Laura Grimm: Heavy Lifting, July 8, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: July 8, 2022

Weather Data from the Bridge 

Latitude: 42ᵒ 11’3 N

Longitude: 080ᵒ 13’0 W

Sky Conditions: Few clouds

Wind Speed: 5 knots

Wind Direction: 208ᵒ SW

Lake Temperature: 21.8 C

Wave Height: <1 foot

Dry Bulb: 21.4 C

Wet Bulb: 20.3 C

Calculated Relative Humidity: 91%

Visibility: 10+ miles

view of a computer screen showing a nautical chart with depth readings and colored lines where the ship has surveyed
An Electronic Chart Display and Information System (ECDIS) display of our current hydrographic survey progress. ECDIS is a system used for nautical navigation that serves as an alternative to paper nautical charts. The colorful lines indicate where we have used the Multibeam Echo Sensor (MBES) to measure the depth and physical features of the lake bottom.

Science and Technology Log

The Great Lakes system including all five lakes plus the St. Lawrence Seaway is one of the largest concentrations of freshwater on Earth.  It carries billions of dollars of cargo to and from the Atlantic, has about 10,000 miles of coastline, hosts a $7 billion fishing industry, and heavily influences the climate in the region.

Vessels that sail on the Great Lakes are getting bigger and are super important to the US economy.  For these ships to travel safely they need a certain depth of water.  If the water is too shallow, they run aground and essentially get stuck.  “Draft” is the vertical height between the waterline and the lowest point of the hull. It is how deep the hull can go, allowing the boat to float freely and without touching the bottom of the body of water such as the sea, ocean, or lake.  NOAA Ship Thomas Jefferson has a draft of 14 feet + the equipment secured to the hull making the working draft 15.5 feet. 

Those individuals navigating the ship use a huge variety of tools.  One of them is a navigation map, also known as a nautical chart, on which has listed the water depthat various locations.   Just like you and your family might use a map to get from Cleveland to Boston, those navigating a ship use a chart to cross lakes and oceans.    

(* Most of these numbers were made using ancient technology called “lead lines”.  They are old data, but apparently, they are pretty accurate considering the technology hydrographers had at the time.)

part of a nautical map of Presque Isle off of Erie, PA
The above is part of a nautical map of Presque Isle off of Erie, PA.  Do you see the small numbers in the blue portion of this map? These are water depth measurements. It is very important to look at the unit of measure.  It could be in feet, meters, or fathoms.  A fathom is equal to one 2 yards or 6 feet. The above unit of measure is meters.
road map of Presque Isle
A road map of Presque Isle.  How are “on land” maps similar to “on water” maps?  How are they different?  What symbols would they have in common?  What symbols would be unique?

A great amount of data on nautical charts of the Great Lakes is more than 50 years old, and only about 5 to 15 percent of the Great Lakes are mapped to modern standards.

One of NOAA’s missions for 2022 is to conduct several hydrographic survey missions on the Great Lakes. 

“Missions” are broken down into field survey “projects”, which in 2022 include surveying Western Lake Michigan, the Thunder Bay National Marine Sanctuary in Western Lake Huron, the Detroit River (Michigan) between Lake St. Clair and Lake Erie, and the Cleveland area as well as the vicinity of South Bass Island and Presque Isle (Pennsylvania).

In collaboration between the Office of Coast Survey and the ship’s command, projects are broken down into “Sheets”.  Survey ships will work at completing one sheet at a time.  The number of sheets per project various greatly depending on a myriad of factors.

a geographic map of Lake Erie with blue outlines marking different "sheets" in the project
Sheets around the Cleveland area surrounded by blue.  There are 13 sheets in this project.

Sheets are further divided into “polygons”.  Polygons are a more manageable “chunk” to work on . . . one polygon at a time. 

So overall, the order of magnitude and size in each assignment from largest to smallest is thus: Mission, Project, Sheet, and finally Polygon

When working on polygons, the survey is done either by the ship itself or by smaller boats called “Launches”.  Launches work on the part of the polygon that is in shallow water &/or close to shore.  NOAA Ship Thomas Jefferson has two launches, 2903 & 2904.  These smaller boats are stowed onboard the main ship.  The launch is a smaller vessel than the TJ, only 28 feet in length, with a 10-foot beam (width) and draft of 4 feet 8 inches.  They are equipped with survey equipment similar to TJ. 

a small boat in the water. we can see two crewmembers on the aft deck.
TJ launch #2904
two small boats in the water; the rail of NOAA Ship Thomas Jefferson and a few crewmembers on board are just visible in the lower right corner
Both launches come alongside the TJ.

So, today’s question is how do they get these smaller boats (launches) on and off the main ship?  This is accomplished by an awesome hydraulic piece of machinery called a davit.  Vestdavit, a company from Norway, makes the davits that are on the TJ. Taking the launches off or putting them back on the TJ is a team effort!  It can be dangerous so everyone helping wears personal floatation devices (PFDs) and hardhats.

small boat secured on board the NOAA Ship Thomas Jefferson; we can see the brand name Vestdavit on the davit
Launch secured in the davit.
above view of small boat in "cradle" on NOAA Ship Thomas Jefferson
The launch is sitting in its cradle. It is snug as a bug in a rug!

Notice that the launch in the previous pictures is secured to the davit by bow ropes, cables & hooks, ratchetted straps, and bumpers.  Ships move around a lot.  We don’t want the launches swinging and slamming into the davit.  As mentioned previously, this piece of machinery uses hydraulics.  Unlike the hydraulics we use in STEAM class, these use oil as the hydraulic fluid and not water.  The hydraulic fluid used by NOAA is very environmentally friendly.

The following videos and pictures will show how the davit is used to capture and raise the launch from the water and back onto the TJ:

Step #1 – Get the launch close to the side of the ship where it will be stored.  (2903 is stored on the starboard side (right side when looking toward the bow) of the ship.  2904 is stored on the port side (left side when looking toward the bow) of the ship.)

Coming along the side of Thomas Jefferson.

Step #2 – Get the lines ready and attach the painter line to the bow. The painter line is the white line in the video below.

Securing the painter line.

Step #3 – Attach the davit clip to the hook on the bow.

Attaching the davit clip.

Step #4 – Engaging the hydraulics will start to raise the boat out of the water.  Notice that the large orange bumpers on the side of the launch help to protect the boat from bumping into the side of TJ.  At this point, it is safe for the crew to disembark (get off) the launch.

Engaging the hydraulics.

Step #5 – The davit lifts the launch and places it in its hold or cradle.

Final lift of the davit.

Step #6 – Finally, secure the launch with a ratchetted straps or webs.

  • a crewmember wearing a helmet and life vest pulls on a yellow strap
  • a crewmember wearing a helmet and life vest pulls a yellow strap across the bow of the small vessel to secure it back on board
  • a crewmember wearing a helmet and life vest lowers or pulls a yellow strap at hte right side of the small vessel to secure it back on board

Unfortunately, they are having some difficulty with the davits aboard Thomas Jefferson.  No launches will be deployed until they can get the issue resolved.  In the meantime, data will continue to be taken using the Mulitbeam Echo Sounder (MBES) and other technology on Thomas Jefferson.  I read recently that the CO (Commanding Officer) always puts personal safety before data acquisition.  He and the crew really mean it!

Personal Log

Yesterday morning, I enjoyed watching the crew deploy both launches to do surveys close to the shore.  It was choppy with 3-5 ft waves.  I have not felt seasick on TJ, but choppy seas on a small boat would have made me revisit my breakfast.  The launches came back in earlier than expected due to the rough water.  It was exciting to see how efficient the crew was at deploying and recovering the launches . . . like a well-greased machine. 

Operations Officer (OPS), Michelle, asked me to work with Operations Officer in Training (OPS IT), Sydney in the Plot Room.  She will teach me all I need to learn about hydrographic data acquisition.  (More on that in a later blog).  There is so much to learn!  If you are interested in math &/or science, you might want to look for a job at NOAA!

view of a computer screen displaying the output of hydrographic software; there is a nautical map on the left and additional panels to the right
Image created by Hypack, the hydrographic software used by TJ.

My time in the Plot Room was cut short because we had a fire drill followed immediately by an abandon ship drill.  At school we have a variety of drills (fire, wind, lock down).  Sometimes we take these drills for granted.  We get lazy. Let me tell you!  I was not prepared for the ship drills!  Each drill is announced by the ship’s whistle.  This is great and heard everywhere – however, it is worthless of you have not done your homework and learned what the whistles mean!  I am guilty of not doing my homework!  I was running around like a crazy person!  Suddenly, I could not find my way around the ship!  What was the drill?  What did the whistles mean?  What should I bring?  Where should I go?

a muppet, screaming.
I think this is what I must have looked like!

From now on, I WILL do my homework.  I will be prepared, and I will no longer take drills at school for granted.  They are important!

AlarmSignalWhere to reportWhat to bring
Fire or Other EmergencyContinuous sounding of general alarm or ship’s whistleMain deck, port side, outside of the damage control pathwayNothing, egress ASAP
Abandon Ship6 short blasts of ship’s whistle followed by one prolonged blast02 deck, starboard side, by raft #3Must wear PFD (life preserver), hat, long sleeves and carry survival suit (affectionately known as the Gumby Suit)
Man Overboard3 prolonged blasts of ship’s whistle02 deck, starboard side, watch aftNothing, egress ASAP
I made a table to help me organize my “homework”!

For the little Dawgs . . .

Q: Where is Dewey today?  Hint: it is usually underwater and helps move the boat.

Dewey the beanie monkey perched on the propeller of one of the small boats (out of the water, stored on board)
This part of the boat is usually under water.

A: Dewey is sitting on the propeller, also known as the prop.  The motor of the boat spins the prop which makes the boat go forward, or if it is spun in the opposite direction, the boat goes backward.

the propeller of the small boat or launch. since the vessel is out of the water, stored in its cradle, we can see Lake Erie and a dock in the background
This is the prop of the small boat or launch.  The propeller on the Thomas Jefferson is much larger! Behind the propeller is the rudder.  This can be moved side to side allowing the boat captain to steer in one direction or the other.

One of the TJ’s engineers shared this picture of the Thomas Jefferson’s propeller.  It was taken in the past when the ship was in “dry dock” undergoing repairs.

an engineer, wearing a hard hat, stands underneath the hull and the propeller of NOAA Ship Thomas Jefferson when it is in dry dock, i.e., completely out of the water
Just look at the size of the propeller and rudder of NOAA Ship Thomas Jefferson compared to the size of a man!

Well, that is all for now.  I am assigned to be in the Plot Room again tomorrow morning from 6:00-8:00 am (0600-0800)*.  I hope things go a bit more smoothly tomorrow.  These wonderful scientists have so much knowledge + they do not mind me asking many, many questions = a great learning experience!  Thank you, NOAA!

(*The ship runs on a 24 hour clock. Examples: 9:00 am = 0900. 3:00 pm = 1500. It’s easy once you get used to it. Also, I found out this morning that if you are scheduled for 0600, you really are supposed to show up at 0530. Oops! I try to keep a growth mindset in all I do!)

Kaci Heins: Shoreline Verification and Auroras, September 27-29, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Heading Back to the Rainier After Shoreline Verification

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Thursday, September 29, 2011


Weather Data from the Bridge

Clouds: Overcast/Drizzle/Rain
Visibility: 2 Nautical Miles
Wind: 15 knots
Temperature
Dry Bulb: 8.2 degrees Celsius
Barometer: 1001.1 millibars
Latitude: 55.42 degrees North
Longitude: -133.45 degrees West

Science and Technology

Waterfall on Shore

When we are out on a launch acquiring data there are so many beautiful shorelines to see.  From far away they look inviting, but in reality there are usually numerous boat hazards lurking below or on the shoreline.  I have written a lot about the hydrographic survey aspect of this mission and how it is important to ships so that they can navigate safely.

However, when we are out on a survey launch the first priority is safety of the crew, the boat, and the technology.  This means that we normally do not go anywhere that is shallower than about eight meters.   Consequently, this leaves areas near the shore that is not surveyed and leaves holes in the chart data.  This is where shoreline verification comes in using single beam sonar.  However, since the launch with the single beam is not operational at this time we have been using the multibeam instead.  The Marine Chart Division (MCD) gives the Rainier specific items that need to be identified because they are considered Dangers to Navigation,  or they need to be noted that they do not exist.  The MCD compiles a priority list of features that come from numerous sources such as cruise ships, aircraft pilots, and other boats that have noted that there may be a danger to navigation in a certain area.  Many of these charts have not been updated since they were created in the early 1900’s or never charted at all!

Before we leave the Sheet Manager and the Field Operations Officer (FOO) come up with a plan for what shoreline they want to verify for the day.  A plan must be made because there is a small window to acquire the information needed to satisfy the requests of the Marine Chart Division.  The shoreline verifications must be done at Mean Low or Low Water.  This means that it has to be done when the average low tide of each day comes around, which has been in the early morning and afternoon for us.

Shoreline 4 Meter Curve

Using the launches we head up to what is called the four meter curve.  This curve is the limit to where we can go during meal low or low water.  If we get any shallower or move closer to the shore then we will put everyone and everything in danger on the boat.  We bring with us  a camera to document the features, a clinometer, which allows us to document headings and angles, a laser range finder, charts that they can draw and note features on, and their computer software.   Once we get underway and arrive to our first rock that we have to document, the officers make sure they maintain good communication with the coxswain, or boat driver.  We make sure we circle everything in a counterclockwise motion so that he can see everything off to his starboard, or right side as we move.  We can see the rock become exposed as the waves move over it, but the tricky part is getting as close to it as possible without hitting it.  This is so we can get a precise location as possible for the chart.  Our coxswain was very experienced so we were able to get right next to it for photos, the heading, and to drop a target, or the location, in the software.

Notes Documenting Various Features

The rest of our shoreline verification was a lot less intense as we confirmed that there was a lot of kelp around the rocks, the shoreline, and specific rocks were in the correct place.  LT Gonsalves, the Hydrographer-in-Charge (HIC),  showed me how he draws some of the features on his chart and makes notes about whether the features are there or not.  I took photos and noted the photo numbers for the chart, as well as the range and height of various features.  Shoreline verification is very important for nautical charts so that ships and their passengers know exactly where dangers to navigation lie.  It takes 120 days from the final sounding for all the data to get submitted to the Hydrographic Survey Division.  From there the information gets looked over by numerous agencies until about 2 years later the updated chart is available.  This is quite a long time to wait for changes in dangers to navigation.  To be safe, the chart stays the same even if there is not a dangerous rock lurking around at mean low or low water.  It is best to just avoid the area and err on the side of caution.  There is still a lot of work to be done in Alaska that will take many, many years to complete.  However, it is thanks to hydrographic ships like the Rainier and its crew that get the job done.

Personal Log

NASA SOHO Image of Solar Wind and the Magnetic Field

Tonight was very special because we could actually see an aurora, or the northern lights,  in the night sky.  An aurora is a natural light display in the arctic and antarctic, which is caused by the collision of charged particles in the upper atmosphere.  Auroras start way back about 93 million miles (or 1 astronomical unit– AU) at the sun.  When the sun is active, usually due to coronal mass ejections, it releases energetic  particles into space with the very hot solar wind.  These particles travel very quickly over those 93 million miles until they reach the Earth’s magnetic field.   Most of these energetic particles are deflected around the Earth, but some get trapped in the magnetic field and are moved along towards the polar regions until they strike the atmosphere.  We knew there were possibilities to see an aurora while we were anchored, but usually it has been cloudy at night so we couldn’t see the stars.  However, on the 27th Officer Manda came through saying he had seen the lights.  Low and behold there was a green glow in the sky behind some clouds and a couple of times some of the energized particles made bands across the sky.  If there hadn’t been so many clouds I think it would have been even more spectacular, but I was so glad I did get to see them.  Very quickly, more clouds moved in and it was just a green glow on the horizon.  I also was able to see the milky way in all its glory and the brightest shooting star I have ever seen.  These amazing photos of the aurora were taken by Ensign Manda and I am very grateful he was willing to share.

Aurora and Shooting Star Courtesy of Ensign Manda

Aurora in Alaska Courtesy of Ensign Manda

Click HERE for a link to a neat animation of how an aurora is formed.

Student Questions Answered

Animals Spotted!

Seal On a Rock We Were Documenting

Seals – species unknown

 

 

 

 

 

 

 

 

Question of the Day

Kaci Heins: September 19-21, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Wednesday, September 21, 2011

Mrs. Heins at the Helm

Weather Data From The Bridge

Clouds: Overcast
Visibility: 4 miles
Wind: 20 kts
Waves: 0-1 feet
Temperature
Dry Bulb: 11.7 degrees Celsius
Barometer: 1000.1 millibars
Latitude: 55 degrees North
Longitude: 133 degrees West

Science and Technology Log

Launch Lowered Into The Water

Today was the first day that the survey launches left the Rainier to install and recover benchmarks and a tidal gauge.  The weather was not great and the crew had a lot of work to do so I was not able to go with them this time.  A benchmark is a small brass disk with information inscribed on it that relates to the station it represents. The benchmark holds the height of the datum.  The purpose of setting a tide gauge is to measure the water level. The water level information is used to reduce the bathymetric data acquired to the chart datum (mean lower-low water, MLLW).   Finding benchmarks has become quite popular through the hobby of geocaching.  This is where participants use latitude and longitude within Global Positioning Systems (GPS) as a way to hunt down “treasures” hidden by other participants.  This also includes finding benchmarks.


I’ve been trying to head up to the bridge as much as I can to learn as much as I can during this Teacher at Sea experience.  The first time I went up at night I had no idea about the environment that the officers work in on the bridge.  At night the officers on the bridge actually work in complete darkness.  All of the computer screens have dimmers or red filters so that the least amount of light affects their eyes in the darkness.  The reason it is so dark is because the officers need to be able to see the lighted navigation buoys to stay on course and to spot the lights of other ships that are heading in our direction.  There are also one or two deck personnel that are lookouts either on the flying bridge or bow to keep watch for ships, lights, and other objects that could potentially be a hazard to the Rainier.  A flying bridge is usually an open area above an enclosed bridge where the ship’s officers have a good view of everything around the front and sides of the ship.  We are traveling through the Inside Passage off the Southeastern coast of Alaska, which is extremely narrow in some places along the way.  This means that it is very important that the officers know exactly where they are and what is around them.

Personal Log

Anchor's Away!

I have been able to do some other neat tasks on the ship while the majority of the crew were out on their launches.  We finally were able to find a place to anchor at Ulloa Channel because we had a good “bite” with the anchor–it is protected somewhat from the weather we are dealing with, and it is close to our tide station.  They also let me run out some chain for the anchor and I was able to practice using the crane on the ship.  However, the best part so far has been being at the helm, or the steering gear of the ship.  I will admit I was pretty nervous the first time I grabbed the wheel because it was at night so I couldn’t see hardly anything.  Today, the officer of the deck (OOD) let me at the helm again because we were in open water.  When I am at the helm I have to watch my gyro-heading, which shows me true North, and my magnetic compass, which is more of a back up if the electronic gyro-heading fails.  If I have a heading of 150 then I have to make tiny adjustments or corrections to try and stay on or close to that number as possible.  Even when I make the tiniest adjustment I can see how much the ship moves.  I did start getting the hang of it and one officer even said he had never seen a visitor do so well!

One other item that I will mention in this blog is that the weather in Alaska during this time of year is overcast, rainy, and cold.

Beautiful Scenery Along the Inside Passage

However, going into this I had an idea of what to expect and I enjoy the fact that I get to see the non-glamorous side of this type of work.  It does not matter if it is rainy, cold, what you are wearing, or what you look like because there is a job to do.  It has been overcast every day, but the pine trees are amazing shades of green and the pictures do not do them justice.  We have also had 15 foot waves and 115 knot wind (this is the same as a category 3 hurricane!).  The wind didn’t bother me as much as the waves did.  I thought it was fun for the first 30 minutes, but then I had to lie down for a while because I wasn’t feeling too well.  I never threw up, but it did become uncomfortable.  Now that we are anchored and have stopped moving I feel funny because my body has been used to moving around so much for the past three days.  I sure hope I don’t get land sickness when I am done with this cruise!

Student Questions Answered: Here are student questions answered about feeding so many people on a boat over 3 weeks time.

Animals Seen

Puffins

Questions of the Day

We experienced 115 knot winds Monday night.  What category hurricane would that be the equivalent to?  Use the website if you need help.

http://www.nhc.noaa.gov/sshws.shtml