Meg Stewart: What Does the Seafloor Look Like? Hydrography Can Tell Us, July 11, 2019

NOAA Teacher at Sea

Meg Stewart

Aboard NOAA Ship Fairweather

July 8 – 19, 2019


Mission: Cape Newenham Hydrographic Survey

Geographic Area of Cruise: Bering Sea and Bristol Bay, Alaska

Date: July 11, 2019

Weather Data from the Bridge
Latitude: 58° 36.7 N
Longitude: 162° 02.5 W
Wind: 1 knot N
Barometer: 1011.0 mb
Visibility: 10 nautical miles
Temperature: 58° F or 14° C
Weather: Partly cloudy, no precipitation

Red Sky
“Red sky at night, sailors’ delight. Red sky in morning, sailors take warning.” This old mariner’s adage did NOT prove to be true when I saw this sunrise viewed from NOAA Ship Fairweather at 5:21am yesterday. It turned out to be a perfect delight for a surveying day!


What is NOAA and the Teacher at Sea program?

You may be wondering what, exactly, am I doing going “to sea” with NOAA. First off, NOAA stands for the National Oceanic and Atmospheric Administration and originates back to 1807 with Thomas Jefferson founding the U.S. Coast and Geodetic Survey (as the Survey of the Coast) with a mission to provide nautical charts to the maritime community for safe passage into American ports. Over time, the Weather Bureau was added and then the U.S. Commission of Fish and Fisheries was developed. In 1970, these three agencies were combined under one umbrella organization and named NOAA, an agency that supports accuracy and precision of physical and atmospheric sciences, protection of life and property, and stewardship of natural resources. NOAA is within the Department of Commerce.

Meg on flying bridge
I am standing on the flying bridge of the Fairweather where you get a fantastic 360° view.

NOAA’s Teacher at Sea (TAS) program has existed since 1990, sending over 800 teachers on NOAA research cruises. The TAS mission is “to give teachers a clearer insight into our ocean planet, a greater understanding of maritime work and studies, and to increase their level of environmental literacy by fostering an interdisciplinary research experience.”  There is usually just one teacher sent per leg of a mission, that way the TAS gets full exposure to the research process and attention from the crew, scientists and staff on the ship. And it is true, everyone onboard has been friendly, helpful, welcoming, and willing to answer any question I might have, like, where is C deck? (That’s where my stateroom is located).


Science and Technology Log

Now that you understand NOAA’s mission, it should not surprise you that I am on a research cruise that is mapping a part of the seafloor that has not had detailed soundings. “Soundings” means the action or process of measuring the depth of the sea or other body of water. See the map below as that is where I am right now, in Bristol Bay. By the way, NOAA nautical charts are available for free at this NOAA site.

Bristol Bay nautical chart
The NOAA nautical chart of Bristol Bay, Cape Newenham and Hagemeister Strait. Note that where there are small numbers in the white and blue sections of the chart (that is all water), you can see the sounding depths to surface shown in fathoms. The red polygon is drawn on by me. We are working in the upper, northwest part of that “poorly mapped” section. Notice that there are essentially no soundings in that region.

When I’ve told friends, family and students that I was chosen to be on a NOAA research vessel that was compiling a detailed map of the sea floor off of Alaska, it was met with great surprise. “The ocean floor hasn’t been mapped before? How could that be?” In fact, more than 80 percent of the ocean bottom has not been mapped using modern, highly precise technologies.  But we do have a very coarse ocean floor – or bathymetric – map, created in the early 1950s by Marie Tharp using sounding data collected by the U.S. military and her collaborator Bruce Heezen. Tharp’s early map of the sea floor beautifully revealed the Mid-Atlantic Ridge and added another piece of evidence in support of the theories of continental drift plate tectonics. There’s a terrific Cosmos: A Spacetime Odyssey episode featuring Tharp.

1977 colorized ocean floor map
This is the Tharp and Heezen (1977) colorized ocean floor map. This map is used under the Creative Commons license.

Why we need a more detailed bathymetry map than the one created by Tharp and Heezen can be explained by the original mission of the early version of NOAA. Jefferson wanted to build a “…survey to be taken of the coasts of the United States…” in order to provide safe passage of ships to ports within the navigable waters of the U.S. As the Bristol Bay chart above shows, there are still coastal areas that have limited to no data. Without detailed charts, mariners cannot know where the shallower waters are (called shoals), or rock obstructions, shifted underwater sand bars, shipwrecks, or other hindrances that cause safety concerns to the movement of boats.

The hydrographic Survey Team on the NOAA Ship Fairweather use several 30 foot boats, called launches, with a multibeam echosounder attached to the hull (the bottom of the ship). The multibeam echosounder uses sonar and is a device useful for both shallow and deep water. In a nutshell, depth measurements are collected by calculating the time it takes for each of the sound pulses to travel from the echosounder through the sea water to the ocean floor and back again. The distance from the instrument to the seafloor is calculated by multiplying the travel time by the speed of sound through seawater, which is about 1,500 meters/second or 4,921 feet/second. Right before a hydrographic survey is started, the team collects information on the conductivity, temperature and depth of the sea water, as temperature and salinity will modify the density and change the travel time of the sonar pulses. The video below can explain the process further.

This NOAA video explains multibeam sounding and hydrographic operations.
launch with echosounder
A launch on a lift right before going out to survey. The multibeam echosounder is permanently fixed to the bottom of the hull. It’s a square, rigid box that sits flat against the hull in front of the keel.
Ali in a launch
This is Ali Johnson in the cabin of a launch. She is a hydrographic survey technician and is analyzing the multibeam echosounder data as it is being collected. The length of a launch is 32 feet, and all the technology needed for the hydrographic surveys are directly on boats in the cabin. Post-processing, or stitching the completed surveys into one comprehensive product, is done “back in the office” on Ship Fairweather.

The software used to collect the soundings is created by the multibeam echosounder manufacturer, so the collection of millions of points on a transect is seamless. Data collection runs are taken over multiple days and several “legs” or extended periods of time when the crew are all out at the same time on the Fairweather.  Following collection transects, the data are then post-processed using Caris HIPS and SIPS, which is the software that the Fairweather hydrographers use for data processing.

screen showing bathymetry
A close-up of one of the monitors that shows what the sounding data look like. By looking at these data returns, the hydrographers can tell immediately if something is not right with the equipment. The two windows that show maps colored red to yellow to blue (top right and bottom left) show the bathymetry. The red areas are shallow depths and the blue are deeper depths, relatively speaking. Also notice the window at the bottom right with a triangle and circle within the triangle; that is showing the fan-shape of the echosoundings.


Personal Log

We’ve motored to a new location, Cape Newenham, which is the name of this mission, so we will be here for about a week. When we got underway, the ship got to really rocking and my stomach could not handle it. I had one bad night but I am now fine and ship shape!

Cape Newenham is at latitude 58°N so we are up close to the Arctic Circle (66.5°N). At this time of year, there are about 5 hours of darkness per night here in Alaska, which is really cool. Compare that what we have in New York…

Anchorage v NYC
For July 11, 2019, the number of daylight hours in Anchorage, AK (closest large city to where I am now) is 18 hours and 41 minutes. Times of sunrise and sunset are also given….the sun sets at 11:25pm today! And in NYC, NY (where my school is located), you are getting four fewer daylight hours, or about 15 hours of light. Again, times of sunrise and sunset are shown. Source for both: https://www.timeanddate.com/sun/usa
Launches and Fairweather
Launches waiting to get underway. All boats going out for surveys stay close to the Fairweather until everyone is securely in their boat, just in case of MOB (man overboard).
Fairweather anchored
This is where Ship Fairweather is anchored for the next few days, as the survey crews transect the project area. We are on the southern side of Cape Newenham. Again, the terrain is tree-less, though we are now adjacent the mainland of Alaska. I’ve seen so many types of sea birds, but the puffins are the best because they seem to not have figured out how to fly. I hear there are walrus in the area, but I haven’t spotted one as yet.


Did You Know?

You probably know that Charles Darwin was the naturalist on board the HMS Beagle which set sail on December 27,1831. Over the nearly five years the Beagle was at sea, Darwin developed his ideas on natural selection and evolution of species. But what you might not know is that the captain of the Beagle, Robert FitzRoy, was an officer in the Royal Navy, a meteorologist and hydrographer. In fact, the primary mission of the Beagle was to survey the coastline of South America and, in particular, the Strait of Magellan, at the southernmost tip. Better, more accurate charts were needed by the British government, to navigate the treacherous, rough waters of the channels. In addition, FitzRoy was a protégé of Francis Beaufort (who developed the Wind Force Scale which is still used to help explain wind speed) and both worked together to create the science of weather forecasting.


Quote of the Day

“In every outthrust headland, in every curving beach, in every grain of sand there is the story of the earth.” – Rachel Carson

Tom Savage: Surveying the Coastline of Point Hope, Alaska, August 12, 2018

NOAA Teacher at Sea

Tom Savage

Aboard NOAA Ship Fairweather

August 6 – 23, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, northwest Alaska

Date: August 12, 2018

Weather data from the Bridge

Wind speed 8 knots
Visibility: 10 nautical miles
Barometer: 1010.5 mB
Temp:  8.5 C     47 F
Dry bulb 8   Wet bulb 6.5
Cloud Height: 5,000 ft
Type: Alto Stratus
Sea Height 2 feet

Science and Technology

Why is NOAA taking on this challenging task of mapping the ocean floor?  As mentioned in an earlier blog, the ocean temperatures worldwide are warming and thus the ice in the polar regions are melting. As the ice melts, it provides mariners with an option to sail north of Canada, avoiding the Panama Canal. The following sequence of maps illustrates a historical perspective of receding ice sheet off the coast of Alaska since August 1857.  The red reference point on the map indicates the Point Hope region of Alaska we are mapping.

This data was compiled by NOAA using 10 different sources. For further information as how this data was compiled visit https://oceanservice.noaa.gov/news/mar14/alaska-sea-ice.html. 

The light grey indicates  0-30% Open Water – Very Open Drift.  The medium grey indicates 30 – 90 % Open drift – Close Pack.  The black indicates 90 – 100% very close compact.

Sea Ice Concentration August 1857
Sea Ice Concentration August 1857

Ice Concentration August 1957
Ice Concentration August 1957

Sea Ice Concentration August 2016
Sea Ice Concentration August 2016

Ships that sail this region today rely on their own ships sonar for navigating around nautical hazards and this may not be as reliable especially if the ships sonar is not properly working (it’s also problematic because it only tells you how deep it is at the ship’s current location – a sonar won’t tell you if an uncharted hazard is just in front of the ship). Prior to mapping the ocean floor in any coastal region, it requires a year of planning in identifying the exact corridors to be mapped. Hydrographers plot areas to be mapped using reference polygons overlaid on existing nautical charts.  Nautical charts present a wealth of existing information such as ocean depth, measured in fathoms(one fathom is equal to six feet) and other known navigation hazards.

As mariners sail closer to the shorelines, the depth of the ocean becomes increasingly important.  Because of this uncertainty in the depth, the Fairweather herself cannot safely navigate safely (or survey) close to shore.  In order to capture this data, small boats called “launches” are used. There are a total of four launch boats that are housed on the boat deck of the Fairweather. Each boat can collect data for up to twelve hours with a crew of 2-5. Depending on the complexity of the area, each daily assignment will be adjusted to reasonably reflect what can be accomplished in one day by a single launch. Weather is a huge factor in the team’s ability to safely collect data. Prior to deployment, a mission and safety briefing is presented on the stern of the ship by the Operations Officer. During this time, each boat coxswain generates and reports back to the operations officer their GAR score (safety rating) based on weather, crew skills and mission complexity (GAR stands for Green-Amber-Red … green means low risk, so go ahead, amber means medium risk, proceed with caution; red means high risk, stop what you’re doing).  In addition, a mission briefing is discussed outlining the exact area in which data will be collected and identified goals.

 

Safety Briefing
Safety Briefing by LT Manda – photo by Tom Savage

 

Deploying a launch boat
Deploying a launch boat – photo by Tom Savage

The sonar equipment that transmits from the launch boats is called EM2040 multi beam sonar. A multi beam sonar is a device that transmits sound waves to determine the depth of the ocean. It is bolted to the hull that runs parallel to the boat, yet emits sound perpendicular to the orientation of the sonar. In the beginning of the season, hydrographers perform a patch test where they measure the offsets from the sonar to the boat’s GPS antenna, as well as calculating any angular misalignments in pitch, roll or yaw. These measurements are then entered in to software that automatically corrects for these offsets.

deploying CTD
TAS Tom Savage deploying the conductivity, temperature and density probe ~ photo by Megan Shapiro

The first measurement to collect is the ocean’s conductivity, temperature and depth. From this information, the scientists can determine the depths in which the density of the water changes. This data is used to calculate and correct for the change in speed of sound in a given water column and thus provide clean data. The boats travel in pre-defined set lines within a defined polygon showing the identified corridor to be collected. Just like mowing a lawn, the boat will travel back and forth traveling along these lines. The pilot of the boat called the Coxswain, uses a computer aided mapping in which they can see these set lines in real time while the boat moves. This is an extremely valuable piece of information while driving the boat especially when the seas are rough.

Coxswain
Coxswain Zucker – photo by Tom Savage

The coxswain will navigate the boat to the position where data collection will begin inside a defined polygon. Since the multibeam echosounder transmits sound waves to travel through a deep column of water, the area covered by the beam is wide and takes longer to collect. In such stretches of water, the boat is crawling forward to get the desired amount of pings from the bottom needed to produce quality hydrographic data. The reverse is true when the boat is traveling in shallow water. The beam is very narrow, and the boat is able to move at a relatively fast pace. The boat is constantly rolling and pitching as it travels along the area.

 

 

 

 

Hydrographer Megan analyzing the data
Hydrographer Megan analyzing the data

As the boat is moving and collecting data, the hydrographer checks the course and quality of the data in real time. The depth and soundings comes back in different colors indicating depth. There is at least four different software programs all talking to one another at the same time. If at any point one component stops working, the boat is stopped and the problem is corrected.  The technology driving this collection effort is truly state of the art and it all has to operate correctly, not an easy feat. Every day is different and provides different challenges making this line of work interesting.  Troubleshooting problems and the ability to work as a team is crucial for mission success!

 

Personal Log

I have found the work on the Fairweather to be extremely interesting. The crew onboard has been exceptional in offering their insights and knowledge regarding everything from ship operations to their responsibilities.  Today’s blog marks my first week aboard and everyday something new and different is occurring. I look forward in developing new lesson plans and activities for my elementary outreach program. Prior to arriving, I was expecting the weather to be mostly overcast and rainy most of the time. However, this has not been the case. Clear blue skies has prevailed most days; in fact I have seen more sun while on the Fairweather than back home in Hendersonville in the entire month of July!  For my earth science students, can you make a hypothesis as to why clear skies has prevailed here? Hint, what are the five lifting mechanisms that generate instability in the atmosphere and which one(s) are dominant in this region of Alaska?

Question of the day.  Can you calculate the relative humidity based on the dry and wet bulb readings above?      Data table below……    Answer in the next blog

What is the relative humidity?
What is the relative humidity?

 

Until next time, happy sailing !

Tom

David Tourtellot: The Speed of Sound, July 15, 2018

NOAA Teacher at Sea

David Tourtellot

Aboard NOAA Ship Thomas Jefferson

July 9-26, 2018

Mission:  Hydrographic Survey – Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: July 15th, 2018

Weather Data from the Bridge

Latitude: 28° 49.4115’N

Longitude: 93° 37.4893’W

Visibility: 10+ Nautical Miles

Sky Condition: 4/8

Wind: Direction: 240°, Speed: 7 knots

Temperature:

Seawater: 31.7°C

Air: Dry bulb:31.5°C          Wet bulb: 27.5°C

 

Science and Technology Log

 

NOAA Ship Thomas Jefferson is well underway in its mission of surveying the seafloor. The primary tool that the ship (as well as its 2 Hydrographic Survey Launches) is using to accomplish this task is sonar. Sonar was originally an acronym for SOund Navigation And Ranging. If you are familiar with echolocation – the system that some animals (such as bats and dolphins) use to navigate their surroundings – then you already have a basic understanding of how sonar works. The sonar transmits a short sound (called a ping) that will travel down, away from the ship, until it hits the seafloor. At this point, it will reflect off of the sea floor, and echo back up to the ship, where it is detected by the sonar’s receiver. The crew aboard are then able to calculate the depth of the water.

To make the necessary calculations, there are 3 variables at play: the time that it takes for the ping to travel; the distance that the ping travels; and the velocity, or the speed, at which the ping moves through the water. If we know two of those variables, it is easy to calculate the third.

When using sonar to determine the depth of the water, distance is the unknown variable – that’s what we’re ultimately trying to figure out. To do so, we need to know the other two variables. Time is an easy variable for the sonar to measure. The sonar has a transmitter, which generates the ping, and a receiver, which hears it. These two components communicate with one another to give us an accurate measure of time. The third variable, velocity, is a bit trickier.

In saltwater, sound travels approximately 1500 meters per second. However, that rate can vary slightly based on water conditions such as temperature and salinity (how salty the water is). In order for sonar to get as accurate a reading as possible, it needs to calculate the precise speed of sound for the particular water it is in at the moment. The sonar is able to do that by using a component called a sound velocity sensor, known colloquially as a singaround.

Sonar 1 Singaround
The sonar on the hull of one of the Hydrographic Survey Launches. The orange rectangles are the projector (or, the transmitter) and the receiver, and the component in the green circle is the singaround

A singaround looks like a bar with a nub on each end. One nub is a projector, and the other is a reflector. The projector broadcasts a ping that travels parallel to the hull of the ship, bounces off of the reflector, and returns to the projector. We use that information to calculate velocity. The calculation uses the same 3 variables as above (time, distance, and velocity), but this time, distance isn’t the unknown variable anymore – we know exactly how far the ping has traveled, because we know how far the projector and reflector are from one another. The singaround electronically measures how long it takes for the ping to travel, and since we now know two of the variables (distance and time) we can calculate the third (velocity) for our particular water conditions at the face of the sonar.

Sound travels roughly 4 times faster in water than it does in air (this is because water is denser than air). To ensure that the sonar gets an accurate reading, it is important that air bubbles don’t get in the way. The boat’s hull (bottom) has a triangular metal plate directly in front of the sonar, which routes air bubbles around to the side of the sonar.

Sonar 2
The hull of one of the Hydrographic Survey Launches.

 

Personal Log

Each day, the ship’s CO (Commanding Officer) publishes a POD, or Plan Of the Day. This is full of important information – it tells us what the ship will be doing; if/when we will deploy the launch boats, and who will be on them; what time meals will be; and the expected weather conditions. Below is an example from Friday, July 13th.

Plan of the Day
NOAA Ship Thomas Jefferson Plan of the Day for Friday, July 13, 2018

On Friday, I had the opportunity to go out on one of the Hydrographic Survey Launches. Because of their smaller size, the launch boats are great for surveying difficult to maneuver areas. For instance, we spent most of the day surveying an area near an oil rig, and were able to get much closer than the Thomas Jefferson could.

Mike Below Deck
Survey Tech Mike Hewlett collecting and analyzing survey data aboard a launch boat

Oil Rig and Boat
An oil rig and a supply vessel

I’ve been very impressed by how multi-talented everyone on the ship seems to be. In addition to analyzing data, the ship’s survey techs can also be found handling lines as the survey boats are launched and recovered, and do a lot of troubleshooting of the hardware and software they’re using. The coxswains (people who drive small boats) double as engineers, fixing issues on the launch vessels when away from the ship. I’m surrounded by some very gifted people!

Fixing the AC
Coxswain Francine Grains and Survey Tech Brennan Walters fixing the air conditioner on one of the launch boats that had stopped working unexpectedly. They had it up and running in no time

Did you know?: As president, Thomas Jefferson ordered the first survey of the coastline of the United States. Because of this, NOAA Ship Thomas Jefferson is named for him. 

Latest Highlight: While surveying, we spotted a water spout in the distance. A water spout is a tornado that forms over water. Luckily, we were a safe distance away. It was an amazing sight to see!

 

Victoria Obenchain: Launching Boats, July 9, 2018

Teacher at Sea Blog

Victoria Obenchain

Aboard NOAA Ship Fairweather

June 25 – July 6, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Northwest, Alaska

Date: July 9, 2018

Science and Technology Log

My last few days at sea were rather exciting.  Wednesday, I got to attend some medical training necessary at sea in the morning, and then in the afternoon we practiced safety drills. The whole crew ran through what to do in the case of three different ship emergencies: Fire, Abandon Ship and Man Overboard.  These drills were pretty life-like, they had a fog machine which they use to simulate smoke for the fire drill. Once the alarm was triggered people gather in their assigned areas; roll was taken, firemen and women suited up and headed to the location where smoke was detected, and from there teams are sent out to assess damage or spreading of the fire, while medical personnel stood prepared for any assistance needed. The abandon ship drill required all men and women on board to acquire their life preserver and full immersion suit, and head to their lifeboat loading locations. Roll is then taken and an appointed recorder jots down the last location of the ship. Once this is done, men and women would have deployed the life rafts and boarded (luckily we did not have to). And for the man overboard drill they threw their beloved mannequin Oscar overboard in a life vest and had everyone aboard practice getting in their look out positions. Once Oscar was spotted, they turned the ship around, deployed an emergency boat and had a rescue swimmer retrieve him.

Fast Rescue Boat
Deployed emergency boat for rescue of the beloved mannequin, Oscar.

These drills are necessary so that everyone on board knows what to do in these situations. While no one hopes these emergencies will happen, knowing what to do is incredibly important for everyone’s safety.

Thursday was maybe my favorite day on board. Due to the fact that there are a handful of new personnel on board, practice launching and recovering the survey launch boats was necessary. There are 4 launch boats on top of NOAA Ship Fairweather, each equipped with their own sonar equipment. These boats sit in cradles and can be lowered and raised from the sea using davits (recall the video from the “Safety First blog a few days ago). These four boats can be deployed in an area to allow for faster mapping of a region and to allow for shallower areas to be mapped, which the NOAA Ship Fairweather may not be able to access.  Since this is a big operation, and one which is done frequently, practice is needed so everyone can do this safely and efficiently.

 

With the aid of Ali Johnson as my line coach, I got to help launch and recover two of the survey launch boats from the davits on the top of the ship into the Bering Sea. This is an important job for all personnel to learn, as it is a key part of most survey missions. Learning line handling helps to make sure the survey launches are securely held close to the ship to prevent damage and to safely allow people on and off the launch boats as they are placed in the sea.  From learning how to handle the bow and aft lines, to releasing and attaching the davit hooks, and throwing lines from the launches to the ship (which I do poorly with my left hand), all is done in a specific manner. While the practice was done for the new staff on board, it was fun to be involved for the day and I got to see the beauty of the NOAA Ship Fairweather from the Bering Sea.

And I truly enjoyed being on the small launch boats. I then understood what many of the officers mentioned when they told me they enjoyed the small boat work. It’s just fun!

 

My trip ended in Nome, Alaska, which was in and of itself an experience. Students, you will see pictures later.  I am extremely thankful for the crew on board NOAA Ship Fairweather, they are a wonderful mix of passionate, fun professionals. I learned so much!

Personal Log

Being a Teacher at Sea is a strange, yet wonderful experience. Being a teacher, I normally spend the vast majority of my day at work being in charge of my classroom and beautiful students; leading lesson and activities, checking-in with those who need extra help and setting up/tearing down labs all day, as well as hopefully getting some papers graded. However during this experience, I was the student, learning from others about their expertise, experience and passions, as well as their challenges; being in charge of nothing.  And given that I had no prior knowledge of hydrography, other than its definition, I was increasingly impressed with the level of knowledge and enthusiasm those on board had for this type of work.  It drove my interest and desire to learn all I could from the crew. In fact, I often thought those on board were older than they were, as they are wiser beyond their years in many area of science, technology, maritime studies, NOAA Ship Fairweather specifics and Alaskan wildlife.

Crew of NOAA Ship Fairweather
Crew of NOAA Ship Fairweather

NOAA offers teachers the opportunities to take part in different research done by their ships throughout the research season as a Teacher at Sea. The 3 main types of cruises offered to teachers include (taken from the NOAA Teacher at Sea website):

  • Fisheries research cruises perform biological and physical surveys to ensure sustainable fisheries and healthy marine habitats.
  • Oceanographic research cruises perform physical science studies to increase our understanding of the world’s oceans and climate.
  • Hydrographic survey cruises scan the coastal sea floor to locate submerged obstructions and navigational hazards for the creation and update of the nation’s nautical charts.

I was excited to be placed on a Hydrographic Survey boat, as this is an area in my curriculum I can develop with my students, and one which I think they are going to enjoy learning about!

While I was sad to leave, and half way through had a “I wish I would have known about this type of work when I was first looking at jobs” moment (which I realize was not the goal of this fellowship or of my schools for sending me), I am super excited to both teach my students about this important work and also be a representative of this awesome opportunity for teachers. I will wear my NOAA Teacher at Sea swag with pride!

Teacher at Sea gear!
Me in my awesome Teacher at Sea gear!

 

Heather O’Connell: Surveying Tracy Arm, June 20, 2018

NOAA Teacher at Sea

Heather O’Connell

NOAA Ship Rainier

June 7 – 22, 2018

Mission: Hydrographic Survey

Geographic Area of Cruise: Seattle, Washington to Sitka, Alaska

Date: 6/20/18

Weather Data from the Bridge

Latitude and Longitude: 57°52.9’ N, 133 °38.7’ W, Sky Condition: Broken, Visibility: 10+ nautical miles, Wind Speed: Light Variable, Sea Level Pressure: 1013.5 millibars, Sea Water Temperature: 3.9°C, Air Temperature: Dry bulb: 17.8°C, Wet bulb: 14°C

Science and Technology Log

After the morning meeting of hearing everyone’s risk assessment before getting on the launches, I was part of the four person crew on launch RA-6. Our task for the day was to clean up the data, or collect data in places within the Tracy Arm polygon that weren’t already surveyed. We had to fill in the gaps in L and M polygons on the East point. The entire area of Tracy Arm needed to be surveyed because there are several cruise ships that are coming into this area now that Sawyer Glacier is receding and the area has not been surveyed since the late nineties. Navigation charts must be updated to ensure that the safety of the people that are visiting the area.

Launch going out to survey
Launch going out to survey

Once on the launch, the bright orange POS MV, or Positioning Orientation System Marine Vessel, must be powered to start the survey process. The new acquisition log was created as an excel spreadsheet to record the different casts along with the latitude and longitude, the maximum depth and the sound speed of the water at about approximately one meter. With all of the valuable data recorded, it is important to have a consistent system for managing all of the data so that it can be accessed and managed efficiently.

The EM-2040 Konsberg Sonar S.I.S., Seafloor Information System, program was powered on next. The EM processing unit, which is connected to the multi-beam sonar, has three lines of information when properly communicating with sonar. The right hand monitor in the launch displays the information from the sonar. Creating the file name is another crucial way of ensuring that the data can be managed properly. It is from this computer that you can manually adjust the angle of the beam swath with the sound pings.

Sonar Computer Systems
Sonar Computer Systems

Once the computers were started and communicating with each other, we completed a C.T.D. cast to obtain the sound speed profile of the water. There is also a device that measures this right on the multibeam sonar, but it is important that two devices have a similar sound speed profile to ensure data accuracy. If there is a large discrepancy between the two values, then another cast must be taken. Initially, the measuring sound speed profile at the interface was 1437.2 and the C.T.D. sound speed was 1437.8. The final algorithm that determines the depth of the water will take this information into account. Since we were somewhat close to a waterfall, the fresh water input most likely affected the sound profile of the water.

Preparing the CTD
Preparing the CTD

After viewing the data acquired in the sheet, or the assigned area of Tracy Arm to survey, Greg found areas where there were holes. He put a target on the map on the monitor on the left hand side computer. This HYSWEEP interface for multibeam and side scan sonar (which is a subset of HYPAC which is the multibeam software) screen shows a chart of the area with depths in fathoms and any rocks or shoals that would impede driving ability along with a red boat image of the vessel. This display is what the coxswain driving above also sees so that he or she is aware of what direction to travel. Once logging data, this screen also displays the beam so that you can ensure that all necessary data is being acquired. Previous surveys are depicted in a more subdued color so that you can see that the missing data is being collected. From the monitor, the survey technician must control the view of the map to be sure that it includes the targeted area, along with the path of the boat so that future obstructions can be avoided.

Multi-beam Sonar Work Station
Multi-beam Sonar Work Station

Since we were avoiding icebergs in the initial part of the clean up, we were going at about two knots. This slow pace allows for an increase in returns, nodes and soundings that increase the data density. Shallow waters take much longer to survey due to the smaller swath width. It is important to have accurate, high resolution data for shorelines since this is the area where many vessels will be traveling.  When a sonar pings, every swath, or fan-shaped area of soundings, returns five hundred soundings. Five hundred soundings times a rate of seven pings per second means there are thirty five hundred soundings per second total. This data density enhances the resolution of the maps that will be generated once the data has been processed.

Since there are sometimes safety hazards when surveying there are several different approaches that can be used to ensure the entire area is surveyed in a safe manner. Half stepping included going back over previous coverage far enough away from the hazard. Scalloping is another method which involves turning right before the rock or obstruction. This sends the beam swath near the rock without putting the vessel in danger. Some areas that were too close to icebergs could not be surveyed since it was not safe. But, this hydrographic survey was able to acquire data closer to the Sawyer Glacier than ever before. Being a part of this data collection was gratifying on many levels!

Personal Log

Seeing a white mountain goat amongst some of the most beautiful geological features that I have ever laid eyes on was another benefit of being out on the launch for the day. When a grizzly bear cub ran by a waterfall I continued to appreciate a day on the launch. Seals perched on icebergs were always a fun sight to see. And, the endless pieces of ice drifting by in the sea during our surveying never ceased to amaze me. 

Seals on an Ice Berg
Seals on an Iceberg

After a day of surveying, kayaking to a waterfall in William’s Cove and exploring proved to be another fun adventure.

OLYMPUS DIGITAL CAMERA
Waterfall in William’s Cove

Growing Muscle like Growing Character

The other day as I ran on the treadmill, I had a realization. While looking at the lifting weights, I realized that in order to build muscle, one must tear old muscles and rebuild new strands of protein. When these new fibers build on top of each other, muscles grow. I realized that new officers go through a similar process of developing skills and character. Junior officers come in with a two year responsibility where they learn an incredible amount. They are constantly put into new and challenging learning experiences where they tear their muscles. As they acclimate to these experiences, they build character, or muscle. The cycle repeats with subsequent occurrences.

Junior Officer ENS Airlie Pickett has a small triangle tattooed on her inner left bicep. When I asked her the significance of it, she said that the only way that you can truly understand something is to observe how it changes. In math, integrals and derivatives explain this change.

As I appreciated her tattoo, I considered that she must learn quite a lot about herself as a junior officer constantly learning new things. I’ve appreciated the opportunity to experience and observe myself in an unfamiliar surrounding on Rainier. It’s humbling to not understand the nautical terms, endless acronyms of surveying and NOAA Corps structure of life. I appreciated that all hands on Rainier made me feel welcomed, and were patient with explaining new concepts to me. I am grateful for the opportunity to experience the Inside Passage while learning about hydrographic surveying. Living on a ship, learning about navigation and meeting all of the hard working people on Rainier has been an unique experience. Overall, this has been an incredible opportunity. Mahalo nui loa! (Thank you very much). A hui hou Rainier! (Until we meet again)!

Did You Know?

Barometers measure atmospheric pressure in millimeters of mercury or atmospheres. An atmosphere is the amount of air wrapped around the Earth and one atmosphere, atm, is the amount of pressure at sea level at fifteen degrees Celsius. As altitude increases, the amount of pressure decreases since the density of the air decreases and less pressure is exerted. A decrease in altitude increases the amount of pressure exerted and the density of the air increases.

Changes in pressure can signify weather patterns. A drop in barometric pressure means a low pressure system is coming in and  there is not enough force to blow away the weather. Weather indicative of this includes windy, cloudy and/or rainy weather. An increase in barometric pressure means a high pressure system is coming in and  cool, dry air pushes out the weather resulting in clear skies.

https://www.nationalgeographic.org/encyclopedia/barometer/

 

Lisa Battig: Launching the Small Boats, September 1, 2017

Teacher at Sea

Lisa Battig

Aboard NOAA Ship Fairweather 

August 28 – September 8, 2017

 

Mission: Arctic Hydrographic Survey final leg

Geographic Area of Cruise: Brevig Mission, Alaska
Latitude  65 19.2N,  Longitude 166 30.7W

Date: September 1, 2017

Weather from the Bridge:  extremely variable today!!

  • Morning: overcast, 6-8 knot winds, 41 degrees
  • Afternoon: partially cloudy skies, 2 knot winds, 48 degrees
  • Late afternoon: full cloud cover, rain squalls, 10-14 knot winds, 41 degrees

 

Science and Technology Log

Thursday’s science was a bit different. Two boats went out to do some final surveying and follow up in Port Clarence and Grantley Harbor. Because the area of Grantley harbor to be surveyed was in less than 4 meters of water, an Ambar jet boat was used with a single beam sonar mounted aft on the port side. The second boat that went out was one of the small launches for use as a dive boat for NOAA trained divers (https://www.omao.noaa.gov/learn/diving-program). The goal of the dive boat was to dive on a particular location in Port Clarence that was giving a strange image that must have been coming from a man-made structure. The sonar showed a grid pattern roughly 100m x 60m with lines 7-8m apart on the long axis and 5-6m apart on the short axis. The team felt strongly that they needed to understand what was there in order to determine if it was safe for anchoring. I’ll follow up more on this later…

I went out with the team on the Ambar. As is the case with all the small launches, the Ambar is brought down from the boat deck to the breezeway deck for loading before the actual release.

Ambar at breezeway
Ambar jet boat at the breezeway deck, loading supplies. You can see parts of the davit where it was previously cradled on the boat deck above.

All gear, materials, food (long days out there!!) and people embark prior to the final drop to the water and the actual launch. This takes a team of a dozen or so people working in coordination. Prior to the start of launch, a safety officer is required on deck to oversee the process. This might be the CO (Commanding Officer), XO (Executive Officer) or Operations Officer. Most of the other personnel involved are a part of the deck crew, including the coxswain (who drives the small launches).  A davit operator handles the control of the boat via cable(s) all the way down. The bosun (boatswain) on the breezeway deck is directing commands to the operator using hand signals. Several hands are securing the craft with ropes against the side of the ship. All of these moves have to happen in perfect coordination for the safety of everyone and the protection of the Ambar and Fairweather. Personal protective equipment is worn by all parties throughout. This includes a flotation vest or jacket and a hard hat which you can see on those on the boat in the image to the left.

Five of the other six small launches on the Fairweather undergo a similar process. Each is housed in a davit cradle and each has one or more cables to control the craft during its descent toward the waterline. The davits all shift their cradling position while the cables lift to assist in the release of the craft. Once the craft is entirely free of the cradle, it is slowly lowered down the side of the vessel to the breezeway deck for loading as described above. One boat, though, has a really cool option. This is the FRB or Fast Rescue Boat. This craft can actually be launched by the driver, which is a requirement of any FRB.

Boat on fantail
Workboat on the fantail – note the three lines attached, two at the stern and one at the bow. These are handled expertly by the deck crew during launch to keep her true.

The final craft is a workboat which is housed on the fantail. It is not used for surveying, but will often be employed as passenger transport. It is also used for pick up and drop off of material that may be used on land, such as the HorCon station discussed in my previous post. This craft is not seated in a davit cradle and is instead launched through the use of a very large crane (see image below). The crane is attached to the launch at a center point connected with three lines.

Crane on Fairweather
Crane on the Fairweather boat deck centered between four small launch davits.

The craft is moved from the position on the fantail to either the port or starboard side level with the deck and lowered to the water before loading. For this reason, it is much more difficult to keep it completely horizontal and not hitting the deck and doing damage to the Fairweather.

So back to the Ambar and what we were actually doing in Grantley Harbor. Much of the harbor is quite shallow and when a team had been in there previously, they felt that there may be some irregularity to the otherwise uniform seafloor. They had been getting some interference and scattering on the side scan. They wanted to understand why and also to get a complete picture of the harbor seafloor. With the Ambar and the single beam sonar, there is little to no danger of doing damage in extreme shallows since the equipment is not on the underside of the boat and the Ambar itself can be beached as there are no propellers.

Single beam on Ambar
Single beam sonar in its mount on the stern of the Ambar. It is in the down position as it will be when launched tomorrow.

 

 

 

We took the boat into the shallows with the single beam sonar to take measurements along lines to as shallow as 2m. While surveying in the shallows, we found that there were sea grasses growing and according to the Operations Officer who was on board, that may have been the reason for the interference. Regardless, we continued to survey a regular pattern in order to have good data for future charts. During this time, I was given the opportunity to drive the Ambar… which showed me how much more difficult staying a straight line course is than the coxswains make it look.

 

 

Ambar driving lines
Yep. The outlined line is my line. I am reasonably proud that I actually manage to make it from one side to another. But even that was with a WHOLE lot of coaching!!

Upon return to the Fairweather, the Ambar is reattached to the cable and brought back up to the breezeway deck. Ropes are again used in coordination to keep the boat steady as it is lifted, much the reverse of what was described above. At that point all materials are unloaded and all the people disembark. The Ambar is then hoisted back up into the davit cradle.

When I’m back in an area with lots of bandwidth, I’ll create a video post to show just how cool the launches of small boats really is…


Personal Log

Shipboard life on a NOAA vessel is quite different from life on land. First, because the ship is a twenty four hour operation, people are needed at all hours. Many of the positions on NOAA vessels run on a 4 hours on, 8 hours off cycle. Some positions have recently shifted to 4 on, 4 off, 4 on, 12 off to afford greater lengths of time for sleep. When you are on the lower decks, it is also easy to lose track of time – and of course when you’re in Alaska during summer, it’s still light out at 10 o’clock. There are auroras to potentially be seen in the wee hours and multibeam surveying that happens through the night. There are always people up and about doing things – so the ship is a busy place at all times.

And with this in mind, I have to admit I have not been doing a great job getting to sleep. But I do sleep well on the ship, the rocking is the best cure for insomnia I’ve ever experienced. And I have been eating incredibly well – and I mean INCREDIBLY well. Mealtimes are the same each day, so that’s a great help. I will talk more about the food and the kitchen in a future post. Fortunately, with all that good eating, there’s a gym on board, so I’ve been able to work some of it off. There’s also laundry on board and a lounge with lots of movies. I like it. And waking up to the ocean and a lovely sunrise each morning makes the tiredness not really matter much.

Little and Big Diomede 2
Light early in the eastern sky – the sun comes up all around you this far north. It’s truly lovely.

 

As a part of NOAA’s mission, we had the opportunity to go ashore at a small town at Port Clarence called Brevig Mission. It is a town of almost 400, most of whom are native to Alaska. While ashore, we were able to spend time talking with the people, purchasing some of their handcrafts and fish, and even visiting the school. The people live simple lives. They still hunt walrus, seal and whale and those foods are the staple of their diet through the frozen winter months. I found it fascinating that they use all of the parts of the animals – the items that I purchased were from seal and walrus.

ornaments from Brev Mis
On the left is an ornament made of seal fur and on the right is a pendant of walrus tusk.

 

 

The CO (Commanding Officer) also arranged for ship tours for people from the town. The folks were taken in the Ambar out to the Fairweather in small groups and shown around. It was fun speaking afterward with those who went – there was a lot of excitement! I am so grateful that I had the opportunity to go to the town. They have a crazy history (see the “Did you know?” section below.)

Brev Mis Fam on ATV
Mom with her two little girls down near the water on their ATV. This is the most common form of transport around Brevig Mission.

 


Did You Know?

Cross commemorating Brev Mis 1918 flu victims
This cross memorializes all of the residents of Brevig Mission who died in the 1918 flu. It now lays on the ground aside the mass grave. All of the names and ages of the victims are listed.

Brevig Mission was hit hard by the 1918 Spanish Flu, perhaps in percentage mortality, the hardest hit place in the world. Of the 80 residents of Brevig Mission, 72 succumbed to the flu and died in a 5 day period. It was absolutely devastating. One of the current residents shared with me that reaching 400 is encouraging to the town and everyone there believes that the town is continuing to grow.

Mass grave Brev Mis 1918 flu victims
This is the location of the mass grave from the 72 flu victims of the 1918 Spanish Flu. It is a sobering place.

In 1997, the lungs of a well-preserved victim in the mass grave were shipped to a molecular pathology lab in Washington, D.C. and the flu virus was reconstructed. The evidence showed that it was a bird flu (similar to the avian flus which plague our world today) but incredibly virulent as it passed from birds to humans. You can read more about the findings here. (http://www.gi.alaska.edu/alaska-science-forum/villager-s-remains-lead-1918-flu-breakthrough)

Continue reading “Lisa Battig: Launching the Small Boats, September 1, 2017”

Lisa Battig: Nome, Alaska & Launch 2808, August 30, 2017

NOAA Teacher at Sea

Lisa Battig

Aboard NOAA Ship Fairweather

August 28 – September 8, 2017

 

Mission: Hydrographic Survey leg IV

Geographic Area of Cruise: Alaska

Date: Wednesday, August 30, 2017
Location: Port Clarence: 65o14.034N 166o43.072W

Weather on the bridge:
30+ knot winds, 42o F, 4ft seas, heavy stratocumulus clouds (9/10 coverage)

Science & Technology Log

Over the past two days I have been introduced to tremendous amounts of the science of hydrography. In this blog post I will focus on the hardware used and the process of surveying. There are two types of sonar that are being employed. The first is side scan sonar and the second is multibeam sonar.

Side Scan
Side scan array sonar housed underneath one of the small launch vessels

 

Side scan is shorter range and performs better in shallower water. Side scan is used in conjunction with multibeam, however, as side scan does not give true depth values. The function of side scan is to show features evident on the ocean floor. For this reason, multibeam is run in conjunction with side scan in order to keep an accurate record of depths.

Multibeam
Multibeam sonar housed underneath another of the small launch vessels

Multibeam shows an exact depth. Due to the fact that it is an angular spreading band from the center of the underside of the launch, at shallow depths it will only show a very narrow strip of ocean floor.


Stop and imagine…a lit flashlight shining on a wall from only a few centimeters away. What happens to the image on the wall as you pull the flashlight back? The area of coverage of the image will become larger. The concept is similar for the multibeam in shallow versus deeper water.


Using multibeam in shallow water then would create a need for more passes closer together in order to cover an area. There are instances where using this technology even in shallow water would make sense, but for a full coverage survey, this would not be the case.

CTD Image 2
A CTD; it contains sensors for conductivity, temperature and density of the water column

The third piece of hardware used for the standard small boat launch hydrographic surveys is the CTD device. The CTD will measure conductivity of the water and also give both a temperature and density profile. The CTD is deployed multiple times during a survey as a tool to calibrate the data that is coming in via the sonar. Conductivity of the water gives an estimate of the total dissolved solids in the water. This information, along with the temperature and density will give an estimate of sound speed through the water column.


Stop and try this one for better understanding… knock on a door normally with your head roughly arm’s distance from the point where you are knocking. Now repeat the process of knocking, but with your ear pressed against the door approximately an arm’s length away from the knock. What is different? You should have noticed that a more precise (and typically louder) sound reached your ear. If you pay close attention, you will also notice that the sound reaches your ear more quickly. This is roughly analogous to how changes in the water column will affect sound speed.


The final piece of equipment used regularly for surveys is a HorCon (horizontal control) station. This is a land-based station that will help to define accurate position in the water. It allows for greater precision with global positioning data. The signals of satellites responsible for global position are affected daily by changing atmospheric conditions. Moreover, the precise positions of the satellites themselves are actually not well known in advance. This may result in a GPS location moving a few centimeters in one direction or another. While this is not going to heavily impact your ability to find a Starbucks in a strip mall, it can have a definite impact on the accuracy of charts for navigation. The HorCon station always remains in the same place on land, and can therefore be used to calibrate the measurements being read in the survey waters nearby and that information can be used along with corrected satellite positions since it is coming after the fact.

Port Clarence chart
A nautical chart of the Port Clarence and Grantley Harbor area where we were surveying

Today we worked in Port Clarence, Alaska, both outside and inside of Grantley Harbor. Most of the depths being surveyed are in the 4-6 meter range. The particular area being surveyed had been previously surveyed in the 1950s by the US Coast and Geodetic Survey, likely using a single beam sonar system. The current survey is intended to note changes that have occurred since that prior survey and to accurately update all of the charts. The area of western Alaska is expected to increase in boat traffic over the coming years due to the opening of the Northwest Passage from the Pacific to the Atlantic via the Arctic. This route is significantly shorter for most shipping traffic than the route through the Panama Canal. Because of this expected increase in traffic, there is a need to identify areas for sheltering during heavy seas. Port Clarence is a natural inlet that offers some protection and holds potential for this purpose.

The process of surveying:
Two launches were deployed. I was on launch 2808, the second described here. The first was equipped with only multibeam sonar and the second had both multibeam and side scan. The plans for the two launches were different. The launch with only multibeam was working in an area of Grantley Harbor and covering an area that had previously been mapped to insure that the values were acceptably accurate. This focus existed primarily because of extra time available up in this area. The launch running the side scan was completing some unfinished work in Port Clarence and then did further work inside of Grantley Harbor. These areas, or “sheets” are described below. As a side note, small boat deployment is a fascinating and involved activity that I will discuss in a later blog.

Survey areas are broken up into sections known as “sheets” – each sheet has a manager. This person will be from either the NOAA Corps or a civilian member of the scientific survey team. The sheet manager will be responsible for setting up the plan for survey and doing all of the final checks after data has been gathered, cleaned and examined to determine if there are areas that should be rechecked or run again before it is completed and undergoes final processing.

A sheet manager will need to consider several questions prior to setting up the initial parameters for the survey. What is the depth being surveyed? What type of bottom is it? What type of coverage is needed? All of these factors will come into play when determining how the lines will be run – how long, how far apart, which sonar type, etc.
Once the plan is determined, it will be the job of the Operations Officer, LT Damian Manda, to parse out the duties and create a daily work plan to cover all of the areas. Each day, multiple launches will be sent out to gather data as described above. As the fieldwork finishes for the day, data will be transferred to a drive and then brought into the ship’s mapping room where night processers will begin the lengthy work of checking and cleaning the data so that it can all be ready for the final processing step prior to being sent to the client.

HMarshburn at computer
Senior surveyor Hannah Marshburn at the computer terminal in launch 2808

How good are those data?
There are several checks built into the data collection process. First, the survey team members on the launches are watching in real time. With three screens to work from, they are able to see what the sonars are seeing and can also set certain limits for the data that will alarm when something appears to be contrary to what’s expected. Night processors look for anomalies in the data like sudden inexplicable drops in depth in an otherwise flat surface or an extremely “noisy” area with little good data. Any area with a former survey will also be compared to the previous values with large differences signaling possible issues. Many trained eyes look at the data before it is accepted for charting and there will commonly be at least one return to an area to check and recheck prior to completion. One area in the current survey has continued to show odd results, so trained NOAA divers will dive the area to find out what is really going on.

Personal Log

So far this has been an amazing experience. I fully enjoy being among the crew of the Fairweather and living on the ship. It’s hard to say what my favorite part has been so far because I have honestly enjoyed all of it! Since we didn’t get underway until Monday, I had the opportunity on Sunday to roam around Nome with a couple of the other folks that are just here for two weeks, LT Joe Phillips and LCDR Ryan Toliver. I learned a lot more about both the NOAA Corps and the Public Health Service of which they are respectively a part. (These are two of the seven uniformed services – can you name the other five?) NOAA Corps officers are in command on all of the active NOAA commissioned ships and aircraft and you will learn a lot more about them in future posts. The PHS is an organization made up primarily of medical professionals. These folks serve in various medical and medical research positions around the nation. There are many who will work for the National Institutes of Health in research, or the Bureau of Prisons or commissioned vessels like Fairweather as practitioners. Unlike NOAA Corps, PHS is not on a billet cycle where every two to three years you will be moved to a new position in a different office or location. Similar to all of the other uniformed services, though, promotion through the ranks is both encouraged and desired.

Traditional Boat - Nome
As we walked all around Nome, this was one of the sights – the frame of a traditional fishing boat.

We also saw the marker for the end of the Iditarod race. I was able to see the historic beginning in Seward, Alaska back in 2010, so seeing the end in Nome was an unexpected treat. Nome also has Cold War-era missile early warning system arrays at the top of a mountain nearby. We had a chance to hike around them and see some of the interesting geologic features of the area. There’s so much more to talk about, but I think I’ll stop here and save shipboard life for my next post.

Did You Know…

… that the Iditarod has its historic beginnings with the Public Health Service? There were many children in interior and western Alaska dying of diphtheria in the early 1920s. When it reached epidemic proportions, the only doctor in Nome reached out to the PHS in the lower 48 to ask for help. Vials of serum were found and sent north to Seward, but then because of heavy ice and storming, dog sled teams were used to get the vials to the interior towns and to Nome. The original race along the Iditarod Trail was run as a memorial to the “Serum Run” and eventually evolved into the highly competitive race it is today.

Lynn Kurth: The Ocean and Humans are Inextricably Interconnected, July 1, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude:  58˚03.973 N   Longitude:  153˚34.292 W

Date:  July 4, 2016

Weather Data from the Bridge
Sky:  Cloudy
Visibility: 10+ Nautical Miles
Wind Direction: 010
Wind Speed: 10 Knots
Sea Wave Height: 0-1 ft. (no swell)
Sea Water Temperature: 11.1° C (51.9° F)
Dry Temperature: 12° C (53.6° F)
Barometric (Air) Pressure: 1013.3 mb


Science and Technology Log

Throughout my experience as a Teacher at Sea, it has been evident that the ocean and humans are inextricably interconnected.  This was apparent from my very first evening in Homer when I came across an eagle poised next to its colossal nest assembled in the middle of three rusty pier pilings.  An illustration of nature conforming to our presence on the water and what we deem to be acceptable for our environment.

 

eagle
Eagle with nest located in deep water port of Homer, AK

But, humankind must sometimes accept and conform to nature.   The fishermen of Uganik Bay have built their fishing camps above the tidal line and strung out their nets where the fish traditionally run.  Most of the men and women who live here have chosen to do so because this is where the fish are found.  One such gentlemen is Toby Sullivan, a commercial fisherman, who in 1975 headed to Alaska from Connecticut to work on the Alaskan pipeline.  Instead, he found himself fishing vs. working on the pipeline and to this day is still gill-netting salmon to make a living.  Toby’s fishing camp, East Point, located on the south shore of the Uganik Bay, has had a net on the site for the past 80 years.  And, unfortunately, we drifted into that site when a strong current took us by surprise while we were gathering water quality data over the side of the small sonar vessel.  When this happened, Toby and his crew worked swiftly and diligently to secure their fishing gear while NOAA divers were summoned from the Rainier to safely help our vessel leave the area.

 

enhancedtoby
Toby Sullivan and crew work to install an additional line on their fishing set

A few evenings later, Mr. Sullivan and his crew came on board the Rainier as dinner guests and a rich discussion of hydrographic work and fishing gear followed.  He explained in detail how he sets his fishing gear and offered the idea that a radio channel be utilized between NOAA’s small vessels that are working around fishing gear and the local fisherman, in order to facilitate better communication.

 

discuss
Toby Sullivan and XO (executive officer) Jay Lomincky

As I watched the exchange of ideas between Commanding Officer E.J. Van Den Ameele and Mr. Sullivan it appeared that both men recognized that both parties were interested in Uganik Bay because the ocean and humans are inextricably interconnected.  The Rainier’s primary mission in Uganik Bay is to gather the necessary data to create accurate and detailed charts for navigational use by the local fisherman and other mariners.  As a commercial fisherman, Mr. Sullivan’s primary interest is to keep his gear and crew safe while continuing to make a living from the harvest of local fish.

toby
Toby Sullivan shares information about how he sets his fishing gear

Today the Rainier continues on with its mission of hydrographic work at sea using the multibeam sonar which is located on the hull of the Rainier.  The swath that multibeam sonar on the Rainier covers is similar to the swath of the multibeam sonar on the smaller boats; the coverage area depends on the depth of the water.  For example, at our current water depth of 226 meters, the swath of each pass that the multibeam sonar makes an image of  is 915 meters wide.  This evening, upon the completion of the work with the Rainier’s multibeam sonar we will depart the area and be underway for Kodiak, AK.


All Aboard!

Michael Bloom serves as as survey technician aboard the Rainier and kindly took some time with me to discuss his background and work aboard the Rainier.

DSCN0300
Survey Technician Michael Bloom completes the collection of a bottom sample in Uganik Bay

Tell us a little about yourself:

I grew up in a military family, so I was actually born in England and have lived in Florida, Nebraska, Montana, Oregon and Washington.  I went to college at Oregon State University located in Corvallis, OR and majored in earth systems with a focus on marine science.

How did you discover NOAA?:  

Ever since I was a little kid instead of having posters of bands etc… I had posters of maps.  NOAA Corps participated in career fairs at my university.  I stopped at their booth my sophomore year and again my junior and senior year to learn more about their program.  After learning more about NOAA I also focused on the marine aspect of earth science because I knew I wanted to work with them.  Initially I didn’t know about the civilian side of NOAA, so I applied for the NOAA Corps two times and wasn’t accepted into the program, although I was an alternate candidate once.  At some point, when speaking with an officer he told me to apply for a civilian position with NOAA.  So, I applied and was accepted.

I’m happy to be on the civilian side because I get to work on the science side of the operations all of the time and I get to keep my beard!

 

DSCN0393 (2)
Survey Technician Michael Bloom monitors the settings of the Rainier’s multi beam sonar

What are your primary responsibilities when working on the ship?:

I am survey tech and my primary duties include data acquisition and data processing.  We can work to become the Hydrographer in Charge on the surveys after enough time working in the field and, if after the Field Operations Officer observes us, he feels confident that we are ready. Eventually I’d like to work for NOAA as a physical scientist, a job that would have me going out to sea several times a year but one that is primarily land based.

What do you love about your work with NOAA?:

I get paid to travel!  I go to places that people pay thousands of dollars to visit and I actually get paid thousands of dollars to go there.  I enjoy that I can see the real world application of the work that I do.  Scientists are using our data and ultimately we could be saving lives by creating such accurate charts.


Personal Log

NOAA’s website for the Rainier states that the Rainier is one of the most productive and advanced hydrographic ships in the world.  After spending two weeks working on board the Rainier, I couldn’t agree more.  However, I don’t believe that it is only the cutting-edge technology that makes the Rainier one of the best hydrographic ships in the fleet.  But rather a group of outstanding people at the helm of each of the different technical aspects of hydrography.  Hydrographic surveying has many steps before the end product, a chart, is released.  The people I met on board who are part of that process are teaching each other the subtle nuances of Rainier’s hydrographic mission in order to become even better at what they do.  I am grateful for the time that the crew and Officers have graciously given me while I have been on board.  I felt very welcome from the moment a NOAA Corps member picked me up at the airport throughout my stay on the Rainier as I continued to pepper everybody with questions.  Thank you Rainier!  I am confident that when I return to my classroom your efforts to help me better understand your work of hydrographic surveying will pay off.   You have given me the gift of new knowledge that, when shared with my students has the potential to ignite in them the same excitement and passion for science that so many of you possess.

DSCN0398 (2)
Teacher at Sea Kurth on the middle deck of the ship

Robert Ulmer: Build Upon a Strong Foundation, June 19, 2013

NOAA Teacher At Sea

Robert Ulmer

Aboard NOAA Ship Rainier

Underway from June 15 to July 3, 2013

Current coordinates:  N 56⁰35.547’, W 134⁰36.925’

(approaching Red Bluff Bay in Chatham Strait)

Mission:  Hydrographic survey

Geographical area of cruise:  Southeast Alaska, including Chatham Strait and Behm Canal, with a Gulf of Alaska transit westward to Kodiak

Log date:  June 19, 2013

Weather conditions:  10.93⁰C, less than 0.5 km visibility in thick fog, 95.42% relative humidity, 1013.38 mb of atmospheric pressure, light variable winds (speed of less than 3 knots with a heading between 24⁰ and 35⁰)

 

Explorer’s Log:  Survey, sample, and tide parties

Scientists are explorers, wandering the wilderness of wonder and curiosity their with eyes and minds wide open to events, ideas, and explanations that no other humans may have previously experienced.  And by definition, explorers — including scientists — also are builders, as they construct novel paths of adventure along their journeys, built always upon the strong foundations of their own reliable cognitions and skill sets.

Ensign Rosemary Abbitt making a level sighting measurement
Ensign Rosemary Abbitt making a level sighting measurement

Starting from their own observations of the world around them, prior knowledge, and context, scientists inject creativity and insight to develop hypotheses about how and why things happen.  Testing those ideas involves developing a plan and then gathering relevant data (pieces of information) so that they can move down the path of whittling away explanations that aren’t empirically supported by the data and adding to the collective body of knowledge, so that they and others might better fathom the likely explanations that are behind the phenomena in question.

Rainier lowering a launch vessel
NOAA Ship Rainier lowers launch vessel RA-5 for a survey excursion.

Because progress along the scientific path of discovery and explanation ultimately depends on the data, those data must be both accurate and precise.  Often these terms are confused in regular conversation, but each word has its own definition.

Approaching the shore from the skiff
A view from the skiff of the shoreline where the benchmarks and tide gauge staff already are installed.

Accuracy is a description of the degree of closeness or proximity of measurements of a quantity to the actual value of that quantity.  A soccer player who shoots on goal several times and has most of his shots reach the inside of the net is an accurate shooter.  Likewise, a set of measurements of the density of a large volume of seawater is more accurate if the sample data all are near the actual density of that seawater; a measurement that is 0.4% higher than the actual density of the water is just as accurate as another measurement of the same water that is 0.4% below the actual density value.

HAST Curran McBride visually examining the condition of the tide staff
Before making more detailed data collections, Hydrographic Assistant Survey Technician (HAST) Curran first conducts a visual inspection of the previously-installed tide staff upon arriving at the shore.

Precision (also called reproducibility or repeatability), on the other hand, is the degree to which repeated measurements under unchanged conditions show the same results.  If every shot attempted by the soccer player strikes the left goalpost four feet above the ground, those shots aren’t necessarily accurate – assuming that the player wants to score goals – but they are very precise.  So, similarly, a set of measurements of seawater density that repeatedly is 5.3% above the actual density of the water is precise (though not particularly accurate).

HAST Curran McBride collecting data near the tide staff
HAST Curran collects data near the tide staff during the closing level run in Behm Canal.

The NOAA teams that conduct hydrographic surveys, collect seafloor samples, and gather data about tide conditions must be both accurate and precise because the culmination of their work collecting data in the field is the production of nautical charts and tide reports that will be used around the world for commerce, recreation, travel, fisheries management, environmental conservation, and countless other purposes.

Cabin of the launch vessel
Crew of the survey/sample team in the cabin of the launch vessel (and the Coxswain piloting the boat)

Hydrographic surveys of some sort have been conducted for centuries.  Ancient Egyptian hieroglyphs show men aboard boats using ropes or poles to fathom the depths of the water.  In 1807, President Thomas Jefferson signed a mandate establishing the Survey of the Coast.  Since that time, government-based agencies (now NOAA’s Office of Coast Survey) have employed various systems of surveying depths, dangers, and seabed descriptions along the 95,000 miles of navigable U.S. coastlines, which regularly change due to attrition, deposition, glaciation, tectonic shifts, and other outside forces.

Analyzing data aboard the launch
Hydrographic Senior Survey Technician Barry Jackson and Physical Scientist Kurt Brown analyze historic and new data from multi-beam sonar aboard the launch vessel.

For most of that history, data were collected through a systematic dropping of weighted lines (called “lead lines”) from boats moving back and forth across navigable channels at points along an imaginary grid, with calibration from at least two shore points to assure location of the boat.  Beyond the geometry, algebra, and other mathematics of measurement and triangulation, the work was painstakingly slow, as ropes had to be lowered, hauled, and measured at every point, and the men ashore often traveled alongside the boat by foot across difficult and dangerous terrain.  However, the charts made by those early surveys were rather accurate for most purposes.

Starboard of launch vessel RA-4
Starboard of launch vessel RA-4

The biggest problem with the early charts, though, was that no measurements were made between the grid points, and the seafloor is not always a smooth surface.  Uncharted rocks, reefs, or rises on the seabed could be disastrous if ships passed above them.

HSST Barry Jackson collecting sea floor sample
HSST Barry Jackson pulls a line hand over hand to retrieve a scooped sea floor sample from a depth of more than 45 meters in Behm Canal.

HSST Barry Jackson analyzing sea floor sample
… and then analyzes what the scoop captured: mud and gravel in this case.

Starting in the 1990s, single-beam sonar became the primary mechanism for NOAA’s surveys.  Still looking straight down, single-beam sonar on large ships and on their small “launch vessels” (for areas that couldn’t be accessed safely by larger craft) provided a much more complete mapping of the seafloor than the ropes used previously.  Sonar systems constantly (many times per second) ping while traveling back and forth across and along a channel, using the speed and angle of reflection of the emitted sound waves to locate and measure the depth of bottom features.

Handwritten notes about sea floor samples
Data about sea floor samples first are recorded by hand on a chart aboard the launch vessel before being uploaded to NOAA computers later.

Sound waves travel at different speeds through different materials, based on the temperature, density, and elasticity of each medium.  Therefore, NOAA also deploys CTD devices through columns of surveyed waterways to measure electrical conductivity (which indicates salinity because of ionization of salts dissolved in the water, thus affecting solution density), temperature (which usually is colder at greater depths, but not necessarily, especially considering runoff from glaciers, etc.), and depth (which generally has a positive-variation relationship with water pressure, meaning more pressure – and thus, greater density – as depth below the surface increases).

CTD device about to be deployed
This CTD device measures conductivity, temperature, and depth in the water. All three affect the speed of the sound waves in water, and the speed of sound is a necessary bit of data when using sonar (which tracks reflected pings of sound) to determine the distance to the sea floor.

The most modern technology employed by NOAA in its hydrographic surveys uses multi-beam sonar to give even more complete coverage of the seafloor by sending sound waves straight downward and fanned outward in both directions as the boat travels slowly forward.  Even though sonar beams sent at angles don’t reflect as much or as directly as those sent straight downward, uneven surfaces on the seabed do reflect some wave energy, thus reducing the occurrence of “holidays” (small areas not well-defined on charts, perhaps named after unpainted bits of canvas in portraits because the painter seemed to have “taken a holiday” from painting there).

Acquiring hydrographic data
FOO Mike Gonsalves and HAST Allix Slagle acquire hydrographic data with the ship’s Kongsberg EM-710 multi-beam sonar.

TAS Rob Ulmer retrieving sea floor sample in Behm Canal
Aboard the small launch vessel, everyone works. This is Teacher At Sea Rob Ulmer hauling in a sea floor sample in Behm Canal.

But that’s not all.  To help sailors make decisions about navigation and anchoring – and often giving fishermen and marine biologists useful information about ecology under the waterline – NOAA also performs systematic samples of the types of materials on the sea floor at representative points in the waterways where it conducts surveys.  Dropping heavy metallic scoop devices on lines* dozens of meters long through waters at various locations and then hauling them back aboard by winch or hand-over-hand to inspect the mud, sand, silt, gravel, rocks, shells, plants, or animals can be physically demanding labor but is necessary for the gathering of empirical data.

* A note about terminology from XO Holly Jablonski:  Aboard the ship, lines have a job.  Think of a “rope” as an unemployed line.

Additionally, Earth’s moon and sun (along with several underground factors) affect the horizontal and vertical movement of water on Earth’s surface, especially due to their gravitational pulls as Earth spins on its axis and orbits the sun and as the moon orbits Earth.  Therefore, information about tides is extremely important to understanding the geography of nautical navigation, as the points below the waterline are identified on charts relative to the mean low water mark (so sailors know the least amount of clearance they might have beneath their vessels), and points above the waterline are identified relative to the mean high water mark (including notation of whether those object sometimes are fully submerged).

Evidence of tidal changes along the shoreline of Behm Canal
Can you see the evidence of tidal changes along the shoreline of Behm Canal? Color differences form strata along the rocks, and lowest leaves of the trees give further evidence of the highest reach of the water.

Ensign Damian Manda manually levels the sighting rod
Ensign Damian Manda manually levels the sighting rod upon the “turtle” using a carpenter’s bubble-leveling device.

To gather accurate and precise data about tidal influences on local waters, NOAA sends tides-leveling shore parties and dive teams into difficult conditions – commonly climbing up, down, and across rock faces, traversing dense vegetation, and encountering local wildlife (including grizzly bears here in Alaska!) – to drill benchmarks into near-shore foundation rocks, install (and later remove) tidal gauges that measure changing water heights and pressures, and use sophisticated mathematics and mechanics to verify the levels of those devices.

Pondering the next measurement
Ensign Rosemary Abbitt and HST Brandy Geiger ponder the placement of equipment before the next level measurement.

Needless to say, this description is significantly less detailed than the impressively intricate work performed at every level by NOAA’s hydrographic scientists, and in the end, all of the collected data described in the paragraphs above – and more, like the velocity of the sonar-deploying vessel – must be analyzed, discussed, and interpreted by teams of scientists with broad and deep skills before the final nautical charts are published for use by the public.

Portable tools of the trade
A leveling rod is balanced on the highest point of a “turtle,” positioned carefully to be seen from multiple points.

As you choose where and how to proceed in your own journeys, remember that you can be more confident about your decision-making by using information that is both accurate and precise.  And keep exploring, my friends.

View from the benchmark
This is the view from the benchmark atop a rocky outcropping (under an 80-foot evergreen) along Behm Canal while righting a measurement rod with the tide gauge leveling party.

Did You Know?

NOAA Ship Rainier in Behm Canal with launch vessels underway
NOAA Ship Rainier in Behm Canal with launch vessels underway

Every ship in the NOAA fleet also is a voluntary mobile weather station, and so are many other seagoing vessels around the world.  For many years ships have been required to report their locations and identities on a regular basis to agencies like the U.S. Coast Guard and local or regional harbormasters.  Those periodic reports were (and still are) vital for local traffic control on the waters and for helping to provide quick response to emergency situations on vessels at sea.

View aft while launch is underway
The view aft through Behm Canal from the launch vessel

Eventually, someone insightful realized that having the ships also provide weather reports from their positions along with those identity-and-location reports would make a much richer and broader network of timely data for the National Weather Service, which is another branch of the National Oceanic and Atmospheric Administration.  As NWS adds the weather data from those many boats to the data gathered at land-based NWS stations and from voluntary land-based reporters of conditions, their models and forecasts become stronger.

(For more info about being a volunteer weather observer or volunteering with NOAA in some other capacity related to oceans, fisheries, or research, please visit www.volunteer.noaa.gov.)

Especially because weather conditions are the results of interactions among local phenomena, regional climate, and the global systems, building more accurate and precise forecast models depends on information from everywhere, but the result is that everyone benefits from the better forecasts, too.

Evidence of tectonic activity and rundown
Southeast Alaska is area with frequent tectonic activity, including uplift and earthquakes. Here a scar among the trees on the mountainside shows evidence of tectonic shifts, which also creates a ready path for meltwater to move downhill from the snowy mountaintop to the seawater below, taking trees and soil with it.

NOAA Ship Rainier ready for the returning skiff
NOAA Ship Rainier waits offshore, ready to receive the skiff returning with the tide/level shore party.

Paige Teamey: November 7, 2011

NOAA Teacher at Sea
Paige Teamey
Aboard NOAA Ship Thomas Jefferson
October 31, 2011 – November 1, 2011

Mission: Hydrographic Survey
Geographical Area: Atlantic Ocean, between Montauk, L.I. and Block Island
Date: November 7, 2011


Weather Data from the Bridge

Early Morning Sunrise

Clouds: 2/8 Cu, Ci
Visibility: 10 Nautical Miles
Wind: SE 21 knots
Temperature 14.0° Celsius
Dry Bulb: 14.1 ° Celsius
Wet Bulb: 12.0 ° Celsius
Barometer: 1024.2 millibars
Latitude: 41°08’232″ ° North
Longitude: 072°04’78″ ° West

Current Celestial View of NYC:

Current Moon Phase:

Current Seasonal Position (make sure to click on “show earth profile):

http://www.astroviewer.com/ http://www.die.net/moon/ http://esminfo.prenhall.com/

OR

http://www.learner.org/

Science and Technology Log

Monday started with my alarm beckoning my eyes to open at 4:15am.  I found my right pointer finger hitting snooze not once, but twice, only to finally move myself from the medium of a dreamlike state to a stand-up position at 4:36.  I made it to the galley for breakfast and a safety brief for the 3102 launch.

Safety Brief. Mapping locations and surveys to be accomplished along Fisher Island.

Today I will be joining COXSWAIN Tom Bascom and HIC  Matt Vanhoy to perform near-shore surveying on sections that have both holidays and missed information.  Holidays do not mean we will be scanning for Santa’s missing sleigh, or find Columbus’s ship Santa Maria run aground, but rather areas that have been previously surveyed and unfortunately recorded absolutely no information.  Holidays occur sometimes due to rough seas, oxygen, as well as possible rocky ocean floors.

After Tom, Matt, and I were lowered in the 3102 by the davit and help of the TJ crew, we went to Fisher Island and began the slow mowing movements of surveying.  The ride to Fisher Island was incredibly bumpy and the entire deck was wet from the swells pushing up at the bow.  Currently there are winds upwards of 16 knots and a chill in the air.  Vanhoy is below deck in the surveying room and Bascom is manning the boat.  Me, well, I am observing for now and loving the chaotic changing seas.  After about 2 hours on deck with Tom I went below to the survey room… that lasted about 20 minutes.  I became really sea sick and returned to deck with Tom.  Matt told me that he often gets sea sick while surveying on the launches and will come up to the stern, puke, and continue on through the day (wow).  When you are on a launch the motions of the ocean are magnified and you can feel the movements much more so than on the ship.

Polygons and

While we were passing by the massive houses located on Fisher Island, Tom commented that unless there is love inside the homes, they are like the numerous clam shells we find already emptied and eaten by fish and gulls.  He said that peace and happiness is not a large house, but the land that surrounds the home.  Tom has been on the open waters for the past 30 years and has found solace in simplicity.  He is a determined individual who presses on and is concerned with following protocol and ensuring the safety of those around him.

After lunch we finished our survey sections and still had 3 hours before needing to return so went around the area and collected bottom samples.  Bottom samples (BS) is probably the most fun thing I have been able to help with on the ship.  We used a  device called the Van Veen Grab system and lowered it into the water. When we thought the Sampler was in contact with the ocean floor we pulled a few times up and down on the line and then hoisted the grabber to the deck.

The bottom samples are taken for the fisheries division as well as for ships that are interested in areas that they will be able to anchor in.  For the most part we pulled samples of course sand and broken clam shells (I hope this is no reflection of Fisher Island).  The further away from the shore line we went the more courser the sand became as well the more rocks we sampled.  Most of the rocks were metamorphic and consisted of marble and a little quartzite.  This surprised me given the location.  I though most of the rocks would be sedimentary based on the surrounding topography and surface features.

I appreciate Tom and Matt taking the time to review and connect me into each process.  Tom taught me how to drive the launch… that was really FUN.  With all of the monitors it was hard to discern between reality and a glamorous video game.  Radar showed me where I was going, and a survey map outlined the areas I was trying to move to in order to take the next bottom sample.  Watching everything at once is not easy to do because you also have to pay attention to the waters.  The shoals (shallow waters) often have “pots” which are lobster traps placed everywhere.  The pots have a cage on the bottom of the ocean floor and a huge buoy at the surface so you can locate them and steer clear of them.

Upon returning to the ship, I watched yet another amazing sunset and Matt take the survey data from the ship and upload it on the ship’s network while Tom and ENS Norman hosed down the salt from the deck and prepped the 3102 for a new day.

ENS Norman Hosing down 3101 after surveying Fisher Island for the day.

Sue Zupko: 6 Flying to 300 Meters

NOAA Teacher at Sea: Sue Zupko
NOAA Ship: Pisces
Mission: Study deep water coral, Lophelia Pertusa, in the Gulf Stream
Geographical Area of Cruise: SE United States in Gulf Stream from off Mayport, FL to south of St. Lucie Inlet, FL
Date: June 3, 2011
Time: 15:33 EDT

Weather Data from the Bridge
Wind Speed: 2.59 knots
Visibility: 10 n.m.
Surface Water Temperature: 28.25°C
Air Temperature:28.9°C
Relative Humidity: 61%
Barometric Pressure:1018.20mb
Water Depth: 280.94 m
Salinity: 36.33 PSU

Hello from the Pisces “flight” deck.  I am sitting next to the pilots of the ROV.  John Butler is currently flying the ROV at a depth of 243 meters.  We are drifting with the ship as it makes its way to our survey site.  The ROV has been in the water since around 9:00 this morning EDT and we have finished our lunch and are waiting to get to our drop site.  Why is the ROV flying along at 243 meters when our survey site is at 300 meters?  When the ROV first launched, the current was 3.5 knots above and below the surface.  The ship’s crew on the bridge calculated how long it would take for us to arrive at the dive site given the currents.  Once we started flying the ROV at depth, we found the counterweight acted as an anchor and the current slowed down above and below the surface.  Accordingly, the ROV slowed down and it’s taking a lot longer to get to our dive site than originally calculated.

Jelly with tentacles spread out floating in the water column.
Jellyfish found on the way to the sea floor

What are we seeing on the video feed from the ROV?  Lots of marine snow–detritus, zooplankton, and other small particles, plus a few interesting creatures– jellies,  salps, several squid,  arrow worms, and some hydrozoa.  It really is surreal watching the video of our journey to the bottom of the sea.

Two men with helmets holding the ROV over the side of the boat, helped by a winch.
Crew Members holding the ROV, helped by a winch

What are we expecting to find? Lophelia pertusaLophelia is a ture hard, or stony, coral from the phylum Cnidaria, class Anthozoa (meaning it is a polyp), class Anthozoa (starts as a larva swimming around and then becomes attached to something, or sessile).  We want to find out how many there are, their health, their size, and what is living amongst them.  Lophelia are white when they are alive, unlike shallow water corals that most people are familiar with which have colors from the algae which live with them.  If the Lophelia is not white, it’s either sick or dead.

David Altizio, May 19 – 20, 2010

NOAA Teacher at Sea
David Altizio
Onboard NOAA Ship Fairweather
May 17 – May 27, 2010

NOAA Teacher at Sea: David Altizio

NOAA ship Fairweather
Mission: Hydrographic survey
Geographical Area of Cruise: SE Alaska,
from Petersburg, AK to Seattle, WA
Dates: Wednesday, May 19 and Thursday, May 20

Weather Data from the Bridge

Position: Customhouse Cove                       Position: Behm Canal
Time: 0800 on 5/19                                        Time: 0800 on 5/20
Latitude: 550 05.97’ N                                   Latitude: 55017.77’N
Longitude: 1310 13.8’ W                                Longitude: 130058.03’W
Clouds: Overcast                                               Clouds: Mostly Cloudy
Visibility: 10 miles                                           Visibility: 10 miles
Winds: 6 knots from the SE                            Winds: 14 knots from the SW
Waves: Less than one foot                              Waves: Less than one foot
Dry Bulb Temperature: 13.00C                   Dry Bulb Temperature: 12.50C
Wet Bulb Temperature: 12.50C                   Wet Bulb Temperature: 10.50C
Barometric Pressure: 1010.5 mb                Barometric Pressure: 999.9 mb
Tides (in feet):                                                      Tides (in feet):
High @ 0447 of 14.6                                        High @ 0558 of 14.0
Low @ 1128 of ‐0.7                                           Low @ 1233 of 0.2
High @ 1802 of 13.2                                         High @ 1909 of 13.9
Low @ 2349 of 4.0
Sunrise: 0429                                                      Sunrise: 0418
Sunset: 2055                                                        Sunset: 2102

Science and Technology Log

On Wednesday, May 19, I was able to go out on a small boat launch. Four such boats were deployed from the Fairweather that morning. They all use 400 kilohertz multi‐beam sonar to map the bottom of the channels we are currently in, near Ketchikan, AK. This type of SONAR sends out 512 beams/ping of sound, and is most effective in shallow water. The area or swath that can be scanned at anytime is about 5 times the depth of the water. Therefore in shallow water the swath is much narrower and in deeper water the swath is much wider. Most of the work today on all of the launches was filling in small areas in the chart in which data was missing or not dense enough to complete the project. These areas are referred to as “holidays”, because they are areas where previous survey launches have been through the area and the data was not good enough. Some possible reasons for this could be that they are areas where acoustic noise was picked up by the multi‐beam SONAR, or where shadows were cast from the surface bedrock or boulders on the bottom of the channels. The area that we surveyed first is called Cascade Inlet.

Me on a small boat (launch) to survey the bottom of channels around

Me operating the multi‐beam sonar on the small boat launch

Not only did I get to use the computers on board to operate the SONAR and collect data, I was also able to deploy an instrument called a CTD that measures the conductivity, temperature and density of the water. This is very important because the speed of sound in water changes depending on the waters temperature density and conductivity. For example, the top layer of the water is typically a little warmer, less dense and less salty than deeper water due to influences from rain and inputs from rivers. When using SONAR you must know all of these factors in order to understand the speed at which sound waves will travel through the water. The sound waves will travel faster in cold deeper water, and the computer models take this into account before finalizing a chart. Ideally when using the CTD the sample must be taken at a depth that is greater than any spot you have surveyed so as to have a complete profile of these factors.

Me on a small boat (launch) pulling the CTD sampler back onto the boat.

In the afternoon we spent most of our time performing shoreline verification of small features around an area called Hog Rocks that have been previously identified. Here we used GPS (Global Positions Satellites), latitude and longitude, azimuth bearings, elevation and photos. As the name implies we were visiting small features to double check their exact location and exact heights.

On Thursday, May 20 I was scheduled to go out on a launch boat again but things did not go accordingly. There was a problem with the Davit, a mechanical crane that picks the 7 ton, 28 foot survey launch off the decks of the Fairweather and deploys them into the water. Since I was unable to go out and scan shallow water from the launch, I stayed on the Fairweather to scan and plot deeper water (approximately 400 meters) in and around Behm Canal. From the plot room of the ship I helped operate the computer, by starting and stopping the collection of data. In addition to filling in “holidays” we also mapped some cross lines. Cross lines are lines that run perpendicular to the main channel and are a means of verifying previous scans or quality control.

Example of shoreline features near Hog Rocks that we were verifying from the launch boats

Me, in the plot room on the Fairweather, collecting data.

Personal Log

I can’t say that the launch on May 19 was fun, but it was very cool and interesting. One thing no one told me was that after the morning rain was over that the sun would come out and it would reach almost 60 degrees, and that I should have brought sunscreen and a hat: warmer than it was in NY on this day. I now know for future launch days. I am usually going to be scheduled on a different launch team, doing slightly different tasks each day.

For now I just finished dinner, and yes it was very good again. In the meantime I am awaiting a debriefing of the day’s launches, and then hang out until bed. Before going to bed I went up to the highest deck on the Fairweather, called the flying bridge and watched one of the most beautiful sunsets unfold in front of my eyes.

What else, is on my mind…..Well SE Alaska is ridiculously beautiful, this coming from someone who has traveled a lot and used to work in the Grand Canyon. All over the place there is something new to see. I am still waiting for major whale sightings. Tuesday night before bed I caught a glimpse of some tails of a few porpoises (similar to dolphins), and Wednesday morning at the safety meeting on the stern of the boat (back) I sort of saw a whale surface for a moment. On Thursday, again at the safety meeting on the stern, a few of us saw a humpback whale at a distance breach the water a few times.

While at port, a picture showing the Davit, that picks up the launch boats to deploy them

Sun set on the Fairweather on May19

Bald eagle taking off on May19 from a shoreline feature we were verifying

Patricia Donahue, August 22, 2008

NOAA Teacher at Sea
Patricia Donahue
Onboard NOAA Ship Rainier 
August 19-23, 2008

Mission: Hydrographic Survey of Bear Cove, AK
Geographical Area: Kachemak Bay, Alaska, 59.43.7 N, 151.02.9 W
Date
: August 22, 2008

One of the Rainier’s small boats, also called a launch
One of the Rainier’s small boats, also called a launch

Science and Technology Log 

Much of today had to do with technology. The small boat I went out on, pictured to the right, was filled with computer equipment. Each day at the survey technology department meetings, I’ve listened but not entirely understood the reports of computer issues on the small boats.  This morning I witnessed one such incident. Something didn’t work. Fortunately, there was a work-around and the data collection proceeded smoothly.

I was reminded of the early 18th century efforts to determine longitude. The problem was so pressing that kings of various countries offered rewards for the development of a clock that could keep time at sea. In 1772, James Cook, for whom Cook Inlet in Alaska is named, sailed with the first marine chronometer. The chronometer was a clock that kept accurate time for the home port. On board Cook’s ship, Resolution, there was another clock that kept local time.

Sonar equipment is lowered into the water.
Sonar equipment is lowered into the water.

Since the Earth turns 15 degrees of longitude each hour, by using the difference between the two clocks, seamen would know how far east or west they had traveled. They already knew how to determine latitude with an instrument called a sextant so by using the marine chronometer they could actually plot their coordinates. Now, of course, we take GPS for granted. Many people even have GPS in their cars. These devices and the hand held ones I use with my students at school are accurate to within 4 to 10 meters. Well, the boat I was on today has DGPS, which is even better. It is accurate to within 5 centimeters! With this high-tech equipment, NOAA is able to take very accurate measurements and make very accurate maps.

This graph depicts the velocity of sound through water.
This graph depicts the velocity of sound through water.

The boat I was on today used multi-beam sonar to determine the depth of the ocean floor. This is similar in concept to the single beam in that ping return-times are used. The multi-beam uses a lot more pings, sometimes as many as 200 per second. In the picture above, the sonar equipment is being lowered into the ocean. I learned that salinity, temperature and depth (which is another way of saying pressure) determine the electrical conductivity and density of the water. These two factors then determine the sound velocity.  In the graph, depth is on the Y axis and velocity is on the X axis. Notice the bulge in the plotted line. This represents an area nearer the surface where glacial melt water and ocean water are mixing. The velocity of sound through this water is slower than deeper down where it’s mostly salt water.

This graph displays the pitch, roll, and heave of the boat.
This graph displays the pitch, roll, and heave of the boat.

Measurements of salinity, temperature, electrical conductivity, depth and density were taken 27 times today. This data will be used to adjust the sound velocity to get the most accurate picture of the ocean bottom. The movement of the boat also has an effect on the sonar equipment. NOAA is using the moving vessel profiler or MVP to eliminate the interference caused by the boat’s movement. A boat has a pitch, roll and heave. The computer screen to the left shows graphs of these three types of movement. What do you think was happening on the boat at about halfway across the graph? Remember, the boat is “mowing the lawn” as it collects data. Lastly, the tides also affect the data. Upon return to Rainier, the data is processed and also corrected for the effect of the tides.

TAS Donahue gets a chance to drive the launch.
TAS Donahue gets a chance to drive the launch.

Personal Log 

Several crewmembers have tried fishing from the boat and we’ve seen many small boats with fishermen aboard but no one has caught anything. Using the binoculars aboard the small boat today I watched someone land a fish. I think it was a halibut, which makes sense since we’re in Halibut Cove. The most exciting part of the day was driving the small boat. Data was not collected from a small piece of sea bottom so the boat had to make one last pass over it with the sonar equipment. I’ve driven many different vehicles, even a motorcycle, but a boat is different. I couldn’t make it stay straight!

The scariest thing that happened today didn’t happen to us at all. The United States Coast Guard broadcast a message all afternoon over the marine radio. The message would also start with “pan, pan, pan,” which is the appropriate way to begin a distress call. Most of us have heard of “may day” calls. Those are used when there is immediate danger. A “pan” call is more similar to a warning. A boat carrying two adults and one child had not returned as expected and was missing. The Coast Guard was asking all other boaters to keep an eye out for them. I hope they’ve been found and that everyone is okay.

Animals Seen Today 

A raft of otters, Common Murres, Marbled Murrelets, and Barrow’s Goldeneye

Vocabulary of the Day 

The coxswain is the person who drives the boat.

Challenge Yourself What is 5 cm in inches? What types of movements are pitch, roll and heave?

 

Lisa Hjelm, August 9, 2008

NOAA Teacher at Sea
Lisa Hjelm
Onboard NOAA Ship Rainier
July 28 – 15, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: August 9, 2008

A survey technician night processing on the Rainier
A survey technician night processing on the Rainier

Science and Technology Log: Ping to Chart … 

For the past three days I have been Night Processing. That may sound confusing, so I’ll explain. Instead of going out to sea to collect data, I have been processing the data that comes in from the launches. I can’t begin my job for the day until the evening. Survey technicians rotate between collecting and processing data. This science log will summarize the steps that go into turning raw hydrographic data into a navigational chart. Beginning right after dinner, three, four or five, (depending on how many launches were out that day) survey technicians get right to work processing data. CTD casts are used to calculate sound velocity throughout the water column. Night processors take that sound velocity data and apply it as a correction to the raw bathymetry data collected by the launch. Next, the raw data is corrected for the heave of the boat (wave action), and finally for the influence of tides. Then all of this corrected data is merged, and a preliminary base surface (seafloor surface) is created for the bathymetry data.

A preliminary bathymetry chart posted in the Mess.
A preliminary bathymetry chart posted in the Mess.

To check the preliminary base surface, it is viewed with the corrected raw data overlaid. The night processor scans each line of the merged data and looks for anomalies, variations from the norm that might have skewed the base surface. This scan is a time-consuming process. To an outsider it looks a little bit like playing a computer game. Each survey line is divided into small increments and scanned in cross section. Any obviously anomalous data points are highlighted and eliminated. Once the day’s charted area has been scanned and cleaned, the new data is merged with other days’ work. Gradually, building day by day, an entire work area is charted.  To make this process manageable over a sizable area, the survey is divided into sections. Each survey technician is responsible for a section, or sheet. When all of the data has been collected and reviewed, the survey technician writes a scientific report that discusses any data quality  issues, and the work that was done. Other information collected, such as bottom sample data, is included in the scientific report. The sheet is compared with the existing, current chart and also with the bordering sheets. The completed field sheet is sent to the Pacific Hydrographic Branch (PHB) in Seattle where it is reviewed and checked for quality. Finally, the sheet is sent to the Marine Charting Division (MCD) in Silver Spring, MD. The Marine Charting Division chooses the actual soundings that will appear on the chart and publishes it.

An important exception to this step by step process occurs when a danger to navigation is discovered. Dangers are fast tracked, and the information is released to the public almost immediately.

The current chart on the Bridge. The red circle indicates the area in the bathymetric map to the left.
The current chart on the Bridge. The red circle indicates the area in the bathymetric map above.

Personal Science Log: There Ought to be Vents 

Each year my sixth grade science students at Crossroads Academy use one of the NOAA Ocean Explorer Expedition websites for a research project. The students ask a question, and then use NOAA resources to answer the question and write a lab report. This is a challenging project for sixth grade students, so I think some of my students will enjoy reading about how I have used the Teacher at Sea experience to “practice what I preach.”

Vocabulary: Hydrothermal vents -places on the seafloor where warm or hot water flows into the ocean. They are found in areas where there is volcanic activity. The hot, acidic fluids may carry dissolved metals that can precipitate to form ore deposits.

Pavlov Island volcano on the Alaska peninsula
Pavlov Island volcano on the Alaska peninsula, AK Observatory Program

I must confess that along with my Mission from NOAA to perform the duties of a Teacher at Sea (TAS), I came aboard Rainier on a mission of my own. I came to see volcanoes, and even more specifically, I dreamed of discovering volcanic activity or active hydrothermal venting on the seafloor. For as long as I can remember I have been interested in ore deposits that form at vents.

Before becoming a teacher, I mapped and studied ore deposits that formed millions of years ago. It would be very exciting to find evidence of an active vent here in Alaska. That evidence might be: cone shaped or cratered features on seafloor bathymetry maps; floating pumice; gas bubbling on the sea surface; local seawater color changes; and seismic activity (Carey and Sigurdsson, 2007).  By searching the NOAA Vents website I was able to confirm that anomalous values detected by the CTD (Conductivity, Temperature, Depth sensor) instrument (described in log 2) can also be used to help locate hydrothermal vents. Prior to the cruise, I researched the geology of the area as best I could without knowing the exact location of our work area. When I arrived at Rainier, I knew there would be active volcanoes nearby, and I was ready to go.

Approximate area of the current survey with nearby volcanoes indicated.
Approximate area of the current survey with nearby volcanoes indicated, Observatory Program

So far I haven’t seen evidence of hydrothermal venting, no floating pumice, discolored or bubbling water, and the Alaska Volcano Observatory, hasn’t reported seismic activity here within the last month. I have learned how to take a CTD cast, observed volcanic and glacial features in the local landscape, and studied the preliminary bathymetry posted on a chart in the Mess. I am not disheartened nor dissuaded from my quest. In fact, I am encouraged by news from the Office of Marine and Aviation Operations (OMAO) Newsletter for the weeks of July 21 through August 4, 2008 where I read the following report.

Oscar Dyson and Fairweather:  In late June, Oscar Dyson responded to a request from the Office of Coast Survey to investigate a reported area of discolored water outside Dutch Harbor. Dyson confirmed the discoloration during a transit and took a water sample that suggested a possible plankton bloom.  OCS and OMAO then tasked Fairweather to investigate the anomaly during a scheduled transit. Fairweather personnel also confirmed the discolored water, and surveyed the area with the ship’s hull-mounted multi-beam echosounder systems. This revealed a group of small mounds rising a few meters off the seabed in about 100 meters of water directly below the area of discolored surface water. The sonar trace indicated that at least one of these features appeared to be actively emitting a plume of fluid or material. Based on a chartlett produced from the scan, OCS does not believe that these features pose any hazard to surface navigation.  These results have been shared with the U.S. Coast Guard and the Alaska Volcano Observatory, as well as NOAA’s National Weather Service, Pacific Marine Environmental Laboratory, and Office of Ocean Exploration and Research.

Rainier and I are only about 200 miles east of active hydrothermal vents. I have resisted the urge to shout, “Turn the ship around and head west!” After all, when compared to the vast territory that is Alaska, Dutch Harbor is right next door.

References: Carey, Steven, and Sigurdsson, Haraldur. 2007. Exploring submarine arc volcanoes. Oceanography, 20, 4: 80-89.

To learn more about discovering hydrothermal vents and to watch a submarine volcanic eruption, check out the websites below.

Lisa Hjelm, August 4, 2008

NOAA Teacher at Sea
Lisa Hjelm
Onboard NOAA Ship Rainier
July 28 – 15, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: August 4, 2008

Science and Technology Log: The Most Productive Hydrographic Vessel in the World 

Dive team heading out to test new equipment
Dive team heading out to test new equipment

After a week at sea my days are starting to have a rhythm. I still find myself on the wrong stairway or deck, or going back for my hard hat, but not as often. Each morning I check the Plan of the Day (POD) and head to the work/lesson planned for the TAS (pronounced TAZ), Teacher at Sea. I am not the only visitor or newcomer on the NOAA Ship Rainier. There are hydrographers visiting from South Korea, physical scientists from the NOAA office in Seattle and new crewmembers. The Rainier has proved to be a welcoming environment. This log will be about my introduction to working aboard ship. The first order of business upon arriving at our anchorage at Inner Iliasik Island was safety training, and instruction in ropes handling and releasing the launches. Every person on board has a station and job in case of an emergency. Drills are frequent and thorough. Fire drills require everyone to muster and simulate response to a detailed fire scenario. After the drill there is a debriefing, so efficiency can be improved.

Everyone on board, including the Teacher at Sea (TAS), must be proficient at handling the ropes. I learned to coil and throw a rope and to tie a bowline. I use those skills each day deploying and recovering the launches. In the morning my jobs are releasing the aft hook as the launch is lowered into the water and catching the aft line and securing it in the launch. In the evening I throw the line back to the ship and secure the aft hook, so the launch can be raised onto the ship. These are straightforward but very visible jobs. Many people are on deck assisting and observing. I made a point of practicing my line handling skills. Physically releasing and recovering the launches is handled by the Deck Crew. NOAA Ship Rainier uses a gravity davit system. The launches literally slide by the force of gravity into the water. The Deck Crew ensures that the slide is controlled and safe.

The divers arrive back on board at about 9:00 pm
The divers arrive back on board at about 9:00 pm

The organization of personnel aboard NOAA Ship Rainier was initially confusing to me. I’ve gradually come to understand that personnel are organized into five groups: NOAA Corps Officers, Survey Technicians, Deck Crew, Engineering, and Stewards. Each group has basic responsibilities. NOAA Corps Officers direct operations and navigate the ship. They also work on the survey team. Survey Technicians, the science crew, are employed by the Department of Commerce to conduct hydrographic surveys. Members of the Deck Crew fit my image of true mariners. They maintain the ship, deploy and retrieve the launches, assist with navigation and drive the launches. Engineering keeps the ship running and maintains the engines in the ship and launches. The stewards manage the food supply, and the food is excellent aboard the Rainier. These descriptions are somewhat oversimplified. In reality every crewmember seems to have a wide range of skills, and there is overlap amongst the departments. A great example is the divers. There are seven or eight certified NOAA divers on this leg. They come from all departments: officers, engineering, deck and survey. The Dive Master is a member of the Deck Crew and also part of the specially trained firefighting team. Divers are required to log a dive at least once every six weeks. They have opportunities when hull inspections are required, or tide gauges must be installed. Occasionally they dive on their own time, for fun. I took pictures of a Dive Team preparing to test some new equipment.

The engine room, which is the control center of the ship
The engine room, which is the control center of the ship

In the course of almost two weeks at sea, I’ve toured the ship from bow to stern and talked with most of the people on board. It has been fascinating to investigate the engine room, listen to stories and talk with mariners of all ages. Today, the engineering group enthusiastically showed me around below decks. In their words, “this is the control center,” and indeed they have a room-sized control panel with access to engineering diagrams and controls for the whole ship. Everything was scrupulously clean and accessible by bright red walkways. I saw the boilers, generators, engines, crankshafts, and plumbing and desalination systems. The desalination system produces the fresh water we use for laundry and showers by distilling salt water.

The ship’s engines
The ship’s engines

Next, we went to aft steerage, and I saw the giant crankshaft the moves the ship’s rudder. Everyone aboard seems to have a job that is both challenging and interesting. My daily work is with the survey group as I am aboard as a scientist. Everyone in this group has a science or technology background. As in all of the organizational groups, the science party spans a wide range of ages. Many of the survey technicians are in their twenties. They plan to work for a few years and then go on to graduate school. Several of us are considerably older.  It is worth noting that everyone seems to be actively learning new skills all the time, and NOAA provides opportunities for continuing education. There are jobs on NOAA ships for High School graduates and university professors. My roommate is the Chief Steward. She has been cooking and managing provisions aboard NOAA ships for twenty-nine years. Her job has taken her all over the world.

The beach at Inner Iliasik Island is made of pebbles instead of sand
The beach at Inner Iliasik has pebbles instead of sand

Personal Log: View from the Fantail 

My personal day begins and ends with what I think of as Volcano Check. I scan the horizon in all directions for plumes of smoke or ash. Next I examine all of the nearby visible craters. Just like the ensigns on the Bridge, I am On Watch. On Fridays I verify my personal observations by checking the Alaskan Volcano Observatory website, where a weekly update on volcanic activity is posted. There you can find detailed information and images of all the active volcanoes. There are instructions for collecting and submitting ash samples. If I were an Alaskan science teacher I would be on the lookout for opportunities to collect ash samples with my students.

I may use some of my free time looking at volcanic rocks with binoculars, but I am not the only one. There are at least five people with geology degrees, and an equal number of meteorologists. Out on the fantail the line between vocation and avocation blurs. Twice I have had the opportunity to see the rocks up close, once at a beach party on Inner Iliasik Island and once on an exploratory outing on one of the smaller launches. About once a week the Rainier hosts a beach party with a bonfire. I hiked to the highest point on the island for some beautiful scenery and a close up look at what turned out to be andesitic tuffaceous rocks. On our launch ride we explored caves at Arches Point and entered Long John Lagoon to see birds and bears (unfortunately my camera battery died). The ship also has satellite TV and movies, but on a summer night most people are outside.

NOAA Ship Rainier from Inner Iliasik Island
NOAA Ship Rainier from Inner Iliasik Island

A nearby volcanic crater
A nearby volcanic crater

Lisa Hjelm, August 3, 2008

NOAA Teacher at Sea
Lisa Hjelm
Onboard NOAA Ship Rainier
July 28 – 15, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: August 3, 2008

Lowering a launch using a gravity davit system
Lowering a launch using a gravity davit system

Science and Technology Log 

This morning I awoke to my first cloudy sky. Although clouds line the horizon, the sky above is blue. The fine weather is holding steady. At 0815 three launches were deployed to continue surveying the deep water, central part of the channel. I watched them head out into open water, but today I am in the survey room observing the Survey Technicians (ST) as they process the multibeam sonar data. At the same time, the ship is underway to a new anchorage on the other side of the end of the world, or more properly, the other side of Inner Iliasik Island. After a full week I have a new perspective on this island and volcano world. I’ve learned the names of our islands, Inner Iliasik and Iliasik. From the launch I am able to orient myself by looking out at the islands, not just by looking at the map. I continue to learn more about navigation charts. Whenever I stop by the Bridge someone points out something new. Today I learned that this area was previously mapped during surveys from 1900 – 1939 and 1940 – 1969. That means that much of it was surveyed with single beam sonar just after World War II. It took twenty summer seasons to cover this area using single beam sonar.

The launch heads out to sea
The launch heads out to sea

Using modern, multi-beam sonar, NOAA Ship Rainier is the first ship to chart this area, and the survey should be completed by 2009, or less than two years from start of survey to final chart. As the ship transits to its new anchorage we are collecting bottom samples at specified locations along the way. To collect a sample, the ship stops and is maneuvered into position, so the sampler can be safely lowered. A metal container descends on a cable to the seafloor. When it hits bottom a spring loaded scoop closes and collects a bottom sample. The container is winched back to the surface, and the water drained out. Then, we open it up to see what’s inside. Today our samples have been turning up broken shells, sand and shells, pebbles and shells and sticky green mud. After the samples are logged they go right back into the sea. I collected some sand samples to dry out and examine under microscopes with students.

Bottom sampling from the ship
Bottom sampling from the ship

Bottom samples are used to investigate and confirm comments on the existing navigation chart. Examples of chart comments would be sandy, shells (s, sh), black sand (bk s), shoals, rocky, and my personal favorite, smoking volcano. Sample locations are selected to provide representative coverage of the areas that have been mapped, and the data will be used to update the charts. Soon this sample data along with reflectivity data (measured as changes in backscatter of the sound pulse that reflect the hardness of the bottom surface) from the surveys will be used to map the type of seafloor along with the shape of the seafloor. This would be similar to generating a preliminary geologic map of the seafloor. Tomorrow I expect to be back on a launch with a better understanding what goes in to compiling a navigational chart.

Personal Log: Observations from the Fantail 

Kayakers heading out to explore
Kayakers heading out to explore

Dinner is at 1700 (5:00 pm) prompt. After dinner people pursue their own activities. Some fish from the fantail. If the weather is calm, the smaller launches are used by fishing parties, and sea kayakers venture out to the islands to explore and hike. As I enjoyed the bright, warm sunlight on the fantail deck, I watched the progress of the hikers, tiny dots progressing steadily up the slope of Inner Iliasik Island. I gazed past the islands at the distant, hazy volcanoes, and spotted an ashy plume! With binoculars it was possible to see that smoke was rising from a small crater atop a conical volcano. Several of us rushed to the bridge to identify the volcano by locating it on the nautical chart. Our best guess, Dutton, which was not listed as presently erupting on the Alaskan Volcano website, http://www.avo.alaska.edu . Volcano watching is an exciting after dinner activity.

The catch of the day
The catch of the day

Lisa Hjelm, August 2, 2008

NOAA Teacher at Sea
Lisa Hjelm
Onboard NOAA Ship Rainier
July 28 – 15, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: August 2, 2008

Lowering the launch
Lowering the launch

Science and Technology Log 

Hydrographic Survey – “Mowing the Ocean” 

Science surrounds me. Everywhere I look people are practicing the skills I’ve been teaching for the past twelve years. Today, I am practicing the skills of observation and documentation. The following are my observations of hydrography in action.

Important vocabulary
Hydrographic survey or Hydrography: the measurement and description of the sea bed and coastal area. These data are used to produce navigation charts.

CTD and CTD cast: “CTD” is the abbreviated name for an instrument package that has sensors for measuring the Conductivity, Temperature and Depth of seawater. The instrument is lowered to the bottom. It collects Conductivity, Temperature, Depth and density data for the entire water column. That data is used to make corrections in the hydrographic survey data.

Multibeam sonar: By measuring the time it takes for sound waves sent from a transmitter mounted beneath the launch to bounce back, scientists determine the depth to the seafloor. Multibeam sonar systems provide fanshaped coverage of the seafloor. Because the speed of sound in water is related to conductivity, temperature and depth the CTD data is used with the multibeam sonar data.

Recovering the CTD after a cast
Recovering the CTD after a cast

The day starts at 0800 (8:00 am) on the fantail (rear, lowermost deck of the ship) with updates, detailed weather forecasts for the areas that will be mapped, and instructions from the Commanding Officer (CO), Executive Officer (XO), and Field Operations Officer (FOO). Then, wearing flotation devices and hardhats, each crew assembles to board the launches. As each launch is lowered, it is stopped even with the deck, and its crew of at least three, two hydrographers and a driver, boards. A cooler and thermoses for lunch are handed over. The launch is lowered into the water on cables and unhooked from the ship. It speeds at about 15 knots to the area to be mapped. The survey begins with a CTD cast. The CTD is lowered to the seafloor to collect data on water conductivity, temperature and depth. It is necessary to conduct a CTD scan every four hours or whenever conditions change. For example, if the launch moves to deeper water or to a different area. That done, the crew engages the multibeam echo sounder system, and at 7 knots per hour, the launch begins collecting data,“mowing the ocean.” In order to completely map the assigned seafloor area, the launch ends up making a pattern very similar to the back and forth pattern made by a lawnmower. This sounds easy enough, but it takes about a year to really learn the job. Each launch needs a three man crew. The Coxswain drives the launch and keeps the towed equipment on the grid line no matter what the seas around are doing.

Driving the launch as we “mow the ocean.”
Driving the launch as we “mow the ocean.”

The two hydrographers take turns scanning and tweaking four computer screens that are monitoring data collection. The towed instruments are collecting real time data that has to be checked and stored. All of this work is conducted in a relatively small boat, in the open ocean. When you add that component, you quickly realize that this is not only exciting science by a true adventure at sea. These crews are highly trained professionals. The launch drivers are senior members of the Deck Crew and are very experienced mariners. So far, I have worked with a ferry driver, a commercial fisherman, and an outward bound instructor. I tried driving the launch for a little while on my first day out. With no experience at all, I found it quite difficult to keep the launch headed along the line. Any deviation of the towed instruments from their prescribed grid path causes missed spots called “holidays.” “Holidays” can be caused by other things as well such as unexpected software crashes or gaps caused when data points have to be removed during processing. For complete survey coverage, the launches must return to remap “holidays.” These are therefore holidays for the equipment not the hydrographers.

Inner Iliasik Island
Inner Iliasik Island

Hydrographers have both technical skills and nautical skills. Many of them are officers on the Rainier. They troubleshoot whenever the software malfunctions and fix anything that breaks on the ship during the workday.  I looked in the toolbox, and yes, there is duct tape. The launch crew also assists in deploying and retrieving the launches from the ship. This is an exciting and challenging job in an extraordinarily beautiful environment.  After the launches return and are recovered, the hydrographers immediately meet to report on the day’s work. Each team leader makes a report and any problems with data logging and equipment are documented and discussed. The Field Operations Officer (FOO) uses this information to plan for the next day. And last but not least, if you’ve read this far, you are wondering how the Teacher at Sea fits into this. Each day the Teacher at Sea becomes more proficient at her tasks. I am provided with training, and my understanding is growing. But, on that first day, my day of “shock and awe,” I spent my time taking pictures, asking questions, investigating my personal flotation device and standing aft (in the back of the boat) to avoid seasickness. Additional time was spent practicing standing steadily and walking around the small boat. In other words, I spent the day “getting my sea legs. “

Personal Log 

Pavlof Volcano and Pavlof Sister
Pavlof Volcano and Pavlof Sister

The second full day at sea we continued our transit to the survey area. Bright sunshine ignited an endless parade of snowy volcanoes. Off the bow, whale spouts dotted the horizon, and puffins bobbed and clumsily took off flashing their orange feet like small flags. At 2100 (9:00 pm), with the day still bright, nearly everyone gathered as the ship dropped anchor in a small bay at what appeared to be the end of the world. Two smooth, lawn-green islands connected by an isthmus marked the boundary. Beyond, on a hazy, distant horizon were the outlines of volcanoes. Behind, loomed the pointed, snowy Pavlof volcanic peaks. Perhaps Robert Frost was right.

SOME say the world will end in fire, Some say in ice. From what I’ve tasted of desire I hold with those who favor fire. – Robert Frost

Gary Ledbetter, July 22, 2008

NOAA Teacher at Sea
Gary Ledbetter
Onboard NOAA Ship Rainier
July 7 – 25, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: July 22, 2008

Weather from Bridge 
Winds W/NW 10-15 building to 20
Partly Sunny, High 55 F
Seas 2-4 feet

NOAA Teacher at Sea, Gary Ledbetter, helps prepare the CTD for a cast.
NOAA Teacher at Sea, Gary Ledbetter, helps prepare the CTD for a cast.

Science and Technology Log 

Navigation 

Take a close look at some of the electronic communication and navigation equipment in the picture above. Which one do you think is the most important?  Well, it’s probably not in this picture.  Depending on who you ask you will get a different answer as to which piece of equipment is the most important.  One would think with the advancements in electronics, it would be the GPS, or some other piece of high tech equipment.  Although the most important piece is related to some of the high tech equipment, the instrument itself is not even close to being on the list of the latest and greatest technological equipment – it’s the compass; more specifically the gyro compass.

History 

Unlike many things we may feel are rather mundane, the gyrocompass has an interesting history. Apparently taking a patent out for something that doesn’t work is not a new phenomenon because the gyrocompass was patented in 1885 (only about 20 years after the end of the Civil War) by Geradus van den Bos…. and yes, it didn’t work! Four years later, Captain Author Krebs designed an electronic gyroscope for use aboard a French submarine. Then, in 1903, Hermann Anschutz-Kaempfre refined the gyrocompass, applied for and also was granted a patent. Five years later, in 1908, Anschutz-Kaempfre, with the help of Elmer Ambrose Sperry did more research on the compass and was granted an additional patent in both Germany and the United States.  Then things started to heat up.  Sperry, in 1914, tried to sell this gyrocompass to the German Navy and Anschutz-Kaempfre sued Sperry for patent infringement.  As happens today, the attorneys got involved and various arguments were presented.  Now it even gets more interesting – Albert Einstein got involved.  First, Einstein agreed with Sperry and then somewhere during the proceedings, Einstein had a change of heart and jumped on the Anschutz-Kaempfre bandwagon.  The bottom line?  Anschutz-Kaempfre won in 1915.

A myriad of navigation equipment exists aboard the RAINIER.
A myriad of navigation equipment exists aboard the RAINIER.

So What? 

OK, this history is all well and good, but what does a gyrocompass do that any regular compass can’t do? In a nutshell, a gyrocompass finds true north, which is the direction of the Earths rotational axis, not magnetic north – the direction our Boy Scout compass pointed.  Another factor of the gyrocompass is that it is not affected by metal such as the ships hull.  Put your Boy Scout compass next to a large metal object and see what happens.  Also remember one thing:  When you tried to find magnetic north with a Boy Scout compass, you had to hold it very, very still. Try reading a regular compass aboard a ship that is not only moving through the water, but is being tossed about by the waves and currents of the ocean.  The gyrocompass addresses this concern also. Without going into a lot of detail (and yes there are a lot of details, even about a compass) friction causes torque, which makes the axis of the compass to remain perpendicular.  In other words as the ship rolls and pitches, torque makes the axis of the compass to remain perpendicular to the earth. You then have an instrument that can read true north in nearly all weather conditions.

The electronic gyrocompass aboard the RAINIER
The electronic gyrocompass aboard the RAINIER

Definition 

Torque: A turning or twisting force

Personal Log 

I was a victim!  I was a victim of NOAA!  In fact, I was a very, very willing victim!  NOAA’s safety record is very high and they conduct numerous safety drills to maintain that record and to insure the safety of all aboard. On July 20th I was asked if I wanted to play the “victim” in an upcoming safety drill.  Of course I jumped at the chance. I was to play an unconscious fire victim with broken bones. After I staged the “accident” the various medical and fire suppression teams came to my rescue. These drills are very serious part of NOAA’s operation and are taken seriously by the crew – but that didn’t mean I didn’t have fun in the process!!

Gary plays the part of the “victim” during a safety drill on the RAINIER.
Gary plays the part of the “victim” during a safety drill on the RAINIER.

Gary Ledbetter, July 15, 2008

NOAA Teacher at Sea
Gary Ledbetter
Onboard NOAA Ship Rainier
July 7 – 25, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: July 15, 2008

Weather from Bridge 
Winds SE/E @ 5 knots
Temperature:  High 45 degree F
Seas 1-3 feet

This is the Reson Sea Bat 7125, the type of sonar on the bottom of one of the RAINIER’s launches.
This is the Reson Sea Bat 7125, the type of sonar on the bottom of one of the RAINIER’s launches.

Science and Technology Log 

Sonar 

Sonar, which is short for sound navigation and ranging, is a system that uses sound to communicate, navigate, detect other vessels, and determine the depth of the water.  A hydrographic survey ship, such as the RAINIER, extensively uses sonar on their survey boats.

A Very Brief History 

Using sound to detect objects is nothing new. In fact man has been using it for hundreds of years. Even before man was using sound, bats use their own form of sonar (more commonly referred to as radar) for navigation.  As early as 1490 Leonardo Da Vinci inserted a tube in water, put his ear to the tube and reportedly was able to detect vessels.  Not surprisingly, the use of the “echo locate” system was given a big boost following the Titanic disaster of 1912.  The British Patent Office gave English meteorologist Lewis Richardson, the world’s first patent for an underwater echo ranging devise within one month of the sinking of the famous ship.

Matt from Earth Resources Technology working on one of the survey launches
Matt from Earth Resources Technology working on one of the survey launches

Sonar usually plays an important part when we watch World War II war movies depicting the Navy hunting enemy submarines.  These depictions were more than just Hollywood.  In fact, the British were ahead of the U.S. in sonar technology even prior World War I.  In 1916 Canadian physicist Robert Boyle took along with AB Wood, under the direction of the British Board of Invention and Research, produced a prototype for active sound detection in 1917.  This was really secret stuff! In fact it was so secret that the word used to describe that early work, called “supersonics”, was changed to ASD’ics. This term eventually morphed into ASDIC.  It even gets more interesting.  The Admiralty made up a story that ASDIC stood for “Allied Submarine Detection Investigation Committee.  Many people today still think that’s what ASDIC means even no committee with this name has even been found in the Admiralty archives.

It seems like we Americans always have to change the name of something, (you history buffs know that Britain had something called the wireless… but we changed it to radio) so we did the same thing with ASDIC.  We changed it to SONAR, primarily because it was closely related to RADAR. The name change became official in 1948 with the formation of NATO’s standardization of signals. Thereafter, ASDIC was changed to SONAR for all NATO countries.

The lines you see make up the grid the survey boats follow. The ones scratched out are the ones we have completed.
The lines you see make up the grid the survey boats follow. The ones scratched out are the ones we have completed.

So Just What Is This Sonar…? 

There are two basic types of sonar: Active and Passive.  We’ll briefly discuss passive first.  Passive listens without transmitting.  It is used to determine the absence or the presence of something – primarily in the water.  To come directly to the point it is detecting any sound that comes from a remote location.  Listening to those sounds helps identify the sound.  (Back to Hollywood: remember the scene in nearly any navy warfare movie when the sonar operator of the ship is talking with the captain:  “it sounds like a X4IY9, Class H2 Russian sub, Captain). The sound of the sub was not being produced in any form from the ship, but from a remote location – the sub. Now you have an idea of passive sonar.

Active Sonar 

Yours truly trying his hand at driving the boat
Yours truly trying his hand at driving the boat

Active Sonar creates a “ping”. This ping travels through the water until it strikes something; it then bounces back. The bouncing is called reflection, or an echo.  The ping is created, normally, electronically. When the ping is transmitted it travels through the water, strikes an object and bounces back (the echo). This time is measured and converted into range (distance) by knowing the speed of sound. Sounds pretty simple, right?  Unfortunately numerous variables can affect the time it takes for the echo to return such as salt content (sounds travels faster through salt water than fresh water), the density of the water, and even the temperature of the water. Then there is the “noise”, or other disturbances in the water: fish, seaweed, dirt, trash, etc., that effect an accurate measurement.  All of these variables have to be taken into consideration by the survey technicians and scientists.

The survey boats from the RAINIER use different types of sonar. The sonar on the boat I was recently on is called the Reson SeaBat. Instead of simply one “ping”, it produced a swatch of 128 degrees consisting of 256 pings across the ocean floor.  It then transmits these pings back to the boat.  Think in terms of a triangle, with the top of the triangle being the sonar unit on the boat. The sonar transmits the pings across the ocean floor and sends back numerous signals instead of just one.

Yours truly trying his hand at driving the boat
Yours truly trying his hand at driving the boat

Personal Log 

Yesterday I was aboard survey boat (called a launch) RA 4.  These boats are deployed and retrieved each morning and night. On the ocean each boat follows a predetermined grid across the ocean much like mowing your lawn.  Deploying the boats, retrieving the boats, and following the grid looks really simply until you do it yourself, and then you realize how difficult it really is.  I guess when you watch experts do something, they make it look easy.  The sea was nearly mirror smooth.  Although it was cloudy and cool, there was little or no rain or wind. This makes the process much easier as well as more enjoyable.  Tim, a NOAA Ensign was operating the onboard computer system that kept track of the sonar readings.  I was able to try my hand at driving the boat and operating the computer.  I’m not going to talk about how well I did, but as I said before, they make their job look so easy!

Gary Ledbetter, July 7, 2008

NOAA Teacher at Sea
Gary Ledbetter
Onboard NOAA Ship Rainier
July 7 – 25, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: July 7, 2008

Weather Data from the Bridge 
Winds SE/E @ 10 knots
Drizzle, Seas 1-3 feet
Temperature: High 45 degree F.

NOAA Teacher at Sea, Gary Ledbetter
NOAA Teacher at Sea, Gary Ledbetter

Background 

The Office of Coast Survey (OCS) is a part of the National Oceanic and Atmospheric Administration (NOAA) that conducts hydrographic surveys. In short, they measure the depth and bottom configuration of bodies of water using sonar technology. From these measurements our nation’s nautical charts are developed to assist in safe navigation of the United States waters.  Additionally the surveys also locate and publish sea-floor materials that may inhibit safe ocean travel such as pipeline and cables, shipwrecks, and other obstructions. NOAA hydrographic surveys have also been instrumental in locating the wreckage of TWA Flight 800, John F. Kennedy Jr.’s plane, and EgyptAir flight 990. OCS has conducted over 10,600 surveys since it began in the early 1900s. *

Science & Technology Log 

If you are like me, you probably thought that sonar was simply aimed at the bottom of the ocean and a graph-like image came back. Well, this is essentially true – but there is a lot more to it than that.  Prior to even using that technology, another research tool must be used: The CTD recorder.  “CTD” means, Conductivity-Temperature-Depth recorder. This instrument measures either directly or indirectly such factors as temperature, saline, and density.

ENS Junior Officer Christy Schultz preparing to lower the CTD Recorder, which sits  in the metal cage in front of her
ENS Junior Officer Christy Schultz preparing to lower the CTD Recorder, which sits in the metal cage in front of her

Although measuring these characteristics are not new (Benjamin Franklin did some of these measurements as far back as the 18th century), the methods of taking these measurements have drastically changed. The present technology was developed in the 1960’s where the instrument itself is placed in the water it is measuring.  The instrument then takes a continuous measurement of conductivity, temperature and depth, which are recorded continuously.  These measurements are taken up to 24 times per second.  That kind of speed creates a very high-resolution description of the water being tested. When the instrument is measuring conductivity, it is simply discovering how easily electricity passes through the water sample being tested.  Since electricity passes through water more easily with a higher salt content; the more easily electricity is passed, the higher the salt content.

The CTD normally uses a thermistor: a platinum thermometer, or a combination of these to measure temperature.  The accuracy is quite amazing:  greater than 0.005 degrees Celsius. Last, but not least, the CTD measures pressure.  This pressure is measured in decibars.  Depth and pressure are directly related.  In other words, if you are at 340 meters below the surface, the meter will indicate about 350 decibars (dbars). Once all these measurements are taken, they can either be stored in the actual instrument or they can be transferred to a computer when the CTD is withdrawn from the ocean. OK, you may say, this is all well and good, but what does it have to do with mapping the ocean floor (the technicians call this, “mowing the ocean”)?   The simple answer:  All these conditions affect the speed of sound.  Therefore when the sonar “pings” the computer will compensate for variables (temperature, density and salinity); this creates a more accurate reading of the ocean depth at any particular spot. **

Personal Log 

I am discovering that hydrographic surveys are both simplistic, and complex.  Simplistic in terms that the survey boats simply follow a pre-established grid and collect computerized data.  They collect this data by following a pre-determined grid much like someone mowing their lawn.  In fact the surveyors call it “mowing the ocean”.  However, the interpreting of this data is the job of several engineers and engineer technicians which may take several hours or possibly all night.

*Information obtained from NOAA website, ** Information obtained from the CTD website

Matt Lawson, June 10, 2008

NOAA Teacher at Sea
Matt Lawson
Onboard NOAA Ship Rainier
June 9-20, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Bay of Esquibel, Alaska
Date: June 10, 2008

Weather Data from the Bridge as of Wednesday 
Visibility: 10 nautical miles (Nm.)
Wind Direction: none
Wind Speed: none
Sea Wave Height: none
Seawater Temperature: 7.8 Celcius (C)
Sea Level Pressure: 1018.1 millibars (Mb.)
Cloud Cover & skies: overcast
Air Temperature: Dry bulb – 12.2 C Wet bulb – 8.3 C

One of the gravity davits stands waiting for the return of its launch boat
One of the gravity davits stands waiting for the return of its launch boat

Science and Technology Log 

Out to Launch! 

June 10: At 7:50 am CO Haines met with everyone involved in today’s launches to talk about the work, weather and safety. Acting FOO Smith covered the particulars of the survey work each launch boat would be conducting. Chief Boatswain Kruger briefly reminded us about safety and being in your positions at the right times, then the order in which the launches would depart from the ship. Very shortly after 8am, we climbed aboard RA-#4 (RAINIER launch boat #4) and were lowered into the water. All six launch boats are similar to each other in that they are about 30 feet long, have built-in diesel engines, a cabin, and a canopy over the coxswain’s wheel.  They are housed upon gravity davits, which are not the latest in technology, but very durable and reliable.  More modern davits use hydraulic systems and they require fewer deckhands to operate. It appears to me that each system has its advantages. Today, we mainly used the side scan sonar system on that boat to survey some of the rocky off shore areas of Biali Rock.

RA-4 leaves a trail as it speeds to the assigned survey site.
RA-4 leaves a trail as it speeds to the assigned survey site.

The weather was pretty good except that the waves were 6-7 feet tall, making it a little rough for the new guy. Amy Riley, Lead Survey Technician, invited me below deck to see the work she and Grant were doing. Basically, they had a computer with three monitors, showing the current GPS map of where we were, the scanning in real time and a 3-D image of the ocean floor as it was being processed. The job here for the technicians is to monitor the computers as they accumulate data that will later be processed. But this is not yet the end product.  The processed data is finally sent ashore where NOAA cartographers will create the actual charts used for navigation.  Even though quite a number of other things were going on in other smaller windows, I’m not above admitting I didn’t fully understand it all!  I was allowed to take the tech’s chair for a while and we did 4-5 passes with me in control of the system.  Somehow, I managed not to crash us into anything!

The two fishermen in their “Gumby Suits” wait to be rescued.  Their capsized fishing boat is in the foreground. Photo courtesy of Ian Colvert
The two fishermen in their “Gumby Suits” wait to be rescued. Their capsized fishing boat is in the foreground. Photo courtesy of Ian Colvert

Later, I sat in on the survey de-briefing in the wardroom.  This meeting takes place every day immediately after the last launch returns to the ship.  Everyone involved in the launches participates in this meeting.  While everyone is given an opportunity to speak about the day, the lead survey technician for each launch specifically makes an official report on accomplishments, areas of interest or concern, problems and/or issues that need to be addressed before the next set of launches departs. I found this part of the day just as interesting because it created a summary for the entire day’s mission.

Personal Log 

Drill or No Drill? 

NOAA personnel expertly pluck the stranded fishermen from the sea. Even as they suffered from shock, they thanked the rescue team profusely for being there.
NOAA personnel expertly pluck the stranded fishermen from the sea. Even as they suffered from shock, they thanked the rescue team profusely for being there.

While out on the launch, we were able to catch a little of the radio chatter.  It’s always good to listen to the radio, even when it doesn’t pertain to you.  It keeps you in the know and alert to possible hazards in your path. I’m adding “listening to the radio” as a rule on my “to do” list, and I’m about to give you a good example as to why.  As we listened, it sounded like a “Man Overboard” drill was taking place on the ship. Ha, ha.  Better them than us.  However, the more we listened, we began to realize we were really missing the event of the day.  Apparently, two fishermen were out on a fairly old boat when they began to sink. We don’t know the cause, just that it was going down fast. They were able to get out only one mayday call. However, RAINIER’s bridge was able to pick up on and respond to the call.

Despite the fact that much of the ship’s personnel were out on launches, a sufficient rescue team was mustered and conducted a flawless rescue mission.  The two fishermen were in their emergency immersion or “Gumby suits” and had not suffered too much when they were picked up.  After allowing them time to rest and somewhat recover from shock, they were taken to the nearest port.   I had read how NOAA vessels frequently play vital roles in various rescue missions, but being here when it happens makes a much bigger impression.  Today proved just how easily things can get hairy out here and  how important it is to know how to handle emergency situations.  Drills and safety meetings occur regularly on RAINIER, and once again, came in very helpful.

Ian Colvert, a NOAA Survey Technician was on board RAINIER when the rescue mission took place. He is credited for the rescue pictures.

Bald eagles are as abundant here as the crows are at home.
Bald eagles are as abundant here as the crows are at home.

Not Yet a Salty Dog 
I have to diverge a little here.  Operating a computer on a wildly thrashing boat was indeed a new experience in and of itself, as well as a point of hilarity for the Lead Technician, Amy, who’s been doing this for a long time.  Just working the mouse was like riding Ferdinand the Bull after being stung by an unfriendly bee. Anyway, after an hour of this, I began to get seasick.  Yes, the new experiences just keep coming!  At the risk of using too many analogies in one paragraph, I will say sea sickness pretty much just feels as if you’ve been traveling in the back of a tired old Chevy Impala being driven through very hilly country roads by a driver who should’ve had his/her license taken away 35 years ago.  Basically, puke city. I had to return to the deck where I could see the horizon and let my brain make sense of things again.  Recovery was a slow process in 6-7 foot waves, but I did eventually manage and was normal again long before we returned to the relative steadiness of the ship.

Sailing/Nautical terms for all you land lovers:

  1. FOO – Field Operations Officer
  2. SONAR – SOund Navigation Ranging – technology which uses sound to determine water depth.
  3. Side scan SONAR – a category of SONAR that is used to create an image of a large area of the sea floor. This type of SONAR is often used when conducting surveys of the seafloor in order to create nautical charts for navigation.
  4. Gravity Davit – davit system which relies on the weight of the boat to lower it into the water.
  5. GPS – Global Positioning System – a mechanism which uses satellite systems to determine location.
  6. Coxswain the helmsman or crew member in command of a boat.
  7. Manual Floatation Device – any life jacket that must be activated by the wearer (usually a rip cord and air canister system) to make it buoyant.
  8. Positive Floatation Device – a life jacket that does not require manual activation and is designed to keep the wearer’s head above water.
  9. Immersion Suit – a full body suit which functions as a positive floatation device.  Used in emergency situations, such as abandoning ship.  The insulation and water proofing of these suits are important factors in colder waters.
  10. Muster – to gather.
  11. Bridge – sometimes called a pilot house, the place from which the ship is steered.  This is the heart of ship operations.

Animals Seen Today 
No new ones, but it was still exciting to see so many.  Even though the somewhat higher waves kept me busy with the challenge of standing up, I did notice a large colony of starfish hanging on some rocks in calm waters.

“Did You Know?” 

  • There are cold water corals which grow in the Alaskan waters.
  • The Gulf of Esquibel (pronounced “es-ki-bell”) was originally named by Fransisco Antonio Maurelle about May 22,1779 in honor of Mariano Nunez de Esquivel, the surgeon of the ship La Favorita.
  • Alaska itself was purchased by the United States from Russia in 1867.
  • Prior to its sale to the U.S., the Russians referred to it as “Russian America.”

Sea otters bathed and ate nonchalantly on their backs as we passed between the islands.
Sea otters bathed and ate nonchalantly on their backs as we passed between the islands.

Matt Lawson, June 9, 2008

NOAA Teacher at Sea
Matt Lawson
Onboard NOAA Ship Rainier
June 9-20, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Bay of Esquibel, Alaska
Date: June 9, 2008

Chief Boatswain, Jim Kruger, demonstrates a life raft in a session aboard the RAINIER.
Chief Boatswain, Jim Kruger, demonstrates a life raft in a session aboard the RAINIER.

Weather Data from the Bridge 
Position: Longitude: 50° 17.89’ North (N) Latitude: 134° 24.68’ West (W)
Visibility: 10 nautical miles (Nm.)
Wind Direction: none
Wind Speed: none
Sea Wave Height: none
Seawater Temperature: 7.8 Celcius (C)
Sea Level Pressure: 1018.1 millibars (Mb.)
Cloud Cover & skies: overcast
Air Temperature:  Dry bulb – 12.2 C Wet bulb – 8.3 C

Science and Technology Log 

Arrival evening and day one were spent mostly getting oriented with the ship, safety procedures, as well as a quick visit into Juneau before sailing out. Safety is the foremost concern in every scientific field of study. Since we’re on the ocean, there is a lot to be aware of and how to handle potentially disastrous situations. Therefore, we new arrivals were fitted and familiarized with a number of safety gear.  First were the positive floatation devices. These just look like orange coats, but they’re heavily insulated and highly buoyant.

NOAA Teacher at Sea, Matt Lawson, in a Positive Floatation Device and hard hat.
NOAA Teacher at Sea, Matt Lawson, in a Positive Floatation Device and hard hat.

They’re always worn as a precaution when boarding launch boats and in any other similar situations. In the unlikely event that you would fall into the water, you’d already be wearing a life jacket.  We were also fitted with our immersion suits.  These are whole body suits and are only worn in cases of emergencies, such as abandoning ship.  There are emergency escape breathing devices (EEBD) hanging in convenient locations everywhere on the ship in case of fire. Hard hats were issued for wearing in work areas. A manual floatation device was also issued for wearing once you’re off on a launch, so long as you are in the cabin of the boat.  Even these vests have a built in air canister, which can inflate the vest by pulling a cord located on the front. Last, but not least are the launch boats, which would be our first means of escape from a sinking ship.  To back those up are the inflatable rafts, which open upon contact with the water. Jim Kruger, Chief Boatswain, briefed us about all these issues and supervised the fitting of our gear.  

Sailing terms for all you land lovers:

  1. Bow – the very front of the ship
  2. Stern – the very rear of the ship.
  3. Forward – nearer the front of the ship
  4. Aft – toward the back of the ship
  5. Port side – as you’re facing the front, the left side.
  6. Starboard side – as you’re facing the front, the right side.
  7. Hydrography – the science of the measurement, description, and mapping of the sea bottom and tidal mudflats, as well as the positions of stationary objects at sea (both below and above the water’s surface), with special reference to navigation.
  8. Commanding Officer (CO) – the officer in charge of the ship.
  9. Executive Office (XO) – the officer second in charge of the ship.
  10. Chief Boatswain (pronounced “boe-sun”) – the primary person responsible for the boats, sails rigging, anchors, and cables.
  11. Electronics Technician (ET) – the primary person responsible for all telecommunications, computers, and other electronics on board the ship.
  12. Davit – a crane that projects over the side of stern of a ship and is used as a joist; a pair of davits is used to carry and launch/recover small boats such as a survey launch.
  13. Launch – a boat, typically less than 30 feet, used to conduct surveys.
  14. Hull – the frame or body of a ship, boat, or buoy.
  15. Latitude – the distance north or south of the equator of a point on the Earth’s surface; and imaginary line that runs east-west and ranges from 0-90 degrees north and 0-90 degrees south.
  16. Longitude – the distance east or west of the Prime Meridian of a point on the Earth’s surface; an imaginary line that runs north-south and ranges from 0-180 degrees east and 0-180 degrees west.
  17. Chart – a map designed to assist navigation by air or sea.
  18. NOAA – the National Oceanic and Atmospheric Administration.  NOAA falls under the U.S. Department of Commerce and is responsible for prediction and research of weather and climate-related events, charting the sea and skies, and providing environmental stewardship of the nation’s coast and marine resources.

Three of RAINIER’s launches hang in their davits.
Three of RAINIER’s launches hang in their davits.

Personal log 

June 8th 

The captain of Alaska Airlines flight 59 announced our upcoming descent into Juneau.  I looked out the window. The mountains poked their snow capped peaks through the clouds.  It was my first ever glimpse of Alaska.  As we descended, we momentarily disappeared into the white.  Then things cleared up and an awe inspiring sight appeared.  Juneau and the surrounding mountains were there. My gaping mouth and “Cheshire Cat” grin were seemingly permanent.  I had no idea it would be this beautiful. Christy Shultz, (Junior Officer/JO) met Mark Friedman, (fellow Teacher At Sea/TAS) and me at the airport. We rode in a van with two other NOAA employees, Amy & Mike Riley back to where the RAINIER was docked.

Upon arrival at the ship, Christy gave all the new arrivals the grand tour.  Wow, what a nice ship! The personnel aboard keep this place looking spotless.  RAINIER was built in 1967 and launched in 1968. Many adjustments have been made over time to meet changing needs and she has taken them all gracefully from what I can see. At this time, RAINIER is carrying 6 launch boats (metal hulled with canopies) and two skiffs (smaller, open top, with an outboard motor). Each vessel, including RAINIER herself, is equipped with various forms of sonar technology for hydrographic charting. Hydrography is RAINIER’s main objective, specifically around the coastline of the Gulf of Alaska, and this is what we are to do for the next two weeks.

RAINIER bridge and forward starboard bow
RAINIER bridge and forward starboard bow

We were introduced to a large number of rooms, and access to most of them is very casual. Basically, one should read labels on doors, and if it’s locked, don’t go in. Anyway, There are two main passageways: amid and athwart ship.  The crew’s mess is in the very center of the ship.  The decks are ordered alphabetically, A-F with A at the bottom and the Fly bridge on top. My quarters/stateroom, which I share with Able Bodied Seaman, Joe Normand, is in a small section of C Deck accessed by a ladder way.  Ladder ways are sort of a hybrid between stairs and ladders. There are three staterooms in this section, each containing four bunks. Joe and I have the run of our stateroom for this leg of RAINIER’s ’08 journey. Near the front, of course, is the bridge, officers’ quarters, offices, (CO, XO, ET, and others) officers’ mess, and wardroom.

Orientation and dinner aboard ship finished, newly acquainted friends, Matt, Adam, Fernando, & Mark conversed and talked about what our jobs and duties would be in the coming days.  We were all very tired from traveling, but we knew we had to get our bodies aligned with the time zone, so we didn’t allow ourselves to sleep too early. Instead, we chose to watch movies in the wardroom.  I’m guessing on other ships, this room is normally reserved for officers only, but we were told teachers and other visiting professionals usually commandeer it for themselves.

June 9th 

Today was sailing day. There were more people and there was a definitely different buzz about the ship than yesterday as crew and officers alike went about the business of preparing for departure. We new arrivals worked to complete orientation: safety videos, drills and online tech safety training. At 3:45, (1545) the gang plank was pulled aboard, ropes were untied, and by 4pm, (1600) we were off.  Most importantly . . . the food here is great!  The cooks do a terrific job. They all have their specialties and they seem to love what they’re doing.

“Did You Know?” 

  • When referring to the air and oceans, mapping is actually called “charting.”
  • Alaska experiences all four seasons and is not completely covered in ice and snow.
  • Rainforest ecosystems can be found in Alaska.
  • Desert ecosystems can be found in Alaska.

Chuck Gregory, August 23, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 23, 2007

“Leave all the afternoon for exercise and recreation, which are as necessary as reading. I will rather say more necessary because health is worth more than learning.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0614h Sunset = 1944h
0000h Ship at Sandy Hook, NJ anchorage
0745h Launch safety brief (Survey)
0800h Deploy Launches
1745h Retrieve launches

Tides for Sandy Hook High @ 0400h (3.7 ft.) & 1631h (4.7 ft.); Low @ 1018h (1.2 ft.) & 2320h (1.0 ft.); Currents in Sandy Hook Channel Flood: 0120h (1.0 kt.), 1344h (1.7 kts.); Ebb: 0744h (1.1 kts.), 2028h (1.4 kts.); weather from Sandy Hook to Fire Island AM: SE winds 10 kts., seas 3-5 ft., PM: S winds 10-15 kts., seas 204 feet.

Today is my last full day on the NOAA Ship THOMAS JEFFERSON.  My goal today is to clean up any loose ends before I leave the ship tomorrow: laundry, catch up on my log, take a few extra photos, etc.

Chris Van Westendorp, the TJ’s FOO
Chris Van Westendorp, the TJ’s FOO

Like the previous three days the sky is gray.  I can’t even see Manhattan.  Fortunately, the seas have calmed and I am quite sure the launches will be deployed.  I am not scheduled to be on a launch, but Andy is going out. He switches between two full days of launch duty, and then two days of watch duty: 0330h to 0730h, and 1530h to 1930h.  They do keep him busy. For lunch I had chicken tacos and lasagna. A brief note on Chief Steward Dave – he sure must like to cook chicken. It was served to us often and in a variety of styles.  All in all, Dave and his crew do an excellent job of feeding us and deserve a commendation.  There was always something to eat, and no one left the Mess Deck hungry.

I also found time to go up to the bridge and chat with Megan Nadeau.  Megan is from Lewiston, Maine and gave me a good interview.  After two years at the University of New Hampshire, Megan graduated from the University of Maine with a B.S. degree in Marine Science. She seems to really enjoy her role on the THOMAS JEFFERSON, and has a nice career plan ahead of her. The Field Operations Officer – affectionately referred to as “The FOO” – Chris Van Westendorp, joined us on the bridge and I was able to interview him as well.  Chris has quite an experienced past that includes years on a Navy submarine and a degree in Marine Science. As I noted in a previous log entry, the interview is pretty straight forward, except the last question about who will play you in my Hollywood blockbuster. Those I interviewed almost always paused when I asked this question. Some of the answers I got were funny, others quite revealing.

At the end of the day I did a little more computer work, ate dinner, exercised, and began the packing process. I even washed and dried my sweaty exercise cloths.  After a little “White Fang” I was asleep by 2230h. 

Chuck Gregory, August 22, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 22, 2007

To penetrate and dissipate these clouds of darkness, the general mind must be strengthened by education.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0613h Sunset = 1945h
0000h Ship at Sandy Hook, NJ anchorage
0745h Launch safety brief (Survey) and take first Dramamine
0800h Deploy Launches – I’ll be on the 3101 this time!
1145h Take second (and last!) Dramamine
TBD Commence underway check-off; Light off main engine, ship underway/anchor
TBD Mail pick-up (boat TBD)
1745h Retrieve launches

Tides for Sandy Hook High @ 0259 (3.7 ft.), 1532 (4.6 ft.); Low @ 0911h (1.3 ft.) & 2225h (1.5 ft.); currents in Sandy Hook Channel Flood: 0018h (1.0 kt.), 1243h (1.7 kts.); Ebb: 0648h (1.1 kts.), 1937h (1.3 kts.); weather from Sandy Hook to Fire Island AM: NE winds 15-20 kts., seas 5-8 ft., PM: E winds 10-15 kts., seas 5-8 feet.

Cox'n Pooser driving a launch
Cox’n Pooser driving a launch

What a day! When I awoke it was apparent that the launches would be deployed on schedule (0800h). Once again the sky was gray, but the wind and sea was calm enough for us to get work done. After breakfast (oatmeal and Dramamine) we met in the Survey area for a safety brief.  I was assigned to be on launch 3101 with Cox’n Pooser, Cox’n-in-Training “House” and Survey Tech Scott. Launch 3101 is only equipped with a MultiBeam Echo Sounder.  We were the first to be deployed, and Bob Schwartz filmed the launch before joining the 3102 to continue his video work.

Our morning on the 3101 began simple enough.  Pooser was training House to drive the launch around the inner Sandy Hook harbor area. It was House’s first time on a NOAA launch, and, while he was quite eager to learn, the rough sea and his lack of experience showed. Pooser spent a long time instructing him on operating the launch and how to “drive lines” (that’s NOAA speak for keep the launch on the correct survey heading).  Scott was all set up to gather data, but stayed very patient while House would attempt to drive a line and have to repeat the track because he veered off course.  Scott and I joked that House was drawing a “double helix”.  But House persisted and his skills soon improved.  From the perspective of this novice, it was not a good sea for the first-timer.

Towing the Fast Response Boat (FRB)
Towing the Fast Response Boat (FRB)

After about an hour of “drawing double helixes”, Pooser grabbed the wheel and began knocking off the lines like a veteran. It was about then that we first saw the FRB (Fast Rescue Boat) leave the THOMAS JEFFERSON on a mail run to the Sandy Hook Coast Guard Station.  When the FRB got about half way to shore we noticed that it suddenly stopped in the water. We heard over the radio that their engine was smoking and she was dead in the water.  Bummer!  Since we were the nearest boat (about 300 yards away), we motored over and began the process of towing them back to the TJ.

FOO Chris, Ensign Megan G., and Chief Buck were on the FRB, and they hung on as we slowly motored back to the TJ.  We passed their lines to the crew on the ship and waited until we were told they were safe and secure.  Then we were back to doing lines. After lunch the TJ called and asked us to go to the Sandy Hook Coast Guard Station and retrieve mail.  The Sandy Hook Coast Guard Station is a nice facility with a great location. But the biggest thrill of all (for me at least) was setting foot on solid land!  Yes, I thoroughly enjoyed our brief sojourn on land (about 15 minutes).  (Now if only I could have a beer!!) We picked up two packages and, once again, went back to the 3101 and driving lines. 

We were surveying in shallow water close to the Coast Guard Station.  Pooser really showed his skill driving the launch in these close conditions.  This was a good learning experience for House. When in shallow water there is always a threat of running the expensive MBES into the seafloor. Pooser got as close as he could (only 7-8 feet deep!), but reached a point where he had to tell Scott that we couldn’t get any nearer to land even though the plan called for it. Pooser suggested we return at high-high tide.  There is no doubt about it, while the survey technician directs the data gathering, the Cox’n is in charge of the boat and everyone’s safety.

We stayed out driving lines in the Sandy Hook area until 1730h.  Most of the lines were short and taken as quality control (QC) checks for the existing data.  When I spoke to Pete last night, he explained to me how there were questionable sections of the data, and additional QC lines were needed.  Pete pointed out to me that these were usually areas on the grid where the Side Scan Sonar (SSS) and/or the MBES missed (e.g., the launch hit a wake and heaved a little too much).  And it was Pete’s job to look over all the data and determine where these “holidays” were located. Another important part of our survey work is getting 200% coverage of the area.  In short, the launches pass over the survey area twice, staggering their tracks to optimize the overlap. So, while it’s easy to see how well the launches contribute to the survey work, it is just as important (if not more so) to understand how all that data is checked and double-checked (and triple-checked!) before it is submitted as a report.

When 1730h arrived, and it was time to return to the ship, Pooser let me take the wheel one last time.  We went full throttle and reached 20 knots before arriving at the ‘TJ’.  Pooser turned the wheel over to House and let him bring the 3101 to the vessel for a smooth retrieval. We cleaned the launch of our stuff, and were soon in the Mess Deck enjoying another meatloaf dinner.  Once again, after a full day on the water, meatloaf never tasted so good!  After dinner I called Roxann, went to the exercise room for a good 30 minute ride on the stationary bike, and checking on some more emails.

As a final note, I’ve learned that there are two times of the day to optimize the ship’s dial-up internet connection: before 0900h and after 2000h.  So, at 2000h I got on line and corresponded with a few folks. I was tired and was in bed by 2130h.  All in all, a good day full of new experiences.

Chuck Gregory, August 21, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 21, 2007

“Nothing gives one person so much advantage over another as to remain always cool and unruffled under all circumstances.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0612h Sunset = 1947h
0000h Ship at Sandy Hook, NJ anchorage
0730h Take first Dramamine
0745h Launch safety brief (Survey)
0800h Deploy Launches
1130h Take second Dramamine
TBD Commence underway checkoff; Light off Main Engine; Ship underway/anchor
1745h Retrieve launches

Tides for Sandy Hook High @ 0205h (3.8 ft.) & 1438h (4.6 ft.); Low @ 0759h (1.3 ft.) & 2122h (1.4 ft.); Currents in Sandy Hook Channel Ebb: 0548h (1.1 kts.), 1840h (1.2 kts.); Flood: 1149h (1.7 kts.) & 0018h (1.0 kts.); weather from Sandy Hook to Fire Island AM: E winds 10-15 kts., seas 4-6 ft., PM: NE winds 10-15 kts., seas 4-6 feet. AM/PM Showers & Drizzle.

One of the life rings on the TJ
One of the life rings on the TJ

As expected, we were greeted this morning with more wind and rain.  For now the launches are delayed two hours, but, from the looks of the sea, we’re assuming they will be canceled. While waiting for the final word I responded to a few e-mails.  My TAS log is up on the NOAA TAS website, and the pictures Eric and I sent look great thanks to Liz McMahon in the TAS office. At 0945h we heard that launch operations were canceled for the day.  So, I went down to exercise and found the room “crowded” – two others were using the equipment.  Since the stationary bike was in use I spent 20 minutes on the elliptical.

Since I have the time, I’d like to add a little note about life at sea and working on a NOAA ship. Many of the crew I spoke with love their jobs, but cite distance from home as the #1 downer of their NOAA job.  I can see why.  Phone calls and e-mails at the only real contact points with loved ones.  And if you think the dial up internet connection is slow, try sending a snail mail letter when the ship won’t be able to deliver your note to the post office for days. It takes the right attitude to stay on the ship for weeks, and you do need to keep your mind and body busy.  Like anything else, the work is hard but the rewards are great! Each night, when I go out on deck to phone Roxann, it’s common to see four or five crew members at some corner of the main deck phoning their families.  A sweet time to catch up with the folks at home, and informing the family that we are well and miss them.  I am on the THOMAS JEFFERSON for 12 days and really miss my beautiful wife.  I can’t imagine what it must be like to stay on the ship for three or four weeks!  Sometimes I wonder if even NOAA’s seasoned veterans get used to the time away?

While I’m at it, and on a lighter note, there is another item I sadly miss – a beer!  Roxann and I are so use to coming home after work and having a drink.  However, drinking aboard NOAA ships is forbidden (as it should be).  Maybe this is why some of the “boys” have a little toooo much when they go on leave. Feast or famine. So, when asked, “What is the first thing I will do when I get home?”  The answer is drink a beer. This rainy afternoon everyone on the ship went through two drills: fire & emergency (one long bell), and abandon ship (seven short bells followed by a long one). The CO and FOO coordinate these activities to keep us on our safety toes, and Bob Schwartz was filming both exercises.

For the fire & emergency drill my assignment is to muster (assemble) at the 02 Deck, port side. [That’s two floors above the main deck on the left side of the ship.] I was in my stateroom at the time and was able to grab my raincoat on my way out the door. It was a good thing as the 02 Deck was being lashed with wind and rain.  We stayed there about ten minutes – long enough for the fire team to put on their gear and respond to the mock fire. Immediately afterward, the abandon ship drill was held in the main deck hallway.  Most ship’s personal gathered with immersion (survival) suits and life jackets.  Those without suits acted as inspectors and waxed the zippers for ease of use. All in all, two good exercises.

When the drills were done we all assembled in the Mess for a debriefing – what went right and what could be improved.  Safety is paramount on a ship like the THOMAS JEFFERSON. As was stated during the debriefing, we are responsible for each other on the THOMAS JEFFERSON and we can’t rely on the local fire department to help us out.  The CO and FOO lead a brief discussion, and we soon returned to our task at hand. Dinner was ribs and duck. Good stuff. There are always potatoes or rice and a veggie to add to the meat.  And there is a salad bar for the “roughage”, plus dessert.  No one goes hungry on the THOMAS JEFFERSON.

After dinner Helen gave me a CD of four of NOAA’s sonar Power Point presentations.  While most of the sonar theory is over my head, I really wanted the cool pictures that make up most of the presentations.  I am sure to use these back at SMCC.  Thanks Helen! Another phone call to Roxann – all is well but cold at home – and I am ready to enjoy the evening. With only two plus days to go I need to be sure I have seen and experienced as much as possible. If only the weather would improve!

Tomorrow I am scheduled to be on launch 3101 – a first for me.  Good night!

Chuck Gregory, August 20, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 20, 2007

One man with courage is a majority.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0611h Sunset = 1948h
0000h Ship at Sandy Hook, NJ anchorage
0745h Launch safety brief (Survey) and take first Dramamine
0800h Deploy Launches
1145h Take second Dramamine
TBD Commence underway check-off; Light off main engine, ship underway/anchor
TBD Personnel transfer (boat TBD)
1545h Retrieve launches

Tides for Sandy Hook High @ 0116 (4.0 ft.), 1351 (4.6 ft.); Low @ 0705h (1.1 ft.) & 2014h (1.4 ft.); Currents in Sandy Hook Channel Ebb: 0447h (1.2 kts.), 1739h (1.2 kts.); Flood: 1059h (1.7 kts.) & 2324h (1.1 kts.); weather from Sandy Hook to Fire Island AM: E winds 10-15 kts., seas 3-4 ft., PM: NE winds 15-20 kts., seas 4-7 feet; AM/PM Rain.

“Captain” Chuck at the wheel of the TJ
“Captain” Chuck at the wheel of the TJ

Today is the day I drive the NOAA Ship THOMAS JEFFERSON.  I am also scheduled  to be on one of the launches. But once again the sky is gray and the sea choppy. Given what happened the previous bad weather days, I doubt if the launches will go out today.  At least the ship will head out on its housekeeping voyage – 12 miles offshore to dump the “wet” trash. For some unexplained reason, I rose early and went down to the stationary bike for 20 minutes.  Then I showered and ate. As expected, today’s launch schedule was canceled during breakfast. And tomorrow’s launch schedule doesn’t look good either.

At 0800h I could hear The CO and Ensign Guberski prepping the ship to get us underway.  Engines warming, anchor chain clanging, and hull shuddering. At 0900h I made my way to the bridge where CO Schattgen was the Deck Officer, Ensign Megan Guberski was at the “Conn”, Ensign Andrew Ostapenko was navigating, Anthony was Helmsman, Tom was changing the engine speed on command, and Electrical Engineer Eric was there just in case.

Our outgoing course to get to the shipping channel was a bit tricky, so the CO told me I would take the wheel once the ship began a straight (and safe) course.  I was very OK with that. In the mean time, I observed the dynamics of the bridge: the CO was obviously in charge, the Conn (or controlling officer) was shouting out driving orders, the helmsman would repeat the command to make sure he heard it correctly, the navigator was giving advice to the Conn and charting the course, and everyone kept their eyes open. It went something like this: CO: “We need to go a little right.” Conn: “Right five degrees rudder” Helmsman: “Right five degrees rudder, aye” And when the rudder had moved its five degrees the Helmsman would say: “Rudder five degrees right.” The Conn would reply in an acknowledging way. Then you’d hear the Conn say: “Increase to ten.” Helmsman: “Increase to ten, aye.” Followed by “Rudder at ten right.” And so on. It was another classic example of teamwork and coordination.

Ensign Megan Guberski assists in prepping the ship to get underway
Ensign Megan Guberski assists in prepping the ship to get underway

I was at the helm for about 90 minutes.  We went straight out Sandy Hook Channel, past the channel buoys, and out into the open ocean.  Anthony was watching over my shoulder the entire time, and he was a great teacher.  He let me make a few small mistakes and corrected me when my mistakes threatened to get larger.  All in all, I thought I did a pretty good job in a choppy sea with a good wind. I was relieved as helmsman at 1145h by Mark.  I quickly went down to my stateroom and took another Dramamine.  The ship was rockin’ and rollin’ and I needed a little preventative maintenance.  I am a firm believer in fixing things before they break. Lunch was great, and then I took a little nap. On our way back to New York Harbor we picked up Bob Schwartz who will be taking video footage for a new NOAA Corp recruitment video.  Never a dull moment!  He will also take a little footage of me as Teacher At Sea.

This evening I watched sunset (what little there was), called Roxann, and spent 20 minutes on the stationary bike.  I was in bed by 2130h reading a new book; “White Fang” by Jack London.

Chuck Gregory, August 16, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 16, 2007

The boisterous sea of liberty is never without a wave” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0607h Sunset = 1954h
0000h Ship at Sandy Hook, NJ anchorage
0700h Breakfast and first Dramamine
0745h Launch safety brief (Survey)
0800h Deploy Launches (3101 & 3102) – I will be on 3102.
1100h Time for second Dramamine
1210h Lunch
1500h Third Dramamine
1745h Retrieve launches & dinner

Tides for Sandy Hook Low @ 0450h (0.1 ft.) & 1704h (0.5 ft.); High @ 1102h (5.0 ft.) & 2306h (4.8 ft.). Currents in Sandy Hook Channel Ebb: 0158h (1.7 kts.), 1419h (1.5 kts.); Flood: 0757h (1.9 kts.) & 2013h (1.8 kts.). Weather from Sandy Hook to Fire Island AM: NE winds 5-10 kts., seas 2-4 ft.; PM: S winds 15-20 kts., seas 3-5 ft. Chance of PM showers and thunderstorms.

Chuck on board one of the hydrographic survey launches.  The launch is getting ready to be retrieved by the NOAA Ship THOMAS JEFFERSON, thus the protective gear.
Chuck on board one of the hydrographic survey launches. The launch is getting ready to be retrieved by the NOAA Ship THOMAS JEFFERSON, thus the protective gear.

Today is another 10 hour day on Launch 3102. We’ll be mostly surveying the area just off Sandy Hook beach. Sandy Hook beach is a nice stretch of sand that is half public beach and half private (read: nudist) beach.  I am sure the view of us running back and forth in front of the private beach was seen with as much curiosity as the view from #3102.

Ten hours is a long day on a 31’ launch. I was with Cox’n (Coxswain) Pooser and Survey Tech. Melody: two very competent people.  The seas were calm at first, but, as forecasted, wind and waves picked up as our day progressed.  Doing track lines on the open-ocean side of Sandy Hook only made the seas rougher, but when tracking took us into the lee of the harbor the seas calmed right down and all was good.

A little note on Dramamine.  With a history of seasickness, I made sure I had enough of this wonderful medication before I left Maine.  On days in the launch, my plan was to take one an hour before we left the ship, a second pill four hours later, and a third (if necessary) in the afternoon. Today this plan worked quite well.  At no time did I feel sea sick, even though the seas were 3-5 feet and the launch was bouncing up and down.  [Of course having an air conditioned cabin, staring at the horizon, and eating crackers is still recommended.]

Lunch was left over meatloaf sandwiches (I love left over meatloaf sandwiches!), yesterday’s beef and noodles (I love day old beef and noodles!), chips, juice, and cookies.  Needless to say, lunch was good!  It took us about 20 minutes to eat and get back to work. Our launch day ended around 1730h and we were back on the ship, as planned, by 1745h.  There was some concern with the cables used to deploy and retrieve the launches, so we were asked to use the wooded Jacob’s ladder to get back on the ship.  Actually kinda fun!

Dinner was tuna steak, beef steak, rice, and green beans.  A day working at sea in the fresh, salt air sure makes me hungry.  What’s new, Chuck!?!? I phoned Roxann, responded to a few e-mails, and decided to watch a movie and ‘veg’ for a little while before going to bed at 2130h.

Chuck Gregory, August 14, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 14, 2007

“For here we are not afraid to follow truth wherever it may lead.”  ~Thomas Jefferson

Happy Birthday, Dad!

Here’s the Plan of the Day (POD):
Sunrise = 0605h Sunset = 1956h 0000h
Ship at Sandy Hook, NJ anchorage 0700h
Took first Dramamine 0745h
Launch safety brief (Survey) 0800h
Deploy Launches (3101 & 3102) – I’ll be on the 3102 0830h
At first station of the day (somewhere between Coney Island, NY and Sandy Hook, NJ). Boot up computer systems and deploy multibeam. 0930h
Debug computer systems and we’re ready to track 1210h
Lunch and second Dramamine 1745h
Retrieve launches

Tides for Sandy Hook Low @ 0339h (-0.2 ft.) & 1543h (0.2 ft.); High @ 0938h (5.1 ft.) & 2145h (5.4 ft.). Currents in Sandy Hook Channel Ebb: 0041h (1.7 kts.), 1257h (1.6 kts.); Flood: 0640h (2.0 kts.) & 1851h (2.2 kts.). Weather from Sandy Hook to Fire Island AM: N winds 10-15 kts., seas 2-3 ft.; PM: S winds 5-10 kts., seas 2-3 ft.

One of the two 31 foot launches aboard the NOAA Ship THOMAS JEFFERSON.  These launches are used to do the hydrographic survey work - side scan sonar and multibeam echo sounder - in coastal areas.
One of the two 31 foot launches aboard the NOAA Ship THOMAS JEFFERSON. These launches are used to do the hydrographic survey work – side scan sonar and multibeam echo sounder – in coastal areas.

Today was a full day. After going to bed early (2030h) and rising early (0530h), I continued to bang away at my e-mails.  The internet connection on the ship is dial up and quite slow. Or is it my understanding of computers that’s slow?!?! Probably the latter. Either way, I’m finding it frustrating to communicate with the ship’s computers.  I’ll work on this tomorrow when I have the time. Breakfast was cereal and an English muffin.  Then I got ready for the 0745h safety briefing and launch deployment.  All went quite smoothly as I did my best to stay out of the way. Teamwork is huge on a vessel like the THOMAS JEFFERSON, and I was impressed by the teamwork effort to deploy and retrieve both launches. After the launch we were on our first station within 30 minutes.  We had to deal with the customary computer snafu, but it was quickly fixed and we were soon doing our tracklines.  Back and forth, east and west, forth and back, and west and east.  Bill was at the wheel, Taylor was at the computers, Megan G. assisted with both, and I just watched, asked questions, learned, and helped out wherever possible.

Chuck studying some of the side-scan sonar (SSS) data as it is relayed from the SSS 'towfish' to the launch's computer.
Chuck studying some of the side-scan sonar (SSS) data as it is relayed from the SSS ‘towfish’ to the launch’s computer.

To help matters, the day was beautiful: warm, light breeze, and subsiding seas. I couldn’t have asked for better weather. Three times during our day we stopped to do a CTD cast. They use a SBE 19Plus Seacat with a stainless cage and tethered to a line.  After two minutes of acclimating at the surface, Taylor would lower the CTD to the bottom and lift it back onto the boat. Then a computer cable was attached to the CTD, the CTD software booted up, and the data downloaded. Taylor and Megan taught me a lot about the launch computers and even let me attend to them for about an hour.  Setting up the computer programs for the SSS Fish and the MultiBeam Echo Sounder (MBES) was complicated to this novice, thus the initial delay.  There are screens to view the data as it is coming in from the side scan and another for the multibeam.  There are screens to view the files as they are filling with data, screens to view the launch’s tracks, and screens to measure heave, pitch, and roll.  And it was all fed into an on-board memory.  Wow!

The 3102 was strong, but cramped for four adults.  There were two comfortable seats on the boat – one for the coxswain and one for the survey tech – but we made the most out of every available space. Lunch was last night’s chicken made into sandwiches (not bad!), chips, chili, fruit, water, and cookies. There was other food to munch on and I found it hard not to eat with the sea air and full sun beaming down upon us.  So much for my “food plan.”  

Today I learned the importance of understanding computers, well planed navigation, and teamwork.  The tracklines were well laid out and followed.  Bill and Megan did a good job of maneuvering us around lower New York Harbor, as there were several recreational and commercial craft moving across the water.  At no time were we in any danger. The day went smoothly and there was even a time of boredom after lunch when the launch was on course, the data was streaming in, and the weather was hot and sunny. Life was good!

We returned to the THOMAS JEFFERSON at 1745h tired and starved! After a full day at sea that was one of the best meatloaf dinners I’ve ever had!!!  After dinner I returned to the ship’s computers, but continue to be frustrated as I try to get to my e-mails.  Tomorrow my sole mission is to meet with engineer Eric and tap his computer expertise.  For now I think I’ll call Roxann and go to bed early and do a little ‘Cannery Row’ reading.

Beth Carter, July 10, 2007

NOAA Teacher at Sea
Beth Carter
Onboard NOAA Ship Rainier
June 25 – July 7, 2007

Mission: Hydrographic Survey
Geographical Area: Gulf of Esquibel, Alaska
Date: July 10, 2007

Weather Data from the Bridge
Visibility:  2 nautical miles
Wind direction:  125 degrees
Wind speed:  11 knots
Sea wave height: 0-1 feet
Swell wave height: none
Seawater temperature:  11.7 degrees C
Dry bulb temp: 12.8 degrees C; Wet bulb temp:  12.2 degrees C
Sea level pressure:  1021.0 mb
Cloud cover: 8/8, fog and drizzle

The NOAA ship RAINIER, also known as S221, at anchor in Alaska.
The NOAA ship RAINIER, also known as S221, at anchor.

Science and Technology Log

Yesterday, I went out on launch #6, which utilizes a sonar system called the “C3D,” that produces interferometric sonar, which is a combination of side scan and multibeam sonar, to produce bathymetry.  Interferometric sonar is the latest technological advance in hydrographic mapping. This is the third technology I’ve been able to observe at work. The RAINIER has two launches that use single beam technology ( June 29 log), three launches that use multibeam technology (June 28 log), and Launch 6 has the side scan sonar.  There are advantages and disadvantages to each. Erin Campbell, my Tarheel buddy who is a physical scientist from the Pacific Hydrographic Branch of NOAA, took the time to explain some of the features and limitations of side scan sonar. The greatest advantage to side scan is that it produces sound waves that can cover a much wider swath of ocean floor, with very good resolution. This means that NOAA can be more fuel-efficient with its launches and cover more floor in less time.  Side scan can form accurate 3-D images of rocks, wrecks, and features of concern and interest on the ocean floor.  Hydrographers say that the side beam enables them to “paint the ocean floor.”

Erin Campbell, physical scientist, and Beth Carter, Teacher at Sea…two Tarheels at a rainy beach party near Bushtop Island, Alaska.
Erin Campbell, physical scientist, and Beth Carter, Teacher at Sea…two Tarheels at a rainy beach party near Bushtop Island, Alaska.

The greatest disadvantage to side scan sonar is that it does not actually provide depths associated with those features.  In other words, the hydrographers can look at the side scan images and locate a downed plane accurately on the ocean floor, but not know the exact depth of the plane. Another disadvantage to use of side scan in Alaska is that the extreme angles of slope of the islands and landforms cause the sound waves to create shadows on the resulting data. This means that some features in the shadows are missed.  Side beam sonar is used with great success on the eastern coast of the U.S., where the sea floor is sandy, is more uniform, and has less slope than in Alaska. Therefore, NOAA uses side scan to cover wide areas of territory, and then examines the images collected.  If the technicians see rocks or other potential hindrances to navigation, they send out the multibeam sonar launches to collect more detailed information on the depths.  If the concern is in a really shallow area, they might send out the single beam launches, which can get into shoal areas more easily with less threat of damage to the sonar equipment.

The C3D sonar transducer on the hull of the launch
The C3D sonar transducer on the hull of the launch

Side scan sonar is still evolving as a technology. NOAA provides valuable feedback and information to the makers of this technology, which enables the manufacturers to fine-tune and improve the technology. As I prepare to leave the RAINIER, I am impressed with the depth of knowledge of the Commanding Officer, the survey crew, and officers on the ship. They take very seriously their work, which is to take information gathered utilizing sonar, and to produce the most accurate bathymetric products possible.  The resulting charts and hydrographic maps are critical aids to shipping companies and fishermen, whose lives and safety and economic livelihood depend on the accuracy of the maps. I’ve also learned that NOAA hydrographers are called in to assist after hurricanes.  Erin, for example, was called upon to join a NRT (Navigational Response Team) after Hurricane Katrina.  There were many container ships and other ships waiting in the Gulf of Mexico for the hydrographers to survey the waters in order to locate hazards (debris in the water, wrecks, storm damage) in the water that were blocking the port and docks. NOAA has six such teams that assist when there are oil spills, wrecks, storms, etc.

Erin Campbell operating the C3D sonar aboard the launch.
Erin Campbell operating the C3D sonar aboard the launch.

Terms Used

Bathymetry:  the science of measuring ocean depths.  It is the underwater equivalent to altimetry, or measuring altitude of land forms.  Bathymetry is utilized to create DTM’s, or digital terrain models, or three-dimensional models of the ocean floor.

Hydrography: the study and science of ocean mapping.

Questions of the Day: 

  1. What kind of sonar would be best utilized in the search for a tugboat that sank unwitnessed, suspected to be in a deep harbor – vertical beam, multibeam, or sidescan sonar?
  2. To see an example of a chart created with interferometric sonar, take a look at this website.

Personal Log

I want to close out my last log with a few pictures, which definitely communicate the Alaska experience better than my words.  I also want to thank the entire crew of the RAINIER for its kind hospitality, for teaching me so much, and for reminding me what it feels like to not understand something.  I can empathize with my students so much better, as I have been in their shoes now for almost 3 weeks…struggling to understand technologies that were totally unfamiliar to me, feeling frustrated, feeling glimmers of hope when a few concepts dropped into place in my brain. Alaska is incredibly beautiful, incomprehensibly vast…I hope to return someday.

A humpback whale breaching… breathtaking sight!
A humpback whale breaching… breathtaking sight!

A bald eagle on the fly above Alaskan waters.
A bald eagle on the fly above Alaskan waters.

Alaska…known for its snow-topped majestic mountains.
Alaska…known for its snow-topped majestic mountains.  

Beth Carter, July 9, 2007

NOAA Teacher at Sea
Beth Carter
Onboard NOAA Ship Rainier
June 25 – July 7, 2007

Mission: Hydrographic Survey
Geographical Area: Gulf of Esquibel, Alaska
Date: July 9, 2007

Weather Data from Bridge 
Visibility:  6 miles
Wind direction:  135 degrees
Wind speed:  9 knots
Sea wave height: 0-1 feet
Swell wave height: none
Seawater Temperature:  12.2 degrees C
Dry Bulb: 11.1 degrees C  Wet Bulb:  11.1 degrees C
Sea level pressure:  1022.1 mb
Cloud cover: 8/8, fog & drizzle
Depth: 22.6 fathoms

This is a view of strands of kelp as seen from the launch.  Kelp appears as brown masses in thick beds.
This is a view of strands of kelp as seen from the launch. Kelp appears as brown masses in thick beds.

Science and Technology Log: 

Bull kelp…just amazing stuff.  Today I want to focus upon bull kelp and its role in the Alaskan coastal ecosystem, and its impact on hydrographers and fishermen. First of all…it is a fast-growing type of brown algae that can grow in strands from 40-65 feet long. It grows close into shore and anchors itself to rock surfaces by a root-like growth called a holdfast.  The scientific name is nereocystis leutkeana. Bull kelp has leaves called blades that grow outward from the main stem, but its most distinguishing feature is its long (2-3 feet) “bullwhip” stalks that have air bladders on their ends that can be 4” in diameter…rather like a stiff rope with a hollow onion on the end. Bull kelp can live for eight years, and reproduces via spores. Rocky substrates just off the coasts and islands of Alaska provide perfect places for the kelps’ holdfasts, and large kelp beds form in and around the islands of southeastern Alaska where the RAINIER is sailing.

In a closer view, bull kelp has some very stiff “bullwhip” like strands with air bladders on its ends.  The air bladders are hollow, and look like onions or bulbs.
Bull kelp has some very stiff “bullwhip” strands with hollow air bladders on the end that look like onions or bulbs.

Bull kelp provides food and protective cover for all types of fish, invertebrates, birds and marine mammals.  Kelp beds are literally teeming with life.  Kelp waves and moves with the currents and tides. Sea otters are the most visible of the animals who depend on kelp.  They feed off the sea urchins and other invertebrates that live at the bases of the kelp. Sea urchins feed upon the holdfasts that anchor the kelp, so the sea otters keep the urchins in check in a healthy kelp bed. The otters can be seen bobbing in the kelp, lying on their backs enjoying snacks of sea urchins, clams, etc. Commander Guy Noll of the RAINIER says that kelp is a natural navigational aid in Alaska and Pacific coastal waters. If you are in a boat of any kind and you see kelp strands on the surface of the water, stay clear. Hydrographers are not particularly fond of kelp.  On the one hand, the presence of kelp indicates a rocky bottom, which is one of the features that chartmakers want to indicate on their maps.  But.RAINIER’s launches try to stay out of kelp beds, as the kelp can become caught on the sonar transducers, which are suspended from the hulls of the boats. Kelp can also be a “heads up” that there may be a hidden rocky feature that is a danger to navigation.  The launches are very careful around kelp.

The sound waves that hydrographers use for charting can also be distorted by kelp, as it is very dense in its coverage. Also, the whips and floating blade “bladders are hollow, so the echoes do not reach the underlying rocky ground. NOAA sometimes has to send divers down to get a least depth in kelpy areas, and diving in kelp is difficult because of entanglement issues. Fishermen give kelp beds a wide berth to avoid fouling their nets and equipment in the heavy, leafy, stalky bull kelp. However, they will sometimes try to trawl near kelp beds, as the kelp provides excellent cover for salmon and other fish as they hide from orcas and other predators.

Small leaves, or blades of bull kelp washed into shore add decorations to the black pebble beaches.
Small leaves, or blades of bull kelp washed into shore add decorations to the black pebble beaches.

Personal Log 

I became fascinated by kelp last week as I kayaked through some island passages that were thick with kelp. As you look into the water, you see dozens, hundreds of small snails on the blades of the kelp…I think they were black turban snails.  I tasted some of the kelp and found it, predictably…salty!  It was also chewy and gummy and difficult to swallow. Perhaps there are wonderful ways to prepare kelp to eat, but out of the water as a snack – not for me. From the launches, it is fun to see the sea otters’ heads pop up in and near the kelp beds. They manage to get their heads and shoulders out of the water…they must be standing on the kelp to get such a clear look at us! Several of the moms we saw had babies hitching rides on their bellies, or perhaps nursing. They are unbelievably cute and quick, and I am too slow to get good photographs of them.

Correction! 

Early in the trip, I wrote about the GPS, Global Positioning Satellites, and stated that there are 11 in geosynchronous orbits above the earth.  I looked up GPS on the NOAA website and found that there are 24 satellites, so I stand corrected!

Questions of the Day

1. What do you think would be the environmental impact of an oil spill on or near the rocky coasts of Alaska?  

2. What effects would it have on kelp beds? If you want a real life example of what could and has happened, “Google” the story of the Exxon Valdez, which created a huge oil spill in Prince William Sound, Alaska in 1989.

* Note: Commander Guy Noll explained that the RAINIER was one of the responding vessels after the Valdez oil spill. RAINIER did the hydrographic work needed by the Navy ships that did the cleanup. At that time, the world’s focus turned upon Prince William Sound, and as the RAINIER did the surveying, they discovered many chart errors. They spent a great deal of time surveying the area, and provided more accurate charts for the cruise ships and tourists that became interested in the beautiful area in and around Prince William Sound.

This sea otter mom and baby are floating near a kelp bed. This photograph is courtesy of Ensign Tim Smith, an excellent officer and photographer on the RAINIER.
Sea otter mom and baby are floating near a kelp bed. Photograph courtesy of Ensign Tim Smith.

Beth Carter, July 4, 2007

NOAA Teacher at Sea
Beth Carter
Onboard NOAA Ship Rainier
June 25 – July 7, 2007

Mission: Hydrographic Survey
Geographical Area: Gulf of Esquibel, Alaska
Date: July 4, 2007

Weather from the Bridge
Visibility:  10 miles
Wind Direction:  080
Wind Speed:  3 knots
Sea wave height: 0-1 feet
Swell wave height: none
Seawater temp: 12.2 degrees C
Dry bulb temp: 12.2 degrees C; Wet bulb temp:  11.1 degrees C
Sea level pressure:  1012.2 mb
Cloud Cover: Partly cloudy, 5/8
Fathoms:  18.3

Survey technicians Shawn Gendron and Matt Boles are retrieving the “grab” from sampling the bottom.
Survey technicians Shawn Gendron and Matt Boles are retrieving the “grab” from sampling the bottom.

Science and Technology Log

On July 2, I went on launch #2 to observe the process of bottom sampling.  I would like to write in simpler language so that perhaps my first graders can read this and understand what we did. Our boat driver today Corey Muzzey, and the two surveyors were Matt Boles and Shawn Gendron. Their job today was to take samples of the sea floor. To do that, they use a special brass “claw” that is weighted down by a lead weight. They drop the claw down on a very long rope, and when it hits the bottom, a spring snaps the claw shut, and it grabs whatever is on the bottom. Then, they pull the rope and claw back up with a special winch and pulley, and look at what they got.

Sometimes, the claw picked up seaweed and mud.  Sometimes, the claw grabbed pebbles, coarse sand, fine sand, or gravel. A few times, it didn’t pick up anything, because the claw landed on solid rock. The boat driver had a special chart that he looked at to find the 19 places where they were supposed to drop the claw. Some of the spots were over 300 feet deep! They were taking these samples for two reasons: 1) The RAINIER is checking for new, safe places for anchoring for boats that use this area.  2) It is important to know what the sea bottom is like because different kinds of animals live on different types of bottom. Note that sound waves bounce off sand and rock and pebbles in very different ways. For example, sound waves that hit mud return to the boat softly. Sound waves that hit rock bounce back with more “force”, and the surveyors can tell the difference!

Matt is holding a mixture of mud and shells that came out of the grab.
Matt is holding a mixture of mud and shells that came out of the grab.

The RAINIER’s small boats, or launches, use the sound waves much as bats use them to locate obstacles when they fly. Dolphins also send out high-pitched sounds to “echolocate” their food or enemies or boats. The RAINIER uses sound waves to create maps of the sea floor. They do this by sending out sound waves, or sonar, from the bottoms of the launches.  Then they watch and record carefully how the sound waves bounce back.  They turn those recordings into maps of the ocean floor.  So, the bottom samples help them to label the maps and charts for fishermen and boaters.  They write labels on the charts like “RKY” for “rocky” areas, and “S” for sand, “SH” for shells, etc.

Personal Log 

Today we had some crazy weather. First it was sunny and calm, then windy, cloudy, rainy, and then calm again.  We saw several whales feeding near us. We also saw a small rocky island that had 30-40 Steller sea lions…the males were huge! They have just had their pups, but we couldn’t get close enough to them to see the pups.  It was a bit rough out today, and so when I tried to shut a door, I banged my shin on a door frame.  I bled so much my whole sock was bloody!  I was glad the boat had a great first aid kit.   

Questions

  1. When I saw the “claw” (look at the picture), I thought of two things…one is a piece of construction equipment, and one is a game that you can usually find at a video arcade or place like “Jungle Rapids” in Wilmington, N.C.  Can you imagine what I am thinking of?
  2. Why does it matter to a fisherman how deep the water is where he is fishing, or what kind of bottom there is below him?

A colony of Steller sea lions lies on jagged rocks in the Arriaga Passage.
A colony of Steller sea lions lies on jagged rocks in the Arriaga Passage.

Beth Carter, July 1, 2007

NOAA Teacher at Sea
Beth Carter
Onboard NOAA Ship Rainier
June 25 – July 7, 2007

Mission: Hydrographic Survey
Geographical Area: Gulf of Esquibel, Alaska
Date: July 1, 2007

Weather Data from Bridge
Visibility:  4 miles
Wind direction:  calm
Wind speed:  calm
Sea wave height: none
Swell water height: none…flat, flat, flat
Seawater temperature:  12.2 degrees C
Sea level pressure:  1016.6 mb
Dry bulb temperature: 12.2 degrees C; Wet bulb temperature:  11.7 degrees C
Cloud cover: Fog, cloudy, 8/8
Depth: 18 fathoms,
New anchorage: near Sonora Island, part of Maurelle Island group

This is a single beam transducer on the hull of launch #1. The small blue oval on the hull is a “fish finder” or depth sounder.
This is a single beam transducer. The small blue oval on the hull is a “fish finder” or depth sounder.

Science and Technology Log

On Friday, I went out on the RA-1 boat with Coxswain Leslie Abramson, Seaman Surveyor Corey Muzzey, and Survey Tech Marta Krynytzky. The #1 boat is a jet boat, which operates like a jet ski…it has a nozzle that shoots water out, and it only draws one foot of water. The RAINIER likes to use the #1 boat in very shallow water, as it is able to get into shallow places without running aground. #1 is also has a single beam sonar, which means it is sending out “pings” in a single direction directly underneath the boat. Thursday night, Marta drew a grid of lines for the RA-1 to survey.  The FOO (Field Operations Officer) asked her to develop a tight grid, with the lines being only 5 meters apart. If you have driven a boat, you know that this means that as you go up and down the parallel lines, your turning ratio is quite tight, and there will be wake and bubbles formed.  The problem with this is that bubbles throw off the single beam sonar, and it “scrambles” the feedback from the sea floor. 

This is the Echosounder machine that records the data from the single beam transducer.
This is the Echosounder machine that records the data from the single beam transducer.

We were operating in Warm Chuck Inlet, which has some freshwater creeks feeding it.  Marta taught me to do a little part of the recording on the Echosounder machine, which is called doing “paper control.”  She tracked our progress on her computer, and when we were over an area that needed to be mapped, she would say, “Start recording,” and I would hit a button that started the paper moving. The machine creates a line graph similar to that a seismograph might create during an earthquake, or in a medical scenario, it is similar to that of an EKG that graphs the activity of your heartbeat.  When we ran through our own bubbles, it created dense gray shaded areas that obscured the data. We had to slow down, and change our course several times to allow for which way the tide was flowing so that tidal movements would carry our bubbles away from the next line we wanted to drive.

The single beam technology is rather outdated, and NOAA prefers to use the multibeam, as it creates real-time, 3-D pictures of the ocean floor. However, the multibeam transducers are very expensive, and very vulnerable to damage caused by running aground, and so the RAINIER uses both technologies to get as much information as possible without damaging or destroying the multibeams. After we returned to the ship, the RAINIER weighed anchor and moved to a new anchorage near Sonora Island in the Maurelle Islands group.

This is a sample of the paper “picture” of the bottom recorded by Launch #1.
This is a sample of the paper “picture” of the bottom

Personal Log 

Friday was an interesting day, as most of the time, I was helping Marta with the recording. I goofed up a few times, as you have to stay so focused and attend to detail constantly. The survey techs have my true admiration…they go out day after day in cool to cold weather, rain or fog or drizzle, and collect intensely detailed data.  There are no days off on the ship, really.  Actually, everyone on the RAINIER is amazing with his/her ability to focus and stay on-task and get jobs done…from the cooks (who are great!) to the deck crew to the officers to the engineers. Last night (Saturday), Raul Quiros was fishing and caught a small shark…maybe 2 feet long. He cut him off the line, and had a bit of trouble picking him up to release him. The shark was gasping, so I tentatively grabbed his belly and threw him over the side.   Then, a few of us saw some whales playing off the starboard side of the ship.  I ran and got my videocam…finally!  I actually got some footage of a whale!  He was rolled over on his back, and slapping the water with both fins, over and over and over.  It was amazing.  Some people say whales breach and do these “slaps” to remove barnacles, but it looked to me as though he was just having fun!

Question of the Day 

  1. Go to the website and click on the “movie” on multibeam surveying.  What do you think would happen if the boat passed over a whale or a sunken ship?  What would NOAA do with information on sunken ships if they discovered some?
  2. For my first graders:  Look at a picture of a humpback whale and a jet plane.  Can you see any ways that they are alike? Also, try that website in #1…the movie is definitely something you will understand!

Beth Carter, June 29, 2007

NOAA Teacher at Sea
Beth Carter
Onboard NOAA Ship Rainier
June 25 – July 7, 2007

Mission: Hydrographic Survey
Geographical Area: Gulf of Esquibel, Alaska
Date: June 29, 2007

Weather Data from the Bridge
Visibility:  8 miles
Wind Direction:  Light
Wind Speed:  Aires
Sea Wave Height:  None
Swell Wave Height:  None
Seawater Temperature: 12.8 C
Dry bulb Temperature: 13.3 C, Wet Bulb Temperature:  12.2 C
Sea level Pressure:  1009.4 mb
Cloud Cover: Cloudy, light rain, 8/8
Depth: 31 fathoms

ENS Meghan McGovern and Elishau Dotson are recovering the CTD.  After recovery, Elishau connects the CTD to her computer and downloads the readings on temperature, conductivity (a function of salinity), and depth. NOAA uses Wilson’s Equation of Sound Velocity to convert the CTD information to something usable in the software
ENS Meghan McGovern and Elishau Dotson are recovering the CTD. After recovery, Elishau downloads the readings on temperature, conductivity (a function of salinity), and depth. NOAA uses Wilson’s Equation of Sound Velocity to convert the CTD information to something usable in the software

Personal Log (Just have to tell you about the whale first!) 

On Thursday, Aug. 28, I went out on the #4 launch from the RAINIER.  When the hydrographic team goes out, they go out for the whole day…8:15 until 4:30 p.m.  It was sunny and clear, our first sunny day! I went out with ENS Meghan McGovern, Elishau Dotson, Assistant Survey Tech, and our pilot, Jodie Edmond, Able Bodied Seaman – an all female boat crew! First, I have to focus on the wildlife that we saw – it was totally incredible!  We saw several sea otters floating on their backs, whiskery and cute!  We saw a doe leading her two fawns on the shore of an island. Eagles soared overhead all throughout the day, and one dove to catch a fish (missed), but later, he grabbed one in his talons.  We got a quick glimpse of a mother harbor porpoise and her calf feeding near the shore.

The highlight of the day, though, was seeing a humpback whale breaching near the boat – to say that I was totally enthralled is not adequate.  I don’t think the dictionary has any words that truly fit! First, I saw a silver/gray shape under the water near the stern, and thought it was a stingray, a common sight on the East Coast. Then, I heard a gasp/blow as the whale surfaced to breathe. The sound was like the “grunt” that Monica Seles makes as she serves up a tennis ball, only lower and longer.   We saw the whale surface a few more times, and then his great leap.  I was trying to videotape, and of course, I missed it.  But it will stay in my memory forever, if not on a memory card.

Science and Technology Log 

This is the multi-beam transducer mounted on the hull of the #4 launch of the RAINIER.  It can produce a broad band of sounds to “ping” off the bottom of the sea, and provide the data to create a 3-D picture of the ocean floor under and near the boat.
This is the multi-beam transducer on the hull of the #4 launch. It can produce a broad band of sounds to “ping” off the seafloor and provide the data to create a 3-D picture.

Now, to focus upon the hydrographic mission!  Before beginning the surveying, the crew lowers a CTD to the sea floor to collect a reading on the Conductivity, Temperature, and Depth of the water. The way that the sonar “pings” travel through water is affected by all three factors.  The higher the percentage of salinity, the greater is the ability of the water to conduct sound waves. Higher temperatures also increase sound conductivity in water, and deeper water also conducts sound waves better than shallow water. For example, if the launch is surveying the sea floor in an area near where a freshwater creek is flowing in, the conductivity of the water would decrease; therefore, the survey tech crew that does the night processing of the data would be able to correct the resulting data taking into account the lower conductivity. Number 4 launch has a multibeam sonar transducer mounted on the hull. The transducer produces a broad band of sound “pings” that bounce off the sea floor and return to the launch to be recorded by a sophisticated computer with four screens. The operator of the sonar equipment can see a digital display of the depth, and a real-time three-dimensional picture of the sea floor beneath and around the launch. The boat driver is constantly aware of the depth, so as not to run the launch aground on rock formations. 

Elishau is monitoring the real-time data streaming in from the transducer as Jodie drives the “lines” to create pictures of the ocean floor.
Elishau is monitoring the real-time data streaming in from the transducer as Jodie drives the “lines” to create pictures of the ocean floor.

The driver steers the boat along a pre-set grid of lines that are programmed into the ship’s computer the night before.  Jodie said it is rather like “mowing the grass,” on the surface of the water. You “mow” the water in neat rows until you’ve mowed over every line on the chart established by the hydrographers. After all the lines were run, we returned to the ship, and then, other hydrographic scientists began to run a correction program on the data we gathered. In this way, they clean out errors that are caused by extraneous noises, kelp, echoes, and other obstacles. In the afternoon, we were “snagged” by a gigantic clump of kelp that got wrapped around the transducer. There was so much kelp, the launch could not maneuver effectively.  ENS McGovern stabbed the kelp with a boat hook, and Jodie reversed the engines until we shook the kelp loose.  Learn more about seafloor mapping here.

Questions of the Day

Later that night, Martha Hertzog, Physical Scientist, looks at the data from the #4 launch, and applies a correction program to the data to eliminate errors.  The night processors often work until 11:00 p.m. in order to process the day’s data collections from the 3-4 launches that were out that day.
Later that night, Martha Hertzog, Physical Scientist, looks at the data and applies a correction to eliminate errors. The night processors often work until 11:00 p.m. in order to process the day’s data collections.

These questions are particularly for Ms. Southgate’s oceanography students at Hoggard High School in Wilmington, N.C. (and any other curious people!)

  1. I’m learning that salinity affects conductivity of sound waves. Why does a high concentration of salt in water make sound travel faster? Does electricity travel faster or slower through fresh and salt water? Why?
  2. As we drove different lines yesterday, we took three different CTD readings?  Why do you think the hydrographers felt we should collect data three times?
  3. The islands here are very craggy and steep, and made up largely of granite and limestone rock.  Much of the sea floor is also rock.  Why is the coast of Alaska so vastly different to America’s Eastern coast?
  4. The islands here drop very sharply off into deep water.  For example, just 3-4 meters from shore, the depth can drop to 20 meters.  Why is this common here? How much is 20 meters measured in feet?  In fathoms?

Beth Carter, June 27, 2007

NOAA Teacher at Sea
Beth Carter
Onboard NOAA Ship Rainier
June 25 – July 7, 2007

Mission: Hydrographic Survey
Geographical Area: Gulf of Esquibel, Alaska
Date: June 27, 2007

Weather Data from Bridge 
Visibility:  6 miles
Wind direction:  034 degrees
Wind speed:  5 mph
Sea Wave Height:  none
Swell Wave Height:  none
Seawater temperature:  12.2 degrees C
Sea level pressure:  1017.2 mb
Dry Bulb Temperature: 12.2
Wet Bulb Temp:  11.7
Cloud cover, type: 8/8, stratus and cumulus
Depths: 31 fathoms

Researchers are kneeling in a sitka spruce forest as they check the computer that is collects and records tidal data on a small island in Nossuk Bay, Alaska.
Researchers are kneeling in a Sitka spruce forest as they check the computer that is collects and records tidal data on a small island in Nossuk Bay, Alaska.

Science and Technology Log 

On Tuesday afternoon, June 26, I went out with a crew of researchers to check the equipment that collects tidal data for Esquibel Bay. There are six main pieces of equipment used to collect this data: 1) a cylinder of nitrogen, 2) a hose attached to the nitrogen cylinder that emits small bubbles of nitrogen into the water, 3) a computer that collects and records data, 4) a solar collector to power the computer’s battery, 5) a  transmitter that sends the data to a satellite, and 6) the tide staff (an actual wooden staff in the water), and GPS benchmarks. The staff is set and readings taken so that the vertical measurements of the staff are linked to the benchmarks. The gage, which is officially a “tertiary” gage, is set up concurrent with a “primary” gage that has been acquiring data for over one epoch (19 years or more). Sitka, Alaska, is the site of NOAA’s primary gage, which has similar tidal characteristics to the area that we are working now. Thus, only an amplitude and phase differential must be applied to the Sitka gage to get a water level for this area.  Without the staff readings, there would be no way to tie the “bubbler” level to the ground surrounding the gage site, and thus no way to recover the actual local vertical datum (water level) relative to the gage in Sitka.

The nitrogen cylinder slowly leaks bubbles through the hose, which are released into the water. When the tide is high, there is more water and pressure above the hose which makes it more difficult for the bubbles to escape the hose. When the tide is low, there is less water above the hose, and therefore less pressure, which makes it easier for the bubbles to escape. Readings are recorded digitally every six minutes, averaged every six seconds. Staff-to-gage measurements are also recorded every six minutes whenever the site is visited, and 3 hours’ worth are recorded at  installation and removal, so that the vertical measurements of the station  are effectively “tied” to the measurements at the primary water level station at Sitka. (Good Working Question: Download data from both  stations and compare the two – are there differences? Next, compare Sitka and Ketchikan and Kodiak – are there bigger differences?).

ENS Meghan McGovern, Junior Officer of RAINIER, and Shawn Gendron, survey technician, position the tripod which will hold the transmitter to collect the GPS information needed by the RAINIER.
ENS Meghan McGovern, Junior Officer of RAINIER, and Shawn Gendron, survey technician, position the tripod which will hold the transmitter to collect the GPS information needed by the RAINIER.

For some reason, the transmitter is not emitting signals that can be read by the satellite, and therefore by the scientists at NOAA headquarters. This is why the skiff took several technicians over to check the equipment to see if it is still functioning and recording properly. They downloaded the water level data to send to headquarters via email while also setting up GPS equipment so that an ellipsoidal (GPSrelative) height can also be linked to the orthometric (gravitational) elevation determined through water level measurement, and will return to the ship and process the GPS data. The tides are important to hydrographic surveying, because obviously, the water is deeper at high tide than at low tide. The goal is to collect accurate information on tides, and then combine that with the data collected by the launches, in order to get accurate depth information.  The tide-corrected depths on the chart they want to show are relative to the mean low low water, which is the average of the lowest of daily tides taken over the last 19 years. On the Atlantic Ocean, tides are semi-diurnal. This means that there are two high tides and two low tides per 24 hours. But, on the Northeastern Pacific, tides are mixed.  See here for more details.

Today, (Wed. June 27), the crew returned to the small island to check on the HorCon station, which stands for Horizontal Controls.  The RAINIER established this water level station in April of 2007, and set into place 5 benchmarks which are tied into the international framework of benchmarks that make it possible to utilize GPS, or Global Positioning Satellites to determine one’s exact location. RAINIER’s researchers placed a receiver antenna on top of a tripod, which was positioned exactly above the center of the metal disc benchmark cemented into a rock.  The antenna receives from some of the 11 Global Positioning System satellites that orbit the earth and constantly change their relative positions. For a final position to be accurate, at least four satellites must be recorded in two different sessions of more than six hours duration separated by at least one day. They connected the cables, turned on the GPS receiver and then waited for the satellite constellation (also known as the ephemeris) to be downloaded so that all available satellites could be tracked. The first satellite was tracked around 1 hour later, and then we left the island, as the equipment was to be left in place for at least 6 hours.  When we returned 6 hours later, 8 satellites had made contact, and the recordings were noted and will be taken for evaluation onboard the ship.

Anna-Liza Villard-Howe, the Navigation Officer of the RAINIER, explained to me that the GPS measurements of benchmarks are being conducted in order to get as precise a determination of sea level as is possible, so that all the hydrographic information collected by the RAINIER can be referenced to the ellipsoid. Sea level has changed in Alaska in the recent past due to glacial rebound, which means that as the glaciers recede, the land is actually rising. Also, many large earthquakes have occurred in Alaska in the last century, which also changed the shape of some landforms and affected sea level readings. Online Sea Floor Mapping Activity Targets Kids (CED, OCS). In celebration of World Hydrography Day, NOAA’s Ocean Service  Communications and Education Division, in cooperation with NOAA’s Office  of Coast Survey, launched a new educational offering — Sea Floor Mapping —  on the National Ocean Service Education Web site. It is designed for students at the 3rd – 5th grade level, and the media-rich activity teaches young people about mapping the seafloor and why it is important.  This activity also conveys information about NOAA’s missions of discovery and service. The Sea Floor Mapping Activity is available online here.

Questions of the Day 

  1. Why are tides in the Pacific and Atlantic different?  What are the factors that affect tidal changes?
  2. Look up a tidal chart for the inlet or beach nearest to your home.  How far apart are the high and low tides?
  3. Who (which country or countries/which agencies) is responsible for the maintenance of the 11 Global Positioning Satellites that are now orbiting the earth?  If a satellite fails, would it be replaced?  By what agency?

Personal Log 

While on the tiny island, one of the officers carried a shotgun…in case we met a bear!  I’m pleased to say we didn’t encounter a bear, but did discover animal scat, and two eagle feathers. One was a tail feather – beautifully white – and we didn’t collect the feathers because it is illegal to collect eagle feathers.  We also saw 7-8 harbor seals on a rock outcropping. We tried to sneak up on them to get good photographs, but they bobbed and rocked and slipped into the water before we got very close. Also, on the island I was surprised to find many clumps of saltwort, which Eastern coast students (and my first grade class!) should recognize from the mud flat near the salt marsh.  It tastes….salty! No surprise there.

On Wednesday, there were so many white gnats that we sent the skiff back to the ship for bug repellant. They were like No-See-Ems, only we could See Em and Feel Em!  We built a small, smoky fire, which made things somewhat better.   The highlight of the day for me was kayaking after dinner with the XO (Executive Officer) of the ship, and Ian Colvert, an assistant survey technician.  We saw a rainbow and paddled through a misty rain, then sunshine…a beautiful evening.

Beth Carter, June 26, 2007

NOAA Teacher at Sea
Beth Carter
Onboard NOAA Ship Rainier
June 25 – July 7, 2007

Mission: Hydrographic Survey
Geographical Area: Gulf of Esquibel, Alaska
Date: June 26, 2007

Weather Data from the Bridge
Visibility:  10 nautical miles
Wind Direction:  132 degrees, from the Southeast
Wind Speed:  6 knots
Sea Wave Height:  0-1 feet
Swell Wave Height – no swell
Seawater Temperature: 11.7 degrees Celsius
Sea Level Pressure: 1018.8 millibars
Cloud Cover & Type: 7/8 coverage, mixed cumulus and stratus
Air temperature:  Dry Bulb: 15 degrees C,  Wet Bulb:  10 degrees C
At anchor, water depth: 32 fathoms

NOAA Teacher at Sea, Beth Carter, prepares to set sail on NOAA Ship RIANIER.
NOAA Teacher at Sea, Beth Carter, prepares to set sail on NOAA Ship RAINIER.

Science and Technology Log

At 8:00 this morning, our CO (Commanding Officer) held a safety and mission briefing on the fantail of the ship.  The fantail is the back open area of the ship. The RAINIER’s main mission is to conduct hydrographic mapping surveys from its six small launches that are carried aboard the RAINIER. Each launch has equipment that transmits sound waves that are directed toward the floor of the bay, or area to be mapped.  The sound waves bounce back to a special receiver on the launch, and the depth data is recorded on the launch.  These depths are plotted as dots, and so later in the evening, the technicians basically “connect the dots” to form a picture of the ocean floor in the area that was surveyed that day. When the RAINIER finishes this 3-week leg of its mission, all of this data will be given to the NOAA Office of Coast Survey, Pacific Hydrographic Branch, in Seattle, WA.  They take the data and create digital terrain models, or DTM’s, which are color-coded maps of the sea floor.  The maps look very cool…the deepest waters are shown to be dark blue, lighter blues show shallower water, and hazards and rocks and sand bars are shown in various shades of green, yellow, red and orange. The resulting DTM’s represent the most probable bathymetry of the area. The maps are so detailed you can see the outlines of sunken ships and large rocks on the bottoms of the bays. The information from our leg will be compiled for chart 17404, and for smaller scale charts. If you are interested in seeing maps that show the areas we are charting, try this website.

Crew of the NOAA Ship RAINIER prepare to deploy a launch.
Crew of the NOAA Ship RAINIER prepare to deploy a launch.

Creating these maps is important because current maps of the waterways in Alaska are outdated – some of them very outdated.  Yesterday, the CO showed me some sections of map that were created as long ago as 1834-1899, with more of the maps being created between 1900-1939, or 1940-1969. It is interesting that NOAA (National Oceanic and Atmospheric Agency) is using sonar in much the same way that whales and dolphins and bats use sound waves for echolocation so that they can determine locations of the sea floor, obstacles, or other animals.

I asked about the current debate over the Navy’s use of sonar, and the belief that its sonar is interfering with the whales/dolphins’ abilities to use their sonar. Vincent Welton, our Electronics Technician, explained to me that NOAA uses a higher frequency, less amplified type of sound waves that will not confuse the marine mammals.  The Navy sometimes uses a very low frequency sonar to detect submarines. Today, two of the launches are out doing the hydrographic mapping.  Later in the day, two divers will go out to check the bottom of the hull, and I will go out on a small skiff to watch some of the technicians gather some data on tides. It appears that some of the equipment to measure tides is working erratically, so we will go check that out. 

Personal Log

I enjoyed watching the crew deploying the four skiffs and launches that are going out for today’s work. Everyone has to wear hard hats and float coats to stay safe when out on the fantail. The best part of the morning was when Steve Foye, the Boatswain Group Leader, pointed out to me that a humpback whale was swimming near the ship.  I saw the whale spout several times, and twice, he seemed he rolled on his side, as I saw a fin pop up. Then, his fluke appeared above the water, and he slapped the water and disappeared.  Steve told me he was “diving down to check out the groceries…he knows which aisle to shop on.” He also said he’d be down a long time, as he’d taken a big breath and was going to going to be eating until he needs to come back up to breathe.  If you are a CFCI student (or any student!) and have a question for me, please E-mail this address: teacheratsea.rainier@noaa.gov. I’d love to hear from you, and promise to try to respond in my logs.

Terms Used Today

  1. Fathom:  1 fathom equals 6 feet
  2. Sea level pressure:  Barometric, or air pressure.  When air pressure is high as it is today (over 1000 millibars or mb) it indicates that the weather is sunny or overcast, with little threat of rain.  When the pressure drops, it often means a storm or rain is on the way.  The eye of a hurricane can have a barometric pressure reading as low as 875 mb.
  3. Cloud cover: expressed in terms of portions of the sky covered out of 8 parts (whole coverage)
  4. Wind direction:  indicates which direction the wind is blowing FROM.  0 degrees is North, 90 degrees is East, 180 degrees is South, and 270 degrees is West.

Questions of the Day

  1. Why is it important to have updated maps of waterways in Alaska, or anywhere? Who needs to use these maps?  Why?
  2. Before this sonar technology was developed, how were depth maps created?
  3. We are anchored today.  How deep is the water under the ship? (1 fathom equals 6 feet, and the water is 32 fathoms deep now)

Beth Carter, June 24, 2007

NOAA Teacher at Sea
Beth Carter
Onboard NOAA Ship Rainier
June 25 – July 7, 2007

Mission: Hydrographic Survey
Geographical Area: Gulf of Esquibel, Alaska
Date: June 24, 2007

NOAA Teacher at Sea, Beth Carter, visits a native site in Ketchikan, AK.
NOAA Teacher at Sea, Beth Carter, visits a native site in Ketchikan, AK.

Personal Log 

The mountains in Alaska surely do not look like those in North Carolina! Yesterday, I flew over some craggy, gray peaks that were streaked with snow. They looked almost like mounds of gray ice cream with melted vanilla drizzling down the sides. The mountains in Alaska also look as though they were once volcanoes, as the tops are craters with steep sides. Now the crater’s edges are soft with trees, but I can easily imagine huge stones blowing from the peak and magma oozing out the tops of these mountains.  I took three different airplanes and one little ferry to reach Ketchikan, Alaska, which took me over 8 hours in the air and 13 hours total. Today I am going to find my ship, the RAINIER, and find out what time to report.  We depart from Ketchikan tomorrow morning, June 25.

Questions of the Day 

  1. I crossed four time zones to reach Ketchikan.  This means that it is four hours later in North Carolina than here. It is 5:00 a.m. as I write this.  What time is it in North Carolina?
  2. I woke up this morning at 4:00 a.m., and it was light outside.  Why do you think that the sun rises earlier in Alaska, and it sets later, than in North Carolina?   HINT: Look at a map that shows latitude and longitude lines on the earth, and notice the LATITUDE of  Wilmington, North Carolina and Ketchikan, Alaska.  

A small boat called a launch with a view of the mountains in Ketchikan, from the RAINIER
A small boat called a launch with a view of the mountains in Ketchikan, from the RAINIER

June 25, 2007 

Personal Log 

Last night I unpacked all of my gear into my tiny room that I’m sharing with one of the female officers.  My closet is just a little bigger than a high school locker.  My berth is the top berth, and making the bed was really tough…I had to perch on a ladder and try not to bang my head on the ceiling. When I lie down, I have about 18 inches between my nose and the ceiling. Today the RANIER left Ketchikan to begin our hydrographic mapping mission.  It is cloudy today, but the mountains are beautiful with their snow frosting. We have had a fire drill already, and an abandon ship drill. It is really cool that all of the officers and crew know exactly what to do and where to go in case of any kind of trouble. All of the “gumby” suits, or survival suits, that we wear if abandoning ship are bright orange. What would Paris Hilton say about that?

Science Log 

Today I met Erin, who is also from N.C.  She is one of the survey technicians who drive the launches and operate the sound-wave emitting equipment to create color-coded surveys of the ocean bottom.  They are color-coded according to the depth of the water; for example, deep blue means deep water, lighter blue is shallower water, and red orange and yellow represent rocks and shallows and sandbars and dangers. Erin tells me that she is going to work with new software that actually creates 3-dimensional images, and I hope to see how that works tomorrow when we arrive where the surveys will begin.

Question of the Day 

1. Who uses maps of the ocean floor?  Why is it important that they be accurate?  How did the first mapmakers make maps of the ocean floor and depths?

David Babich, July 7, 2006

NOAA Teacher at Sea
David Babich
Onboard NOAA Ship Fairweather
July 5 -14, 2006

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, Alaska
Date: July 7, 2006

Physical Scientist Martha Herzog monitors data being received from the survey launch’s sonar.
Physical Scientist Martha Herzog monitors data being received from the survey launch’s sonar.

Weather Report 
WX some rain, patchy fog
Wind NW 15kt
Sea 2-4 ft
Temp low 60’s

Science and Technology Log

Today was yet another exciting experience out at sea.  I was aboard one of two survey launches sent out to survey designated areas around Andronica Island in the Shumagin Islands.  These 30-foot boats weigh a substantial 6-7 tons, making it a comfortable ride in and out of the waters around the island. Each boat is equipped with the latest sonar equipment to accurately map the ocean bottom. Surprisingly, most of the area was last surveyed in 1953, and some areas weren’t surveyed since the 1920’s! Once we arrived at our starting point, we sent down a CTD (conductivity, temperature, depth) device. This device tells the survey technicians the conditions of the water, to accurately interpret the sonar.

A raft of Steller Sea Lions sunning themselves off the Shumagin Islands.
A raft of Steller Sea Lions sunning themselves off the Shumagin Islands.

We ended up taking several CTD readings throughout the day, to make sure the conditions in the water haven’t changed.  Once the CTD readings were done, the survey launch proceeded to conduct the survey of the designated areas. Before we left the FAIRWEATHER, we were given small areas around the island to survey. The survey launch goes back and forth over these areas, generally parallel to shore. It is much like mowing your lawn. As the launch goes over the area, it sends out sonar beams down to the ocean floor.  By recording how quickly the beams bounce off the ocean floor and return to the launch, the computers can determine how deep it is.  It will clearly identify any places where shallow rocks or other obstacles may be a hazard.  This survey will make it safe for other boats to navigate around the area without any surprises.

Teacher at Sea Dave Babich sits on Survey launch with Steller Sea Lions in background.
Teacher at Sea Dave Babich sits on Survey launch with Steller Sea Lions in background.

Personal Log 

Throughout the day, I marveled at the beauty of the lush, but rocky islands surrounding us.  These islands are home to millions of birds, the most entertaining being the puffin.  Often the survey launch will startle some puffins floating on the water, sending them in all directions. Unfortunately with their fat, little bodies, it can be quite a chore for them to get airborne. When the water is choppy, many times they fly right into waves, unable to rise above them!  However, once in the air they are quite maneuverable. The highlight of the day, however, was passing a low, flat, rocky outcrop with a raft of Steller Sea Lions sunning themselves in the late afternoon. The size of some of the male sea lions was extraordinary. They didn’t seem to mind us driving past at first, but something evidently spooked them.  About half the sea lions jumped into the ocean with amazing speed. It is hard to imagine animals that large moving so quickly!

After a day on the water, I had new appreciation for the hard work and dedication of the scientists and survey technicians that collect and analyze all the data. It is challenging work and a tribute to the dedication of the NOAA personnel aboard the FAIRWEATHER.

Linda Armwood, May 2, 2006

NOAA Teacher at Sea
Linda Armwood
Onboard NOAA Ship Fairweather
April 25 – May 5, 2006

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, Alaska
Date: May 2, 2006

Weather Data from Bridge 
Visibility:  10 nautical miles (nm)
Wind direction:  130°
Wind speed: 7kt
Sea wave height: 0 ft.
Sea water temp: 10.2
Sea level pressure:  1030.0 mb
Present weather: Mostly cloudy
Temperature:  °C~ 9.0 dry/7.5wet

Science and Technology Log 

The ship continued to perform the Gulf of Esquibel data collection.  Today, however, the ship used the Moving Vessel Profiler (MVP), also known as the “Fish,” in place of the Seacat to provide multiple vertical profiles of the water’s data to include sound velocity and the CTD cast. Two advantages of using the MVP are 1) the ship does not have to come to a complete stop and 2) it is automatically deployed from the ship or initiated by the MVP operator without the need for deck personnel.  Once the MVP has created the profile, the survey tech is able to immediately view the data.

I witnessed the operation of the anchor as we prepared to leave San Fernando Island.  As able seamen positioned themselves on the ship’s bow to raise the anchor, it was clear that it is a major undertaking dependent upon teamwork.  There are two anchors, one on the port side (north left) of the ship and the other on the starboard side (north right) of the ship, that are alternately used.  Each anchor has eight shots of chain.  One shot of chain is equivalent to 90 feet. Of the eight shots of chain, there are selected color-coded chains in red, white, blue and yellow. These color-coded combinations allow the able seamen to determine how many shots to drop in the water and how many shots have been dropped in the water. As a rule, the number of shots dropped should be three to five times the depth of the water which is measured in fathoms.  One fathom of water equals six feet.

Personal Log 

Thanks Able Seaman Grayeagle for letting me read your book, Whittier–The Strangest Town in Alaska, truly a memorable nugget.

Question of the Day 

Geospatial Semester and Environmental Science Students 

Solve the following problem:  The FAIRWEATHER Ship dropped anchor in 35 fathoms of water. 1) What is the depth of the water in feet, 2) At least how many shots of chain should be dropped, and 3) Approximately how much chain is left out of the water?

A Profile of Ensign Matthew Glazewski 

Ensign Glazewski is the newest Junior Officer aboard the NOAA Ship FAIRWEATHER.  As a Junior Officer, he has several collateral duties in ship management — Tides, Training Assistant, Weather, Discharge Certificates and Mess Treasurer.  He graduated from Penn State University, PA with a Bachelor of Science degree in Meteorology in 2005. His concentration of courses included Calculus, Physics and Weather Systems. His initial interest in meteorology began at an early age when he became curious about why trees fell on his parents’ home.  Matthew, nicknamed Matt, has an interest in tropical meteorology and has completed a case study of a 1975 tropical cyclone that traveled north while maintaining its characteristics in northern latitudes.  A short-term career goal for Matt is to pursue graduate studies in order to obtain a Master’s degree in Ocean Atmosphere Interaction.  His long-term career goal is to become an expert in the field of marine forecasting.

Matt wanted to become an Officer in the NOAA Officer Corps instead of working as a civilian. He believes that his experience on the NOAA ship FAIRWEATHER gives him an opportunity to see and apply what he has studied at Penn State and provides him with a better understanding of factors that influence small-scale climates.

Mrs. Armwood

Linda Armwood, May 1, 2006

NOAA Teacher at Sea
Linda Armwood
Onboard NOAA Ship Fairweather
April 25 – May 5, 2006

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, Alaska
Date: May 1, 2006

Weather Data from Bridge 
Visibility:  10 nautical miles (nm)
Wind direction:  182°
Wind speed: 14 kt
Sea wave height: 1 ft.
Swell wave direction: 235
Swell wave height: 1
Sea water temp: 7.5
Sea level pressure:  1029.6 mb
Present weather: Partly cloudy
Temperature:  °C~ 7.5 dry/6.0 wet

Science and Technology Log 

The ship performed a procedure for collecting data from a selected area of the Gulf of Esquibel analogously compared to ‘mowing the lawn.’  In this process the ship actually sails up and down the selected area within the Gulf collecting various data.  As the ship sails, parallel lines are produced on the hydrography chart.  The hydrography chart is viewed via the DELPHMAP system during this entire process in the pilot’s house and the plotroom.  In the plotroom, rotating survey technicians monitor the area being covered with four computer screens and communicate with the pilot’s room when data collection is paused and when it is resumed.

The ship performs this process rather than the launches because the ship works in deeper water than the launches. Sound data was collected today with an instrument called the Seacat. In order to collect sound data with the Seacat the ship has to come to a complete stop. The Seacat is manually attached to cable that is housed with a structure called the ‘J’ frame.  The cable travels through two rotating blocks and the Seacast is manually deployed into the water until it reaches the bottom of the water.  It is immediately pulled back onto the ship, detached from the cable, and attached to a computer for prompt reading of the data known as a Conductivity, Temperature, and Density (CTD) caste.

Personal Log 

Thanks to FAIRWEATHER shipmates for answering all of my questions either verbally, with hand-drawn illustrations, or through demonstrations.  The tide staff stop observations that Ensign Gonsalves and I made were consistent with the automatic tide gauge readings. I’ve got the results to prove it!

Question of the Day 

Geospatial Semester and Environmental Science Students 

Give the length and width of the Gulf of Esquibel.  Also, include the name and geographic location of its land boundaries.

Mrs. Armwood

Linda Armwood, April 30, 2006

NOAA Teacher at Sea
Linda Armwood
Onboard NOAA Ship Fairweather
April 25 – May 5, 2006

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, Alaska
Date: April 30, 2006

Weather Data from Bridge 
Visibility: 10 nautical miles (nm)
Wind direction: 160 °
Wind speed:  5 kt
Sea wave height:<1 ft.
Swell wave height: 0 ft.
Seawater temp: 7.3
Sea level pressure: 1017.4 mb
Present weather: Mostly cloudy
Temperature:  °C~ 7.0dry/5.0wet

Arriaga Passage, AK
Arriaga Passage, AK

Science and Technology Log 

During the morning I spent a considerable amount of time in the pilot house on the bridge. It was imperative that I review the instrumentation and their functions as they relate to the ship’s navigation. Among  the navigation instruments are the Global Positioning System Navigator which shows the latitude, longitude, speed over ground and course over ground; the Gyro Digital Repeater which copies from the master compass which provides the true heading; the fathometer which is the echosounder from the bottom of the ocean that listens for how long it takes for sound to come back to the top; the magnetic compass which is the standard compass backup for the gyro; the two-bands Auto Radar Plotting Aid (ARPA) which can be used to get location and pertinent information of nearby vessels; the rudder angle indicator; the steering stand which has two steering positions of either hand or automatic; and the Machinery Alarm and Control System (MACS) which has multiple functions to include main engine monitoring, water intake, and electrical steering to name a few.

The afternoon was devoted to collecting several bottom samples in the Arriaga Passage which is a channel situated north of Noyes Island.  The samples were collected with a specially-designed backpack which contains a GPS and Differential GPS (DGPS) antenna and a laptop with appropriate software.  An open metal clamshell scoop which is attached to at least 300 feet of line is used by the surveyor to place in the water.  The line is loosened so that the scoop is able to reach the floor of the water without hindrance.  Once the line has stopped, the surveyor (or two) reels the line back up to the boat where the mouth of the scoop is opened to identify its contents.  The contents are then recorded on the laptop. This data is stored for later analysis of the ocean floor.

Personal Log 

The bottom samples assignment was a good workout! It was hard to return the starfish to its home, but an unoccupied clamshell will serve as a suitable souvenir.

Question of the Day 

Environmental Science Students 

In cooperative groups, create a graphic organizer that identifies and illustrates marine bottom-dwelling organisms.  Be certain to isolate similar characteristics of organisms.

Geospatial Semester Students 

Explain the disadvantage of absolute reliance on a magnetic compass for navigation.

Mrs. Armwood

Linda Armwood, April 29, 2006

NOAA Teacher at Sea
Linda Armwood
Onboard NOAA Ship Fairweather
April 25 – May 5, 2006

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, Alaska
Date: April 29, 2006

Weather Data from Bridge 
Visibility: 10 nautical miles (nm)
Wind direction: 200 °
Wind speed:  15 kt
Sea wave height: 1 ft.
Swell wave dir: 280
Swell wave height: 2-3 ft.
Seawater temp: 7.2
Sea level pressure: 1016.6mb
Present weather: Overcast
Temperature:  °C~ 8.2dry/6.5wet

Science and Technology Log 

My assignment today was to work with the benchmark descriptions and level run team.  The responsibility of the team is to accurately and completely describe the benchmarks.  The description must include the following items:

  • directions for location
  • exact location relative to other structures including the tide gauge
  • sketch of location
  • latitude and longitude
  • above datum of tabulation in meters
  • date of establishment/recovery
  • photograph of benchmark
  • statement that benchmark disk is flush in raised concrete

The team is also responsible for completing the level run assignment.  The purpose of the level run is to level the primary benchmark to the staff stop.  This procedure provides the elevation of the staff stop. In helping with the level run, I assisted the Tides Director in the recording of rod readings. These measurements are read in three parts: top thread, middle thread and bottom thread.  Ideally, thread intervals should be equal.  However, if the thread intervals are not equal, they must be within 2 to be an acceptable reading.  Many of our readings were acceptable upon the first recording.  For the few readings that were not acceptable, the software in the I-Pod associated with the 3 stadia leveler would indicate as such.  Readings were redone accordingly.

In addition to providing assistance to the Tides Director as a recorder, I participated in holding the rod at benchmark locations for level readings.  The indication that the rod would be level is when the surveyor succeeds in moving the rod so that the bubble inside the gauge would sit on the center circle. The tide staff observation was my third assignment for the day.  The completion of these observations provides you with the elevation of your orifice to your staff stop. The tide gauge is located on the pier leg facing the benchmarks.  The boat was placed in a vantage spot that enabled a survey tech and I to monitor and record the tide height every 6 minutes for three hours.  This recorded data would later be compared to the data received by the tide gauge set-up on the pier.

Personal Log 

It was great to get out of the bitter, cold, sleeting weather conditions to the warmth of the ship. The food on the FAIRWEATHER is absolutely delectable!

Question of the Day 

Environmental Science and Geospatial Semester Students 

In which two months are the largest tidal ranges?

Mrs. Armwood

Linda Armwood, April 28, 2006

NOAA Teacher at Sea
Linda Armwood
Onboard NOAA Ship Fairweather
April 25 – May 5, 2006

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, Alaska
Date: April 28, 2006

Weather Data from Bridge 
Visibility: 10 nautical miles (nm)
Wind direction: 190 °
Wind speed:  13 kt
Sea wave height: 1 ft.
Swell waves dir: 310
Swell waves height: 2 ft.
Seawater temp: 7.3
Sea level pressure: 1012.4mb
Present weather: Mostly cloudy
Temperature:  °C~ 6.5dry/5.0wet

NOAA divers preparing to install a tide gauge at Noyes Island, AK
NOAA divers preparing to install a tide gauge at Noyes Island, AK

Science and Technology Log 

The project’s first priority for the day was to get the tide gauge installed and to set tidal benchmarks.  The tides party consisted of three onshore crews: the reconnaissance and planning team; the benchmark recovery and installation team; and the dive and install team.  I was assigned to the dive and install team boat in order to observe the divers install the tide gauge. I did not observe the underwater installation below the pier; however, the secure installation of the above water equipment was a major undertaking!  The tide gauge installation involves the proper placement of the following items:

  • satellite antenna
  • gps antenna
  • hydro gauge
  • solar panel
  • 12-volt battery
  • nitrogen cylinder
  • nitrogen regulator

I assisted in drilling with the benchmark recovery and installation team.  The historic benchmark was located about 15 feet from the low water line and the next four benchmark locations were set at 200 feet apart from one another in somewhat of a straight line from the historic benchmark.  Benchmarks are important because they represent permanent marks of the land leveling system.  The tidal gauge will automatically read water pressure which it then converts to depth every six minutes over the next 30 days in order to determine the constituents of the tide-generating force. Determining these constituents allows the survey technicians to form possible hypotheses related to ranges, heights, rates and future directions of tides.

Ensign Matthew Glazewski drills to establish a benchmark on Noyes Island, AK.
Ensign Matthew Glazewski drills to establish a benchmark on Noyes Island, AK.

Personal Log 

At the time of this writing, the weather was as stated above; however, during the tides party the weather was miserable with intermittent showers of sleet followed by sunshine and overcast.  The kindness extended to the crew by the Noyes’ Island caretaker will be remembered.

Question of the Day 

Environmental Science and Geospatial Semester Students 

Give some possible non-human factors that may have an effect on the decision-making of tide gauge location.

Mrs. Armwood

The Tidal Party recovered this historic benchmark recovered from Noyes Island, AK
The Tidal Party recovered this historic benchmark recovered from Noyes Island, AK

Linda Armwood, April 26, 2006

NOAA Teacher at Sea
Linda Armwood
Onboard NOAA Ship Fairweather
April 25 – May 5, 2006

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, Alaska
Date: April 26, 2006

Weather Data from Bridge 
Visibility:  5 nautical miles (nm)
Wind direction: 130 °
Wind speed:  12 kt
Sea level pressure: 1004.5 mb
Present weather: Drizzle, mostly cloudy
Temperature:  °C~ 7.5dry/6.5wet

Science and Technology Log 

During the morning I concentrated on the Electronics Department to see how this operation is run. This department covers a significantly large portion of the ship in several locations. The Chief Electronics Tech explained the functioning of the iridium and INMARSAT satellites. The iridium satellite is used for low speed communication such as the telephone and e-mail.  This is primarily used at sea for hourly email transit except when launches are out.  The iridium also has a tie-in for sensors such as wind speed and barometric pressure.  The INMARSAT satellite is for high speed communication such as voice, faxes and two-way data transfer.  The management of these satellites, the Automated Information System (AIS) and all other electronic/electrical systems for the ship are managed, coordinated and maintained by the Electronics Department.

The afternoon was spent on one of the launches to observe survey technician launch operations. During the training there was a demonstration of the use of several components of data acquisition and processing.  Some of the data that is collected is sonar, boat voltage, vertical waterfall, bathymetric in 2-D view, position and orientation, heave, distance and altitude. All of this data is then processed and becomes the responsibility of the survey technician to combine the data into a single file, known as a concantenated file.

Personal Log 

I appreciate the ability to view the hydrographic navigation charts in my room through INMARSAT. This allows me to know where we are while preparing for the day.  Thanks to the Chief Electronics Tech for giving me the ship tracker web site for students and other interested persons.

Mrs. Armwood

Kathy Virdin, July 24, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 24, 2004

Latitude: 55 degrees 17.194 N.
Longitude: 160 degrees 32.23 W.
Visibility: 3 nautical miles
Wind direction: 100 degrees
Wind speed: 10 kts.
Sea wave height: 1-2 ft.
Swell wave height: 2-3 ft.
Sea water temperature: 10 degrees C.
Sea level pressure: 1002.0
Cloud cover: Cloudy with rain

Science and Technology Log

Today we went out on a launch (my first in the Shumagin Islands). We traveled near the area of Simeon Bight to run lines to check depth measurement. An example of why this is so important is that in one of their launches, they found after an earthquake, a 30 meter drop-off near a fault line. This wasn’t on any charts because it had been caused by the earthquake itself. Before they begin the depth measurements, it’s vital that they take a cast with the salinity, pressure and temperature instrument. This information is then hooked directly into the computer to be calculated into the depth findings, so that the depth can be corrected by these factors. We ran cross lines (lines that cris-crossed each other) as a quality check to be sure that no area had been missed. The transducer (which sends out a multi-beam swath of sound) is lowered into the water by a mechanical arm. This is high-tech stuff! The computers are also recording the GPS (global position system) location of our boat at all times. When we learn the depths of the waters we pass over, we have to know exactly where we are in order to record this on nautical charts. Out of 24 satellites, we need at least 5-7 within range plotting our location to ensure accuracy. The computers divide the screen into sections which show our depth reading, a picture of the ocean floor by sonar calculations and the range our instruments will accurately reflect. We have traveled a range of 88 meters in depth to 6.7 meters in depth. Interestingly, one possible technology that is being tested and may be the best method of the future is called Lidar, which means sonar transmitted from an airplane, which flies over coastal areas and can give a depth reading on land and in the ocean. The RAINIER is testing one area that has been measured by Lidar to compare our measurements with theirs to check their accuracy. This would be a safer method, since lowering the launch boats and retrieving them has a certain amount of risk.

We’ve just seen some lazy puffins that are swimming on top of the water, which makes them look like sitting ducks. As we return to the RAINIER in the late afternoon, we bring back a lot of data that the survey technicians will assess and correct to be submitted to the cartographers.

Personal Log

We had a rainy, foggy afternoon on the water while we were surveying, with clouds that hovered over the green, craggy cliffs. It makes a beautiful sight. We felt we got a lot accomplished and returned with some good data. In talking with various members of the crew, I’ve gotten some good ideas to use in my lesson plans as they help me think of ways to explain their operations that will simplify it, such as flashlights taped together to represent a multi-beam sonar swath. I’m going to catch up tonight on correspondence, and refine my lesson plan ideas tomorrow. I can’t wait to take all these ideas back to the classroom!

Kathy Virdin, July 23, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 23, 2004

Latitude:55 degrees 43.34’N
Longitude: 159 degrees 10.967’ W
Visibility: 10 nautical miles
Wind direction: 175 degrees
Wind speed: 8 kts.
Sea wave height: 0-1 ft.
Swell wave height: 0-1 ft.
Sea water temperature: 11.7 C.
Sea level pressure: 1016.2 mb.
Cloud cover: Cloudy

Science and Technology Log

Today we have been in transit to the Shumagin Islands. Two launches were sent out to do Reson (shallow to mid-depth) measurements and one launch did the Elac (mid-depth to deep waters). This area really needs accurate depth measurement, since it’s an area where fishermen come frequently. The information that is received and processed on board the RAINIER is then sent to the Nautical Data Branch of NOAA where it is interpreted and made into the hydrographic sheets with added interpretative data. Then it next goes to a production team who apply it to charts. The next step for the information is to go to the Update Service branch which combines all data and puts it in the final form of nautical charts that is used by the Navy, cargo ships, tanker ships and all mariners (such as fishermen). So the RAINIER plays a vital role in getting critical information to those who use it daily to ensure their safety.

I was able to catch several of the crew for an interview. I interviewed Megan Palmer, who is a survey technician. To prepare for her job, Megan received a degree in geography and received additional training in computer systems, including the complex GIS system. She explained that NOAA is moving toward electronic nautical charts that will allow you to set your scale close or far away on the computer, depending on what you need. Alarms will go off if you get into shallow water. However, there will always be a need for nautical charts and that’s where NOAA excels. Megan enjoys her job as it gives her the opportunity to see Alaska while being on the water, and the chance to look for the unexpected in surveys. Often, she is part of the team that is charting waters that have very few depth soundings. She also enjoys the fact that NOAA tests software to see how well it works and then make recommendations to companies to improve features that the survey technicians need. She notes that there is definitely a need for more survey technicians and that it’s a rewarding and exciting career for any student who loves the ocean and wants to travel.

Personal Log

Today we had the thrill of seeing a whale swimming in the distance while we all tried to take a picture (very difficult since it moves in the water so quickly). We dropped anchor tonight in the Shumagin Is. We’ll stay here several days while the survey launches run lines in different areas. We’ve entered into an area of heavy fog and it was neat to hear the fog horn being sounded every few minutes as we move through the water. I enjoyed looking a computer file of pictures that show all the places the RAINIER has been in Alaska. Beautiful scenery!

Kathy Virdin, July 21, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 21, 2004

Time: 6:00p.m.
Latitude: 55 degrees 49.65 N
Longitude: 157 degrees 56 W
Visibility: 11 nautical miles
Wind direction: 350 degrees NW
Wind speed: 7 kts
Sea wave height: 0-1 ft.
Swell wave height:2-3 ft.
Sea water temperature: 12.2 C.
Sea level pressure: 1013.0 mb.
Cloud cover: Partly cloudy

Science and Technology Log

Today I was able to go out on a launch (small boat) that did survey lines for eight hours. After the launch got underway, we lowered the transducer into the water where it will send out a spray of sound (approximately 131 pings) that will be measured on the launch’s computers. We also did a Reson line measurement which can accurately measure depths of 40 meters. We drove the launch in a line that was approximately 4-5 miles long, then turned and went back on the next line. Each line took about 40 minutes and we were able to cover 7 lines today. So in all, we were able to chart an area of 4-5 square miles. We stopped every four hours to put down a CDT which checks salinity, density and temperature. This information was immediately fed into the computers so that it can adjust the speed of sound through the waters by these factors. This launch also has a motion sensor that can measure the pitch and roll of the boat and that is factored into the speed the sound travels, which gives the calculated distance to the ocean floor.

NOAA has about 8 or 9 ships that do hydrography work which is extremely important to scientific research, as well as commerce. About 90-95% of all goods used in the U.S. are brought to us by ships! So it’s vital that they have accurate information to chart their path through our waters. The RAINIER is the only ship in the world that can do all the hydrographic survey work that it does. It’s an honor to work on a NOAA vessel and all members of the NOAA corps must have a degree in one of the sciences. The swath or path of the sonar beam that our launch is sending out covers about 200 meters. We’re seeing the data that tells us that the depths in this area are 100 meters. We have successfully measured our plot of the chart today with multi-beam swaths that intersect at the outskirts with one another. This is another measure taken to ensure accuracy.

Personal Log

I asked a lot of questions today while we were surveying, as the field operations officer with us had time to answer them. The work was mostly being done by the computers, so we were watching and checking them periodically. I learned that the launches are expensive boats because of all the high-tech equipment they carry (all of it necessary to get the job done). When we came back to the RAINIER, the sun came out and we went up on the deck to enjoy the view. I saw puffins flying over the water, and one of them flapped its wings across the water as it skimmed along the surface. This was a treat to watch the puffins as they entertained us with their antics. Tomorrow, I’m looking forward to following up on the data that was gathered from the two launches that went out today. It will be scrutinized and evaluated by the survey technicians and then stored in the folder for the day.

Sena Norton, July 14, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 14, 2004

Location: At anchor, Popof Strait, Shumagin Islands, AK
Latitude: 55 deg 17.24’ N
Longitude: 160 deg 32.17’ N
Visibility: 6 nm
Direction: 060
Wind Speed: 6 kts
Sea wave height: 1 ft
Swell wave height: n/a
Seawater temperature: 10.0 deg C
Sea level pressure: 1009.3 mb
Cloud Cover: 8/8
Weather: Temp: 12.2 deg C, showers, some fog in higher elevations

Plan of Day:
Five launches out for shoreline, multi-beam and visitors tour. I was on RA 1 for shoreline verification and LIDAR disproval.

Science and Technology Log

RA 1 is a jet boat, which means it can get into shallow waters to take readings and not worry about ripping a prop or high centering…both are not good ideas! I was out with Megan Palmer, Brie Welton, KC Longly and the other TAS Leyf Peirce. It was a cozy ride. There were a handful of targets that we set out to visually verify. The nice addition to this launch was that the computer had the updated LIDAR data from a fly over a few days earlier to use, so the launch did not have to take its own shoreline readings, cutting down on the time needed for the mission goals. There was one islet that was misplaced on the chart and so we had to take a picture of where it really was and then disprove its old location by taking depth readings and marking the bearing. This way the rock feature can be moved when the charts are updated.

There was also a shoal that was mis-assigned as to its depth. The LIDAR computers got a reading but were unsure and wanted field verification. We drove a star pattern over the shoal and logged readings, marked the area and took visual cues. Palmer will then work with the sheet and update from our field verifications and re-work the depths.

I was able to help run the logging computer. I marked the targets on the cue from the coxswain and then filled in the bearing, notes and depth or height of the target with the survey tech. I was also able to take digital pictures of some of the targets that we wanted to disprove or assign different locations.

Personal Log

Shoreline was much faster paced because the coxswain has to look out for kelp, watch his depth meter, and stay on target and read bearings/heading and depths to the survey tech. The launch itself is much more maneuverable because of the jet and has more room on deck to move around. Both of the TAS’s were on board this launch today so we were able to talk a little more about our plans for using the science we have learned and linking our classrooms in the future for some investigations.

We are pulling up the anchor and steaming for Kodiak this evening after dinner to arrive early on Friday morning. I am going to miss the crew on aboard. I feel that I have been here long enough to begin really getting to know people and they have added me into their daily schedules and have been patient with my questions or my getting in the way. I feel very safe and know that there are people who are looking out for me. I hope to keep in contact with some of the people on-board and maybe have them become part of my classroom as a resident scientist for the kids to interact with over the course of a season. The possibilities are endless.

Question of the Day:

Can the cartographers change locations of rocks when they make the final charts?

It all depends on the scale of the chart. If the chart is a small scale the cartographer might not worry about the exact location of rocks and might add in that there is a “rocky area”. If the chart is more specific to this area, the exact locations of rocks, shoals and other hazards are important.