George Hademenos: A Day in the Life…of a Marine Science Researcher, August 25, 2022

NOAA Teacher at Sea

George Hademenos

Aboard R/V Tommy Munro

July 19 – 27, 2022

Mission: Gulf of Mexico Summer Groundfish Survey

Geographic Area of Cruise: Eastern Gulf of Mexico

Date: August 25, 2022

In this post, I would like to walk you through my interactions and observations with the science research being conducted aboard the R/V Tommy Munro, in particular, the steps that were taken during a trawling process. The entire process involved three stages: Preparing for Sampling, Conducting the Sampling, and Analyzing the Sampling with each stage consisting of six distinct steps.

View the following steps in an interactive tour here: Trawl Sampling Process (Genially)

I. Preparing for Sampling

Step 1: The ship travels to designated coordinates for sampling sites as determined for the particular leg of the Survey by SEAMAP (Southeast Area Monitoring and Assessment Program).

screenshot of a computer screen showing the path that R/V Tommy Munro traveled among sampling sites. The ship's path is a bold blue line connecting sample sites marked in yellow. It's superimposed on an electronic nautical chart. This survey occurred southeast of Florida's Apalachicola Bay and St. George Island.
Ship Transport to Sampling Site

Step 2: Once the ship reaches the site, a Secchi disk is attached to a cable and lowered into the water off the side of the ship to determine visibility. When the disk can no longer be seen, the depth is recorded and the disk is raised and secured on ship. 

a scientist wearing a life vest stands on a small grated platform that has folded down off the fantail of R/V Tommy Munro. With his left land, he grasps a cable hanging from an A-Frame that extends out of the photo. The cable is attached to a white disk, about the size of an old record, with a weight underneath.
Deployment of Secchi Disk

Step 3: A CTD (Conductivity, Temperature, and Depth) unit is then prepared for deployment. It is a rectangular chamber with sensors designed to measure physical properties of the water below including dissolved oxygen, conductivity, transmissivity, and depth. 

a conductivity, temperature, and depth probe, mounted inside a rectangular metal cage about 1 foot square and about 3 feet high, sits on deck. a crew member wearing white shrimp boots hooks a cable onto the top of the CTD frame. Another person, mostly out of frame, touches the CTD frame with their right hand, covered in a blue latex glove.
Preparation of CTD Unit

Step 4: The CTD unit is powered on and first is submerged just below the surface of the water and left there for three minutes for sensors to calibrate. It is then lowered to a specified depth which is 2 meters above the floor of the body of water to protect the sensors from damage. 

the CTD unit, attached to a cable, sinks into dark blue water.
Deployment of CTD Unit

Step 5: Once the CTD unit has reached the designated depth, it remains there only for seconds until it is raised up and secured on board the ship.  

a science team member, wearing a blue hat, a blue life vest, and blue latext gloves, stands on the deployment platform out the back of R/V Tommy Munro. He grasps the top of the CTD frame as a cable lifts it back out of the water.
Recovery of CTD Unit

Step 6: The CTD unit is then turned off and the unit is connected through a cable to a computer in the dry lab for data upload. Once the data upload is completed, the CTD unit is flushed with deionized water using a syringe and plastic tubing and then secured on the side of the ship.   

the CTD unit sits on deck, now connected to a computer via a cable to upload the data it collected.
Data Upload from CTD Unit

II. Conducting the Sampling

Step 1: The trawling process now begins with the trawl nets thrown off the back of the ship. The nets are connected to two planks, each weighing about 350 lbs, which not only submerges the nets but also provide an angled resistance which keeps the nets open in the form of a cone – optimal for sampling while the ship is in motion.

a view of the fantail of R/V Tommy Munro, from an upper deck. we are looking through the rigging of the trawl frames. two large planks rest on the lower deck, connected to ropes and lines. the trawl net, connected to the planks, extends out the back of the fantail. It is just visible below the surface, a turquoise-colored cone submerged in a blue sea.
Preparation of the Trawling Process Part 1
another view of the fantail of R/V Tommy Munro from an upper deck, through extensive rigging and frames. the trawl net is further extended; now the large planks are lowering off the back deck as well, suspended by lines connected to a pulley in an A-frame. it is a clear day and the water is very smooth.
Preparation of the Trawling Process Part 2

Step 2: Once the trawl nets have been released into the water from the ship, the ship starts up and continues on its path for 30 minutes as the nets are trapping marine life it encounters.

a view of the fantail of R/V Tommy Munro from an upper deck. the trawl net is fully deployed and no longer visible. a crew member sweeps the deck.
Onset of the Trawling Process

Step 3: After 30 minutes has transpired, a siren sounds and the ship comes to a stop. The two weighted planks are pulled upon the ship followed by the trawl nets.

a view of the A-frame at the fantail R/V Tommy Munro as the trawl net rises from the ocean. The two spreader panels are suspended from separate lines running through the central pulley. behind those, the top of the trawl net is visible above the water. a crew member guides the spreader doors with his left hand, holding the lines with his right hand.
Conclusion of the Trawling Process Part 1
the spreader doors are now resting on the fantail deck again. two crewmembers, wearing life jackets, pull the trawl net back on board.
Conclusion of the Trawling Process Part 2

Step 4: The trawl nets are raised and hoisted above buckets for all specimens to be collected. Then begins the process of separation. In the first separation, the marine life is separated from seaweed, kelp and other debris. The buckets with marine life and debris are then weighed and recorded.

a crewmember (only partially visible) empties the contents of the trawl net into a blue plastic basket. it looks like it's mostly sargassum.
Content Collection from the Trawl Part 1
four plastic baskets on deck hold the sorted contents of the trawl. one has larger fish; another contains only a single fish; a third is a jumble of seaweed and sargassum, and may represent the remainder to sort; the contents of the fourth are not visible. a crewmember wearing a life vest and gloves leans over the baskets. another crewmember, only partially visible, looks on.
Content Collection from the Trawl Part 2

Step 5: The bucket(s) with marine life are emptied upon a large table on the ship’s stern for separation according to species.

a pile of fish on a large metal sorting table. we can see snappers, a trigger fish, and many lionfish. a stack of white sorting baskets rests adjacent to the pile.
Separation Based on Species Part 1
a gloved hand reaches toward the pile of fish on the metal sorting table. (this photo was taken from the same vantage point as the previous one.)
Separation Based on Species Part 2

Step 6: Each species of marine life is placed in their own tray for identification, examination, and measurements inside the wet lab. 

two gloved crewmembers sort fish into smaller white baskets on a large metal sorting table. the table is on the back deck of the ship, and we can see smooth ocean conditions in the background. the crewmember in the foreground considers a small fish he has picked up from the remaining unsorted pile. the other crewmember looks on.
Species Sorted in Trays Part 1
a close-up view of the sorting basket containing only lionfish.
Species Sorted in Trays Part 2

III. Analyzing the Sampling

Step 1: After all species were grouped in their trays, all trays were taken into the wet lab for analysis. Each species was positively identified, counted, and recorded.  

a direct view of three fish of different species, lined up on the metal sorting table. the third is a spotfin butterflyfish.
Tray Transport to Wet Lab

Step 2: Once each species was identified and counted, the total number of species was weighed while in the tray (accounting for the mass of the tray) and recorded on a spreadsheet to a connected computer display system.   

a view of a scale.
Total Weight Measurements

Step 3: For each species, the length of each specimen was recorded using a magnetic wand with a sensor that facilitated the electronic recording of the value into a spreadsheet.   

two hands, wearing latex gloves, measure a small lionfish on the electronic measuring board. the scientist holds the fish against the board with his left hand and with his right hand marks the length with the magnetic stylus.
Individual Length Measurements

Step 4: Weights of the collected species were recorded for the first sample and every fifth one that followed.   

the gloved arm places the small lionfish on the scale behind the fish measuring board.
Individual Weight Measurements

Step 5: If time permitted between samplings, the sex of selected specimens for a species was determined and recorded.   

gloved hands cut into a small lionfish to remove the fish's gonads.
Individual Species Sex Identification

Step 6:Once the entire sampling was analyzed, selected samples of specimens were placed in a baggie and stored in a freezer for further analysis with the remaining specimens returned to a larger bucket and thrown overboard into the waters. The separation table was cleaned with a hose and buckets were piled in preparation for the next sampling. 

view out the fantail of R/V Tommy Munro from the lower deck. the trawl net and spreader doors lay on the deck, not currently in use. the sun shines on calm seas.
Finalize Process and Prepare for Next

In this installment of my exercise of the Ocean Literacy Framework, I would like to ask you

to respond to three questions about the fifth essential principle (The ocean supports a great diversity of life and ecosystems.), presented in a Padlet accessed by the following link:

https://tinyurl.com/427xp9p3

Remember, there are no right or wrong answers – the questions serve not as an opportunity to answer yes or no, or to get answers right or wrong; rather, these questions serve as an opportunity not only to assess what you know or think about the scope of the principle but also to learn, explore, and investigate the demonstrated principle. If you have any questions or would like to discuss further, please indicate so in the blog and I would be glad to answer your questions and initiate a discussion.

Louise Todd, Haul Back, September 23, 2013

NOAA Teacher at Sea
Louise Todd
Aboard NOAA Ship Oregon II
September 13 – 29, 2013

Mission: Shark and Red Snapper Bottom Longline Survey
Geographical Area of Cruise: Gulf of Mexico
Date: September 23, 2013

Weather Data from the Bridge:
Barometric Pressure: 1009.89mb
Sea Temperature: 28˚C
Air Temperature: 28.2˚C
Wind speed: 8.29knots

Science and Technology Log:

The haul back is definitely the most exciting part of each station.  Bringing the line back in gives you the chance to see what you caught!  Usually there is at least something on the line but my shift has had two totally empty lines which can be pretty disappointing.  An empty line is called a water haul since all you are hauling back is water!

After the line has been in the water for one hour, everyone on the shift assembles on the bow to help with the haul back.  One crew member operates the large winch used to wind the main line back up so it can be reused.

Line on the winch
Winch holding the main line

The crew member operating the winch unhooks each gangion from the main line  and hands it to another crew member.  That crew member passes it to a member of our shift who unhooks the number from the gangion.  The gangions are carefully placed back in the barrels so they are ready for the next station.  When something is on the line, the person handling the gangions will say “Fish on”.

Nurse Shark on the line
Nurse Shark on the line

Everyone gets ready to work when we hear that call.  Every fish that comes on board is measured. Usually fish are measured on their sides as that makes it easy to read the markings on the measuring board.

Measuring Grouper
Measuring a Yellowedge Grouper (Photo credit Christine Seither)

Measuring a Sandbar
Christine and Nick measuring a Sandbar Shark

Each shark is examined to determine its gender.

Sexing a shark
Determining the sex of a sharpnose shark (Photo credit Deb Zimmerman)

Male sharks have claspers, modified pelvic fins that are used during reproduction.  Female sharks do not have claspers.

Claspers
Claspers on a Blacktip

Fin clips, small pieces of the fin, are taken from all species of sharks.  The fin clips are used to examine the genetics of the sharks for confirmation of identification and population structure, both of which are important for management decisions. 

Shark Fin Clip
That’s me in the blue hardhat taking a fin clip from a Sandbar Shark(Photo credit Lisa Jones)

Skin biopsies are taken from any dogfish sharks  in order to differentiate between the species.  Tags are applied to all sharks. Tags are useful in tracing the movement of sharks.  When a shark, or any fish with a tag, is recaptured there is a phone number on the tag to call and report the location where the shark was recaptured.

Some sharks are small and relatively easy to handle.

Cuban Dogfish
Small Cuban Dogfish (Photo credit Christine Seither)

Other sharks are large and need to be hauled out of the water using the cradle.  The cradle enables the larger sharks to be processed quickly and then returned to the water.  A scale on the cradle provides a weight on the shark.  Today was the first time my shift caught anything big enough to need the cradle.  We used the cradle today for one Sandbar and two Silky Sharks.  Everyone on deck has to put a hardhat on when the cradle is used since the cradle is operated using a crane.

Silky Shark
Silky shark coming up in the cradle

Sandbar Shark
Sandbar Shark in the cradle

Personal Log:

I continue to have such a good time on the Oregon II.  My shift has had some successful stations which is always exciting.  We have had less downtime in between our stations than we did the first few days so we are usually able to do more than one station in our shifts.  The weather in the Gulf forced us to make a few small detours and gave us some rain yesterday but otherwise the seas have been calm and the weather has been beautiful.  It is hard to believe my first week is already over.  I am hopeful that we will continue our good luck with the stations this week!  The rocking of the boat makes it very easy for me to sleep at night when my shift is over.  I sleep very soundly!  The food in the galley is delicious and there are plenty of options at each meal.  I feel right at home on the Oregon II!

Did You Know?

Flying fish are active around the boat, especially when the spotlights are on during a haul back at night.  Flying fish are able to “fly” using their modified pectoral fins that they spread out.  This flying fish flew right onto the boat!

FlyingFish
Flying Fish

Brenton Burnett, June 27, 2006

NOAA Teacher at Sea
Brenton Burnett
Onboard NOAA Ship David Starr Jordan
June 26 – July 6, 2006

Mission: Shark Abundance Survey
Geographical Area: California Coast
Date: June 27, 2006

Weather Data from Bridge 
Visibility: 10 nautical miles (nm)
Wind direction: 350 degrees
Wind speed: 9 kts
Sea wave height: 1’
Swell wave height: 2-3’
Seawater temperature: 20.0 degrees C
Sea level pressure: 1012.7 mb
Cloud cover: Cloudy

The mako sharks we catch are one to two years old and are between 70 cm and 140 cm (around 3 feet) long.
The mako sharks we catch are one to two years old and are between 70 cm and 140 cm (around 3 feet) long.

Science and Technology Log 

Our first full day of setting and hauling netted 68 sharks. In the morning we caught 21 blues and 5 makos, and in the afternoon 39 blues and 3 makos.  Unfortunately, one mako and one blue did not survive and were brought aboard for sample collections.  Though everyone involved understands that the work being done here is ultimately about helping these sharks survive and thrive in the wild even when an animal dies, there is, among everyone, a definite sense of loss and regret when an animal is lost. The data collection process involves a great deal of care for that reason.

Studies have been done to look at the stress related hormone levels of sharks caught on long lines, and the length of “soak times” used in this project follow those recommended guidelines—three to four hours from the start time of setting the line to the start of hauling it in. The design of long line helps to maximize survival, too. The gangions, which are the lead and hook assembly that attach to the long line, are about three meters long which gives these sharks room to swim while hooked.  This is important for blues and makos as they, like many other sharks, need to keep in constant motion so fresh, oxygen-rich water is always moving through their gills.

Another challenge is that, on occasion, a shark will swallow the hook, so whenever possible a “circle hook” is used that will not hook in the stomach or esophagus, but only on a “corner” of some kind.  If a circle hook is swallowed it will get pulled out by the shark’s movement away from the line but when the animal turns away, the circle hook will catch in its mouth.  Even if a hook, like a J-hook, cannot be removed from an animal because it was swallowed, this does not necessarily mean it will die.  Sharks with hooks in them have been released and recaught years later. When a shark does die, its body is utilized to understand sharks better.  This is especially true for the mako sharks.  Dr. Jeff Graham and two of his students, Dovi Kacev and Noah Ben-Aderet, as well as Miguel Olvera, another graduate student, are collecting a number of tissue samples for themselves and others at their home universities.

The gills of the mako sharks are of interest because makos are a high-performance, speedy, shark. A comparative anatomy study is being done to compare the design of their gills to that of tunas, another high-performance fish, though tunas are in the class of bony fishes, Osteichthyes, and sharks are cartilaginous being members of Class Chondrichthyes.  For this reason, the gills of available specimens are being collected.

Shortfin makos (and, incidentally, common thresher sharks which also might be seen on this trip) are among the very few warm-blooded species of shark.  Higher temperatures facilitate their higher energy usage as the fastest sharks in the ocean.  Makos achieve higher body temperatures, in part, because their “red muscle” tissue is located close to the spinal column and not, as in most other sharks, close to the skin.  This red muscle is responsible for maintaining prolonged periods of powerful movement.  This muscle works in tandem with the circulatory system to create a heat exchange system called countercurrent circulation. The internal location of the red muscle and the countercurrent circulation work to preserve heat and even warm the blood before it reaches the heart.  For these reasons, studies are being conducted on the red muscle versus white muscle are being sampled for later examination.

Because of the mako’s high performance, and the relation of that performance to the circulatory system, heart tissue is also being collected. The vertebrae of the makos is being collected, too, for the purposes of trying to determine the ages of the animals.  This was discussed some yesterday in the discussion of oxytetracycline injections.

Finally, a cutting from a fin is also being collected to later extract DNA.  Relatively little is known about the movement of makos (hence our tagging of them).  By examining the genetic relationship of makos sampled, researchers will be able to determine if makos off the California coast are related to makos in other parts of the Pacific, including the southern hemisphere.

Personal Log 

Aside from the critters at hand, there have been lots of other activity to feed our curiosities. We’ve been seeing whale spouts, probably fin or blue whales, and Risso dolphins. Ann Coleman, an aquarist with Monterey Bay Aquarium and another member of the science team, suggested we might even see some molas!  Molas are the largest bony fish in the world reaching 1500 pounds and a record of 14 feet in total length!  We can hope!

Thankfully, I’ve had zero issues with seasickness.  In fact, I’ve rather enjoyed being rocked to sleep at night. And, thankfully, the food has been plentiful and quite yummy!  That’s all for now…

Brenton