Mark Van Arsdale: What Makes Up an Ecosystem? Part II – Phytoplankton, September 14, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 14, 2018

 

Weather Data from the Bridge

Mostly cloudy, winds variable 10 knots, waves to four feet

58.27 N, 148.07 W (Gulf of Alaska Line)

 

Science Log

What Makes Up an Ecosystem?  Part II Phytoplankton

Most of my students know that the sun provides the foundational energy for almost all of Earth’s food webs.  Yet many students will get stumped when I ask them, where does the mass of a tree comes from?  The answer of course is carbon dioxide from the air, but I bet you already knew that.

Scientists use the term “primary productivity” to explain how trees, plants, and algae take in carbon dioxide and “fix it” into carbohydrates during the process of photosynthesis.  Out here in the Gulf of Alaska, the primary producers are phytoplankton (primarily diatoms and dinoflagellates). When examining diatoms under a microscope, they look like tiny golden pillboxes, or perhaps Oreos if you are feeling hungry.

Primary productivity experiments running on the back deck of the Tiglax.

Primary productivity experiments running on the back deck of the Tiglax.

One of the teams of scientists on board is trying to measure the rates of primary productivity using captive phytoplankton and a homemade incubation chamber. They collect phytoplankton samples, store them in sealed containers, and then place them into the incubator.  Within their sample jars, they inject a C13 isotope.  After the experiment has run its course, they will use vacuum filtration to separate the phytoplankton cells from the seawater.  Once the phytoplankton cells are captured on filter paper they can measure the ratios of C12 to C13. Almost all of the carbon available in the environment is C12 and can be distinguished from C13.  The ratios of C12 to C13 in the cells gives them a measurement of how much dissolved carbon is being “fixed” into sugars by phytoplankton.  Apparently using C14  would actually work better but C14 is radioactive and the Tiglax is not equipped with the facilities to hand using a radioactive substance.

During the September survey, phytoplankton numbers are much lower than they are in the spring.  The nutrients that they need to grow have largely been used up.  Winter storms will mix the water and bring large amounts of nutrients back to the surface.  When sunlight returns in April, all of the conditions necessary for phytoplankton growth will be present, and the North Gulf of Alaska will experience a phytoplankton bloom.  It’s these phytoplankton blooms that create the foundation for the entire Gulf of Alaska ecosystem.

Personal Log

Interesting things to see

The night shift is not getting any easier.  The cumulative effects of too little sleep are starting to catch up to me, and last night I found myself dosing off between plankton tows.  The tows were more interesting though.  Once we got past the edge of the continental shelf, the diversity of zooplankton species increased and we started to see lantern fish in each of the tows.  Lantern fish spend their days below one thousand feet in the darkness of the mesopelagic and then migrate up each night to feed on zooplankton.  The have a line of photophores (light producing cells) on their ventral sides.  When they light them up, their bodies blend in to the faint light above, hiding their silhouette, making them functionally invisible.

A lantern fish with its bioluminescent photophores visible along its belly.

A lantern fish with its bioluminescent photophores visible along its belly.

Once I am up in the morning, the most fun place to hang out on the Tiglax is the flying bridge.  Almost fifty feet up and sitting on top of the wheelhouse, it has a cushioned bench, a wind block, and a killer view.  This is where our bird and marine mammal observers work.  Normally there is one U.S. Fish and Wildlife observer who works while the boat is transiting from one station to the next.  On this trip, there is a second observer in training.  The observers’ job is to use a very specific protocol to count and identify any sea bird or marine mammal seen along the transect lines.

Today we saw lots of albatross; mostly black-footed, but a few Laysan, and one short-tailed albatross that landed next to the boat while were casting the CTD.  The short-tailed albatross was nearly extinct a few years ago, and today is still considered endangered. That bird was one of only 4000 of its species remaining.  Albatross have an unfortunate tendency to follow long-line fishing boats.  They try to grab the bait off of hooks and often are drowned as the hooks drag them to the bottom.  Albatross are a wonder to watch as they glide effortlessly a few inches above the waves.  They have narrow tapered wings that are comically long. When they land on the water, they fold their gangly wings back in a way that reminds me of a kid whose growth spurts hit long before their body knows what to do with all of that height.   While flying, however, they are a picture of grace and efficiency.  They glide effortlessly just a few inches above the water, scanning for an unsuspecting fish or squid.  When some species of albatross fledge from their nesting grounds, they may not set foot on land again for seven years, when their own reproductive instincts drive them to land to look for a mate.

Our birders seem to appreciate anyone who shares their enthusiasm for birds and are very patient with all of my “What species is that?” questions.  They have been seeing whales as well.  Fin and sperm whales are common in this part of the gulf and they have seen both.

A Laysan Albatross

A Laysan Albatross, photo credit Dan Cushing

 

Did You Know?

Albatross, along with many other sea birds, have life spans comparable to humans.  It’s not uncommon for them to live sixty or seventy years, and they don’t reach reproductive maturity until well into their teens.

 

Animals Seen Today

  • Fin and sperm whales
  • Storm Petrels, tufted puffins, Laysan and black-footed and short-tailed albatross, flesh footed shearwater

 

Amanda Dice: Using Light for Survival, September 13, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: September 13, 2017

Weather Data: Rainy, 76 F

Baltimore, MD

Science and Technology Log

Now that I am back home, I have some time to think about the variety of animals I saw on the cruise and do a little more research about them. Many of the animals we caught in our net have the ability to light up. This adaptation is known as bioluminescence. Different species use bioluminescence in different ways to help them survive.

 

Myctophids are a type of fish also known as a lantern fish. These small fish can occupy the same habitat as juvenile pollock, and we caught several of them at our sampling stations. I got a chance to look at them closely and I could see small spots, called photophores, along the sides of their bodies. In dark waters, these spots have bioluminescent properties. Lantern fish can control when to light them up and how bright the spots will glow.

 

There are many different species of lantern fish. Scientists have learned that each species has a unique pattern of bioluminescent photophores along the sides of their bodies. For this reason, it is believed that lantern fish use their bioluminescent properties to help them find a mate.

myctophid

The photophores can be seen as white spots on this lantern fish. Image courtesy of NOAA.

Lantern fish also have bioluminescent areas on the underside of their bodies. This adaptation helps them achieve what is known as counter-illumination. In the ocean, a predator can be lurking in the dark waters below its prey. Since many things feed on lantern fish, it is important for them to have a way to camouflage into the environment. When a predator looks up, during the day, a fish that is lit up on the bottom will blend in with the lighter waters above it, making it hard to see.

counterillumination 2

The camouflaging effect of counter-illumination can be seen when this bioluminescent fish lights up its underside. Image courtesy of the Smithsonian.

Lots of animals use this technique to help them hide from predators, including squid. We pulled in many small squid in with our samples that had patterns of photophores on them. Depending on the species, squid also use bioluminescence to attract mates and to confuse predators.

squid NOAA 2

The pattern of lighted photophores can be seen on this squid. Image courtesy of NOAA.

In addition to fish and crustaceans, we also pulled in a variety of jellyfish. Jellyfish also have bioluminescence characteristics. Many jellyfish use light as a way to protect themselves from predators. When a jellyfish is threatened by a predator, it flashes in a rapid pattern. This signals other fish nearby that it is being hunted. This can alert larger predators, who may be hunting the predator of the jellyfish. The larger predator will then swoop in after the jellyfish’s predator, allowing the jellyfish to escape!

Jellyfish NOAA

Many jellyfish use bioluminescence to protect themselves from predators. Image courtesy of NOAA.

Personal log

I have been home for over a week and I think I finally have my land legs back again. Looking back on the experience, there were so many little surprises that came with living onboard a ship. One thing I noticed is that I got much better at walking around the longer I was there. I learned to always have one hand available to grab a railing or brace myself during any sudden movements. However, I never quite mastered getting a decent workout in on the treadmill! Another surprise is how relaxing the rocking of the ship could be when I laid down. I thought the movement would be distracting, but it actually helped me drift off to sleep!

Did you know?

There are many superstitions surrounding life on a ship. It is considered bad luck to have bananas on board and whistling is discouraged. Whistling onboard a ship is thought to bring on wind and storms!

 

Cathrine Prenot: Lights in the Ocean. Thursday, July 21, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Thursday, July 21, 2016

Weather Data from the Bridge
Lat: 46º18.8 N
Lon: 124º25.6 W
Speed: 10.4 knots
Wind speed: 12.35 degree/knots
Barometer: 1018.59 mBars
Air Temp: 16.3 degrees Celsius

 

Science and Technology Log

The ship’s engineering staff are really friendly, and they were happy to oblige my questions and take me on a tour of the Engine Rooms. I got to go into the ‘belly of the beast’ on the Oscar Dyson, but on the tour of the Shimada, Sean Baptista, 1st assistant engineer, hooked us up with headsets with radios and microphones. It is super loud below decks, but the microphones made it so that we could ask questions and not just mime out what we were curious about.

I think the job of the engineers is pretty interesting for three main reasons.

On the way to see the bow thruster below decks

On the way to see the bow thruster below decks

One, they get to be all over the ship and see the real behind-the-scenes working of a huge vessel at sea. We went down ladders and hatches, through remotely operated sealed doors, and wound our way through engines and water purifiers and even water treatment (poo) devices. Engineers understand the ship from the bottom up.

One of four Caterpillar diesel engines powering the ship

One of four Caterpillar diesel engines powering the ship

Second, I am sure that when it is your Job it doesn’t seem that glamorous, but an engineer’s work keeps the ship moving. Scientists collect data, the Deck crew fish, the NOAA Corps officers drive the ship, but the engineers make sure we have water to drink, that our ‘business’ is treated and sanitary, that we have power to plug in our computers (the lab I am writing in right now has 6 monitors displaying weather from the bridge, charts, ship trackers, and science data) and science equipment.

I did not touch any buttons. Promise.

I did not touch any buttons. Promise.

Finally, if something breaks on the ship, engineers fix it. Right there, with whatever they have on hand. Before we were able to take the tour, 1st Assistant Engineer Baptista gave us a stern warning to not touch anything—buttons, levers, pipes—anything. There is a kind of resourcefulness to be an engineer on a ship—you have to be able to make do with what you have when you are in the middle of the ocean.

The engineers all came to this position from different pathways—from having a welding background, to being in the navy or army, attending the U.S. Merchant Marine Academy, or even having an art degree.  The biggest challenge is being away from your family for long periods of time, but I can attest that they are a pretty tight group onboard.

 

In terms of the science that I’ve been learning, I’ve had some time to do some research of some of the bycatch organisms from our Hake trawls. “Bycatch” are nontargeted species that are caught in the net.  Our bycatch has been very small—we are mostly getting just hake, but I’ve seen about 30-40 these cute little fish with blue glowing dots all over their sides. Call me crazy, but anything that comes out of the ocean with what look like glowing sparkling sapphires is worthy of a cartoon.

So… …What is small, glows, and comprises about 65% of all deep-sea biomass? Click on the cartoon to read Adventures in a Blue World 3.

Adventures in a Blue World, CNP. Lights in the Ocean

Adventures in a Blue World, CNP. Lights in the Ocean

 

Personal Log

The weather is absolutely beautiful and the seas are calm. We are cruising along at between 10-12 knots along set transects looking for hake, but we haven’t seen—I should say “heard” them in large enough groups or the right age class to sample.  So, in the meanwhile, I’ve taken a tour of the inner workings of the ship from the engineers, made an appointment with the Chief Steward to come in and cook with him for a day, spent some time on the bridge checking out charts and the important and exciting looking equipment, played a few very poor rounds of cornhole, and have been cartooning and reading.

I was out on the back deck having a coffee and an ice cream (I lead a decadent and wild life as a Teacher at Sea) and I noticed that the shoreline looked very familiar. Sure enough—it was Cannon Beach, OR, with Haystack Rock (you’ll remember it from the movie The Goonies)! Some of my family lived there for years; it was fun to see it from ten miles off shore.

Chart showing our current geographic area. Center of coast is Cannon Bean, Oregon.

Chart showing our current geographic area. Center of coast is Cannon Beach, Oregon.

View of Tillamook Head and Cannon Beach. It looked closer in person.

View of Tillamook Head and Cannon Beach. It looked closer in person.

 

Did You Know?

One of the scientists I have been working with knows a lot about fish. He knows every organism that comes off the nets in a trawl down to their Genus species. No wonder he knows all the fish—all of the reference books that I have been using in the wet lab were written by him. Head smack.

Dan Kamikawa, our fish whisperer

One of the books written by Dan Kamikawa, our fish whisperer

 

Resources

My sister (thank you!) does my multi media research for me from shore, as I am not allowed to pig out on bandwidth and watch lots of videos about bioluminescence in the ocean.  This video is pretty wonderful.  Check it out.

If you want to geek out more about Lanternfish, read this from a great site called the Tree of Life web project.

Interested in becoming a Wage Mariner in many different fields–including engineering?  Click here.

Caitlin Thompson: Bottom Trawl, August 11, 2011

NOAA Teacher at Sea
Caitlin Thompson
Aboard NOAA Ship Bell M. Shimada
August 1 — 14, 2011

Mission: Pacific Hake Survey
Geographical Area: Pacific Ocean off the Oregon and Washington Coasts
Date: August 12, 2011

Weather Data from the Bridge

Lat. 48 degrees 07.0 N
Long. 125 degrees 13.7 W
Present weather: partly cloudy 6/8
Visibility: 10 n.m.
Wind direction: 335
Speed 10 kts
Sea wave height: 2-3 feet
Swell waves – direction: —
Swell waves – height: —
Sea water temperature: 15.0 degrees C
Sea level pressure: 1017.3 mb
Temperature – dry bulb: 15.8 degrees C
Temperature – wet bulb: 13.2 degrees C

Science and Technology Log

Third Wire FS70

The Third Wire FS70 provides an image of the net, shown as half circle, and the fish around it.

The big news is that we’re headed to port a day early. There was a electrical component failure in the engine system that converts the diesel power to electricity which powers the electrical motors that turn the propeller shaft. This reduced the Shimada to running on about half power. I can’t believe the cruise is ending!

Yesterday we did a bottom trawl, the first bottom trawl ever conducted on the Shimada. Using the sonars, the scientists on the sonar team saw an interesting aggregation of fish. They couldn’t use the usual mid-water net, which is relatively easy to damage, because the fish were very close to the bottom. Besides, the bottom appeared hard and rocky. I was excited when they decided to test the new net. Unlike the mid-water trawls, which usually bring up a mostly “clean” haul of hake, a bottom trawl tends to bring up a wide array of species. I wanted to learn some new names.

ITI

The ITI shows the distance of the bottom of the ocean from the net. Where the pink lines are highest, the net is lowest.

Deploying the bottom net proved educational. The mid-water net is sent down with the FS70 attached, which provides an image of the objects near and in the net. On the screen shot of the FS70 above and to the right, look for the half-circle, which shows the open net, the silver blue line under the net, which is the bottom of the ocean, and some dots inside the net that are most likely fish already caught in the net. The images are sent through a wire. It would be too easy to damage the wire in a bottom trawl, so the scientists use the ITI instead.

Larry was in charge of fishing today and was disatisfied with the image the ITI System produced of the bottom trawl. The ITI does not produce as good an image of the bottom trawl as the FS 70 did on the midwater trawl. This made it more difficult to decide how much was being caught and how long to fish. The scientists began planning how to get a better system for the ship.

The bottom trawl disappointed the scientists because it brought up fewer hake than they had hoped, but I was happy to see so many new kinds of fish, and to learn to identify many so that I could help sort. This is the list of everything we pulled up:

Ratfish

This spotted ratfish has a venomous spine on its dorsel fin!

Aspot prawn, full of eggs

A spot prawn, full of eggs

Rockfish

Larry, Alicia and I sort rockfish. Initially, the fish on the table looked the same to me, but I soon learned to identify ...

Rex sole

Rex sole

Arrowtooth flounder
Brown cat shark egg case
Cloud sponges
Darkblotched rockfish
Dover sole
Greenstriped rockfish
Hermit crab unident.
Lanternfish unident.
Long honred decorator crab
Longnose skate
Pacific hake
Pacific ocean perch
Pom pom anemonome
Redbanded rockfish
Rex sole
Rosethorn rockfish
Sablefish
Sea cucumber unident.
Sea urchins and sand dollars unident.
Sharpchin rockfish
Shortspine thornyhead
Skate egg case ulnident.
Slender sole
Snail unident.
Spot prawn
Spotted ratfish
Wattled eelpout

Personal Log

Last night, some of us went up to the fly bridge in hopes of seeing the Perseid Meteor Shower. The sky was miraculously clear but the nearly full moon and bright lights on the ship blocked out most of the stars. Still, we saw some truly magnificent shooting stars before the clouds rolled in. I had brought my sleeping bag for warmth and fell fast asleep to the soothing voices of my shipmates. When they woke me up, I dropped by the chemistry lab to see how the nighttime zooplankton sampling was going and discovered that a mallard had arrived on deck. Mallards are not sea birds and are not equipped to be so far out to sea, so we were highly surprised to see her some fifty nautical miles off land. We named her Myrtle. We gave Myrtle food and water and hoped she would stay with the ship until we were close to land, but after a long nap, she took off. I hope she makes it to land.

In cribbage news, I won the semi-finals but lost the championship game. I had such a great time playing.

Becky Moylan: Acoustics and Trawling, July 5, 2011

NOAA Teacher at Sea
Becky Moylan
Onboard NOAA Ship Oscar Elton Sette
July 1 — 14, 2011


Mission: IEA (Integrated Ecosystem Assessment)
Geographical Area: Kona Region of Hawaii
Captain: Kurt Dreflak
Science Director: Samuel G. Pooley, Ph.D.
Chief Scientist: Evan A. Howell
Date: July 5, 2011

Ship Data

Latitude 1940.29N
Longitude 15602.84W
Speed 5 knots
Course 228.2
Wind Speed 9.5 knots
Wind Dir. 180.30
Surf. Water Temp. 25.5C
Surf. Water Sal. 34.85
Air Temperature 24.8 C
Relative Humidity 76.00 %
Barometric Pres. 1013.73 mb
 Water Depth 791.50 Meters

July 5, 2011

Science and Technology Log

Work is going on 24 hours here on the ship. The crew have different shifts, so nothing ever stops. It may be 3:00 in the morning, and you’ll see people sorting fish, filtering water, or working the acoustics table.


Acoustics Computer Screen

Acoustics Computer Screen

To improve the accuracy of identifying what organisms are seen on the acoustic system, Sette researchers collect samples from the scattering layers at night using a large trawl net towed from the ship.One important part of the research here is using the acoustic system to find where groups of fish and other organisms are located. This is done with a “ping”, or noise, sent down in the ocean. The sound waves bounce back when they find something, letting scientists know where, and sometimes what, is swimming underneath. Computers keep data on all the different sound waves showing patterns of fish movement. They have found that some groups move upward during the nighttime, and then move back down during the day.

Cookie Cutter Shark

Cookie Cutter Shark

Trawl Net

Trawl Net

Every night on the ship, there is at least one trawl. The method of trawling started back in the 1400’s. Some people use these nets to catch large amounts of fish to sell, and that has been an environmental concern. NOAA is using this method as a scientific sampling, or survey, method to try and help the environment. They are trawling in the Epipalagic Zone (mid to shallow) which is around 200 meters deep, depending on the total depth at location and where the acoustics pick up signals.

Scientists want to find out the status of the smaller life in order to try and predict the outcome of the larger life. Only a small amount is caught for sampling. They weigh, sort, count, and study them. The goal is to be aware of what is happening in this area of the ocean. Some of the species they have found are different types of shrimp, squid, Myctopids, small crabs, and jellies. Last night they wound up with two Cookie Cutter Sharks. These results will then be combined with the measured acoustic data in order to improve the accuracy and effectiveness of acoustic monitoring.

Examining a Trawl Catch

Examining a Trawl Catch

Puffer Fish

Puffer Fish

One scientist from New York, Johnathan, is looking for specific species of Myctopids. He studies them under the microscope and records detailed data found. The Myctopids are sometimes called Lantern Fish. This is because they have organs that produce light. The lights are thought to be a way of communicating with other fish and also as a camouflage. As mentioned earlier, some fish rise to shallower waters at night and the Myctopid is one of these. The reason might be to avoid predators, yet also to follow zooplankton which they feed upon.


Personal Log

Abandon Ship Suits

Abandon Ship Suits

Last night some of us went out on deck to watch the Kona fireworks. I didn’t realize how far out we were until I saw how tiny the little ball of colors appeared. You could see three different areas along the coast where they were shooting off fireworks. As a fourth of July treat, the cooks barbecued on deck and made special deserts. I especially liked the sweet potato pie.

This morning I was out at 6am preparing the CTD for deployment. It is getting easier each time. There are many precautions and steps to make sure the procedure is done correctly and safely. We could only drop it to 200 meters today because this area is shallower here. I watched and learned how to control the computer from the inside. Very impressive!

CTD Screens

CTD Screens

I’m wondering when the ship is going to have another “abandon ship drill”. That’s when we all carry our floatation suits to the upstairs deck and put them on, and it is not easy to do. You lay the suit down, sit on it, and put your legs in first. Then you stand up, pull the suit hood on, then lastly the arms. This is because the hands don’t have fingers. It is quite a funny sight.

I found out today that the 3am trawl ended up with only one fish because a Cookie Cutter Shark had eaten a round hole in the net. This is where they get their name. They always bite a round hole. Some have even eaten a hole out of humans!