Kaci Heins: Shoreline Verification and Auroras, September 27-29, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Heading Back to the Rainier After Shoreline Verification

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Thursday, September 29, 2011


Weather Data from the Bridge

Clouds: Overcast/Drizzle/Rain
Visibility: 2 Nautical Miles
Wind: 15 knots
Temperature
Dry Bulb: 8.2 degrees Celsius
Barometer: 1001.1 millibars
Latitude: 55.42 degrees North
Longitude: -133.45 degrees West

Science and Technology

Waterfall on Shore

When we are out on a launch acquiring data there are so many beautiful shorelines to see.  From far away they look inviting, but in reality there are usually numerous boat hazards lurking below or on the shoreline.  I have written a lot about the hydrographic survey aspect of this mission and how it is important to ships so that they can navigate safely.

However, when we are out on a survey launch the first priority is safety of the crew, the boat, and the technology.  This means that we normally do not go anywhere that is shallower than about eight meters.   Consequently, this leaves areas near the shore that is not surveyed and leaves holes in the chart data.  This is where shoreline verification comes in using single beam sonar.  However, since the launch with the single beam is not operational at this time we have been using the multibeam instead.  The Marine Chart Division (MCD) gives the Rainier specific items that need to be identified because they are considered Dangers to Navigation,  or they need to be noted that they do not exist.  The MCD compiles a priority list of features that come from numerous sources such as cruise ships, aircraft pilots, and other boats that have noted that there may be a danger to navigation in a certain area.  Many of these charts have not been updated since they were created in the early 1900’s or never charted at all!

Before we leave the Sheet Manager and the Field Operations Officer (FOO) come up with a plan for what shoreline they want to verify for the day.  A plan must be made because there is a small window to acquire the information needed to satisfy the requests of the Marine Chart Division.  The shoreline verifications must be done at Mean Low or Low Water.  This means that it has to be done when the average low tide of each day comes around, which has been in the early morning and afternoon for us.

Shoreline 4 Meter Curve

Using the launches we head up to what is called the four meter curve.  This curve is the limit to where we can go during meal low or low water.  If we get any shallower or move closer to the shore then we will put everyone and everything in danger on the boat.  We bring with us  a camera to document the features, a clinometer, which allows us to document headings and angles, a laser range finder, charts that they can draw and note features on, and their computer software.   Once we get underway and arrive to our first rock that we have to document, the officers make sure they maintain good communication with the coxswain, or boat driver.  We make sure we circle everything in a counterclockwise motion so that he can see everything off to his starboard, or right side as we move.  We can see the rock become exposed as the waves move over it, but the tricky part is getting as close to it as possible without hitting it.  This is so we can get a precise location as possible for the chart.  Our coxswain was very experienced so we were able to get right next to it for photos, the heading, and to drop a target, or the location, in the software.

Notes Documenting Various Features

The rest of our shoreline verification was a lot less intense as we confirmed that there was a lot of kelp around the rocks, the shoreline, and specific rocks were in the correct place.  LT Gonsalves, the Hydrographer-in-Charge (HIC),  showed me how he draws some of the features on his chart and makes notes about whether the features are there or not.  I took photos and noted the photo numbers for the chart, as well as the range and height of various features.  Shoreline verification is very important for nautical charts so that ships and their passengers know exactly where dangers to navigation lie.  It takes 120 days from the final sounding for all the data to get submitted to the Hydrographic Survey Division.  From there the information gets looked over by numerous agencies until about 2 years later the updated chart is available.  This is quite a long time to wait for changes in dangers to navigation.  To be safe, the chart stays the same even if there is not a dangerous rock lurking around at mean low or low water.  It is best to just avoid the area and err on the side of caution.  There is still a lot of work to be done in Alaska that will take many, many years to complete.  However, it is thanks to hydrographic ships like the Rainier and its crew that get the job done.

Personal Log

NASA SOHO Image of Solar Wind and the Magnetic Field

Tonight was very special because we could actually see an aurora, or the northern lights,  in the night sky.  An aurora is a natural light display in the arctic and antarctic, which is caused by the collision of charged particles in the upper atmosphere.  Auroras start way back about 93 million miles (or 1 astronomical unit– AU) at the sun.  When the sun is active, usually due to coronal mass ejections, it releases energetic  particles into space with the very hot solar wind.  These particles travel very quickly over those 93 million miles until they reach the Earth’s magnetic field.   Most of these energetic particles are deflected around the Earth, but some get trapped in the magnetic field and are moved along towards the polar regions until they strike the atmosphere.  We knew there were possibilities to see an aurora while we were anchored, but usually it has been cloudy at night so we couldn’t see the stars.  However, on the 27th Officer Manda came through saying he had seen the lights.  Low and behold there was a green glow in the sky behind some clouds and a couple of times some of the energized particles made bands across the sky.  If there hadn’t been so many clouds I think it would have been even more spectacular, but I was so glad I did get to see them.  Very quickly, more clouds moved in and it was just a green glow on the horizon.  I also was able to see the milky way in all its glory and the brightest shooting star I have ever seen.  These amazing photos of the aurora were taken by Ensign Manda and I am very grateful he was willing to share.

Aurora and Shooting Star Courtesy of Ensign Manda

Aurora in Alaska Courtesy of Ensign Manda

Click HERE for a link to a neat animation of how an aurora is formed.

Student Questions Answered

Animals Spotted!

Seal On a Rock We Were Documenting

Seals – species unknown

 

 

 

 

 

 

 

 

Question of the Day

Kaci Heins: September 19-21, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Wednesday, September 21, 2011

Mrs. Heins at the Helm

Weather Data From The Bridge

Clouds: Overcast
Visibility: 4 miles
Wind: 20 kts
Waves: 0-1 feet
Temperature
Dry Bulb: 11.7 degrees Celsius
Barometer: 1000.1 millibars
Latitude: 55 degrees North
Longitude: 133 degrees West

Science and Technology Log

Launch Lowered Into The Water

Today was the first day that the survey launches left the Rainier to install and recover benchmarks and a tidal gauge.  The weather was not great and the crew had a lot of work to do so I was not able to go with them this time.  A benchmark is a small brass disk with information inscribed on it that relates to the station it represents. The benchmark holds the height of the datum.  The purpose of setting a tide gauge is to measure the water level. The water level information is used to reduce the bathymetric data acquired to the chart datum (mean lower-low water, MLLW).   Finding benchmarks has become quite popular through the hobby of geocaching.  This is where participants use latitude and longitude within Global Positioning Systems (GPS) as a way to hunt down “treasures” hidden by other participants.  This also includes finding benchmarks.


I’ve been trying to head up to the bridge as much as I can to learn as much as I can during this Teacher at Sea experience.  The first time I went up at night I had no idea about the environment that the officers work in on the bridge.  At night the officers on the bridge actually work in complete darkness.  All of the computer screens have dimmers or red filters so that the least amount of light affects their eyes in the darkness.  The reason it is so dark is because the officers need to be able to see the lighted navigation buoys to stay on course and to spot the lights of other ships that are heading in our direction.  There are also one or two deck personnel that are lookouts either on the flying bridge or bow to keep watch for ships, lights, and other objects that could potentially be a hazard to the Rainier.  A flying bridge is usually an open area above an enclosed bridge where the ship’s officers have a good view of everything around the front and sides of the ship.  We are traveling through the Inside Passage off the Southeastern coast of Alaska, which is extremely narrow in some places along the way.  This means that it is very important that the officers know exactly where they are and what is around them.

Personal Log

Anchor's Away!

I have been able to do some other neat tasks on the ship while the majority of the crew were out on their launches.  We finally were able to find a place to anchor at Ulloa Channel because we had a good “bite” with the anchor–it is protected somewhat from the weather we are dealing with, and it is close to our tide station.  They also let me run out some chain for the anchor and I was able to practice using the crane on the ship.  However, the best part so far has been being at the helm, or the steering gear of the ship.  I will admit I was pretty nervous the first time I grabbed the wheel because it was at night so I couldn’t see hardly anything.  Today, the officer of the deck (OOD) let me at the helm again because we were in open water.  When I am at the helm I have to watch my gyro-heading, which shows me true North, and my magnetic compass, which is more of a back up if the electronic gyro-heading fails.  If I have a heading of 150 then I have to make tiny adjustments or corrections to try and stay on or close to that number as possible.  Even when I make the tiniest adjustment I can see how much the ship moves.  I did start getting the hang of it and one officer even said he had never seen a visitor do so well!

One other item that I will mention in this blog is that the weather in Alaska during this time of year is overcast, rainy, and cold.

Beautiful Scenery Along the Inside Passage

However, going into this I had an idea of what to expect and I enjoy the fact that I get to see the non-glamorous side of this type of work.  It does not matter if it is rainy, cold, what you are wearing, or what you look like because there is a job to do.  It has been overcast every day, but the pine trees are amazing shades of green and the pictures do not do them justice.  We have also had 15 foot waves and 115 knot wind (this is the same as a category 3 hurricane!).  The wind didn’t bother me as much as the waves did.  I thought it was fun for the first 30 minutes, but then I had to lie down for a while because I wasn’t feeling too well.  I never threw up, but it did become uncomfortable.  Now that we are anchored and have stopped moving I feel funny because my body has been used to moving around so much for the past three days.  I sure hope I don’t get land sickness when I am done with this cruise!

Student Questions Answered: Here are student questions answered about feeding so many people on a boat over 3 weeks time.

Animals Seen

Puffins

Questions of the Day

We experienced 115 knot winds Monday night.  What category hurricane would that be the equivalent to?  Use the website if you need help.

http://www.nhc.noaa.gov/sshws.shtml