of good food, celebration, and the wonderful people of Pascagoula, Mississippi. Tomorrow we set sail to find sharks! We have to travel three days at sea to get out of the Gulf of Mexico, around Florida, then to the Atlantic Ocean.

Marsha Skoczek: Lionfish, Groupers, and Bigeye, Oh My! July 11, 2012

NOAA Teacher at Sea
Marsha Skoczek
Aboard NOAA Ship Pisces
July 6 – 19, 2012

Mission: Marine Protected Areas Survey
Geographic area of cruise:  Subtropical North Atlantic, off the east coast of South Carolina
Date:  July 11, 2012

Location:
Latitude:  32.2899N
Longitude:  78.5443W

Weather Data from the Bridge
Air Temperature:  28.1C (82.4F)
Wind Speed:   9.75 knots ( 11.2 mph)
Wind Direction:  From the SSW
Relative Humidity: 86 %
Barometric Pressure:  1017
Surface Water Temperature:  27.7C (80.6F)

Science and Technology Log

Lionfish off the South Carolina coast.

Even though our mission focuses on the five species of grouper and the two species of tilefish that I have shared in earlier postings, something that has surprised us all is the sheer number of lionfish that have invaded these reef areas.  I sat down with Andy David, Co-Principal Investigator on our cruise, to get the full scoop on this  invasive species.

An invasive species is one that does not naturally occur in an area but was either deliberately or accidentally released into the wild and competes with native species.  Alien invasive species often have very few, if any, natural predators to help keep their populations in check. As a result, invasive species populations often explode.  These invasive species begin competing with the native inhabitants for the same food supply potentially starving out the native fish and forcing them to move out of that region in search of food.

Lionfish native habitat.
Credit NOAA

Lionfish are native to the western Pacific.  They were first observed in the Atlantic Ocean in 1992 on coral reefs off West Palm Beach, FL.  Since the water temperature and bottom habitat in the South Atlantic very closely resemble that of the lionfish’s native habitat, conditions were favorable for the population to spread very rapidly.  Unlike most fish in this region the lionfish spawns year round, so it does not have a normal spawning season.  A female lionfish can spawn every couple of days and each time can release up to 15,000 eggs.  These eggs were carried off by the current and spread to other parts of the east coast.  Since few of the native Atlantic predators eat lionfish, they were able to reach maturity and continue building their population.  So what the genetic analyses indicates started as six individual lionfish off West Palm Beach in 1992, now has spread all the way north to Cape Hatteras, North Carolina via the Gulf Stream, then on other currents across to Bermuda and down to the Bahamas, Cuba, Puerto Rico, the Virgin Islands. And they have now made their way into the Gulf of Mexico and are moving along the coastal states in the Gulf. Check out this  animation demonstrating the spread of the lionfish.

Short bigeye with lionfish

Lionfish tend to live in the same rocky reef habitats as the grouper and short bigeye, so we see them together quite frequently on our ROV dives.  All of these reef fish are competing for the same food supply — small fish and crustaceans.  The grouper, short bigeye, and lionfish prefer to live in rocky overhangs or crevasses.  Lionfish are ambush predators and will wait for their prey to swim by and suck them into their mouths.  They also have a voracious appetite.

All of the lionfish we have seen are extremely fat and happy.  They are gobbling up the food supply just as fast as they can.  Often times we will see multiple lionfish using the same rock as shelter.  In fact, in a single three-hour dive covering about 1.5 nautical miles, we saw upwards of 150 lionfish!!  And that was only within the 6-10 foot wide field of view from the ROV camera.  There are plenty more that we were not able to document since they were out of view.  In one week alone we have seen nearly 700 lionfish! Imagine how much of the available food source a whole gaggle of lionfish can consume on the reef.  The concern is that the lionfish are using up all of the food available so that the commercially important fish such as grouper and snapper will no longer have anything to eat and will be forced to leave the area.  This could be devastating to the grouper population which could result in fewer fish being available for commercial and recreational fishermen as well as a blow to the species in general.

A gaggle of lionfish off the coast of South Carolina. Can you tell how many lionfish are in this picture?

So what can we do about this?  Agencies like NOAA are encouraging divers to hunt any lionfish they see and take them home to eatLionfish derbies are sponsored by local diving organizations, such as REEF,  to encourage divers to participate in these hunts.  But hunting lionfish with scuba divers will not solve the entire problem.

On this particular research cruise, we have seen lionfish down to depths of about 100 meters (330 feet).  This is well below the limits of recreational scuba diving.  Lionfish have been seen at depths of 300 meters (1,000 feet).  How can we control the spread of this invasive species at depth?  Some groups such as the Roatan Marine Park think that training sharks to prey on lionfish might be a solution.  This is a lengthy process and it is uncertain if the sharks would continue to hunt lionfish once they are out in nature on their own.  Some species of grouper and moray eels can also eat lionfish, but they prefer to just leave them alone rather than risk being the recipient of a sharp sting from those pesky poisonous fins.  The cornet fish might also prey upon juvenile lionfish by sneaking up on them from behind.  We have seen about a dozen cornetfish in this first week of ROV footage compared to the one per year that are seen normally.  Could the cornetfish be a partial solution to this invasion?  We can only hope.

There is also a concern with the push to make lionfish a commercial species.  Since they inhabit coral reefs, it is possible that lionfish, along with grouper and amberjacks, could become tainted with a toxin called ciguatera.  In a joint study between NOAA and the FDA in the seas surrounding the Lesser Antilles islands of St. Maarten, Virgin Islands and Puerto Rico, ciguatera was found in 26% of the lionfish sampled.  These larger reef fish prey upon the smaller herbivorous reef fish that have eaten the algae carrying the ciguatera toxin.  Through biomagnification, the lionfish, grouper, amberjacks and snapper carry enough of the toxin to make humans extremely ill.  Symptoms of ciguatera poisoning include nausea, vomiting, diarrhea, headaches, muscle aches, and reversal of hot and cold sensation, just to name a few.  Symptoms can last for weeks to years depending on the individual.  This toxin cannot be removed from the fish by cooking, so the debate continues as to whether lionfish are safe enough to be marketed as a commercial fish in areas where ciguatera is present.

Personal Log

Here I am in the drylab counting lionfish from ROV images.

I am amazed at how quickly the lionfish have spread throughout the Western Atlantic region.  So what started out as six lionfish in 1992, now numbers over 10,000,000 just twenty years later.  Their coloring allows them to remain camouflaged so they are able to just sit and wait for food to come to them.  When we are looking at the ROV screen, it is not always easy to spot these invaders at first. Their prey probably don’t even realize that they are about to be eaten, they blend in that well.  Andy David says that with most invasive species, we see a spike in numbers initially, but eventually the numbers should come back down as the lionfish run out of food and as other predators learn how to eat them.  How long until we start to see a decline?  That remains to be seen.  Things may get worse before they get better, or we may already be seeing a decline in numbers.  More research needs to be done.

Ocean Careers Interview

Andy David

In this section, I will be interviewing scientists and crew members to give my students ideas for careers they may find interesting and might want to pursue someday.  Today I interviewed Andrew David, Co-Principal Investigator on this expedition.

What is your job title? I am a Research Fishery Biologist and the Chair of the NOAA Diving Control and Safety Board.

What type of responsibilities do you have with this job?  As a fishery biologist for NOAA, I am currently conducting research on the commercial fish of the South Atlantic such as grouper and tilefish.  As part of my research, we also study the habitat that these fish live in which are the shelf edge and deep reefs.  The data that we collect on these species is used to help fishery managers determine where the South Atlantic and Gulf of Mexico MPAs should be placed and if they should be maintained.

As the Chairman of the NOAA Diving Control and Safety Board, I work with the diving officers of other NOAA programs to monitor the safety of the roughly 500 divers in the agency.  We do this by creating a set of standards that all divers in NOAA must adhere to, testing new diving equipment, and working with other diving organizations to ensure safe and effective procedures are followed.  Our safety record is very good. We normally make close to 15,000 dives a year with an incident rate of below 0.01 percent.

What type of education did you need to get this job? I earned my Bachelor’s Degree in Chemistry and Biology from Stetson University in Deland, Florida.  My Master’s Degree is in Marine Science from the University of Southern Florida.  My Master’s work focused on the effects of genetically engineered bacteria in the marine environment. It wasn’t exactly what I thought I would study in graduate school, but it was an excellent opportunity that I could not pass up and it helped me to network with other scientists in the field.  This led to me getting my job with NOAA straight out of graduate school where I work on topics that have a greater interest to me.

What types of experiences have you had with this job?  Working on these deep corals projects has been very rewarding.  We have discovered many things on these projects, such as a greater coverage of deep coral reefs than was previously thought, new species of crustaceans, and range and depth extensions for several species.  Plus I get to spend time at sea every year while we conduct our research.

What advice do you have for students wanting a career in marine biology?  You do not have to go straight into marine biology at a school near the coast as an undergraduate.  In fact, it is probably better if you major in a core science such as chemistry or biology for your Bachelor’s and then focus more on marine science when you start looking for a graduate school.  Send your applications out to professors at universities with good marine biology programs.  If you are offered a position working with a professor who offers you research support, you should strongly consider taking it even if the research topic is not your favorite.  Graduate school is about learning how to become a good scientist — you have plenty of time to specialize in an area of interest to you when you get out of school.

Also, take internship opportunities when you can find them!  That is how scientists in the field get to know you and what you are capable of.  Internships might lead you to your first job out of college.  For example, Stacey Harter, the Chief Scientist on our cruise, started with Andy David as an intern.  When she graduated from college, they offered her a job!  Get internships!

Andrea Schmuttermair: Back On Solid Ground, July 7, 2012

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oregon II
June 22 – July 3

Mission: Groundfish Survey
Geographical area of cruise: Gulf of Mexico
Date: July 7, 2012

Personal Log

As I write this final post, I sit at a cafe looking out at the Pacific Ocean. A cool ocean breeze kisses my face, and the smell of the salty sea air fills my nostrils. Different from the damp air and blazing sun that inhabit the Gulf of Mexico, yet the ocean all the same. I know I am in my element, and will soak in as much ocean as possible before heading back to land-locked Colorado.

I have spent a lot of time this past week thinking about my trip on the Oregon II, at sea with people passionate about the work they do. I can’t help but think how lucky I am to have had this amazing, once in a lifetime opportunity (although I am certain I will do this again) to not only participate in real-life science, but to be able to share this experience with my students.

scientists in the galley
A few of us scientists hanging out in the galley.

I have spent some time talking about the scientists that were on board with me on the Oregon II, and I must say that my experience would not have been the same had it not been for these people I worked so closely with. When traveling, it is not only important to see the sights and soak in the culture, but to also get to know the locals. Hear their story. Spend time with them. Listen to them. I placed as much importance on getting to know some of the scientists and crew on board as I did the work that we were doing. In that, I know I have made lasting relationships.

night shift
Our night shift team: Me, Alonzo, Lindsey, Alex, and Renee.

all scientists
All the scientists on the Oregon II

The more I talk to my friends and family and fellow teachers back at home, I am realizing that working on a ship is not for everyone. In fact, it takes a special person to spend a good portion of their years on a ship, away from friends and family, up to their elbows (quite literally) in fish. The adventurous side of me absolutely loved this, and hopes to do it again in the future. Alonzo, my watch leader, says I am welcome back any time. Well, Alonzo, I may just take you up on that one of these days.

Towards the end of my cruise, I had the opportunity to interview one of the junior NOAA Corps officers on board the Oregon II, ENS Junie Cassone. In her interview, she talks about life in the NOAA Corps and how one can become a NOAA Corps officer.

Watch the interview with ENS Cassone here: Interview with ENS Cassone.

My final post would not be complete without a few last critter pics, as I’ve started naming my ever-growing file. Here are some of my favorite critters from our last few trawls.

hermit crab
One cute little hermit crab!

seahorse
A seahorse we found amongst the Sargassum.

bashful crab 2
A flame-streaked box crab (Calappa flammea)- my new favorite of the bashful, or shameful, crabs

lion fish
Alex showing off one of his lionfish

To wrap up, I’d like to post one final Critter Query. When we brought up out trawls, I noticed some fish had this red bulge coming out of their mouths. I had never seen this before, and inquired what it was. Do you know what it is and what causes it?

fish
What is the red bulge coming out of the mouth of this fish and what is the cause of it?

Lesley Urasky: Get that fish outta here! The invasive lionfish, June 24, 2012

NOAA Teacher at Sea
Lesley Urasky
Aboard the NOAA ship Pisces
June 16 – June 29, 2012

Mission:  SEAMAP Caribbean Reef Fish Survey
Geographical area of cruise: St. Croix, U.S. Virgin Islands
Date: June 24, 2012

Location:
Latitude: 19.8584
Longitude: -66.4717

Weather Data from the Bridge:

Air Temperature: 29°C (84°F)
Wind Speed:   16 knots (18 mph), Beaufort scale:  4
Wind Direction: from SE
Relative Humidity: 76%
Barometric Pressure:   1,015.3 mb
Surface Water Temperature: 28°C (82°F)

Lionfish in its native habitat. ( Source: National Geographic; Photograph by Wolcott Henry)

Science and Technology Log

One of the species the scientists are continually scanning for in their videos is the appearance of the Lionfish (Pterois volitans/miles); this is one fish they’re hoping not to see.  It is not native to these waters and is what is known as an invasive or exotic  species.

An invasive species is one that is not indigenous (native) to an ecosystem or area.  Many times these organisms are able to exponentially increase their populations because they may have no natural predators, competition for resources, or they may be able to utilize those resources not used by native organisms.  Most invasions are caused by human actions.  This may involve intentional introduction (many invasive plant species were brought in to create a familiar environment or crop/foraging source), accidentally (rats travelling on ships to distant ports), or unintentionally (people releasing pets that they can no longer take care of). Invasive organisms are problematic because:

  • They can reduce natural biodiversity and native species.
    • Push other species to extinction
    • Interbreed, producing hybrids
  • Degrade or change ecosystem functions
  • Economically:
    • They can be expensive to manage
    • Affect locally produced products causing a decline in revenue (decline of honey bees due to a mite infestation which, in turn, decreases pollination rates)

Within its native habitat, the Indo-Pacific region, the Lionfish  (Pterois volitans/miles) is not a problem because that is where they evolved.  It is in the family Family Scorpaenidae (Scorpionfishes). They inhabit reef systems between depths of 10 m – 175 m.  During the day, they generally can be found within crevices along the reef; at night they emerge to forage in deeper waters, feeding upon smaller fish and crustaceans.

Native range of the Lionfish

Lionfish are venomous and when a person is “stung” by the spines on the dorsal fin, they experience extreme pain, nausea, and can have breathing difficulties.  However, a sting is rarely fatal.  Despite the hazards of the spines, Lionfish are a popular aquarium species.  The problem arises when pet owners irresponsibly get rid of the fish in their aquariums.  Instead of giving them away to pet shops, schools, organizations, or other fish enthusiasts, or contacting a local veterinarian about how to humanely dispose of them, they release them into a nearby marine body of water.  It’s important to realize that even the smallest, seemingly isolated act can have such large consequences.  Remember, if one person is doing it, chances are, others are too. The responsibility of owning an organism is also knowing how to manage it; we need to realize how to protect our marine habitats.

This is where the problem in the Atlantic began.  The occurrence of Lionfish was first noticed along the southeastern coast of Florida in 1985.  An invasive species is considered established when a breeding population develops.  Since their establishment in the waters off of Florida, they have rapidly spread throughout the Atlantic as far north as Rhode Island/Massachusetts , throughout the Caribbean, and into the Gulf of Mexico.

Animated map depicting the spread of the Lionfish

While on our cruise every sighting of a Lionfish was cause for further examination.  There was one Lionfish that exhibited a behavior that Kevin Rademacher (Chief Scientist) had never seen before.  The fish was on the bottom and moving himself along instead of freely swimming.  Videos like this are instrumental in helping scientists figure out Lionfish behavior in their “new” environment as well as their interactions with the surrounding organisms and environment.  Hopefully, as this database continues to grow, scientists will develop new understandings of the Lionfish and its effect on the waters of the Atlantic, Caribbean, and Gulf of Mexico.

Divers are encouraged to kill any Lionfish they encounter.  The only safe way to do this is from a distance (remember, their dorsal spines are venomous); usually, this is accomplished by using a spear gun.  The Commander of the Pisces, Peter Fischel,  was doing a final dive off the pier before we left St. Croix.  He saw three Lionfish, speared them, and brought them to the scientific crew for data collection.  These were frozen and placed in a Ziploc back for preservation.  They will be examined back at the lab in Pascagoula, Mississippi.

Three Lionfish caught along the Frederickstad, St. Croix pier. (Notice the 6″ ruler for scale.)

Personal Log

The science portion of the cruise is coming to a close. Today was our last day of sampling.  As with yesterday, no fish were caught by the day crew, so we were able to begin cleaning and packing throughout the day instead of waiting until the end.  A few days after we arrive in Mayport, Florida, the Pisces will be going out on another cruise along the east coast.  On Sunday, July 1st, Joey Salisbury will be arriving in Mayport with a trailer to unload all the scientific equipment and personal gear from this research cruise.

Bandit reel with St. Thomas in the background

In addition to packing, the wet lab and deck have to be cleaned.  This entails scrubbing down the tables, coolers, and rails along the deck where we baited our hooks to remove all the fish “scum” that has accumulated over the past three weeks.  Between the four of us, we were able to make quick work of the job.  There is only one task left for me to do, and that is to take all of our leftover bait, Atlantic Mackerel, and throw it overboard once we are away from the islands.  (The bait has been used over the course of the past two years, and has essentially outlived its freshness.)

Day operations crew on the Pisces Caribbean Reef Fish Survey (left to right: Ariane Frappier, Kevin Rademacher (Chief Scientist), Joey Salisbury, and myself).


I want to thank all the scientists on the day operations crew and the deck hands for making me feel so welcome, being ever so patient as I learned how to bait hook, load the bandit reel, remove otoliths, sex  the fish, and answer every type of question I had.  They’re all amazing people and are passionate about their jobs.  Kevin was not only great at thoroughly answering any and all questions, but anticipated those I might have and brought interesting things to my attention.  Thank you everyone for an amazing experience that I’ll never forget!

Another incredible person that helped make my trip memorable is my roommate, NOAA Operations Officer, Kelly Schill.  She was very welcoming and made me feel immediately at home on the ship.  She gave me a thorough tour and introduced me to the crew.  I interviewed her briefly about her job in the NOAA Corps.

Kelly Schill, Operations Officer aboard the NOAA ship Pisces. (Source: http://www.noaacorps.noaa.gov)

LU: Kelly, what is your job title and what do you do?

KS: I am a Lieutenant junior grade in the NOAA Corps.  The NOAA Corps is one of the 7 uniformed services and I serve as the Operations Officer aboard the NOAA Ship Pisces.

LU: How long have you been working with NOAA?

KS: I have worked for NOAA a total of 4 years; 3 of which were aboard the NOAA Ship Pisces as a NOAA Corps Officer. My first year, I was a physical scientist and developed geospatial visualizations to assist in the generation of navigational warnings and maritime safety information for Dangers to Navigation for the NOAA and contractor surveys.  I assisted NOAA Ship Thomas Jefferson in the field with the acquisition, converting and cleaning of multi-beam and side-scan sonar data.

Aboard the NOAA Ship Pisces, my responsibility is to be the liaison between the ship’s crew and scientific party to ensure the mission is carried out smoothly and efficiently.  A big part of my job is to handle the logistics and transportation, such as project planning and setting up dockage at different ports from Texas to the Caribbean up to Massachusetts. Most importantly, to continue to learn the intricacies of the ship, effectively operate, and practice safe navigation at all times.

LU: What background and skills are necessary for your job?

KS:  A Bachelors Degree of sciences.  You must complete a year of chemistry, physics and calculus.  Geographic information System (GIS) is equally important. To be well-rounded, internships or field research experience is highly recommended.

Kelly Schill showing off the otolith she just extracted from a Red Hind.

LU: What type(s) of training have you been through for your job?

KS: Being in the uniform service, I was sent to Basic Officer Training Course (BOTC) to learn military etiquette, terrestrial and celestial navigation, safety aboard ships, search and rescue, fire prevention, hands on experience in driving small boats up to larger vessels, etc.  Once out of BOTC and on an assigned ship, I was able to attend further training:  hazardous material courses, dive school, rescue swimming, and medical. There are many more opportunities that were offered. I have only touched on a few.

LU: Have you worked on other ships not associated with scientific research?  If so, what was your job and what type of ship was it?

KS: No, all my experiences were on ships regarding scientific research:  NOAA Ship Thomas Jefferson (hydrographic ship) and the NOAA Ship Pisces (fisheries ship).

LU: Does being on a science research ship bring any specific/different expectations than being on another type of merchant ship?

KS: I am unfamiliar with the expectations on a merchant ship.  Generally, the research vessels are used to support studies intended to increase the public’s understanding of the world’s oceans and climate. Research vessels are not set on a point A to point B system. Various operations are conducted from fisheries, bathymetry, oceanographic, to marine mammal data collection.   These various research projects dictate operation area.  Contrary to research vessels, merchant ships usually have a set destination, from point A to point B transporting cargo of one type or another.

LU:  We are in the middle of a huge ocean, and our destination – a specific sampling site – is a pinpoint on a map. What has to be considered to make sure you get to the exact location?

NOAA ship Pisces ECDIS map. This is a nautical map that is updated monthly.

Closeup of navigational maps showing the location of our sampling sites.

KS:  We use a number of tools: ECDIS, Rosepoint, paper charts, GPS, Dynamic Positioning, and of course manual operation. The scientists will provide a location where they want the ship to be for operations to take place. We use all navigational tools to navigate to that position by creating a route, based on a good GPS feed. Navigational tools include: ECDIS (shows an electronic vector chart), Rosepoint (shows an electronic raster chart), and paper charts.  Multiple navigational tools are for redundancy to ensure safe navigation.

All routes are created on the side of safety to avoid collision with shoals, wrecks, land, neighboring ships, platforms, buoys, obstructions, etc. Once, we are close to our sampling station, the ship is set up into the wind or the current (whichever force is stronger), reduce propulsion, turn rudder hard over to one side to assist in the reduction of propulsion and to line up on a heading in favor of wind or current. The bow thruster can assist in turns as well. Depending on how strict the mission is to hold an exact coordinate, the dynamic position is dialed in and activated.  Otherwise, the watch stander will manually control the engine speed, bow thruster, and rudder to maintain position utilizing outside forces, such as wind, swell, wave state, and currents.

The ship’s radar. The yellow objects at the bottom are St. Thomas and its surrounding small islands, while other vessels will appear in green.

LU: Once we reach a site, what do you need to do to maintain that position during the sampling process?

KS: Every ship has its perks and not all are the same in maintaining a position during the sampling process. Our ship has dynamic positioning (DPS) which uses the rudder, propulsion, and a bow thruster simultaneously to hold position. However, just like any software system, it only works as well as the operator.  The parameters have to be just right to accomplish this goal.  Parameters are set up based on wind speed, swells, sea state, and currents.  All must jive for a positive outcome. Our ship works more efficiently facing into the wind or current; whichever force is the strongest. If both are strong, we split the difference. Should either the bow thruster, main engine, or steering fail, the dynamic position will not properly compensate.

Dynamic Positioning System (DPS) screen. This instrument helps hold the ship at a precise location.

Kelly, thanks for the interview as well as being a great role model for women!  Remember, girls, if you want it, go get it!

Lesley Urasky: Smile and say, “Squid!”, June 20, 2012

 NOAA Teacher at Sea
Lesley Urasky
Aboard the NOAA ship Pisces
June 16 – June 29, 2012

 Mission:  SEAMAP Caribbean Reef Fish Survey
Geographical area of cruise: St. Croix, U.S. Virgin Islands
Date: June 20, 2012

Location:
Latitude: 18.1937
Longitude: -64.7737

Weather Data from the Bridge:

Air Temperature: 28°C (83°F)
Wind Speed:  19 knots (22 mph), Beaufort scale: 5
Wind Direction: from N
Relative Humidity: 80%
Barometric Pressure: 1,014.90  mb
Surface Water Temperature: 28°C (83°F)

Science and Technology Log

The cameras are a very important aspect of the abundance survey the cruise is conducting.  Since catching fish is an iffy prospect (you may catch some, you may not) the cameras are extremely important in determining the abundance and variety of reef fish.  At every site sampled during daylight hours, we deploy the camera array.  The cameras can only be utilized during the daytime because there are no lights – video relies on the ambient light filtering down from the surface.

Camera array – the lens of one of the cameras is facing forward.

Deployment of the array at a site begins once the Bridge verifies we are over the sampling site. The camera array is turned on and is raised over the rail of the ship and lowered to the water’s surface on a line from a winch that has a ‘quick release’ attached to the array.  Once over the surface, a deck hand pulls on the line to the quick release allowing the array to free fall to the bottom of the ocean. Attached to the array is enough line with buoys attached. The buoys mark the array at the surface and give the deck hands something to aim for with the grappling hook when it is time for the array to be retrieved.  Once the buoys are on deck, a hydraulic pot hauler is used to raise the array from the sea floor to the side of the ship.  From there,  another winch is used to bring the array on board.

Vic, Jordan, Joey, and Joe deploying the camera array.

When the array is deployed, a scientist starts a computer program that collects the time, position and depth the array was dropped at. The array is allowed to “soak” on the bottom for about 38 minutes. The initial 3-5 minutes are for the cameras to power up and allow any sediment or debris on the bottom to settle after the array displaces it. The cameras are only actually recording for 25 of those minutes. The final 3-5 minutes are when the computers are powering down.  At one point in time, the cameras on the array were actual video cameras sealed in waterproof, seawater-rated cases. With this system, after each deployment, every individual case had to be physically removed from the array, opened up, and the DV tape switched out.  With the new system, there are a series of four digital cameras that communicate wirelessly with the computers inside the dry lab.

We did have a short-lived problem with one of the digital cameras — it quit working and the electronics technician that takes care of the cameras, Kenny Wilkinson, took a couple of nights to trouble shoot and repair it.  During this time period, we reverted back to the original standard video camera.  Throughout the cruise, Kenny uploads the videos taken during the day and repairs the cameras at night so they will be ready for the next day’s deployments.

Squid (before being cut into pieces) used for bait on the camera array

Besides the structure of the camera array which is designed to attract reef fish, the array is baited with squid.  A bag of frozen, cut squid hangs down near the middle.  The squid is replaced at every site.

Adding bait to the camera array.

In addition to the bait bag, a Temperature Depth  Recorder (TDR) is attached near the center, hanging downward near the bottom third of the array. The purpose of the TDR is to measure the temperature of the water at various depths.  It is also used to verify that the depth where the camera comes to rest on the ocean bottom and is roughly equivalent to what the acoustic sounding reports at the site.  This is important because the camera generally doesn’t settle directly beneath the ship.  Its location is ultimately determined by the drift as it falls through the water column and current.  The actual TDR instrument is very small and is attached to the array near the bait bag.  After retrieving the array at each site, the TDR is removed from the array and brought inside to download the information.  To download, there is a small magnet that is used to tap the instrument (once) and then a stylus attached to the computer is used to read a flash of light emitted by an LED.  The magnet is then tapped four times on the instrument to clear the previous run’s data.  The data actually records the pressure exerted by the overlying water column in pounds per square inch (psi) which is then converted to a depth.

TDR instrument

Computer screen showing the data downloaded from the TDR.

The video from each day is uploaded to the computer system during the night shift.  The following day, Kevin Rademacher (chief scientist), views the videos and quickly annotates the “highlights”.  The following things are noted:  visual clarity (turbidity [cloudiness due to suspended materials], what the lighting is like [backlit], and possible focusing issues), substrate (what the bottom is made of), commercially viable fish, fish with specific management plans, presence of lionfish (an invasive species), and fish behavior.  Of the four cameras, the one with the best available image is noted for later viewing.

Computer data entry form for camera array image logs

Once back at the lab, the videos are more completely analyzed.  A typical 20-minute video will take anywhere from 30 minutes to three days to complete. This is highly dependent upon density and diversity of fish species seen; the greater the density and diversity, the longer or more viewing events it will take.  The experience of the reader is also an important factor. Depending upon the level of expertise, a review system is in place to “back read” or verify species identification. The resulting data is entered into a database which is then used to assign yearly data points for trend analysis. The final database is submitted to the various management councils.  From there, management or fisheries rebuilding plans are developed and hopefully, implemented.

Spotted moray eel viewed from the camera array.  He’s well camouflaged; can you find him?

Coney with a parasitic isopod attached below its eye.

Two Lionfish – an invasive species

Personal Log

Today, we are off the coast of St. Thomas and St. John in the U.S. Virgin Islands.  We traveled from the southern coast of  St. Croix, went around the western tip of the island and across the straight.  When I woke up I could see not only St. Thomas and St. John, but a host of smaller islands located off their coastline.

Map of the Virgin Islands. St. Croix and St. Thomas are separated by 35 miles of ocean. It took us about 3 hours to cross to our next set of sampling sites.

Around dinner time last night we had an interesting event happen on board.  They announced over the radio system that there was a leak in the water line and asked  us not to use the heads (toilets).  A while later, they announced no unnecessary use of water (showers, etc.); following that they shut off all water.  It didn’t take long for the repairs to occur, and soon the water was returned.  However, when I went to dinner, I discovered that the stateroom I’m sharing with Kelly Schill, the Ops Officer, had flooded.  Fortunately, the effects of the flooding were not nearly as bad as I had feared.  Only a small portion of the room had been affected.  The crew did a great job of rapidly assessing the problem and fixing it in a timely manner.  After this, I have absolutely no fear about any problems on board because I know the crew will react swiftly, maintain safety, and be professional all the while.

Last night was the first sunset I’ve seen since I’ve been on board.  Up until this point, it has been too hazy and cloudy.  The current haze is caused by dust/sand storms in the Sahara Desert blowing minute particles across the Atlantic Ocean.

St. Thomas sunset

Today has been a slow day with almost nary a fish caught.  We did catch one fish, but by default.  It was near the surface and hooked onto our bait.  We immediately reeled in the line and extracted it.  It was necessary to remove it because it would have skewed our data since it was caught at the surface and not near the reef.  This fish was a really exciting one for me to see, because it was a Shark Sucker (Echeneis naucrates).  These are the fish you may have seen that hang on to sharks waiting for tasty tidbits to float by.  They are always on the lookout for a free meal.

Shark sucker on measuring board

One of the most interesting aspects of the shark sucker is that they have a suction device called laminae on top of their heads that looks a little like a grooved Venetian blind system.  In order to attach to the shark (or other organism), they “open the blinds” and then close them creating a suction-like connection.

The “sucker” structure on the Shark Sucker. Don’t they look like Venetian blinds?

I got to not only see and feel this structure on the fish, but also let it attach itself to my arm!  It was the neatest feeling ever! The laminae are actually a modified dorsal spines; these spines are needed because of the roughness of shark’s skin. When the shark sucker detached itself from me, it left a red, slightly irritated mark on my arm that disappeared after a couple of hours.

Look, Ma, No Hands! Shark sucker attached to my arm.

Tomorrow we’ll be helping place a buoy in between St. Croix and St. Thomas.  It will be interesting to see the process and how the anchor is attached.

With all the weird and wonderful animals we’re retrieving, I can’t wait to see what another day of fishing brings.

Marian Wagner: My Final Words and Hurricane Irene’s in Charge, August 23, 2011

NOAA Teacher at Sea
Marian Wagner
Aboard R/V Savannah
August 16 — 26, 2011

Mission: Reef Fish Survey
Geographical Area: Atlantic Ocean (Off the Georgia and Florida Coasts)
Date: Tuesday, August 23, 2011

A Fine Bunch to Live with at Sea: Front: Katie Rowe (Scientist), Sarah Goldman (Scientist Watch Chief, Night), Stephen Long (Scientist), Warren Mitchell (Lead Scientist). Middle: Marian Wagner (Teacher-at-Sea), Shelly Falk (Scientist), Christina Schobernd (Scientist, Video). Back: John Bichy (Marine Technician), Richard Huguley (Engineer), Harry Carter (2nd Mate), Raymond Sweatte (Captain), Michael Richter (1st Mate), David Berrane (Scientist Watch Chief, Day), Mike Burton (Scientist). Missing: Joel Formby (Master of the Galley)

Weather Data from the Bridge (the wheelhouse, where the controls of the ship are)

E-NE Wind at 10 knots  (This means wind is travelling 10 nautical miles per hour,
1.15 statute miles = 1 nautical mile)

Sea depth where we traveled today ranged from 33 meters to 74 meters

Seas 2-4 feet (measure of the height of the back of the waves, lower the number = calmer seas and steadier boat)

Science and Technology Log

IRENE: On Tuesday evening, we discussed the impact of Hurricane Irene on our cruise plans, and scientists and crew needed to make a decision about when we should return to dock. Originally, the plan was to return in the morning on Friday, August 26, but due to projections of Irene, they predicted that the seas would be too rough for us to lay traps beyond Wednesday (8/24).  When the seas are too rough, the traps bounce around and cameras do not pick up a steady, reliable picture.  When seas get to be 6-7 feet+ on a boat the size of the R/V Savannah (92 feet long), it also makes our work (and life) on the boat very difficult. Additionally, with Irene’s landfall projected in North Carolina, where half of the scientists live, they would need to get home in time to secure their homes and potentially evacuate.  Not in the case of Irene, but if a hurricane was expected to hit Savannah/Skidaway, where the boat moors, the ship’s crew would need to prepare for a hurricane-mooring.  To do this, they would run the ship up the Savannah River and put on a navy anchor that weighs 3,000 pounds.  Even with the use of the electric crane, it’s not an easy task to pull a 3,000 pound anchor onboard.  This would not be done unless a direct hit to the area was expected.  It has been done once before to the Savannah in the 10 years of her existence.  The forecast did not project Savannah to be affected by Irene, so we did not need to prepare for a hurricane mooring.

After difficult deliberation on Tuesday night about hurricane Irene’s potential Category (see how hurricanes are ranked here), and considering the success of the research accomplished on the trip already, scientists decided the most practical and reasonable decision was to dock Tuesday night, unpack Wednesday morning, and allow North Carolina scientists to return to their homes by Wednesday night.  (From reports I received post-Irene, there was landfall of the hurricane eye over their houses, but the storm weakened between Wednesday night and Saturday and was Category 1 when it came ashore.  None of them sustained significant loss.  Many downed trees and three days without power, but no floods or structure damage. Phew!)

NOAA’s National Weather Service is the sole official voice of the U.S. government for issuing warnings during life-threatening weather situations.  Follow Seattle’s “Weather Story” at NOAA’s National Weather Service.

OUR RESEARCH PROCESS…A STORY CONCLUDED

Here on my final blog entry, I want to finish the story of our research process.  Here’s the story I’ve told so far, in outline form:

  1. research begins with baiting fish traps and attaching cameras, and we stand-by on deck
  2. when we arrive at a research location with reef fish habitat (as observed via depth sounder and GPS), we drop the trap to the bottom and it sits for 90 minutes; buoys float above each trap so we can find and retrieve them near where traps were deployed, we run the Conductivity, Temperature, and Depth Profiler (CTD) to get information about abiotic conditions at each sampling site. The CTD takes vertical water column profiles, measuring: Pressure, Temperature, Conductivity/Salinity, Chlorophyll fluorometer, Color dissolved organic matter fluorometer (CDOM), Photosynthetic Active Radiation (PAR), Backscatter, Dissolved oxygen, and Transmissometer -10 and 25 cm path lengths
  3. after 90 minutes have passed, we return to the traps and pick them up, and secure the fish caught
  4. we identify each fish, measure length, weight, and frequency (how many fish were      caught), and then keep the fish that our research is targeting
  5. in the wet lab, we dissect target fish, removing parts of fish that are sent back to the lab for further research

AT THIS POINT, WE ARE DONE with our research with the bodies of the fish, but we have 99% OF THE FISH’S BODY LEFT! What should we do?

I was very impressed with the compassionate and humane action the scientists do with the fish after research.  Scientific research guidelines don’t dictate what a research study should do with edible fish flesh. We could have just discarded fish back into the ocean. However, scientists see an opportunity to provide food to people in need of  nutritional support in our communities, and they coordinated with a regional food bank in Savannah to do just that. Despite the work and time it takes to process the fish for donation, it did not seem to be considered a burden at all by any of the scientists.

I am perfecting my fillet!

Fresh fish fillets ready for food bank distribution

To process the fish for donation, we cut fish into fillets, wrap the fillets in butcher paper, and freeze them onboard the ship.

When we reached land, Warren
contacted the regional food bank, who came out to the dock with a refrigerated truck to pick up fish.  Within a few days the fish was distributed through charitable organizations in the region to people who were most in need.

These scientists are not just natural scientists but social scientists too! (just as I fancy myself!)

Personal Log

Captain Raymond Sweatte and First Mate Michael Richter

Interview with Raymond Sweatte, captain of R/V Savannah

Marian: What  makes a good crew?

Raymond: A crew that sees things that need to be done and does them because they know it all goes smoother when they do.

 

M: Have you ever run into or had a close call running into another ship?

Raymond: No, but the closest I came was when I was passing under the bridge at the Skidaway when a barge was coming through at the same time. Because it was easier for me to maneuver, I pulled over to side to let the barge use the majority of the channel. But the barge stayed on my side of the channel and was coming right at me. My boat was leaning upon the bank so there was no where for me to go.  I got him on the horn and asked, “What’s going on?”  He pulled over right away. He was new and very apologetic. 

M: Have you ever been in a terrible storm before?

Raymond: A few times we’ve had 15-16 foot seas coming back from the Gulf. When you have a north wind at 35 knots [strong wind coming from the North] and north-going current opposing the wind, the seas get very rough. Waves were coming up over the ship. [picture Marian’s eyes VERY wide at this point in the conversation] When seas are really rough, you get lifted up out of bed and down again. I remember trying to sleep one night in rough seas when my head kept hitting against the wall, so I turned around so my feet were up hitting against the wall.

M: What were things like before radar, satellite, and so many electronic navigation tools
you use today?

Raymond: Things were not as accurate. Communication was on a single sideband, navigation was with Loran-C, though VHF radio was somewhat the same as now.  To follow ships and determine their speed we had radar on dash but we had to use an eye cup we looked into to correlate with the radar, and then go over to the chart to plot them.  Then, we did it again six minutes later and multiplied by 10 to find their speed.  Now we have an automatic identification system [we can click on a ship on the radar] that tells us where they are, who they are, where they came from, where they are going, and what they are doing.  

M: What are the right-of-ways when vessels are crossing paths; who moves when two vessels are in course to collide?

Raymond: [On ships, aircraft and piloted spacecraft] a red light is on the left or port side of the craft and a green is on the right or starboard side. When two vessels have crossing paths, each will see a red or green light. If you’re looking at another vessel’s port side you see red, and it’s his right-of-way. If you are on their starboard side, you see the green light, and the right is yours.

Also, right-of-way rules give priority to vessels with the most difficulty maneuvering. The ranks in right-of-way, starting with the highest are:

1)Not under command

2)Restricted in ability to maneuver

3)Constrained by draft (stay away from shallower water to avoid running aground)

4)Fishing

5)Sail

6)Power

7)Sea Plane

Remember this mnemonic: New Reels Catch Fish So Purchase Some.

M: Who’s easier to talk to, a Navy Sub Captain or a Coast Guard Helicopter Pilot?

Raymond: I don’t have a problem talking with any of them. Coast Guard generally would call you first. Navy sub pilots I’ve found to be very cordial. They have changed their course when we had traps out.

M: What message would you say to students interested in being a captain?

Raymond: All kids have to follow their own heart. If they like water and this environment, they should follow their heart and become a captain.

Thank you Captain Raymond! It was a genuine pleasure to talk to you and experience life at sea under your command and with such a stellar crew. It is no wonder you are revered by everyone you work with.  Read more about Captain Raymond Sweatte in the Savannah Morning News!

The powerful significance of this trip for me was that I did not just study a science lesson from a book or lab, but I was essentially given a chance to live a different life, that of a fisheries field biologist.  I did not dabble in the work; it was a full explosion into the curiosities, reasonings, and daily routines of working with live fish and fish guts while sharing friendship, humor and stories with scientists and crew aboard a boat that was a small bounded island of rich human culture within a vast ocean of life and scientific questions waiting to be answered.  I loved it.  If only I didn’t love teaching more…I could definitely live that life.  Thanks NOAA, thanks NC SEFIS folks, thanks SC DNR folks, and thanks Skidaway Institute of Oceanography folks.  You are all in my heart and in my classroom!

FASCINATING EXTRAS!

Flying fish!

At night especially, when looking out at the seascape, I noticed flying, bug-looking specimens scurrying out of and into the ocean’s surface.  WHAT WERE THEY?! I wondered. So I asked and learned they were FLYING FISH! A few of them flew right up on the vessel’s work deck.  Their wings are modifications of the pectoral fins.  They are so fascinating and their coloring was greenish/blue iridescence, a stunningly beautiful color!

RED SNAPPER: PROTECTED STATUS

“The Gulf and South Atlantic red snapper populations are currently at very low levels (overfished), and both red snapper populations are being harvested at too high a rate (overfishing).” See more where this quote came from at Fish Watch: US Seafood Facts.

It was clear to me how significant the concern for the red snapper population was when I learned that funding for this fisheries survey was drastically increased following the recent determination that red snapper were overfished and overfishing was occurring.  Fisheries managers, field biologists and members of the general public all want to see the red snapper population improve.  This cruise provided scientific data that will be useful when the status of the U.S. South Atlantic red snapper population is assessed again.

The lionfish's spines are so poisonous the only way to hold them is placing fingers in their mouths.

History of measuring speed in NAUTICAL MILES:

Wonder how a vessel’s speed was measured hundreds of years ago? Log Lines, knotted ropes with a log tied to one end and knots every nautical mile and one-tenth of a nautical mile, were tossed off the end of the ship while the knotted rope unraveled behind it. When the sand on a minute sand glass ran out, the rope was reeled back in and the knots counted to determine ship’s speed in knots-per-minute.

 LIONFISH: INVASIVE SPECIES

In its native waters of the Indian and Pacific Oceans, the lionfish population is not a problem. There it has natural predators and natural parasites to keep it from overpopulating, yet it can survive well enough to maintain a healthy sustainable population. However, in the Caribbean waters and along the Eastern Coast of the United States, the lionfish has recently been introduced, and the effects are alarming. “Lionfish have the potential to become the most disastrous marine invasion in history by drastically reducing the abundance of coral reef fishes and leaving behind a devastated ecosystem.”  See more where this quote came from at NOAA’s research on invasive lionfish here. In the U.S. south Atlantic, they consume large quantities of reef fish and have no natural predators or parasites. Their population is thriving in large numbers, and it is devastating other fish species.  Mark Hixon, Oregon State University zoology professor, co-authored a study in 2008 with Mark Albins that showed “a lionfish can kill three-quarters of a reef’s fish population in just five weeks.” Read NPR story here. This is a cool way to view an environmental problem: see this animated map of the lionfish invasion! Red Snapper

Chris Imhof, November 19, 2009

NOAA Teacher at Sea
Chris Imhof
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Coral Survey
Geographic Region: Southeast U.S.
Date: November 19, 2009

Science Log

After 3 days and many hours in front of computer screens and monitors I almost forgot I was on a boat. Tonight is my last night on the Pisces, and although at times it has been rough, I have started to get used to the rocking of the ship and know every crew member by name. I ran about the ship when I have had a second, to take in things knowing I will have chance tomorrow . I will miss looking across the open sea and having opportunities to catch a glimpse of a shark fin near the side of the ship and a huge sea turtle making its way across the waves. I will miss talking to the crew and the scientists, and working with Jeannine Foucault the other Teacher at Sea. I’ll probably write another log tomorrow to sum up the experience, but its hard

to rally up for a science log when you are tired and many of have to pack to disembark at Jacksonville tomorrow morning. As for the Pisces and her crew, they will make their way back to Pascagoula for the Holidays.

Chris Imhof, November 18, 2009

NOAA Teacher at Sea
Chris Imhof
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Coral Survey
Geographic Region: Southeast U.S.
Date: November 18, 2009

Science Log

NOAA’s mission is to “protect, restore and manage the use of coastal and ocean resources.” The way NOAA does this is through science – a voyage like this may seem like moving from point to point and placing a really cool piece of technology in the water to see what’s on the bottom – but these are all tools that are being used to be able to carry out the tenets of protect, restore and manage.

We have visited half our sites now and have surveyed different environments in and out of Marine Protected Areas. Different environments, yet with commonalities – all the sites are near exposed “hard-bottom” or exposed limestone on the shelf bottom. There may be miles of sand waves and algae – but theses exposed, complex and bio-encrusted features are “oasis’s” for all sorts of ocean life – especially fish. As the ROV maneuvers across the sandy waves, it is usually the glint of a school of fish or reflection of a fish eye that provides a beacon to a feature. If these features are “oasis” habitats then they should be protected. Granted, these limestone blocks can do more damage to fishing line and gear, evident in the amount of line found in the high relief areas – but in the case of some of the North Florida MPA, we encountered the fragile deep water Occulina Coral which is vulnerable especially when nets are being dragged across these areas.

Another commonality noticed is the growing presence of the beautiful Lion Fish (Pterois volitans) – this native of Pacific waters was released intentionally or unintentionally in the early 1990’s around Florida and have since spread to areas above North Carolina and south to the Caribbean, especially along reefs and rocky outcrops. They join an infamous ranks of other invasive species including the European Green Crab, Asian Eel and Zebra Mussel. The Lion-Fish, besides having an array of venomous spines. has a keen strategy of “corralling” prey with their fins and eating them in one gulp. This will impact the small fish and crustaceans in these habitats as well as the added competition with indigenous or native predators such as snappers and grouper fish – which are currently commercially fished. This is where “manage” comes in – here is a “new” invasive species in that is growing in population and spreading geographically, impacting the habitat by out-competing, in some cases, the established predators – how can it be managed.

Especially when the Lion-fish has few natural enemies. The Lion Fish is a tricky one – as an invasive species, missions like this one help to understand the long-term impact the Lion-Fish is having on these habitats. Using technology like multi-beam mapping and ROV technology can provide data for scientists and in turn give councils, commissions and government the knowledge to manage these areas through smart-solution-based policy.

References:

coastalscience.noaa.gov/documents/factsheet_lionfish.pdf

http://www.magazine.noaa.gov/stories/mag135.htm

Chris Imhof, November 17, 2009

NOAA Teacher at Sea
Chris Imhof
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Coral Survey
Geographic Region: Southeast U.S.
Date: November 17, 2009

Science Log

We sailed last night to our first “station” – The North Florida Marine Protected Area – and by 7:00 am this morning the ROV pilots Lance Brown and Glenn Taylor were going through the “pre-flight” checklist on the ROV; Lance working the controls in the lab, Glenn outside taking care of the deployment and extraction of the vehicle on the starboard weather deck. Soon they were meeting with the Lead NOAA scientist Andy David to talk through the operations of the deployment and extraction and more specifically the methodology of what they were trying to accomplish at this site.

The North Florida MPA area has been protected since 2004 – meaning no sailing or fishing occurs in this area. Some of the area has been mapped by multi-beam sonar – so what scientist then do with ROV technology is “Ground-Truthing” in which after examining the multi-beam maps – choose features to explore and check visually how they compare with their maps. Since the ROV sends real time video feed to the lab, the scientist watch and note the features, the animals that are present or not present in the habitat. They also perform a down shot every 2 minutes, or stop the ROV – point the camera down and take a picture – later in the lab they quantify the habitat by gridding the photograph and counting the number of species. Todays North Florida site tested sites inside the Marine Protected Area as well as sites/features outside the MPA for comparison as well as to help make future decisions of extending possible areas into the protective zone or even species.

After the scientists met, the Pisces crew and captain Jeremy Adams met on the weather deck to talk through the operation – sync their communications and what if scenarios. In all, there were 3 ROV dives which went extremely smooth, mainly due to the organization and communication of everyone involved.

The highlights of the dive were the spectacular features of the exposed limestone near the drop offs and the amazing habitats – for all my preparation the diversity of fish was overwhelming – I could identify a few featured fish like the Lionfish, barracudas and Moray Eels – I was unprepared to see a real sea turtle hanging out by some rocks or a Goliath Grouper which came out of nowhere. I learned many new fish which I hope to be able to call out from the monitor tomorrow like the Reef Butterfly, Squirrel Fish, Amberjack, Scamp, Soldier fish, Purple and Yellow Tail Reef Fish. I was helpful in identifying some of the Occulina deep coral species, the sponges (which you couldn’t miss) as well as pick out old fish line, a bottle and and an old anchor jammed into the rocks near the edge.

I’ll let the pictures and video slices tell most of the story. We are cruising all night again to our most northern site Edisto – off South Carolina and then work back from there.

Lynette Swiger, July 20, 2008

NOAA Teacher at Sea
Lynette Swiger
Onboard NASA Ship Liberty Star
July 16 – August 23, 2008

Mission: Coral Survey
Geographical Area: Atlantic Ocean, off the coast of Florida
Date: July 20, 2008

Crewmembers on the LIBTERY STAR ready the camera cage for a deep sea drop.
Crewmembers on the LIBTERY STAR ready the camera cage for a deep sea drop.

Weather Data from the Bridge 
Wind: SW 10 knots
Seas: 1-3 feet
Temperature: 86 F
Barometer: 29.94
Cloud Cover: 10%
Visibility: 8 miles

Science and Technology Log 
The South Atlantic Fishery Management Council (SAFMC) plans to establish eight Marine Protected Areas (MPAs) between North Carolina and the Florida Keys in late 2008. The goal of establishing these MPAs is to prevent over fishing of grouper and tilefish in these areas as well as to protect other fish and invertebrate species and the coral reef ecosystems. NOAA has been documenting these areas yearly since 2004 in order to identify populations and assess habitat both before and after closure to fishing. This long range project will improve understanding of the impact of fishing activities and compare coral reef and habitat in these areas. Our cruise is continuing this documentation, and the information collected will be compared to previous years’ data.

Knowing the plan, it is interesting to have the opportunity to assist with this cruise. This is our second day of diving, and we have so far completed a total of 8 dives, 4 camera drops, and 1 fish trap drop. We are especially looking for grouper and tilefish, but have so far seen no tilefish. This is not uncommon for tilefish as they are found further offshore in a deeper, muddy environment. Grouper, however, prefer a reef habitat such as the ones we have been exploring. Reefs provide nooks, crannies, and crevices for hiding as well as bait fish for grouper prey. It will be interesting so see if grouper populations increase after closure of the MPAs.

The presence of lionfish is another fact that’s interesting and provides some concern. We have seen numerous lionfish in both days of diving. Lionfish are native to the Indo-Pacific Ocean – not the Atlantic – and have no natural predators in the Atlantic Ocean. They may have been introduced to the Atlantic Ocean by people whose aquariums could no longer contain the eighteen inch long fish. Some may also have been introduced from destruction of commercial aquariums during Hurricane Andrew. However they were introduced, they live in the same habitat as grouper and eat the same prey. It is feared that they will affect grouper populations at a time when attempts are being made to protect the grouper.

NOAA Teacher at Sea, Lynn Swiger, takes the controls of the ROV aboard the LIBERTY STAR
NOAA Teacher at Sea, Lynn Swiger, takes the controls of the ROV aboard the LIBERTY STAR

Animals Seen Today 

We saw an abundance of fish species today, but I would like to take the time to talk about two in particular. The short big-eye is a cute little fish that stations itself near individual hidey-holes. When a predator, or ROV, approaches, the big-eye quickly scampers into its hole. It’s sort of like the ocean version of prairie dogs!

Polychaete worms were another animal that I found particularly interesting. To me, these resemble coral, but Stacey and Michelle explained that they are worms which secrete a substance that surrounds them and creates a personal burrow. They build and colonize together and form clump-like structures. To feed, they extend their tentacles outside the burrow and collect ocean particles.

Vocabulary 
Lionfish, Indo-Pacific, species, population, tilefish, grouper, offshore, ecosystem, restricted.

Career Connection 
Andy, Stacey, and Michelle are what we would call marine scientists. They all have a four year college and graduate degrees. Stacey and Michelle began their careers at NOAA doing summer internships. An internship means you work for someone for little or no money, but are rewarded with a great experience and new knowledge that can later help you find a job. It’s difficult to precisely define the job of a marine scientist, but one aspect involves designing and implementing projects that involve research in the ocean with follow-up laboratory analysis of the collected data.

Marine scientists find careers with the federal government (such as NOAA), state governments, colleges and universities, and private companies. Marine scientists need to be proficient in math, science, and writing, Biology and chemistry classes provide a good science foundation, while calculus and statistics are important math skills. Marine scientists routinely write grant proposals, so a good writing ability with an emphasis on correct spelling and grammar is crucial. In addition to academic qualifications, employers want to hire marine scientists who exhibit a good work ethic, are self-motivated, show intellectual curiosity, and get along well with others. Could this be you?

Question of the Day 
MPA means “marine protected area”. This is an area where fishing is restricted in order to protect and preserve fish and their habitat. Why is it important to have protected areas? What could happen if there were no MPAs?

Educational Link 
Educators are often frustrated with the many requirements on our teaching day – the need to use more technology in the classroom being one of those requirements. However, the use of technology on this cruise is of critical importance, and has allowed me to see the increasingly vital part it will play in education, careers, and everyday life. As educators, we need to incorporate more technology into the classroom experience. This means not specific pieces of technology in isolation, but technology that is incorporated into a project and becomes an integral part of completing that project.

Personal Log 

NOAA Teacher at Sea, Lynn Swiger, takes the controls of the ROV aboard the LIBERTY STAR.
NOAA Teacher at Sea, Lynn Swiger, takes the controls of the ROV aboard the LIBERTY STAR.

The weather has been beautiful, the crew is so helpful, friendly, and interested in my part on this cruise as a teacher, and we’ve “dived” into some beautiful places in the Atlantic Ocean. I had my first experience at deep-sea fishing and found that it’s difficult to reel those fish up to the ship! I also had the opportunity to drive the ROV. It was quite an experience that required me to think in two or three directions at one time and actually reminded me of a sort of video game. I’ve learned about otiliths (which I will talk about tomorrow) and pestered Stacey and Michelle with an overabundance of questions which they very graciously answer. I have learned so much already. Of course, one person that keeps everyone energized and able to work is the Dragon, the cook. I must say that the food onboard ship is wonderful. I must constantly remind myself that I have a wedding to attend three weeks after I arrive home, and I’ve already purchased the “skinny” dress. So I need carefully monitor my intake. Dragon seems to potter carelessly about the galley, but come mealtime there’s a fabulous menu and I want to try it all! There are six kinds of fresh fruit each morning and fresh salads for every lunch and dinner. Omelets, eggs to order, sausage and bacon, beef stroganoff, creamed salmon, schnitzel and lasagna, desserts….the list goes on and so does my appetite.

Happy Sailing! Lynn 

Lynette Swiger, July 18, 2008

NOAA Teacher at Sea
Lynette Swiger
Onboard NASA Ship Liberty Star
July 16 – August 23, 2008

Mission: Coral Survey
Geographical Area: Atlantic Ocean, off the coast of Florida
Date: July 18, 2008

Weather Data from the Bridge 
Wind SW at 9 knots
Seas SW at 2-3 feet
Air Temperature 83 F
Barometer 29.98
Cloud Cover 60%

Helping to load equipment
Helping to load equipment

Science and Technology Log 

Today was our first day of operations. We had planned to sail to the northernmost point of our cruise yesterday and then work our way south. However, due to a tropical depression occurring off the coast of Georgia and South Carolina, we turned around and stayed near Jacksonville for our first day of operations and will then move to our most northern point to work backwards. After experiencing choppy seas of 7-8 feet during the late afternoon and evening yesterday, I heartily agree with the decision. I have learned that there is quite a difference between three foot waves and seven foot waves.

Today I will talk about the equipment that we will be using to conduct our survey. This is fascinating stuff and helps me to better understand the enormous impact that technology has on our lives now as well as the increasing impact that it will have in the future. One of the most important pieces of equipment that we are using is the Remote Operated Vehicle, or ROV. This is an unmanned vehicle that is tethered to the ship and remotely controlled to perform various tasks. On this cruise, the ROV takes video and still pictures of deep coral reefs and fish found in the Atlantic Ocean from North Carolina to Florida. The video and pictures are seen in bright color on a large screen television as well as two different monitors in the operations room. The ROV is operated through the use of two joysticks. One commands the ROV to move forward and back or right and left. The other joystick commands it to move up and down or crab to the right or left. Other switches will change cameras, pan and tilt, adjust light intensity, or change thruster speed. The operator is using all of the this apparatus at one time while watching two computer areas – one tracking our movement through GPS and compass, and one showing real-time and camera shots. The scientists are using the videos taken through the ROV to find fish and other underwater creatures in the area of our cruise, and the still pictures it takes are used to assess habitat.

Another important piece of equipment that we will use is the camera cage. It is a round cage with openings to insert four waterproof video cameras that are spaced 90 degrees apart. This means that when the cage is lowered into the water, the cameras, working together, will take pictures in a complete circle around one area for twenty minutes. This is different from the ROV because these cameras are stationary. The cage is not commercially available, but was made by Steve, the Fisheries Methods and Equipment Specialist, from simple drawings and descriptions that the scientists gave him. The cage securely holds and protects the cameras while they are underwater and is quite an impressive piece of equipment. One other piece of equipment slated for use on our cruise is the fish cage. This will be used to trap fish in particular areas. The fish will be analyzed for type, size, age, etc. All of this equipment combined will help the NOAA scientists understand the fish life and habitat that are in this area of the Atlantic Ocean. My next log will talk about the purpose and importance of this cruise.

Journal writing on deck
Journal writing on deck

Some Animals Seen Today from ROV 
Vermillion Snapper, Tom Tate Fish, Spot Fin Hogfish, Tattler Fish, Hermit Crab, Pencil Urchin, and Arrow Crab.  We also saw several lionfish. This fish is not native to the Atlantic Ocean and is becoming an overpopulated problem.

Coral, Etc. Seen Today from ROV 
Sea Whips, Gorgonian Soft Coral, Bushy Black Coral, Sponge, Sea Fan, and Sea Anemone. We also saw Oculina Coral which is coral found only in very deep areas of the ocean.

New Vocabulary  
Remote Operated Vehicle (ROV),  Marine Water (not referring to a member of the armed services), Freshwater (hint – the opposite of marine), and Marine Protected Area (MPA).

Crew/Career Interview 
I would like to take a few minutes in each log to talk about some of the different careers that combine to make a success of a cruise such as this. Since I am in a part of the world that is completely different from West Virginia, I thought that a discussion of ocean-related careers might be of special interest to those students interested in the ocean and its surroundings. I spoke earlier about the ROV and how we are using it to successfully complete our mission, so today I will talk about Lance and his career as an ROV operator.

An ROV is an unmanned vehicle that is tethered to the ship by an umbilical, and remotely controlled to perform various tasks. ROVs are used in many ways, both in freshwater and marine environments. ROVs are used for video documentation; for fisheries studies; by geologists to investigate underwater ridges, canyons, and pits; and by oil companies to maintain rigs, install equipment, and clean structures. Lance attended the Florida Institute of Technology for two years and specialized in underwater technology. ROV operators are in high demand and must have a good technical aptitude, possess the ability to troubleshoot, have some electronic skills, and be good at visual spacialization. Video games can provide good practice for some areas of this career. This career provides the opportunity to travel to many parts of the world, learn about a variety of subjects, be near the water, and meet and work with different people.

Question of the Day 
How can pollution in the Tygart River in Marion County, West Virginia affect fish habitat and populations in the Atlantic Ocean?

Personal Log 

I am learning to maneuver on a moving ship, and it’s quite an interesting process. I have learned that I should move slowly rather than quickly and purposefully as I am used to doing. I have also learned to know where hand rails are located and to use them often. When we went to bed on Thursday evening, the ship was still docked but was scheduled to leave at midnight. This means that I awoke on Friday morning to a gently rocking ship and I could not move in the same manner as when I went to bed the night before. I learned this quickly when I hopped out of bed and subsequently staggered across my stateroom. Before I could regain my balance, the ship changed motion and I staggered backward to my original starting point. As I reached the bathroom, hoping to remain quiet for the person sleeping in the adjoining stateroom, I let go of my hold on the door and reached for the bathroom handrail. The door slammed open and before I could grab for it, it changed direction and slammed closed. So much for being quiet! My wet soap bar shot off of the soap dish and across the room three times before I learned to nestle it in a paper towel, and all of my toiletries fell over in the cabinet before I learned to lay them on their sides.

Friday evening was interesting because we were sailing into a tropical depression, and the waves rose to seven feet. This was not pleasant and the 24-hour meclazine tablet I had taken at 9:00 am felt like its effectiveness had expired. I subsequently took another one at 5:00 pm and fell into a deep trancelike state from which I couldn’t awaken until 10:00 pm. I later found that most people on the ship also spent their time lying prone on their bunk beds as this was the safest place to be at that time, so I didn’t feel quite so guilty.

It is now 6:00 pm on Saturday. I have not taken motion sickness meds for more than 24 hours, and it seems that the crew’s prediction that my body would acclimate itself to the motion has come true. I hope this is true and that the six different motion sickness remedies I brought can be taken home and put on my medicine shelf.

Happy Sailing! Lynn

Tara Treichel, April 27, 2008

NOAA Teacher at Sea
Tara Treichel
Onboard NOAA Ship Nancy Foster
April 15-27, 2008

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: April 27, 2008

Weather data from the bridge 
Visibility: 10 n.m.
Wind: 11 knots
Waves: 1-2 feet
Ocean swells: 3-4 feet
Sea temperature: 23.0
Air temperature: 23.0

At 120 feet, the water has absorbed red, yellow and green wavelengths of light, muting the brilliant colors of these Lionfish and other reef organisms (the Lionfish in the foreground is partially illuminated by the video camera)
At 120 feet, the water has absorbed red, yellow and green wavelengths of light, muting the brilliant colors of these Lionfish and other reef organisms (the Lionfish in the foreground is partially illuminated by the video camera)

Science and Technology Log 

I wanted to explain a little more about the purpose of the Lionfish study. The technical name of the study is Assessment of Lionfish Ecosystem and Fisheries Impacts. The Principal Investigator/Chief Scientist is Paula Whitfield, who works out of the NOAA Lab in Beaufort, North Carolina. Several years ago, Paula had heard reports of Lionfish seen off the coast of North Carolina. A recreational diver, Paula visited these sites to see for herself; what began as a casual observation turned into the guiding question for a complex Lionfish ecosystem study that is now in its seventh year. As I understand, the guiding questions framing the study are:

  1. Initially the scientists needed to understand, to what extent Lionfish have invaded the coastal waters of the eastern US. Under this broad question fall many sub-questions: Are they successfully reproducing? How large is their population? Are they expanding their geographic range, and is their population growing? Finally, what biological and physical factors may limit their survival (i.e. what environmental conditions do they need to survive)?
  2. After the initial research results revealed a widespread and well-established presence of Lionfish, researchers refined their objectives to better understand the fisheries and ecosystem impact of Lionfish. This is a very broad question and includes many sub-questions such as: What species are they eating? Is the number of “conspicuous fish” species (large and easy to see and count) decreasing in areas where Lionfish are present? Are the number of “cryptic fish” species (small typically prey species that hide within the habitat) decreasing in areas where Lionfish are present?
  3. The scientists also seek to better understand how Lionfish impacts may be further complicated by other variables such as overfishing and climate change. Examining this question requires looking at many other aspects of the marine ecosystem as indicators of ecological health. Sub-questions are: How are the physical and chemical ocean parameters changing over time (e.g. sea temperature, ocean currents, chemical composition)? How are algal populations changing over time? How are invertebrate and soft-bottom communities changing over time?

Initial results of the study were eye-opening. Everywhere the research team went, they found Lionfish. From 20042007, the data across the sampling sites showed an increase in population of well over 300%. Considering that these fish have no known predators, and females release 30,000 eggs at a time, it is not hard to imagine the severe impact that these fish could potentially have on the marine food web and ecosystem. In addition, Lionfish are tropical reef fish, which require warm water to survive and reproduce. As climate change occurs, it is conceivable that Lionfish could expand their range in response to rising sea temperatures or a shift in Gulf Stream currents.

Paula Whitfield (right), Chief Scientist of the study, and I enjoy the sunshine.
Paula Whitfield (right), Chief Scientist of the study, and I enjoy the sunshine.

Tara Treichel, April 26, 2008

NOAA Teacher at Sea
Tara Treichel
Onboard NOAA Ship Nancy Foster
April 15-27, 2008

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: April 26, 2008

One of the Survey Technicians operates the Multi-Beaming mapping system.
One of the Survey Technicians operates the Multi-Beaming mapping system.

Weather Data from the Bridge 
Visibility: 10 n.m.
Wind: 11 knots
Waves: 1-2 feet
Ocean swells: 2-4 feet
Sea temperature: 23.5
Air temperature: 22.0

Science and Technology Log 

In addition to the Lionfish survey, the other research that is being conducted while aboard the NANCY FOSTER is benthic habitat mapping of the ocean floor. This is accomplished using highly sophisticated, computerized multi-beam SONAR technology. Two survey technicians aboard the ship are responsible for running and monitoring the system, which is run all through the night. The operators make sure that the system is recording data properly and that the ship stays on course (within about 5 meters), and process the data as it is recorded. The course is set and followed, lawnmower style, back and forth along long narrow parallel lines, producing a beautiful rainbow colored map coded for “depth by color,” where red is high and blue is low. After five nights of mapping, the white digital nautical chart contains five tiny rainbow swatches, each one representing about 10 square miles of mapped space. Each year the research team adds to the swatches, until one day perhaps the entire bay floor will be mapped. Scientists later use the maps to support their research; in this case, Paula used them to determine where to dive. With countless miles of ocean floor (much of which is sand, or poor fish habitat) and limited time and research budgets, the maps are a critical part of the research effort. 

Tara holds up a specimen that some of the scientists said was the biggest Spiny Lobster they had ever seen!
Tara holds up a specimen that some of the scientists said was the biggest Spiny Lobster they had ever seen!

There are a lot of variables such as temperature and salinity that can  influence the transmission of the sound waves produced by the multi-beam sonar to measure seafloor depth.  In order for the data to be as accurate as possible the survey technicians need to measure these variables throughout the water column using a CTD (conductivity (salinity), temperature and depth). They conduct three CTD ‘casts’ a night by first lowing and raising the CTD on a long cable that is controlled by a winch.

Personal log 

Today, the Chief Engineer caught a Wahoo off the stern of the boat. Wahoo! Can you think of a fish with a cooler name? It’s a cool fish, too, sleek and streamlined, with large jaws and a loud stripy pattern on blue gray skin. It was perfect timing, since a barbeque was planned for our last afternoon at sea. The fish is nearly all muscle, and yielded 25 steaks, almost enough for each one of our full ship of 35 people aboard. How was it, you ask? Delicious! The scientists also caught several large Spiny Lobsters, a Scamp (a Grouper), Hogfish, Sea Bass, and of course, many Lionfish. In addition, they saw a Mola Mola (Sunfish) and several Loggerhead Turtles. 

Tara Treichel, April 25, 2008

NOAA Teacher at Sea
Tara Treichel
Onboard NOAA Ship Nancy Foster
April 15-27, 2008

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: April 25, 2008

The diver support boat NF-4 waits for the dive team to surface.
The diver support boat NF-4 waits for the dive team to surface.

Weather Data from the Bridge 
Visibility: 10 n.m.
Wind: 2 knots
Waves: 1 foot
Ocean swells: 2-3 feet
Sea surface temperature: 23.4
Air temperature: 21.5

Science and Technology Log 

Today the morning dive at Lobster Rocks went to 125 feet. The report was that it was an excellent dive, and the video showed this to be true. The visibility was excellent and the habitat looked rich. Among the Amberjacks, Grouper, Blue Angelfish, and Hogfish, were tons of Lionfish! They were everywhere, lurking around every ledge and rock. They look like princes of their domain, regal in their showy capes of red and white, brandishing lances to keep out intruders. Neither aggressive nor fearful, as they have few if any predators, they hover in place, guarding their territory from other lionfish.

NOAA Teacher at Sea, Tara Treichel, has just taken length and fin ray measurements from this large lionfish, and has removed gonads and a gill sample for lab analysis.
NOAA Teacher at Sea, Tara Treichel, has just taken length and fin ray measurements from this large lionfish, and has removed gonads and a gill sample for lab analysis.

The morning divers brought a small collection of creatures back for further study, including a sample of bryozoans (a form of attached invertebrates that looks a lot like algae), a large spiny lobster (carapace at least 5 inches in diameter), a handful of fish for the cryptic fish survey, and about a dozen Lionfish. I helped Wilson take basic measurements from the Lionfish, and dissected them to remove gonads and gill samples for DNA analysis. The fish ranged in size from 150 to 380 mm, from mouth to end of tail. Next, dorsal and anal fin rays are counted, to help determine species classification (lionfish are of Indo-Pacific origin, and are classed in two subspecies based on number of fin rays). On the fish sampled, dorsal fin rays varied between 10 and 11.5, but anal fin rays consistently numbered 7.5. After I had removed the gill section and gonads, I gave the fish to Brian, who opened up their stomachs to take a cursory look at what the fish had been eating. In one, he found a small spiral shell about the size of a shirt button. In another, the stomach was bulging full, and contained four small fish, whole but partially digested and terribly stinky. All in a day’s work of a scientist! After this initial information was collected, the fish were labeled in zip-lock bags and frozen for later study. 

The stomach of this small Lionfish contained four partially digested whole fish.
The stomach of this small Lionfish contained four partially digested whole fish.

Personal log 

Today I had the fortune—and the misfortune—of getting out in one of the small boats. I say fortune because the conditions were ideal: calm seas and sunny blue skies. It was a great day to be out on the water, and I expressed an interest in going for a swim. We were responsible for shuttling the safety diver to assist the dive team, and transporting the dive team back to the NANCY FOSTER. The misfortune occurred toward the end of the dive, as the safety diver was trying to reboard the boat. To make it easier for him to enter the boat, the skipper removed the side door of the craft, a routine task. Under normal circumstances, the bilge pumps purge any water that splashes into the boat, but on this day, for reasons unknown the bilge was already full of water, and the water that surged into the open door space quickly filled the stern of the boat. We tried to replace the door, but the water was spilling in too quickly, and the boat slowly overturned. So, I got my wish to swim faster than I’d expected! Fortunately, as I mentioned, it was a fine day for a swim. Minutes later, two rescue boats were deployed from the NANCY FOSTER, and shortly after we picked up the dive team and were safely onboard the mother ship again. The ship had quite a challenge getting the overturned boat back onboard and into its cradle, but with skilled use of the crane, the boat was recovered in little over an hour. It was the sort of adventure I had least expected when going out to sea. I was happy that no one got hurt, and impressed with the response of the NANCY FOSTER crew. 

Tara Treichel, April 24, 2008

NOAA Teacher at Sea
Tara Treichel
Onboard NOAA Ship Nancy Foster
April 15-27, 2008

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: April 24, 2008

Weather Data from the Bridge 
Visibility: 10 n.m.
Wind: 7 knots
Waves: 2-3 feet
Ocean swells: 3-5 feet
Sea surface temperature: 24.5
Air temperature: 23

NOAA Divers at the rail of the ship just before a dive
NOAA Divers at the rail of the ship just before a dive

Science and Technology Log 

Today the NANCY FOSTER deployed four dive teams, two each at two survey sites. This is a tricky maneuver, requiring the coordination of many people. Preparations included an hour-long briefing of the plan and review of safety information, in which divers were reminded, among other things, to stay close to their buddies since an “out of air” emergency could spell the end of future diving opportunities with NOAA. On the deck, the chaos was well managed. With extensive use of hand-held 2-way radios, communication was maintained between the bridge (control station of the NANCY FOSTER), the two small boats, and the deck support: the two small boats were launched with the aid of the crane, and the mother ship was jockeyed into position alongside the dive site target buoys that had been dropped earlier. When the position was just right, the call was made, “Divers to the rail,” and the four divers, weighed down by double layers of wetsuit, twin tanks, dive computers, and mesh bags holding notepads and pencils, were lead to the edge of the boat. One by one, they stepped off the boat and disappeared beneath the surface, leaving a trail of bubbles to mark their descent.

The divers will visit sites that were selected years ago when the lionfish study first began. The sites were chosen using benthic maps of the ocean floor to help identify favorable fish habitat. Today’s dives were at “WOO6” and “Big Fish”, in 130 and 150 feet respectively. These depths are beyond my PADI Open Water limit of 90 feet, and require mixed Nitrox gas in order to extend the underwater dive time. Use of mixed gas at these depths qualifies this as “technical diving” and involves an increased risk to the divers, so the NOAA lab has contracted with NURF (National Underwater Research Foundation) to provide technical dive support. Divers have strict bottom time limits and must make several safety stops on their ascent; in addition, a Hyperlite recompression tank stands at ready for any nitrogen sickness emergencies (“the bends”).  During the dives, the researchers do a variety of tasks. All of the researchers take general habitat notes, and record the presence of marine debris. Paula and Brian are surveying the large, “conspicuous” fish, including lionfish, by estimating the population size of each species along a given transect length.  Paula also will collect a temperature logger that she placed at the site 1 year ago, which has recorded temperature data every half hour. Roldan and Christine are surveying “cryptic” fish communities (prey species that are very small or that hide within the habitat). Roldan lays out a one-meter square PVC quadrate and chemically stuns and collects the fish, which he then captures in a Ziploc bag for later study. Wilson is studying the algal community, but finds that there is very little to collect this early in the season. He also spears a number of lionfish for later study, which he bags carefully to avoid being stung by the venomous spines. Finally, Thor and Doug alternate between video camera duties, documenting the underwater habitat.

NOAA Ship NANCY FOSTER as seen from the divers’ support boat
NOAA Ship NANCY FOSTER as seen from the divers’ support boat

Personal log 

First impressions, and notes on the boat: The ship is due into port at 1700, and it is right on time. After the events of the past week, this is a pleasant surprise.  I am struck by the size of the ship. It is massive and bulky, with a flared steel bow that towers over me as I watch from the pier. Quite unlike the nautical parallel parking that I learned as a teenager growing up on a northern Wisconsin lake, this ship is equipped with side thrusters that allow it to maneuver its bulk with some amount of precision. Immediately, I can see that understanding momentum is a key factor in handling this boat: the ship is anything but “quick on its feet” when a change in direction is needed, and lack of planning for this fact could be disastrous. But today is not the day for a demonstration of this lesson. After 20 minutes of adjustments, the two-inch deck lines are thrown out from the ship, and it is securely tied to rest for the night.

A flurry of activity ensues. There is excitement in the air, like the charge before an electrical storm. The outgoing crew is anxious to be on home turf again, after weeks away at sea and in foreign ports, and the new team of scientists is equally anxious to get underway and begin their mission. The wind adds to the fervor, whipping my hair across my face and sending the Stars-n-Stripes cracking over the stern of the ship.  The gang plank is lowered into position by the lower deck crane and a cargo net is secured below. For the next 10 minutes, there is a steady flow of bodies and boxes, as mail is shipped onboard and supplies from the previous mission are offloaded. A deck crane is used to hoist crates of heavy equipment on board, including dozens of SCUBA tanks.

Loading the scientists' equipment onto the FOSTER using the ship's deck crane
Loading the scientists’ equipment onto the FOSTER using the ship’s deck crane

The NANCY FOSTER is an oceanographic research vessel of the NOAA fleet. One hundred eighty feet on deck and built of steel, she is made for ocean navigation and equipped for scientific research. She was built in 1986 by the Navy as a torpedo tester, and is considered very seaworthy. Throughout the year, she is used for a variety of scientific research missions, each research team outfitting the boat with its own specific technical equipment. Two onboard labs are designated for this purpose: a dry lab, housing numerous computer stations and data processing equipment kept dry (and frigid) with continuous air conditioning. All told, including mine, there are 16 computers in this room. One wall holds 7 flat-screen monitors, one of which displays a live video stream of the stern decks of the ship, where at the present moment a hopeful engineer is dragging a fishing line through the rolling blue waves. Adjacent to the dry lab is the wet lab, mostly an empty room that quickly fills with scientists’ tools of the trade: bins, underwater cameras, measuring devices, dissecting equipment and specimen preservation chemicals, and bags upon bags of SCUBA gear. In the wet lab, I get my first glimpse of our quarry, and the purpose of the mission: numerous copies of fish identification books adorn the tables, and the walls are full of color posters depicting creatures of the deep—echinoderms, manatees, Caribbean reef fishes.

Looking around the ship, one can’t help but notice the references to danger. All around are reminders of things that could go wrong (and undoubtedly have). Most noticeable is the large red motorized rescue craft hanging from the mid deck crane. Next to it is a green painted stamp indicating an emergency meeting or “muster” area. To the left of this is a coiled canvas fire hose, with the stamp “No Smoking” printed above (elsewhere, crew are instructed to smoke aft of the rear crane, preferably “away from the gasoline cans” and where the SCUBA oxygen bottles are being filled). Across the deck from the fire hose is a closet holding 10 Immersion Suits, 5 medium and 5 large, as well as 15 life jackets. Around the corner are three oversized barrels containing full immersion survival gear, including 25 person life rafts. Down the railing from the barrels and placed all throughout the ship in various conspicuous places are the timeless classic orange life-rings printed with the ship’s name in black blocky script. Inside the boat, there are more reminders: emergency procedures, the ship’s interior plan depicting the location of every rescue device and exit onboard, and numerous posters outlining CPR in simple steps and photographs. I would not want to have an emergency on board this ship, but if the unthinkable happened, I am confident that this ship and crew are well prepared. 

I am led through watertight doors and down a narrow flight of stairs into the belly of the beast, on the first floor of the ship. My berth is in Stateroom 17, which sleeps four, in bunks containing mattresses that give a whole new definition to the size “single”. I choose a top bunk, which gives me a little more head room amidst the crisscross of pipes overhead.  I am instructed to unload everything into the closets and cabinets that line the walls, since everything that’s not strapped down or contained in a box will be subject to repositioning by the motion of the ship. And motion there is! As soon as we get out of the harbor and away from shore, the 4-5 foot waves set the boat into an irregular pattern of constant swaying from side to side as well as front to back, like a rocking horse on a swivel. I won’t elaborate on the effects of this motion on my body and mental state, since seasickness has been well described elsewhere. Suffice to say that the benefit of the tiny pink pills can’t be overstated, and I am now feeling fine. A few more notes on ship travel: Why was I surprised to see the stream of water from the faucet sway back and forth? (okay, if you want to be technical, this is a matter of perspective: in actuality, the water stayed straight and it was the sink/boat that moved relative to the vertical line of water, but the effect was still startling). Another amusing note: the dry lab was full of wheeled cushy office chairs, on a painted steel floor. Remedy? Each chair’s legs were bungeed to the nearest bench support. Depending on the bungee, this left a range of motion of each weighted chair of a foot or two. Picture it: a room full of scientists at work on their computers, all sliding in unison into their neighbor’s workspace for a moment, only to be yanked back to center, and then rolling away to the other side…

Maggie Flanagan, July 7, 2007

NOAA Teacher at Sea
Maggie Flanagan
Onboard NOAA Ship Oscar Elton Sette
June 12 – July 12, 2007

Mission: Lobster Survey
Geographical Area: Pacific Ocean; Necker Island
Date: July 7, 2007

A turkeyfish and white spotted toby found in lobster traps.
A turkeyfish and white spotted toby found in lobster traps.

Science and Technology Log – Bycatch 

Though spiny and slipper lobsters are our target species for sampling, many other interesting creatures are interested in our bait, and wind up in our traps.  Some of the smaller creatures spend a little time in our on board aquarium for observation and acclimation.  These fish are upside down because their swim bladders, which regulate buoyancy in the ocean, have not yet adjusted to the surface (barotrauma).  They wouldn’t survive if they were immediately released. The turkeyfish, aka Hawaiian lionfish, Dendrochirus barberi, is red/orange with large fins. It has venomous spines in its dorsal (back) fin, and will lunge pointing them at a threat.  We used a net instead of gloves to observe this one. This fish in known to enjoy a meaty diet, eating other smaller fish. The Hawaiian white spotted toby, Canthigaster jactator, is a sharp nose puffer, brown with white spots. This toby is endemic to Hawaii, found naturally only in Hawaii.  These fish can make themselves swell in size to ward off predators by filling their stomachs with water. They carry a toxin in their skin, which can harm other aquarium creatures if released.

Swimming crab (Charybdis paucideutis?) and hermit crab (Dardanus brachyops)
Swimming crab (Charybdis paucideutis) and hermit crab (Dardanus brachyops)

The red figure in the background of the above photo is a sea hare, Aplysioidea, aka sea slug. These invertebrates are hermaphroditic, carrying both male and female sex organs. We also encounter a variety of crabs with a variety of adaptations.  Hermit Crabs, Dardanus,  have been the most numerous in our traps, and there are reported to be up to 2000 species of hermit crabs world-wide.  They take over the shells of marine snails and keep their soft abdomens tucked inside. Many of the hermit crabs we’ve found in the North West Hawaiian Islands take protection even one step further – they keep anemones on their shells. The anemones eject bubble-gum-pink stinging threads called acontia when threatened. We wear gloves when handling the crabs to protect ourselves. Scientists have discovered that the anemones don’t live on the shells when the snail is alive, and that hermit crabs will actually move their anemones from shell to shell as they move to new shell homes.  They figure that the anemones benefit from mobility with the crab and from food particles spread by the hermit crabs as they rip and shred.

Swimming Crabs, Charybdis, are the most aggressive crab in the trap.  In both body and behavior they’re similar to the blue claw crabs of my home waters, so I was prepared for their quick attempts to pinch and slice my fingers.  Their last pair of legs is oval like a paddle – perfect for swimming. On board, we call the box crab, Calappa calappa, the Vader crab. Its claws fold perfectly into its oval body, making it look like the face mask of that notorious space villain. These crabs can be mean too; those wide claws are powerful and help the crab eat mollusks.  Imagine how well camouflaged it is folded up down in the sand.

A box crab (Calappa calappa), a.k.a., the Vader crab
A box crab (Calappa calappa), a.k.a., the Vader crab

Personal Log 

During our lobster survey work, we catalogue the other animals that also get in the traps, and release them as healthy as possible. The creatures that you catch unintentionally are generally called bycatch. A current issue in commercial fishing is animals killed and wasted because they’re caught as bycatch, and not sold or eaten.  Many times they’re dumped back in the sea dead.  It’s a complicated issue on a global scale considering the definitions of what makes bycatch, all the different kinds of fishing gear, the variety of marine ecosystems, applications of technology, and the multiple political and economic groups involved.  There are many figures being reported, from 30% to over 50% of the take winding up as wasted bycatch, or perhaps 28 million metric tons world-wide. But, statistics on this topic are difficult to determine, which makes solving the problem even more difficult.  Technology has innovated some fishing gear which particularly reduces the bycatch of sea turtles and marine mammals, and recent focus on bycatch by type of fish and type of gear may inspire more solutions to this serious problem.

Thomas Nassif, July 24, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 24, 2005

The SCUBA invention has extended the reaches of human exploration from land to the deep-sea.
The SCUBA invention has extended the reaches of human exploration from land to the deep-sea.

Weather Data

Latitude: 34°10’N
Longitude: 76°39’W
Visibility: 10 nautical miles (nm)
Wind direction: 34°
Wind speed: 13 kts
Sea wave height: 2′
Swell wave height: 2-3′
Sea water temperature: 30°C (86°F)
Sea level pressure: 1016.5 mb
Cloud cover: 2/8, cumulus, cirrus

Science and Technology Log 

The last dive of the research cruise couldn’t have been more exhilarating. Unfazed by the gusty winds, choppy seas, and ripping ocean currents, the divers explored one last shipwreck on the ocean floor. The Naeco was a U.S. tanker that was destroyed by a Nazi U-boat during WWII. The torpedo shattered the Naeco’s bow and stern into two pieces, sinking them to the ocean bottom nearly 7 miles apart. The divers returned to the surface with stories about the stern (back) of the Naeco and thrilling reports of lionfish of every size and number.

The more I think about my experiences aboard the Invasive Lionfish Cruise, the more I begin to see two parallel themes here: the deep-sea diver and the lionfish. Human action led to the introduction of lionfish into a foreign habitat, but at the same time, one person invented the SCUBA, which introduced humans to the mysteries of the deep-sea.

Thomas Nassif interviews Casey Coy on the dive deck for his video documentary on lionfish and deep-sea divers.
Thomas Nassif interviews Casey Coy on the dive deck for his video documentary on lionfish and deep-sea divers.

Lionfish can only swim so far north of their tropical paradise in the southeastern Atlantic before the temperature becomes too cold, whereas humans can only dive so deep before the pressure of the sea becomes too great. Lionfish have scales for protection, fins for locomotion, gills for respiration, and swim bladders for buoyancy. SCUBA gear makes it possible for humans to be like fish, even if it adds 200 lbs to your body! They include a BCD (buoyancy compensator device) to control buoyancy, wet suits for protection and insulation, fins for underwater movement, and regulators attached to tanks for respiration. But lionfish are different from most fish because of their venomous spines that make  them the “ultimate survivors” in their new habitat. Similarly, SCUBA divers are equipped with high-tech gear that may not be familiar to most people, yet it helps humans to survive and explore the underwater environment.

“The bow of the ship left traces of beautiful pigments on the sky’s canvas, an eternal embrace between the first ember of light and a lucid sky.”
“The bow of the ship left traces of beautiful pigments on the sky’s canvas, an eternal embrace between the first ember of light and a lucid sky.”

Yet there is one difference between lionfish and humans that became most apparent over the course of my cruise. Whereas lionfish may harm the local ecosystem by lowering the number and diversity of native fish in the Atlantic, deep-sea divers are in a unique position to help our society by increasing our knowledge and creating a better understanding of the importance of preserving native habitats.

Reflections…

On the final morning of the cruise my eyes met a resplendent sunrise that shot stars across the shimmering waters of an endless sea. As we headed to the east I grew quiet within… the bow of the ship almost seemed to leave traces of beautiful pigments on the sky’s canvas, an eternal embrace between the first ember of light and a lucid sky. Land  is but hours away, but the memories of this journey will never leave my mind.

Who could forget such a fascinating, diverse group of personalities; Paula the lionfish enthusiast, Doug underwater photographer extraordinaire, Jay and the underwater hunt, Casey and the underwater flex, Christine the lion queen, Roldan king of transect, and last but certainly not least, Joe and the quest for Choco-tacos.

Thomas Nassif, July 22, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 22, 2005

A lionfish and two lobsters pose for the camera at Lobster Rock. Today the divers collected a total of 23 lionfish from this dive site.
A lionfish and two lobsters pose for the camera at Lobster Rock. The divers collected a total of 23 lionfish

Weather Data

Latitude: 33°38’N
Longitude: 76°55’W
Visibility: 10 nautical miles (nm)
Wind direction: 240°
Wind speed: 13 kts
Sea wave height: 1-2′
Swell wave height: 2-3′
Sea water temperature: 28.9°C
Sea level pressure: 1018 mb
Cloud cover: 6/8, Cumulus, Altocumulus

Science & Technology Log  

Today the divers explored Lobster Rock, collecting a total of 23 lionfish for the flow through aquarium aboard the ship. Water from the ocean flows into and out of the tank yhrough pipes on the deck to simulate the ocean environment. This brings the total laboratory aquarium at Beaufort.

Today I also interviewed the Chief Scientist, Paula Whitfield. Most amazing to me was how her life story evolved from a childhood fascination with Jacques Cousteau to her current passion for lionfish research. Paula grew up watching the underwater videos of Jacques Cousteau, and it was at that point that she knew she wanted to become a diver. “I was a diver first, but the more I dove, the more I was formulating questions in my mind…I was curious about everything that had to do with water and marine life.” She worked for a sea grass ecologist for many years, not running the show, but she saw how the scientific process worked. Her desire to become a marine biologist grew stronger,  and that’s when she decided to return to school to get her graduate degree.

Recently collected lionfish from the ocean floor are transferred to a flow through aquarium aboard the ship.
Recently collected lionfish from the ocean floor are transferred to a flow through aquarium aboard the ship.

So how did Paula become one of the leading scientists in lionfish research? She responds: “It stemmed from my recreational diving – I was diving constantly in my spare time, and working for a charter boat business that attracted recreational divers from all over the world.” And then one day she began seeing lionfish off the coast of North Carolina, which was very unusual for this area. Paula knew they were Pacific fish, but she needed proof that lionfish were now in the Atlantic. “From that point on, I collected evidence was finally able to convince NOAA when a world-renown scorpion fish expert confirmed that her collected specimens were lionfish.

Once Paula was aboard a diving ship, and she was ordered to do a routine dive to the ocean bottom. The first thing she saw was right angle patterns, which hardly exist in nature. All of the sudden Paula saw a porthole lying in the sand. Back then she wasn’t a technical diver with all the fancy gear she has today. So she clutched the porthole with her knees and climbed up the anchor line. When Paula reached the surface, everyone aboard the ship stared at her in disbelief when she said: “I think it’s a wreck. I have a porthole.” She fondly remembers feeling “excited to be the first person to dive a virgin shipwreck.”

Diver and Marine Biologist Paula Whitfield swims alongside a lionfish, the focus of her research.
Diver and Marine Biologist Paula Whitfield swims alongside a lionfish, the focus of her research.

What Paula finds most fascinating about lionfish is how they established themselves in such large numbers in the Atlantic within a short period of time. Because of this she calls lionfish the “ultimate survivors.” But overall, she feels very affectionate towards all sea creatures, including “everything from sea spiders and feather dusters to larger fish because it’s such a different world down there. It’s important for us to know how we’re affecting that world in order to make a positive change.”

Paula’s words of advice for those who want to become marine biologists: “I think it’s important if you can become a diver – just to be able to put your head in the water to see what’s going on is more rewarding than just dropping sensors into the ocean. It opens more doors, and by seeing the environment firsthand you are able to formulate more questions about it. All this helps you become a better marine biologist, even if you don’t dive all the time.”

Thomas Nassif, July 21, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 21, 2005

Thomas Nassif on the Bridge gathering measurements from the ship’s weather log.
Thomas Nassif on the Bridge gathering measurements from the ship’s weather log.

Weather Data

Latitude: 33°30’N
Longitude: 77°09’W
Visibility: 10 nautical miles (nm)
Wind direction: 290°
Wind speed: 15 kts
Sea wave height: 3′
Swell wave height: 3-5′
Sea water temperature: 28.9°C (84°F)
Sea level pressure: 1019.9 mb
Cloud cover: overcast, cumulus and stratus

Science & Technology Log

The day began with rocky seas, gusty winds, strong ocean currents, and the tallest swells we’ve had since our departure from port last week.  These ocean conditions are nothing extraordinary for the ship’s crew, but extremely tough for the divers.  The diving site for this morning was Southeast Tower 2, not far from the old Frying Pan Tower that was used by the Coastguard to collect and transmit ocean conditions.  The Tower’s location 35 miles off the Atlantic coast atop a 45-foot deep rock formation made it among the most valuable navigational aids for collecting ocean data such as wave height and water temperature.

The 187-foot NANCY FOSTER in the Atlantic.  The Bridge is located on the very top level of the ship.
The 187-foot NANCY FOSTER in the Atlantic. The Bridge is located on the very top level of the ship.

The first dive of the morning went smoothly.  But the second dive team was not so fortunate. After jumping off the ship they were swiftly pulled past the dive site buoy by strong ocean currents. Having missed the dive site, the divers ended up at an entirely different location on the ocean floor! This is why it is so important for ships to record the weather conditions and their location at sea.  These measurements take place on the Bridge, the command center of the ship.

Every day, I walk to the Bridge to get the weather data that appears at the top of my daily logs. Here is an explanation of the terms:  Latitude tells you how far north or south you are from the equator (which is 0° latitude), while Longitude tells you how far east or west you are from Greenwich, England (0° longitude).  Together, Latitude and Longitude give the exact location of the ship. Visibility is how far ahead you can see from the ship.  On a very foggy day you may only have a visibility of 10 feet, whereas on a clear day you can see all the way to the horizon, or 10 nautical miles.  Wind direction tells you which way the wind is blowing from – 0° is north, 90° is east, 180° is south, and 270° is west. Sea wave height and Swell wave height are height estimates of the smaller ripples and larger waves, respectively. Sea level pressure (or barometric pressure) indicates what the trend of the weather has been. High barometric pressures (like today – 1019mb) usually mean sunny weather; rain cannot build up in clouds if they are being squeezed together by high pressure. Low barometric pressures tell you that rain or stormy weather is on the way. Inside the eye of a hurricane barometric pressures can be as low as 875mb!  Under low pressures clouds can expand and fill up with rain.  Cloud cover is a number between 0 and 1 that describes how much of the sky is covered with clouds.  4/8 means that half of the sky is covered with clouds, 1/8 means very few clouds, 7/8 is mostly clouds, and overcast (or 8/8) is all clouds.

A lionfish has many fins.  The outstretched pectoral fins are not venomous.  The shorter, pointier spines are venomous.  From right to left they are: dorsal, pelvic, and anal spines. Photo courtesy of Christine Addison.
A lionfish has many fins. The outstretched pectoral fins are not venomous. The shorter, pointier spines are venomous. From right to left they are: dorsal, pelvic, and anal spines. Photo courtesy of Christine Addison.

Every day the ship sends all of this weather information to the National Weather Service (NWS) by satellite.  The NWS will in turn fax this information to other ships that will be traveling in our area so they can get a better idea of what the weather is like at our location. And when our ship steams ahead to a new dive site tomorrow, we will be grateful if another ship was in the same area.  The weather information that ship collected will help us know more about the weather!

Question of the day

How many sets of venomous spines do lionfish have?  Where are they found on its body?

Lionfish (like most fish) have five different types of fins.  But in Lionfish, some fins have sharp, venomous spines. The dorsal (back), pelvic (waist), and anal fins all have pointy, venomous spines that look like injection needles. The caudal and pectoral fins, on the other hand, are not venomous and look more like ordinary fish fins.

Thomas Nassif, July 20, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 20, 2005

A underwater photograph of the City of Houston shipwreck. Over time the ribs of the ship’s hull have been covered by sponges (pink fluff) and soft coral (colorful branches). Tomtate fish are pictured to the right.
A underwater photograph of the City of Houston shipwreck. Over time the ribs of the ship’s hull have been covered by sponges (pink fluff) and soft coral (colorful branches). Tomtate fish are pictured to the right.

Weather Data

Latitude: 33°38’N
Longitude: 76°55’W
Visibility: 10 nautical miles (nm)
Wind direction: 240°
Wind speed: 13 kts
Sea wave height: 1-2′
Swell wave height: 2-3′
Sea water temperature: 28.9°C
Sea level pressure: 1018 mb
Cloud cover: 6/8, Cumulus, Altocumulus

Science & Technology Log  

My excitement and fascination with this entire diving expedition grew even more when I heard that the divers would be exploring two shipwreck sites on the ocean floor today – “18 Fathom” in the morning and “City of Houston” in the evening. Fathoms are an old unit of measurement still used by navigators today to describe the depth of the ocean (1 Fathom = 6 feet deep). The dive site “18 Fathom” is a mystery shipwreck that was discovered at a depth of 108 feet (18 Fathoms). Shipwrecks provide excellent habitats for a variety of fish, including lionfish. The broken down hull and old passageways of a  shipwreck create a manmade reef upon which algae and coral grow, smaller fish hide, and larger fish feed. Rather than scrap old ships, many countries around the world clean and sink their old ships to the ocean floor to create artificial reefs for fish and other marine organisms.

An explosion of Tomtate (white fish) and Vermilion Snapper (red fish) envelop the water in a silvery red glow.
An explosion of Tomtate (white fish) and Vermilion Snapper (red fish) envelop the water in a silvery red glow.

After lunch, the boat steamed ahead to the next dive site, City of Houston. Far beneath the ocean surface looms an old Civil War Era shipwreck. Thousands of fish including Tomtate, Vermilion Snapper, and Silverside enveloped the divers, making the surrounding waters shimmer with silvery red. At times the number of fish were so great that the divers had trouble seeing even a few feet in front of them! Over one  hundred years after the City of Houston wrecked and fell to the seafloor, you can now see coral and algae taking over the entire manmade structure. Even so, it is still possible to make out obvious structures of the ship, including the engine and the hull.

Personal Log 

Today I went snorkeling off the NF4 once again and had a fantastic time swimming in the 84°F water under a beaming sun – It’s unbelievable that the Atlantic Ocean can be so warm during the summer months! Also, I’ve watching the divers in action as they descend to the ocean floor, collect live lionfish, and take stupendous photos of the deep ocean all inspire me to someday become a professional SCUBA diver myself.

Question of the day

What type of air do SCUBA divers breathe?

This depends on how deep you plan to dive. Regular air (the kind we breathe on land) is mostly nitrogen and only 21% oxygen. The tanks that the deep-sea divers carry on their back are filled with regular air, and they can dive up to 150 feet by breathing this air through a mouthpiece (or regulator). Other divers that only need to dive up to 113 feet (like our safety divers) use Nitrox, which has more oxygen (36%) than regular air. Finally, at depths up to 20 feet deep, SCUBA divers can breath pure oxygen (100%). The deep-sea divers on our cruise switch to pure oxygen 20 feet before they reach the ocean surface to speed up their decompression.

The two dangers with SCUBA diving and the air they breathe are:

1 – Too much oxygen can be toxic to your body. The deeper you dive, the less oxygen you should have in the air you breathe. 2 – At the same time, too much nitrogen can make you feel light-headed and put you to sleep underwater. Jacques Cousteau, French inventor of the SCUBA, called this “Rapture of the Deep.” That is why it is so dangerous for divers to spend too long in the deep ocean.

Thomas Nassif, July 19, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 19, 2005

“A fiery ball of radiant yellow…penetrated the hues of deep blue and wispy whites.”
“A fiery ball of radiant yellow…penetrated the hues of deep blue and wispy whites.”

Weather Data

Latitude: 33°38’N
Longitude: 76°55’W
Visibility: 10 nautical miles (nm)
Wind direction: 240°
Wind speed: 13 kts
Sea wave height: 1-2′
Swell wave height: 2-3′
Sea water temperature: 28.9°C
Sea level pressure: 1018 mb
Cloud cover: 6/8, Cumulus, Altocumulus

Science & Technology Log  

Today was by far the most beautiful sunrise we’ve had since our departure from land last week. A fiery ball of radiant yellow captured the sky, as its luminous rays penetrated the hues of deep blue and wispy whites in the surrounding sky. This morning the divers visited Kinny 1 and 2 (also known as K1 and K2). But this was no ordinary dive… K2 happened to be the most challenging and strenuous dive yet. The ocean currents were moving faster than we expected. The ship pulled up-current from the dive site (marked by an orange buoy), to put the divers in position. All they would have to do is jump off the ship and drift down-current to find the buoy. But when the divers jumped off the ship they were swept away by the strong ocean currents well past the buoy. The NF4 picked up the divers, who had to take off all 200lbs of their SCUBA gear, and wait to be taken to the correct diving site. The divers eventually finished their mission at K2, but were very exhausted when they returned to the NANCY FOSTER.

Thomas Nassif aboard the NF4 dive boat. The NANCY FOSTER is pictured in the background.
Thomas Nassif aboard the NF4 dive boat. The NANCY FOSTER is pictured in the background.

Today I finally got my chance to step off the NANCY FOSTER for the afternoon. I boarded the NF4 (diver recovery boat) and we steamed off into the open sea. Soon thereafter we watched from a distance, as the divers leap off the NANCY FOSTER. Our job was to keep an eye on the divers to ensure their safety during the 130-foot descent to the ocean floor. The NF4, along with the NANCY FOSTER and RHIB, all bear the “divers flag” when we deploy SCUBA divers into the ocean. This red flag with a diagonal white stripe warns other ships in the immediate area that there are divers in the water.

I also went snorkeling in the ocean to watch the SCUBA divers decompress underwater. After the divers finished their dive to the ocean floor, they stopped at 20 feet from the ocean surface to breath pure oxygen from a long tube supplied from the surface by the RHIB (the air we breathe everyday is only 21% oxygen). If the divers chose instead to shoot straight up to the ocean surface, they risk getting the “bends,” a painful experience that occurs when nitrogen bubbles form in the blood.

The divers safely returned to the ship with 6 lionfish in their nets – the aquarium aboard the NANCY FOSTER now has a total of 25 live lionfish! The scientists plan to transport them to a more permanent home at the NOAA Beaufort Laboratory when we arrive at port next week. To simulate the natural conditions of the ocean, scientists will place the lionfish in a “flow through aquarium” that transports ocean water through a pipe into and out of the aquarium. By having several aquaria full of lionfish in the lab, scientists hope to learn more about their diet and how often they reproduce.

Question of the day

Do lionfish reproduce in the same way as fish? How often do they reproduce?

Yes – Lionfish reproduce like most fish, through External Fertilization. Eggs are released from the female into the water and then fertilized by sperm from a male fish. The thing that makes lionfish so different from most fish is this: Female lionfish release a floating mass of eggs that stick together (most fish release eggs that disperse and spread out from each other in the water). Scientists think that lionfish are more successful at reproducing because the floating masses of eggs are more likely to be fertilized. We do not know how often lionfish reproduce – this is one of the biggest questions scientists want to find out! The reproductive periods of fish overall can be very different. Some species of fish, like Salmon, reproduce only once in their entire lifetime. Tropical organisms like the Parrotfish, on the other hand, reproduce every day! It will be very helpful for us to know how often female lionfish reproduce so that we may better understand their impact on the local ecosystem.

Thomas Nassif, July 18, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 18, 2005

Diver Christine Addison conducts a visual transect survey with a clipboard and meter tape along the ocean floor.
Diver Christine Addison conducts a visual transect survey with a clipboard and meter tape along the ocean floor.

Weather Data

Latitude: 33°38’N
Longitude: 76°55’W
Visibility: 10 nautical miles (nm)
Wind direction: 240°
Wind speed: 13 kts
Sea wave height: 1-2′
Swell wave height: 2-3′
Sea water temperature: 28.9°C
Sea level pressure: 1018 mb
Cloud cover: 6/8, Cumulus, Altocumulus

Science & Technology Log  

Today we awoke to a cloudy overcast day, providing the divers some relief from the sweltering heat we’ve had the past few days. The jet-black wet suits that keep the divers thermally insulated on the ocean floor can become extremely hot under a scorching sun! Every day for the remainder of the cruise we will try to complete 2 dives in the morning and 2 dives in the afternoon, each at a different location along the seafloor. (The divers are divided into two rotating teams, so that each person will only have to dive once in the morning and once in the afternoon).

Thomas Nassif watches Roldan Munoz perform a lionfish dissection, removing the stomach and gonads for further analysis.
Thomas Nassif watches Roldan Munoz perform a dissection, removing the stomach and gonads for further analysis.

This morning the divers visited Big Fish 1 and Big Fish 2, appropriately named after an 18-inch lionfish that was caught by a local fisherman. At Big Fish 2, the dive team descended to a depth of 143 feet, and they were stunned at the sight of 5 enormous lobsters; several were hiding beneath rocks while two other lobsters chased after one another across the sand. They also spotted several large grouper (approx. 30 lbs each). They conducted a 100-meter visual transect by steadily unreeling meter tape in a straight line. Along those 100 meters of line, they counted 17 lionfish (mostly juveniles), a big surprise considering the sandy bottom and featureless bathymetry (elevation) of the region. Lionfish typically thrive near rocky outcrops and coral reef structures that provide niches for other organisms that would serve as potential food sources (including baby shrimp, grouper, and snapper). Findings like the one at Big Fish 2 suggest that lionfish can flourish anywhere, from flat sandy bottoms to hard rocky outcrops, we suspect that as long as the water temperature remains warm enough to support a tropical habitat.

On the fourth and final dive of the day, the divers speared 3 lionfish and brought them back onto the ship for analysis. The scientists dissected the lionfish within 30 minutes of being brought onto the ship to ensure high quality stomach and reproductive system samples. First they recorded the weight, total length, and standard length (backbone only) of the lionfish. Next they removed both gonads and recorded the combined weight to determine the reproductive status of the lionfish. Finally they removed the stomach to determine the diet of the lionfish. We found two small fish that the lionfish had ingested. The lionfish remains were then frozen for future morphological (external) analysis. Scientists at the NOAA Beaufort Laboratory will conduct spine & ray counts on the fins and observe the facial features to see if there is any correlation with the development of the bearded spine, a feature that lionfish are thought to acquire as they age.

Question of the day

Do lionfish have any predators?

Great question! Lionfish do not have any known predators, but scientists aboard the NANCY FOSTER are hoping to someday answer this question. In Florida there was a reported sighting of a goliath grouper eating a lionfish. Other than that we do not know for sure. Of course it would be a good thing to find out. If it turns out that lionfish do not have any predators, then that would be bad news for the local ecosystem. Lionfish would be able to reproduce without limit and continue eating prey until resources are heavily depleted, thereby starving other fish that are important to the fisheries industry such as grouper.

Thomas Nassif, July 17, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 17, 2005

Deep-sea diver Christine Addison takes a leaping plunge into the ocean off the deck
Deep-sea diver Christine Addison takes a leaping plunge into the ocean off the deck

Weather Data

Latitude: 34°43’N
Longitude: 76°42’W
Visibility: 10 nautical miles (nm)
Wind direction: 200°
Wind speed: 11 kts
Sea wave height: less than 1 foot
Swell wave height: none
Sea water temperature: 87 F, 30.5°C
Sea level pressure: 1017.9 mb
Relative Humidity: 86%
Cloud cover: 2/8, Cumulus, Stratocumulus, Cirrostratus

Science and Technology Log

Early this morning at 0545 hours the NANCY FOSTER arrived at her next two dive locations (SEPAPNEW1 and SEPAPNEW2), 34 nautical miles due south of Beaufort Inlet. We are traveling along the Atlantic Continental Shelf, which runs along the Western boundary of the Gulf Stream. I asked the Chief Scientist, Paula Whitfield: “Why do all of our dive sites fall along the border rather than in the heart of the Gulf Stream? Since the water is much warmer in the Gulf Stream wouldn’t we be far more likely to see Lionfish since they are a tropical fish?” Paula informed me that further east of us the ocean depth drops to about 300 feet, beyond the maximum depth (150 feet) our SCUBA divers could reach. Furthermore the Gulf Stream currents would pose many risks to the divers – even a 1-2 knot current is enough to rip off a diver’s mask. Paula carefully chooses the dive locations using a bathymetric map of the ocean floor (similar to a topographic map for land).

The NF4 (shown in front) is transporting divers back to the ship after a successful dive. The RHIB (shown behind) carries an oxygen manifold that delivered pure oxygen to the divers during their ascent from the ocean floor.
The NF4 (shown in front) is transporting divers back to the ship after a successful dive. The RHIB (shown behind) carries an oxygen manifold that delivered pure oxygen to the divers during their ascent from the ocean floor.

Several things must happen before the SCUBA divers actually jump off the boat. First, drop buoys are deployed into the water to mark the exact location of each dive site. A drop buoy basically consists of bright orange buoy that floats on the ocean surface to let the ship know where the divers are located. To hold the orange buoy in the same location, it is attached to an anchor and a 10-lb weight by a 150-ft cord that sinks to the ocean floor. The drop buoy also helps the divers orient themselves during their descent to the ocean floor. By following the bright yellow cord during their descent, the divers can reach the exact dive location on the ocean floor.

The next step is to deploy two small boats, the RHIB (Rigid Hull Inflatable Boat) and the NF4. The RHIB holds the oxygen manifold, which supplies pure oxygen to the SCUBA divers after they finish their dive and begin their gradual ascent to the ocean surface (divers must decompress or wait at 20 feet below the ocean surface after their dive to ensure they acclimate to the change in pressure). The NF4 is a larger more sturdy boat used to recover the divers and bring them back safely to the ship.

Finally the divers are ready to jump off the ship, and this is no easy task. Imagine having to jump off the side of the ship with 200 pounds of SCUBA gear strapped to your back. Most of this weight is due to two enormous air tanks that deep-sea divers must carry to ensure they have enough air to

Personal Log

Today was an extremely busy day! Somehow the dive teams were able to squeeze in 4 different dive locations on the ocean floor in the same day – 2 dives in the morning and 2 dives in the afternoon. This time the divers were equipped with nets to capture live Lionfish and spear guns to collect dead Lionfish. The divers returned to the ship with 19 Lionfish! Amazingly, they collected 17 live Lionfish and stored them in the holding tank aboard the ship. The scientists performed a dissection on the remaining two Lionfish (that arrived to the ship already dead). Watching the dissection made me realize that the internal anatomy of the Lionfish is no different from any other fish (except for their venomous spines of course!)

Question of the day

Are Lionfish edible?

Jose, I must admit that I answered your question incorrectly at the Carnegie Institute summer course…Yes (to my surprise) Lionfish can be eaten, and their venomous spines have no harmful affects when ingested. In fact, some members of the scientific team have tasted Lionfish, and described the white meat of the fish as chewy, not tender, and a bit fishy tasting. Hopefully I will have the opportunity develop a recipe for Lionfish curry before the cruise is over.

Thomas Nassif, July 16, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 16, 2005

Underwater photograph of a lion fish taken by Doug Kesling, deep-sea diver on the NANCY FOSTER.
Underwater photograph of a lion fish taken by Doug Kesling, deep-sea diver on the NANCY FOSTER.

Weather Data

Latitude: 34°43’N
Longitude: 76°42’W
Visibility: 10 nautical miles (nm)
Wind direction: 200°
Wind speed: 11 kts
Sea wave height: less than 1 foot
Swell wave height: none
Sea water temperature: 87 F, 30.5°C
Sea level pressure: 1017.9 mb
Relative Humidity: 86%
Cloud cover: 2/8, Cumulus, Stratocumulus, Cirrostratus

Science and Technology Log

After the final computer tests, our ship finally left for sea today at 1310 hours. The NANCY FOSTER steamed ahead through choppy waters to the first dive site of the Lionfish study, “210 Rock.” The dive site is located 27 nautical miles off the coast of Cape Lookout, North Carolina. At 1800 hours four SCUBA divers leaped off of the starboard side of the ship in search of Lionfish. They were equipped with two underwater video cameras and two waterproof clipboards to record their observations. The divers leaped off the boat and dove to the ocean floor (to a depth of 108 feet) to tally the number of Lionfish compared to other native species of fish within a given distance (this is called a visual transect survey).

Thomas Nassif helping on deck to deploy a drop camera that sends real-time video footage of the deep sea to the ship’s television monitors.
Thomas Nassif helping on deck to deploy a drop camera that sends real-time video footage of the deep sea to the ship’s television monitors.

Now for a brief interlude…

What are Lionfish and why are we taking the time to study them? Lionfish are members of the scorpion fish family that are not native to the Atlantic Ocean. Organisms like the Lionfish that arrive, survive, and successfully reproduce in an ecosystem where they did not previously exist are called an invasive species. Lionfish are a very colorful fish with venomous spines originally from the Indo-Pacific coral reefs of southeastern Asia. Ever since their accidental release into the Atlantic Ocean in 1992, Lionfish have reproduced quickly and established themselves in increasing numbers along the Atlantic Coast from Florida to North Carolina. Lionfish are ambush predators that use their venomous spines to paralyze and swallow whole fish (baby shrimp, snapper, and grouper). For this reason, their presence in the Atlantic may negatively impact the local ecosystem and pose a vital threat to the commercial fisheries industry.

Back to the divers…

Upon their return to the ship from 210 Rock, the divers discovered 10 Lionfish, all of them juveniles, approximately 20 cm. in length. Lionfish have been reported in the vicinity before, but not until recently. This suggests a possible Lionfish migration into the area from the warmer waters of the Gulf Stream several miles away in the Atlantic (Lionfish can only survive in warmer, more tropical water temperatures). Now for some good news: The divers saw an impressive variety of native fish including Adult Gag, Scamp, Red Grouper, Blue Angel Fish, Soap fish, Spotfin Hogfish, Spanish Hogfish, White Grunt, Bank Sea Bass, Black Sea Bass, Almaco Jack, and Spade Fish. All of this suggests that the ecosystem near 210 Rock is biologically diverse, vibrant, and healthy. Hopefully it will remain that way, despite the looming threat of the Lionfish in the horizon…

This map clearly shows the Gulf Stream in the Southeastern Atlantic (look for a dark red streak off the coast of Florida).  Darker reds are the warmest ocean temperatures, blues are the coldest.
This map clearly shows the Gulf Stream in the Southeastern Atlantic (look for a dark red streak off the coast of Florida). Darker reds are the warmest ocean temperatures, blues are the coldest.

Personal Log

I was relieved that we were able to get at least one dive off today, despite our ship’s delayed departure. Most amazing was the video footage that the divers brought back onboard the ship – they captured several Lionfish on video, hidden beneath rocks and carefully camouflaged in their background environment. Watching the video makes me realize that the ocean floor is a dramatically different landscape than what we are accustomed to on land!

Question of the Day

Should we worry about Lionfish closer to shore along the beaches of the Atlantic Coast? Is their sting venomous enough to kill a person?

Luckily for us, a venomous spine from a Lionfish is not enough to kill a person, but they can cause a painful sting. You will also appreciate the fact that Lionfish will probably never invade beaches along the Atlantic coastline. This is because temperature limits their distribution in the Atlantic. The Gulf Stream is a warm current of the Atlantic Ocean that originates in the Gulf of Mexico and runs northeastward along North America. Because the Gulf Stream remains several miles offshore from the Atlantic coastline, these waters can remain somewhat warm during the winter, despite frigid inshore water temperatures. This is why Lionfish can survive in the Gulf Stream (where it is warmer in the wintertime) but not closer to the coast (where winter water temperatures are far colder). Additionally, Lionfish cannot survive north of Cape Hatteras, North Carolina due to the colder water temperatures along the northeastern Atlantic coastline. For this reason, scientists consider Cape Hatteras a “Zoo-geographical boundary” beyond which Lionfish cannot stay alive.

Thomas Nassif, July 15, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 15, 2005

THE BOUNTY: A replica of The Bounty, an 18th Century British Naval Research Vessel.
THE BOUNTY: A replica of The Bounty, an 18th Century British Naval Research Vessel.

Weather Data

Latitude: 34°43’N
Longitude: 76°42’W
Visibility: 10 nautical miles (nm)
Wind direction: 200°
Wind speed: 11 kts
Sea wave height: less than 1 foot
Swell wave height: none
Sea water temperature: 87 F, 30.5°C
Sea level pressure: 1017.9 mb
Relative Humidity: 86%
Cloud cover: 2/8, Cumulus, Stratocumulus, Cirrostratus

Science and Technology Log

My first morning aboard the NOAA research vessel NANCY FOSTER began with a loud pounding sound on my door at 2am. I immediately awoke to a voice from the Lieutenant, “Thomas Nassif, you must move your car immediately!” Evidently I was parked directly in front of a giant crane on the portside of the ship. Later in the day I marveled at the enormous size of the NANCY FOSTER, which stands at 187 feet long and 894 tons. Eight SCUBA divers diligently worked on deck to ensure that their diving equipment was in good working condition when the deep-sea dives get underway tomorrow. We were scheduled to depart Morehead City today, but due to a problem with the ship’s computer system we are not leaving for the open sea until tomorrow morning at 1000 hours. Two specialists arrived early this afternoon to work on the computer system that runs the entire ship, including propulsion, navigation, lighting, and air conditioning. Imagine how complicated the computer system must be, having been built in Canada, programmed with Russian software, and used on an American ship! Evidently they are the only computer specialists in the entire US who know how to fix the NANCY FOSTER’s intricate computer system.

Thomas Nassif stands in front of the NOAA research vessel NANCY FOSTER.
Thomas Nassif stands in front of the NOAA research vessel NANCY FOSTER.

We took advantage of the delay in our departure to walk along the Morehead City Port to check out The Bounty, a replica of the legendary 18th century British Naval ship that sank off the shores of Tahiti. I imagined what it must have been like to be aboard The Bounty in the 1700’s. Unlike the NANCY FOSTER’s heavy reliance on computers to run the entire ship, the Bounty only needed a ship’s wheel for steering and enormous sails to propel the ship forward. This replica of the Bounty was built in 1961 for the Marlin Brando movie “Mutiny on the Bounty” and more recently appeared in “Pirates of the Carribean.” The original Bounty was an 18th century British Naval ship under the direction of Captain Bligh. A member of the crew, Fletcher Christian, led a mutiny against the ship’s captain to protest his extremely strict and regimented control over the crew. While on route to Tahiti, a mutiny erupted between the Captain Bligh and the crew over whether to proceed around the tip of South America (Cape Horn), one of the most treacherous routes for ships to circumnavigate. And to think that one of the major goals of the Tahiti expedition was to collect Bread Fruit for possible use as a food staple for British colonies in the Caribbean. One of the scientists aboard our cruise commented: “I tasted bread fruit once in Micronesia. I must admit it was one of the foulest tasting foods I’d ever had. Bread fruit is hard, yellow, grainy, and terribly bitter.”

Question of the day

How many people are aboard the ship for the Lion Fish Cruise?

There are 16 crew members aboard the NANCY FOSTER to ensure the ship runs properly and 7 scuba divers who will conduct deep-sea research on Lion Fish. Additionally there are two reporters from the Philadelphia Enquirer who are researching the Gulf Stream. And finally one teacher (that’s me) who plans to create a video documentary about the Lion Fish cruise.