Ragupathy Kannan: Petrels to Pilot Whales, August 30, 2019

NOAA Teacher at Sea

Ragupathy Kannan

Aboard NOAA Ship Gordon Gunter

August 15-30, 2019


Mission: Summer Ecosystem Monitoring

Geographic Area of Cruise: Northeast U.S. Atlantic Ocean

Date: August 30, 2019


Weather Data from the Bridge

Latitude: 40.72218
Longitude: -69.45301
Water temperature: 19.8 degrees Celsius
Wind Speed: 5.25 knots
Wind Direction: 87.06 degrees
Air temperature: 23.2 degrees Celsius
Atmospheric pressure: 1006.85 millibars
Sky: Cloudy


Science and Technology Log

We’ve had a flurry of whale sightings as we passed over the famous Stellwagen Bank National Marine Sanctuary.  It’s a small underwater plateau in Massachusetts Bay flanked by steep drop offs.  Nutrients from the depths rise up by upwelling along the sides, feeding phytoplankton in the shallow light-abundant waters, and this creates perfect feeding habitat for whales.

Much of my time aboard this ship has been on the flying bridge (the highest point of access for us on the ship) scanning the seas for marine vertebrates.  I have basically been an extra pair of eyes to assist my colleagues Chris Vogel and Allison Black, the seabird observers on board.  From nearly 50 feet high above the water, the flying bridge gives nearly unimpeded 360° views of the horizon all around.  I call out any vertebrate animal seen—fish, birds, reptiles, or mammals.  Chris and Allison enter all of our data in a specific format in a software program called SeaScribe. 

To calculate densities of each species, we need an estimate of how far the animal is from the ship for each sighting.  For that we use a rather low tech but effective piece of equipment.  The pencil! 

Pencil as observation tool
Pencil as observation tool

This is how it works. The observer holds the pencil (photo above) upright with arm outstretched, aligning the eyes and tip of the eraser to the horizon (see photo below), and simply reads the distance band (Beyond 300m, 300-200, 200-100, or 100-50m) in which the animal is seen.  Thanks to some fancy trigonometry, scientists found a way to estimate distance by using the height of the observer’s eyes from the water surface, the distance from the observer’s eyes to the eraser tip of the pencil when it’s held upright with arm outstretched, and the distance to the horizon from the height of observer’s eyes above water.  I’ll spare you the trigonometric details but those curious to learn more can find the paper that introduced the technique here.

Kannan and range finder
Here I am using the range finder

Seabirds are a challenge for a rain forest biologist like me.  They move fast and vanish by the time you focus the binoculars! And the fact that the deck heaves up and down unexpectedly adds to the challenge.  But slowly I got the hang of it, at least the very basics.  I’ve recorded hundreds of shearwaters, storm-petrels, boobies, gannets, jaegers, and skuas.  Whales (sea mammals) seen include Finbacks, Humpbacks, Minkes, and Pilots.  I am hoping to see a Right Whale but I know that the odds are against me.  Time is running out, both for our voyage, and for them.  Unfortunately, only a few 100 are left and the ocean is huge—the proverbial needle in the haystack.  Chief Scientist Harvey Walsh tells me that this year so far, 8 Right Whales have died due to accidental collisions or net entanglements.  Sadly, the future looks bleak for this magnificent animal.  (More on Right Whales at the end of this blog).

Great Shearwater ebird
Great Shearwater is one of the most common seabirds we have recorded. This bird nests only in a few islands in the South Atlantic Ocean and wanders widely. Photo by Derek Rogers, from ebird.org

I note that marine vertebrate biologists are good at extrapolating what little they can see.  Much of their subjects are underwater and out of sight.  So they have become good at identifying species based on bits and pieces they see above water.  All they need often is a mere fleeting glimpse.  Sharks are told by the size, shape, and distance between the fins that stick out, sea turtles by the shape and pattern on their carapace (top shell–see photos below); whales based on their silhouette and shape of back; and Molas based simply on the fact that they lazily wave one large fin in and out of the water as they drift by.  (I thought it was the pectoral fin they waved, but it’s actually the massive dorsal fin.  I’ve noted that the pectoral is rather small and kept folded close to the body). 

leatherback sea turtle A. Black
A fleeting glimpse is all that is needed to identify a Leatherback Sea Turtle, thanks to its diagnostic longitudinal ridges (Photo by Allison Black).
shark fins
We’ve had several shark sightings such as this. The size, shape, and the relative locations of the fins indicate that this could be a whale shark (Photo by Allison Black)

Scientists can identify individual humpbacks based solely on the indentations and color patterns on their tail flukes.  In effect, each individual animal’s tail fluke is its unique fingerprint. Since the tail fluke is often seen when the animal dives from the surface, scientists have a huge photographic database of humpback tail flukes (see photo below).  And they track individuals based on this.  My ecology students should know that scientists also estimate populations based on a modification of the capture-recapture method because each time an individual’s fluke is photographed, it is in effect, “tagged”.  We do a nice lab exercise of this method by using marked lima beans masquerading as whales in my ecology lab.

humpback tail flukes
Researchers use variation on humpback whale flukes to identify and track whales (from Wildwhales.org)
Finback whale
Finback Whales are easily identified by the fin on the back (From aboutanimals.com)


Career Corner

I spoke with Allison Black, one of our seabird observers on board.

Q. Tell us something about yourself

A. I really love seabirds.  I’m fortunate to have been able to do my Master’s work on them and observe them in their natural habitat.  I have an undergrad degree in zoo and wildlife biology from Malone University in Canton, Ohio. 

Q. You’re a graduate student now in which university?

A. Central Connecticut State University

Q. What’s your research project?

A. I conducted a diet study of Great Black-backed and Herring Gulls on Tuckernuck and Muskeget Islands, Massachusetts.

Q. You have done these NOAA seabirds surveys before?

A. Yes, this is my third.

Q. What happens next, now that you are close to finishing your Masters?

A. I’m looking for full time employment, and would like to work for a non-profit doing conservation work. But until the right opportunity arises you can find me on a ship, looking for seabirds and marine mammals!

Q. What’s your advice to anyone interested in marine science?

A. I had a major career change after I did my undergrad.  I thought I’d always be a zoo keeper, which I did for about two years until I decided that birds are really my passion, and I needed to explore the career possibilities with them.  To focus on that avenue I decided to return to graduate school.  So I would encourage undergrads to really find what drives them, what they’re really passionate about.  I know it’s hard at the undergraduate level since there are so many fields and avenues under the Biology umbrella.  And it’s OK if you haven’t figured that out for a while.  I had a real change in direction from captive wildlife to ornithology, and I’m here at sea in a very different environment.  I’m so glad I did though because following my passion has opened up some exciting avenues.  I’m lucky to be getting paid to do what I really love right now.  So grab any opportunity that comes by. It’s never too late to evaluate your career path.

Allison Black
Allison Black entering our observations in SeaScribe


Personal Log

My feelings are bitter-sweet as this wonderful 16-day voyage nears its end.  My big thanks to NOAA, the ship’s wonderful command officers and staff, our Chief Scientist Harvey Walsh, and my colleagues and student volunteers aboard for making the past 2 weeks immensely absorbing.  Above all, kudos to the ship’s designers, who have clearly gone out of their way to make life aboard as easy as possible.  In addition to the unexpected luxuries covered in my previous blogs, there is even a movie lounge on board with an impressive DVD collection of over 700 movies! Yesterday I saw our student volunteers play bean bag toss on the winch deck. Yes, you can throw darts too.  The ship’s command even organized a fun sea animals-bingo game one evening, with winners getting goodies from the ship store (see below).

movie lounge
The movie lounge on board
The ship’s store
The ship’s store


The engine rooms tour

As part of our grand finale, we were given a tour of the engine rooms (which are usually off bounds for non-crew members) by our genial First Engineer, Kyle Fredricks.

engine room
A glimpse of the intricate innards of the ship. To the right is the massive shaft that ties the two rudders together.
sensors and monitors
Sensors and monitors keep tabs on engine function 24/7
1st E Kyle Fredricks
First Engineer Kyle Fredricks explains the desalination system on board. It works by reverse osmosis. All explanations are done by gestures or written notes because of noise in the background. Note ear plugs on all of us!


Did You Know?

NOAA has strict policies to avoid collision with whales, especially the highly endangered Right Whale.

right whale ship strick reduciton rule
This poster is prominently displayed on board. Vessels have to comply with rules to avoid accidental strikes with Right Whales

Interesting Animals Seen Lately

South Polar Skua

Great Skua

Pomarine Jaeger

Black Tern

Manx Shearwater

Sooty Shearwater

Leach’s Storm-petrel

Northern Gannet

Brown Booby

Great Black-backed Gull

Humpback Whale

Pilot Whale

Ocean Sunfish

Martha Loizeaux: Sea You Soon, August 30, 2018


Alex Eilers, September 1, 2008

NOAA Teacher at Sea
Alex Eilers
Onboard NOAA Ship David Starr Jordan
August 21 – September 5, 2008

Teacher at Sea Alex Eilers releasing an XBT

Teacher at Sea Alex Eilers releasing an XBT

Mission: Leatherback Sea Turtle Research
Geographical area of cruise: California
Date: September 1, 2008

Science Log

The second week has been absolutely fabulous as we found a leatherback – in fact we found three!!! This week has been all about the turtle: from identifying the biotic and abiotic conditions that define leatherback turtle habitat and foraging grounds, to tracking and tagging – we’ve done it all.

• Abiotic oceanographic data provided by scientific instruments such as XBTs (expendable bathythermographs), CTD (conductivity, temperature and depth), and water samples containing nutrient data to characterize the abiotic foraging habitats of the leatherback turtle.

Alex working with the CTD device

Alex working with the CTD device

• Net tow samples characterized the biotic conditions such as the jellyfish species prevalent in the turtle diet: moon jellies, sea nettles, and egg yolk jellies.

Alex Eilers measuring a moon jelly

Alex Eilers measuring a moon jelly

Egg yolk jelly with pipefish and larval rex sole

Egg yolk jelly with pipefish and larval rex sole

Tracking the turtles via air surveillance and handheld antenna

Tracking the turtles via handheld antenna

Aerial survellance

Aerial surveillance

Tagging a big leatherback

Tagging a big leatherback

Alex Eilers, August 31, 2008

NOAA Teacher at Sea
Alex Eilers
Onboard NOAA Ship David Starr Jordan
August 21 – September 5, 2008

Mission: Leatherback Sea Turtle Research
Geographical area of cruise: California
Date: August 31, 2008

Alex putting glow sticks on branch line.

Alex putting glow sticks on branch line.

August 29 – Longline fishing for swordfish

Today’s major objective was to catch swordfish for tagging using a fishing method called longlining. Longline fishing uses one main line held just below the water’s surface with several buoys.  Attached to the main line are several smaller branch lines with hooks and bait.  The branch lines extent 42 feet or 7 fathoms into the ocean.

Preparing to launch the longline is quite a sight and it requires a number of individuals, each working in unison. There is a person who baits the hooks on the branch line then hooks it to the main line, another person attaches a glow stick (used to attract the swordfish), and a third person attaches the buoy to the main line.  There are also a number of people working behind the scenes sorting lines and working the winch. After all the branch lines are hooked to the main line, the line soaks in the water for several hours – in hopes that a swordfish will take the bait.

Crew setting gear

Crew setting gear

Reeling in the line took about two hours because the line was 4 miles long and held over 200 hooks.  I thought this was an extremely long line but was told that commercial fishing vessels use between 40 to 60 miles of line with thousands of branch lines. Wow!

Unfortunately, we were unable to tag any swordfish but hope to try again on Labor Day. What an incredible experience today has been.

August 30 and 31 – Rock’n and Roll’n

Whoa, Whoa… is about all you heard me say over the past two days.  We’re going through a rough patch today – high winds and swells up to 5 or 7 meters – between 15 and 20 feet.  We sure were glad the scientific equipment was secured during the first few days – because everything that wasn’t tied down went flying – including chairs, drinks and the crew.  The closest thing I could come to describing this experience would be like riding a non-stop Disney ride.  The inclinometer reading (an instrument that is use to detect the degrees a boat rolls) recorded a maximum tilt of about 36 degrees.   To put thing into perspective, I am now typing with one hand and holding the table with the other.  Unfortunately, many of the science projects were cancelled due to high seas.  We hope to be in the calmer waters of Monterey Bay area tomorrow.

Alex Eilers, August 27, 2008

NOAA Teacher at Sea
Alex Eilers
Onboard NOAA Ship David Starr Jordan
August 21 – September 5, 2008

Mission: Leatherback Sea Turtle Research
Geographical area of cruise: California
Date: August 27, 2008

Everyone! Here’s the latest from my adventures at sea.

Today the crew was busy testing equipment.  We tested both long-line fishing gear and box trawl netting!  Both

tests were successful and we are looking forward to the real thing – more to come on this subject later. The picture below shows Scott Benson holding the box trawl net “catch.”  Although it looks like group of eggs, they are actually members of the jellyfish family know as ctenophores or “comb jellies.”

Jellies

Jellies

We had a successful observation session today.  I’ll introduce you to some of the “stars” of the day.

Common Dolphins were everywhere.  We saw over 100 riding the waves on the bow of our boat.  They move with great speed – especially when you are trying to take a picture of them.

Common dolphins

Common dolphins

Risso’s Dolphins – This is an unusual looking dolphin with a rounded head – unlike the traditional dolphin we all know. These creatures have numerous scratches and scars over their body from other Risso’s and from the squid they eat.  They are gray when born and gradually become white with age.

Fin Whales – OK – I must admit – We didn’t actually see the Fin Whale but we did see the whale spouts from the three that we spotted.

Jelly Fish – We were excited to see so many Jellies – a favorite food of the Leatherback.  Most looked like “Moon Jellies” but without catching them we cannot be sure of the type since there are many species.

To Do… Research one or more of the animals highlighted above.

Alex Eilers, August 24, 2008

NOAA Teacher at Sea
Alex Eilers
Onboard NOAA Ship David Starr Jordan
August 21 – September 5, 2008

In the picture, the “Big Eyes” are covered and on the left side of the picture, the antennas are directly above me.

In the picture, the “Big Eyes” are covered and on the left side of the picture, the antennas are directly above me.

Mission: Leatherback Sea Turtle Research
Geographical area of cruise: California
Date: August 24, 2008

Today we were in assembly mode and I spent the majority of my time on the flying bridge (top deck). With the help of several scientists, we cleaned and replaced the viewing seats, installed the “Big Eyes” – (the largest pair of binoculars I’ve ever seen), and assembled and tested the Turtle tracking antennas.  The “Big Eyes” will be used to help track and identify marine mammals, leatherbacks and birds near the boat.  This is especially important prior to and during the times scientists have equipment in the water so we don’t catch or injure these animals. The receiver will be used to track the Leatherback Sea Turtles who have a transmitter attached to their carapace. The good news is we are receiving reports that there is a Leatherback approximately 110 miles off the coast of Monterey – the bad news is he may not be there when we arrive.

Safety training During our first true “day at sea” we had two practice safety drills; a fire in the galley (kitchen) and an abandon ship.  The crew handled both drills quickly and efficiently.  The abandon ship drill was exciting. When the bell rang, everyone was responsible for his or her own billet (job duty). My billet required me to grab my life preserver and survival suit and muster to the O1 deck (report to an area for role call).

Survival suit

Survival suit

Training to be a VO – visual observer We started the day on the flying bridge. Karin Forney, marine mammal researcher, trained us on how to be a marine animal visual observer or VO for short.  During the first observing session, we only saw a few animals – sea lions and various birds.

I’m getting fairly good at spotting kelp beds (seaweed), however, the scientists are not interested in them, so I still need more practice identifying marine mammals.

By the afternoon, we started to see more marine life.  A large pod of common dolphins swam playfully near the ship.  This was a beautiful sight to see but not ideal for net testing. We waited 30 minutes without a mammal sighting then successfully tested the nets. As the scientists were pulling the nets aboard we spotted another smaller pod of common dolphins, some California sea lions and a small mola mola (sun fish).  All in all it was a good day!

Watching for kelp

Watching for kelp

Alex Eilers, August 21, 2008

NOAA Teacher at Sea
Alex Eilers
Onboard NOAA Ship David Starr Jordan
August 21 – September 5, 2008

Mission: Leatherback Sea Turtle Research
Geographical area of cruise: California
Date: August 21, 2008

Well I’ve arrived in San Diego safe and sound.  The weather here is fantastic – warm, mostly sunny and a bit breezy.  Let’s hope it stays like his throughout my time at sea.  Here is a brief outline of how I’ve been preparing for the research cruise.  I started the day at a LUTH survey orientation meeting.  LUTH stands for Leatherback Use of Temperate Habitat. Lisa Ballance, the director of Protected Resources Division and Scott Benson, Chief Scientist welcomed the entire team.  We spent the morning listening to the research planned for the trip and I was amazed at the amount of science to be conducted.  This is going to be an exciting adventure. I must admit though – I’ve got some homework to do.  I have to become more familiar with the acronyms the scientists are using, like CTD’s, TSG’s and especially XBT’s – because I have to load these this afternoon.

After lunch we piled in the vans and headed toward the ship to begin the loading process.  My assignment was to load and store the XBT’s and help load the oceanographic equipment.  And, I did my homework – I found out that the XBT stands for eXpendable BathyThermograph and they are used for the collection of oceanographic temperature data.

I took a quick break after unloading the van to pose for a picture.  I’m standing beside NOAA Ship David Starr Jordan and the real work is now beginning.  Better get busy – more to come later.  Keep checking the website.

I took a quick break after unloading the van to pose for a picture. I’m standing beside NOAA Ship David Starr Jordan and the real work is now beginning. Better get busy – more to come later.