Allison Irwin: Whales! July 16, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

07-25 July 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 16, 2019

Weather at 1300 Pacific Standard Time on Monday 15 July 2019

We’re slowly coasting through a dense patch of fog. I can see about 20 meters off the deck before the horizon tapers to a misty, smoky haze. Then my eyes are affronted with a thick wall of white. It’s like we’re inside a room covered in white felt wallpaper – one of those rooms in a funhouse where the walls keep closing in on you as you walk through it.  For safety, the ship keeps sounding a loud horn at least once every 2 minutes to announce our position for other boats in the area. It’s been like this for an hour now. It’s a little spooky.


PERSONAL LOG


On a brighter note, we saw whales earlier this morning! We were one mile off the coast of southern Oregon, and ahead of us we saw the backs of a few whales peeking out of the surface. I was able to grab a pair of binoculars sitting next to me on the bridge, and with those I could clearly see their dark bodies in the water! Every once in a while one would gracefully lift its tail above the surface as it prepared to dive. They were so cute!

Eventually we got closer to them and we started to see more whales on either side of the ship. I spent probably 15 minutes moving from one side of the bridge to the other with my binoculars to get a better look. I’m lucky the NOAA Corps officers are so accommodating! Otherwise I think my constant fluttering from one area to another could’ve been construed as a pain.

The officers like to see whales too, so they were happy to share what they knew with me. It turns out we were most likely watching Humpback Whales. LT Dave Wang, Operations Officer on the ship and trained as an ichthyologist (fish biologist), said most whales have a distinctive blow pattern, tail shape, and dorsal fin size that makes it easier to identify which kind he’s looking at. I had no idea before today that there were so many different species of whales. I knew Orca – Free Willy, Humpback, and maybe something called a Blue Whale? But that would’ve been the extent of it. In the marine mammals identification guide housed on the ship, there are 45 types of whales in the table of contents! And that’s probably not a complete list of all whale species.

At one point today, eventually, once the fog lifted, we were 36 miles off shore and started seeing shoals of coastal pelagic species all around the ship. We could pick them out easily because each shoal looked like a dark, churning, rippled inkspot on the otherwise smooth-as-glass surface. While the low wind conditions are partly what left us in a thick layer of fog all afternoon, it is what also kept the water smooth enough to pick out the shoals. So I guess not all was lost. We saw even more whale activity around these shoals than we saw this morning, and they were a lot closer to the ship! 

One of the whales just off the starboard bow left a footprint. Larger whales like the Humpback produce larger footprints, and the calm sea state today allowed us to see them! It looked like a smooth patch of water in the center of concentric circles.

I’ve been trying to see whales and other marine mammals the whole trip. I saw a sea lion the other day, just one glimpse of it before it went under the water and we left the area, but now having seen the whales I feel pretty content.  The Commanding Officer of the ship also told me that seals or sea lions like to hang out on the pier that we’ll be docking at in San Francisco, so there’s still hope yet!


THE SCIENCE


If you’ve ever been whale watching on a boat, the type of whale you probably saw was a Humpback Whale. They can often be seen near the shore since they like to stay within the continental shelf, and they spend a lot of time near the surface compared to other whales. Not all whale species exhibit this same behavior.  If whales had a personality, I would call the Humpback Whales the Jersey Shore cast of the sea. They do things that come across as attention-seeking behaviors to the outside observer – slapping their unusually long flippers on the surface of the water, smacking their tails against the water in agitation, flipping their tails in the air before diving, and sometimes breaching the surface with their whole bodies. Of course, they’re not doing it to get our attention. But it makes for easy and exciting observation!

All Humpback Whales have unique patterns of coloration and texture on their flukes, so scientists can use photos to track specific animals as they migrate or go about their regular activities in a similar fashion to how we use fingerprints to uniquely identify people.

They also have the advantage of something called countershading. One of the whales I saw today had a silvery-shiny underside to its fluke that glistened in the sunlight and contrasted greatly with the dark, almost black color of its back. A lot of fish and marine mammals like whales and porpoises use countershading to help camouflage them by having naturally darker backs (dorsal side) and lighter stomachs (ventral side). This way when something is looking down at the creature, it blends in with the dark depths of the ocean, and when something is looking up at the creature, it blends in better with the lighter, sunlit layer of water near the surface.

Anything from krill to small fish are fair game for Humpback Whales when they’re hungry. Sometimes a group of Humpback Whales will work together as a team to catch fish. One way they do this is by bubble net feeding. It’s rare to witness, but a bubble net is a pretty sophisticated way to catch fish. It reminds me of the trawling we do each night from NOAA Ship Reuban Lasker except in this case the whales use a circular pattern of bubbles to corral a bunch of fish into one area… then they thrust forward aggressively, quickly, to scoop up the masses. We use a trawl net to corral the little critters into a codend instead of swallowing them whole.

bubble net
Photo of Humpback Whale Using Bubble Net to Catch Anchovies.
Photo by LT Dave Wang, taken earlier this year
krill in a jar
Quart Jar Filled with Krill Collected in a Bongo Tow

Baleen whales, like the Humpback, have a unique mouth that is hard to explain. If you can visualize a pelican’s beak, it looks a bit like that from the outside. These whales gulp a whole mouthful of water – including zooplankton, krill, and small fish – into their mouths, but they don’t swallow it down outright and they don’t exactly chew their food either. With all that saltwater and prey in their mouths, they use long rows of baleen attached to their upper jaw like a fine-toothed comb. And just like we would use a cheesecloth to strain the moisture off of runny yogurt, Humpback Whales filter the water out of their mouths through the baleen and keep the fishy goodness for themselves.


TEACHING CONNECTIONS


Watching the whales all day kept drumming up images in my mind from when I read Grayson by Lynne Cox. I wrote a review of Grayson in July 2014 on the Pennsylvania Council of Teachers of English and Language Arts (PCTELA) blog. This book, by far, is one of my favorite recommendations to read aloud to students.

If you’re not an English teacher, you probably didn’t spend a lot of late nights in college reading novels to cram for a test. It wasn’t part of your major. But you’re missing out! There are so many ways to use novels and literary nonfiction across the content areas.  Grayson, for example, is artfully written. In the book review I wrote it tells Lynne’s “account of meeting a baby whale in the ocean during one of her early morning training swims. This lonely whale, separated from its mother, stays close to Lynne in the water while fishermen search for the mother.  This true yet almost unbelievable story is hauntingly beautiful.”

Taking 15 minutes of class time to read an excerpt from this book aloud could enrich any classroom. There are many instances when she writes about wanting to give up and swim back to shore. The baby whale is ultimately not her responsibility. It was very cold. She’d been out there in the ocean for hours with nothing but her own strength and experience to keep her afloat. She hadn’t eaten all day. But she stayed with the baby whale. She resolved to see it through to the very end. Any teacher can use her stick-with-it attitude as an example to encourage students to work through academic challenges.

One of my friends, blogger Allyn Bacchus, is a middle school social studies teacher. He uses historical fiction in his class every year. He writes, “My 8th grade U.S. History class covers a unit on Industry and Urban Growth in the late 1800’s and early 1900’s.  I have supplemented our unit with the historical fiction novel Uprising written by Margaret Peterson Haddix.  It covers the story of 3 teenage girls and their involvement in the Triangle Shirtwaist Factory in New York in 1911.  The author brings to life the living, working, and social conditions of the time period and allows my students to experience this unit through the eyes of girls who are living in it.”

Through the eyes of girls who are living in it.  This is something a textbook cannot do.

No one knows your discipline, your students, and your intended classroom environment better than you. Take an hour to fall down the Amazon rabbit hole! Search for a topic you find interesting and relevant to your curriculum, read the book review, click on the comparable book recommendations… you get the point.  Most of the time you can find a book preview to check out the text before purchasing – is the font too small? Too complicated? Too boring? Choose a short excerpt from a text you like for your first attempt at using literature in the classroom and build from there.


TEACHING RESOURCES


Since we’re talking about literature today, I’ll narrate the resource list.

  • We can search online for other educators who have already blazed the trail for us. Here is a blog post written by Terry McGlynn titled Assigning Literature in a Science Class.  The post itself is well written, and if you take the time to read through 54 comments below it, you will find lots of other text recommendations for a science classroom.  This article written by Kara Newhouse titled How Reading Novels in Math Class Can Strengthen Student Engagement shows why two math teachers read books in their high school classrooms. One of those teachers, Joel Bezaire, wrote a blog post with suggestions for other novel studies in math class. The other teacher, Sam Shah, shares a student example to explain how powerful it can be to use literature in a math class. It gets students to understand abstract and often elusive mathematical concepts.
  • I’ve written four nonfiction book reviews to accompany this NOAA Teacher at Sea experience and PCTELA is posting one review each week in July to the new media platform on their website. If not Grayson, then maybe you’ll find useful one of the books I read and reviewed to prepare for this trip. They include Gone Tomorrow: The Hidden Life of Garbage, Blind Man’s Bluff: The Untold Story of American Submarine Espionage, The Hidden Life of Trees: What they Feel, How They Communicate – Discoveries from a Secret World, and Biomimicry: Innovation Inspired by Nature.
  • And finally, I would be remiss to end this post without steering you toward The Perfect Storm written by Sebastian Junger about a small fishing vessel and crew caught in an Atlantic storm and In the Heart of the Sea: The Tragedy of the Whaleship Essex by Nathaniel Philbrick – a captivating true story about the whaling industry which is thought to be the inspiration for Moby Dick.

Erica Marlaine: Onboard the City That Never Sleeps, June 28, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: June 28, 2018

Weather Data from the Bridge:

Latitude: 58º 28.54 N
Longitude: 154º 46.05 W
Wind Speed: 16.8 knots
Wind Direction: 190º
Air Temperature:  11º Celsius
Barometric Pressure: 102


Science and Technology Log

Scientists aboard NOAA Ship Oscar Dyson are estimating the numbers and biomass of walleye pollock in the Gulf of Alaska.  They use acoustics (sound data)  to help them do this.

acoustic readout
Acoustic representation of fish in the area


Acoustic representation of fish in an area

Echo sounders send an acoustic signal (ping) into the water.  The sound bounces off objects that have a different density than the surrounding water (such as the swim bladder in a fish) and returns back to the echo sounder.  Using the speed of sound, this technology can determine how deep the fish are in the water column. 

How much sound each object reflects is known as the target strength.  The target strength is dependent upon the type of fish and the size of the fish.  A bigger fish will give off more of an echo than a small fish will.  A fish’s swim bladder is primarily what reflects the sound.  Smelt and krill do not have swim bladders. As a result, they do not reflect as much sound as a pollack would. Even though a big fish gives off more sound energy than a small fish of the same species, it is possible that a return echo could indicate either one big fish or several smaller fish clumped together. A big fish of one species could also give off similar sound energy to a big fish of a different species. For that reason, actual fish are collected several times a day in the nets described in a previous blog.

From a net sample, scientists determine the number of each species in the catch as well as the length and weight of individuals of each species. 

Measuring pollock
Measuring pollock

Additionally, scientists also determine the sex and age of the pollock.  The catch data is used to scale the acoustic data, which in turn allows scientists to estimate how many pollock there are of various size and age groups in a given area. These numbers help scientists  determine the sustainability of the pollock population, which in turn allows the North Pacific Fishery Management Council to set catch quotas. 

Counting krill
Counting krill


Krill Fun Facts:

Krill (aka euphausiids) are small crustaceans (a couple of millimeters long) of the order Euphausiacea.  The word “krill” is a Norwegian word meaning “a small fry of fish.” Krill are found in every ocean and are a major food source. They are eaten by fish, whales, seals, penguins, and squid, to name a few.  In Japan, the Phillipines, and Russia, krill are also eaten by humans.  In Japan, they are called okiami.  In the Phillipines and Russia, they are known as camarones. In the Phillipines, krill are also used to make a salty paste called bagoong. Krill are a major source of protein and omega-3 fatty acids.

krill on spoon
There are many kinds of krill. Thus far, in the Gulf of Alaska, we have been seeing mostly Thysanoessa enermis, which measure approximately 1/2 inch in length.

Personal Log  

People often refer to New York as the city that never sleeps. The same can be said for the NOAA Ship Oscar Dyson. Life onboard the Oscar Dyson carries on 24 hours a day, 7 days a week.  There is never a time that the ship is not bustling with activity.  Everyone on the boat works 12-hour shifts, so someone is always working while others are sleeping (or doing laundry, exercising, or watching a movie in the lounge before they go to sleep.) Most people on the boat work either the noon to midnight shift or the midnight to noon shift.  However, the science team works 4 a.m. to 4 p.m., or 4 p.m. to 4 a.m. I am in the latter group.  It was easier to get accustomed to than I had imagined, although it is sometimes confusing when you look at your clock and wonder whether it is 5 a.m. or 5 p.m. since the sun is shining for most of the day.  Kodiak has only 4-5 hours of darkness now, and the sun sets at approximately midnight.  Therefore, it does not really feel like nighttime for much of my shift.

View
The view from NOAA Ship Oscar Dyson
Sunset
Views (and sunsets) like these make it easy to work the night shift!

Karah Nazor: Sorting Protocol and the Ubiquitous Tunicates of the Central CA Coast: Salps and Pyrosomes, May 30, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: May 30, 2019

Last night I fell asleep, twice, at the lab bench in between trawls, since I am still adjusting to being on the night shift.  We worked from 9:00 P.M. to 6:30 A.M. After the shift I had a nice hot shower and slept a solid 9 hours from 7:00 AM to 4:00 PM.  Hopefully, I will be less drowsy tonight!

Upon waking, I went to the galley and grabbed some Raisin Bran and coffee and took it up to the flying bridge to hang out with Ornithologist Brian Hoover.  Our current location is in the middle of the Channel Islands, an area I know something about because my friend Evan Morrison, mentioned in my first blog, helps with the Channel Islands Swimming Association, and I would like to swim between these islands one day.  Lauren Valentino, Flora Cordoleani, Ily Iglesias and I congregated on the flying bridge and decided we should exercise. We joined Flora in her squat challenge (80 squats on this particular day), followed by 5 minutes of planking and a bit of erging.  Half of female members of the fish sorting team are avid rock climbers. They did lots of pull-ups using the rock ring climbing training holds that are installed there.

It felt nice and warm when the ship stopped for deployment of the Conductivity, Temperature and Depth (CTD) Rosette, and it got chilly again as the wind picked up when the ship started moving again. We saw a few whale spouts in the distance and at 5:30 P.M. we went down to the galley for a delicious meal of steak and mashed potatoes.  I am beginning to really appreciate how nice this whole experience has been in terms of amenities. The NOAA Reuben Lasker first set launch in 2014 and is a state of the art fisheries vessel with a sophisticated acoustics lab, fish lab, dynamic positioning system, CTD, etc., but is ALSO equipped with creature comforts including a movie lounge, an ice cream cooler loaded with ice cream sandwiches, snickers, fruit pops, you name it, and my personal favorite – a coffee bar where all coffee is freshly ground, an espresso machine, and all varieties of milk and creamers, including Reese’s cup whipped cream. The mattress in my stateroom bunk is quite comfortable and the shower gets hot within seconds! I doubt it can get much better than this for a research experience at sea?

Game Plan and Trawling Line: Point Sal line with five 15 minute hauls.

I am familiar with the sorting protocol now. The catch is dropped from the net into the bucket by members of the deck crew and survey tech, with the oversight of Keith Sakuma, Chief Scientist and NOAA Operations Officer Keith Hanson.  The bucket is immediately placed in the fish lab and this is when the fish sorting team starts our work.

Cobb Trawl net
Dropping the catch from the Cobb Trawl net into the bucket.
fish on a sorting tray
A volume of fish just placed on a sorting tray. This catch has a lot of anchovies, krill, and California smoothtongues.
Separating the krill
Separating the krill from the myctophids, Northern anchovies, and California smoothtongues.
Sorting fish group photo
Team Red Hats sorting fish. NOAA’s Keith Hanson in the rear left side.


SORTING AND COUNTING METHOD

We start by carefully picking through a 2000 mL or 5000 mL volume of the harvest, depending on Keith Sakuma’s initial assessment of the species density and volume in the bucket.  The first volume of catch to be sorted is evenly dispersed onto four white sorting trays arrayed on the main lab bench. Once you have a pile of the catch on your tray, you start to separate them into piles of different types of organisms, such as Northern anchovies, ctenophores, krill, salps, pyrosomes, Californian smoothtongues, squid, rockfish, myctophids, and young of year (YOY) fish.  I prefer to use my hands for sorting while others use forceps. Once sorted, we count the number of individuals for each species. If we have difficulty identifying an animal that we have not yet seen, we ask Keith Sakuma or a more experienced team member to help with identification. YOY fish, some in larval form, are particularly difficult for me.

Once sorted and counted, we verbally call out the common name and number of organisms to Keith Sakuma who manually records the data in a 3-ring binder for the lab hard-copy.   For smaller organisms, such as krill or salps, or in hauls with a high number of any particular species, it would be quite tedious to pick out and count each individual in the total haul.  This is why we start with a small subsample volume or 0.5, 2 or 5L, count the individuals in that small volume, establish the ratio for the number of individuals in that volume, and then extrapolate and calculate by the total volume of the haul.  For example, if we counted 97 pyrosomes in the initial 5L sort, and we collected a total of 1000L, then we can say that there are 19,400 pyrosomes in the haul.

Chief Scientist Keith Sakuma
Chief Scientist Keith Sakuma recording the data from a haul during sorting.

Once 20 individuals of each species have been called out, we no longer have to count that species since the ratio for this catch has already been established and to expedite sorting the rest of the volume.  Following sorting, the length of the twenty representatives of each species is measured using electronic calipers and the values populate on an Excel spreadsheet. After measuring, specimens requested by various research institutes including Scripps Institution of Oceanography, Moss Landing, and Monterey Bay Aquarium Research Institute (MBARI) are collected, labelled and frozen.

Flora Cordoleani
Flora Cordoleani keeping track of which specimens are to be preserved for various research groups.
Keith Sakuma bagging specimens to send to collaborators.

Creature(s) feature: Salps and Pyrosomes. 

Salps What are these strange gelatinous organisms in our catch that look like little puddles of clear jelly with a red, green, yellow, and brown digestive organ in the center?  They are goopy, small and slippery making them difficult to pick up by hand. They float on the sea surface and are ubiquitous in our hauls BUT NOBODY KNOWS ABOUT THEM.

These creatures are called salps and belong to the subphylum Tunicata. Tunicates have a notochord in their early stage of life which makes them members of the phylum Chordata, to which humans also belong. Having a transparent body is a way escape being preyed upon.

A group of salps. This species is dime to quarter sized and this number of salps occupies a volume of ~10-15 ml once placed in a beaker.
Salp digestive organs.

Salps are planktonic tunicates  That can be found as individual salps or in long chains called blastozooids.   The salps shown in the photo below were individuals and were notable in most of our hauls. Individual salps in this pile are dime to quarter sized and occupy a volume of ~10-15 ml. We measured the volume of salps in every haul.

While on the topic of salps, I will tell you about a cool 1 inch long salp parasite I found on my sorting tray (see image below). Keith Sakuma explained that it was a deep sea amphipod called Phronima which is a parasitoid that takes up residence inside of a salp’s body, eats the salp’s organs, and then lays its eggs inside of the salp. The King-of-the-salmon, Trachipterus altivelis, (which we are also catching) uses its protrusible jaw to get inside of the salp just to eat this amphipod!

Phronima amphipod
Phronima amphipod – lives and reproduced in salp after eating the salp’s organs. King-of-the-salmon fish use their protrusible jaws to eat the amphipod.
King-of-the-salmon
King-of-the-salmon, Trachipterus altivelis
King-of-the-salmon jaw protruded
King-of-the-salmon, Trachipterus altivelis, who preys upon phronima living inside of salp, with jaw protruded.
A large haul full of salps.

Another type of salp we keep catching is Thetys vagina, a large solitary species of nektonic salp that feeds on plankton, such as diatoms, and is an important carbon sink in the ocean. Thetys has an external surface, or test, that is covered with bumps and ridges, as seen in the photo below.

Thetys vagina, the twin-sailed salp.
Thetys vagina, the twin-sailed salp.
internal filtering organ
The internal filtering organ of Thetys vagina.
Kristin Saksa examining a larger Thetys
Kristin Saksa examining a larger Thetys vagina, or the twin-sailed salp. The dark colored tentacles are downward facing. This is the siphon where water enters the sac-filled body.

Pyrosomes Pyrosoma atlanticum are another type of planktonic tunicate which are very numerous in most of our hauls. Pyrosomes look like bumpy pink hollow tubes with openings on both ends. They are rigid in structure and easy to pick up by hand, whereas salps are goopy and difficult to pick up by hand.  We have collected some pyrosomes that are 13 inches long, while most are in the 4-6 inch range. The small pyrosomes look like clear Tic Tacs, but they do not taste as such.

Pyrosoma atlanticum
Pyrosoma atlanticum, with an ~6 inch specimen on the left and small pyrosomes on the right.

How can pyrosomes be so ubiquitous just 20 miles or so off of the Central California Coast, but I have never seen one that has floated up on the beach or while swimming?

Pyrosoma atlanticum are also planktonic tunicates, but are colonial organisms made up of many zooids held together by a gelatinous structure called the tunic. One end of the tube is wide open and filters the water for zooplankton and phytoplankton, while the other end is tighter and resembles a diaphragm or sphincter. The pyrosomes we harvested appeared in diverse array of pinks and purples.  Pyrosomes are believed to harbor intracellular bioluminescent bacteria. Pyrosomes are drifting organisms that swim by beating cilia lining the branchial basket to propel the animals through the water and create a current for filter feeding. 

Pyrosome rainbow
Pyrosoma atlanticum assorted by color.
Kristin Saksa
Moss Landing Graduate Student Kristin Saksa excited about the large haul of Pyrosoma atlanticum.
high-five
Pyrosoma atlanticum high-five.

Roy Moffitt: Calling in the Drones, August 13, 2018

NOAA Teacher at Sea

Roy Moffitt

Aboard USCGC Healy

August 7 – 25, 2018

 

Mission: Healy 1801 –  Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: August 13, 2018

 

Current location/conditions: Evening August 13 – northwest of Icy Point Alaska

Air temp 34F, sea depth 45 m , surface sea water temp 42F

 

Calling in the Drones

We have not seen another ship or any other sign of civilization since we left Nome, until today when NOAA scientists coordinated an at sea meeting between the Healy and two saildrones.  Saildrones are remotely piloted sailboats that roam the seas without anyone on board.  A given route is programmed for collecting data and changes to the sailboat’s survey area can be given directly by satellite through the Internet.   After not seeing anything on the horizon for many days when the sail drone came into view it was quite eerie for me.  It was like a random floating traffic cone dropped in the Arctic.  I was amazed that it did not tip over.  The saildrone has a relatively large keel (the fin part of the boat you cannot see under water) to help it from tipping over.  The boat itself is about 7 m long (23 ft)  x 5 m tall ( 16.3 ft) x 2.5 m wide (8.2 ft) with a traveling speed of 3 to 5 knots.

Saildrone on the ocean
The saildrone is a remotely piloted sailboat that contains many scientific instruments.

We collected surface water samples near the drone that will be tested to verify the accuracy of the drones reporting instruments.

The instruments on a saildrone measure weather conditions and ocean conditions and properties.  The ocean data includes measurements for temperature, wave height, sea depth, currents, pH, salinity, oxygen, and carbon dioxide.  Underwater microphones listen for marine mammals and an echosounder can keep track of fish that pass by.   This is a wealth of information in an area of the world where there are so few ships to report back weather and sea observations to civilization.

 

Today’s Wildlife Sightings

We caught Thysanoessa inermis in the big Methot net today. I had to have Nissa Ferm, a fisheries biologist from Lynker Inc working under contract for NOAA, spell that word out for me. She wrote it down without hesitation. I found this amazing because even spell check doesn’t recognize those words.  Nissa identifies many specimens we catch by eye and then verifies identification under a microscope. In general terms, Thysanoessa inermis is a type of organism often referred to as krill and is only about a centimeter in length.

Thysanoessa inermis, a species of krill
Thysanoessa inermis, a species of krill

Thysanoessa inermis is a vital member of the bottom of the food chain and an animal that eats phytoplankton. Phytoplankton is a microscopic plant that lives in the sunlit layers of the ocean and gets energy from the sun.  As with all plants, this is done through the process of photosynthesis. In the case of phytoplankton being an underwater plant, it uses carbon dioxide dissolved in the water in its photosynthesis process. Thysanoessa inermis helps gather this energy in by eating the phytoplankton and then becomes the prey of much larger creatures in the marine food chain such as fish and whales.

 

Now and Looking Forward

Although it was short lived, we saw our first snow flurry today.  It was incredible to see snowflakes in​ August! I am looking forward to more snowflakes and continued cool weather. ​

Pam Schaffer: Sampling the Food- Assessing Krill Populations July 5, 2018

NOAA Teacher at Sea

Pam Schaffer

Aboard NOAA Ship Bell M. Shimada

July 2-10, 2018

Mission: ACCESS Cruise

Geographic Area of Cruise: North Pacific:  Greater Farallones National Marine Sanctuary, Cordell Bank National Marine Sanctuary

 

Weather Data from the Bridge

Date July 5 2018
Time 1100
Latitude 37 30.1’N
Longitude 123 08.5’W
Present Weather/ Sky Cloudy
Visibility (nm) 12
Wind Direction (tree) Light
Wind Speed (kts)  Variable
Atmospheric Pressure (mb) 1021.3
Sea Wave Height (ft) <1
Swell Waves Direction (true) 270°
Swell Waves Height (ft) 1-2
Temperature  Sea Water (C) 13.0°
Temperature Dry bulb (C)

Air Temperature

16.7°
Temperature Wet Bulb (C ) 13.7°

 

Science and Technology Log

Krill are small crustaceans (think shrimp-like) that inhabit the world’s oceans.  They are an essential component of marine ecosystems, residing near the bottom of the food chain.  Krill are a staple in the diet of whales, squid, octopuses and fish.  Understanding the variability of krill populations is an important way of monitoring ocean health.    In order to track the krill population, scientists do two things; they use acoustics to estimate the biomass and use nets to verify the results from the acoustics.

Deploying the Tucker Trawl
Deploying the Tucker Trawl

Scientists use a large net mechanism called a “Tucker Trawl” to collect samples of krill and other zooplankton at various depths in the water column.  A Tucker Trawl is a set of opening and closing cone shaped nets made of fine mesh (holes that are 333 microns in diameter).  The unit we are using has three sections, each with a mouth diameter of 1 meter by 1.5 meters and a sample collector container on the bottom. Krill is collected by dropping the net in a specific location to a specified depth while the ship is slowly moving at a rate of approximately two knots per hour (2.3 mph).  An onboard crane deploys and retrieves the mechanism using a heavy cable. On this cruise we’ve sampled to depths as much as 200 meters deep.   The Tucker Trawl depth and when the nets are opened can be adjusted in order to sample several vertical positions in the water column during a single trawl.

Processing Samples
Processing Samples

Once the samples are back onboard the nets are sprayed down and the collectors are carefully emptied into storage containers for later analysis onshore.  The content analysis will count and identify the various species collected in the sample, as determining sex, size, lifecycle which vary by species.    We’ve observed two different species in our samples; Euphasia pacifica (smallest and most abundant) and Thysanoessa spinifera (larger with a spiny back).  Data collected via these Tucker Trawl sessions is used to construct models for assessing krill biomass using acoustic measuring technology.

 

Thysanoessa spinifera upclose
Thysanoessa spinifera upclose

Loads of Krill
Loads of Krill

Personal Log

Tucker Trawling is wet business but really interesting.   It’s a great learning experience working with Dr. Jaime Jahncke to deploy the nets and process the samples.  We’re doing several trawls each day throughout the cruise- one session around noon and another set around midnight.   I’ve adjusted my sleeping schedule to get a few hours of rest before we start the midnight shift and then I sleep a few hours after we finish working around 4:30 am.  I’m tired but really happy to be here.

 

Did You Know? 

                       

The name “krill” is Norwegian for “small fry of fish”.

Christine Webb: August 21, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/21/2017

Latitude: 49.48 N

Longitude: 128.07 W

Wind Speed: 10 knots

Weather Observations: Sunny

Science and Technology Log

Today was our first chance to use the Methot net, and it was a lot of fun! The Methot net is smaller than the net that we usually use, and it is used to catch smaller organisms. Today we were targeting euphausiids. We thought we saw a pretty good aggregation of them on the 120 kHz acoustics data, where they appear the strongest of the three frequencies we monitor. We needed to validate that data by trawling the area to find the source of the backscatter and make sure they really were what we thought they were. There are many scientists who use data on euphausiids, so this was a good opportunity to provide them with some additional data. Because we’ve been working mostly on larger organisms, I was excited for the chance to see what a Methot net would pull up.

IMG_20170821_125553193_HDR
The Methot net coming up with its haul

It was very exciting that when the net came up, we had TONS of euphausiids! (“Tons” here is not used in a literal sense…we did not have thousands of pounds of euphausiids. That would have been crazy). Although we did not have thousands of pounds of them, we did have thousands of specimens. I’m sure thankful that we only had to take data on a subsample of thirty! I got to measure the lengths and widths of them, and using the magnifying lenses made me look very scientific.

IMG_20170821_145225093
Measuring euphausiids

Along with euphausiids, we also found other species as well. We found tiny squids, jellies, and even a baby octopus! It was adorable. I’ve never considered that an octopus could be cute, but it was.

IMG_20170821_131649146
Baby octopus

We also measured volumes and weights on samples of the other specimens we found, and I used graduated cylinders for the first time since college. We would put in a few milliliters of water, add our specimens, and then calculate the difference. Voila! Volume. Good thing I remembered to call the measurement at the bottom of the liquid’s meniscus… I could have messed up all the data! Just kidding… I’m sure my measurements weren’t that important. But still – good thing I paid attention in lab skills. It was definitely a successful first day with the Methot net.

Personal Log

The big buzz around the ship today was the solar eclipse! I was even getting excited at breakfast while I ate my pancakes and made them eclipse each other. We got lucky with weather – I was nervous when I heard the foghorn go off early in the morning. Fortunately, the fog lifted and we had a pretty good view. We all sported our cheesy eclipse shades, and the science team wore gray and black to dress in “eclipse theme.” Even though we couldn’t see the totality here, we got to see about 85%. We’re pretty far north, off the coast of Vancouver Island in Canada. The mountains are beautiful! Seeing land is always a special treat.

Here are some eclipse pics:

IMG_20170821_091709694
Rockin’ our cheesy eclipse shades

IMG_20170821_101636324
Some science team members enjoying the eclipse

IMG_20170821_100819772
Eclipse!

The eclipse would have made the day exciting enough, but the excitement didn’t stop there! While the scientists and I were working in the wet lab, we heard that a pod of orcas was swimming within eyesight of the ship. We dropped everything and hurried to take a look. It was so amazing; we could see five or six surface at once. They must have been hunting. We only see orcas when we’re close to land because their prey doesn’t live in deeper waters. Deeper into the ocean we are more likely to see gray or humpback whales.

It’s almost time for dinner…we sure have been spoiled for food! Last night we had pork loin and steak. I’m not sure that our chef will be able to top himself, but I’m excited to find out. I have heard rumors that he is very good at cooking the fish we’ve been catching, and that really makes me wish I liked seafood. Unfortunately, I don’t. At all. Not even enough to try Larry’s fried rockfish. Luckily, he makes lots of other food that I love.

Tonight after dinner I think Hilarie, Olivia, and I are going to watch Pirates of the Caribbean 2. Last night we watched the first movie while sitting on the flying bridge. It was a pretty cool experience to feel the spray of the sea while watching pirates battle!

IMG_20170820_174605473_HDR
Movie time!

That’s all for now; I’ll be back with more scientific fun soon!

Did you know?

Krill (the type of euphausiid we studied) is one of the most populous species on earth. It basically fuels the entire marine ecosystem.

 

David Amidon: Science @ Sea, June 8, 2017

NOAA Teacher at Sea

David Amidon

Aboard NOAA Ship Reuben Lasker

June 2 – 13, 2017

Mission: Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean off the California Coast

Date: June 8, 2017

 

 

 

Science and Technology Log

The main scientific research being completed on the Reuben Lasker during this voyage is the Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey and it drives the overall research on the ship during this voyage. Rockfish are an important commercial fishery for the West Coast. Maintaining healthy populations are critical to maintaining the fish as a sustainable resource. The samples harvested by the crew play an important role in establishing fishery regulations. However, there is more happening than simply counting rockfish here on the ship.

How does it work? Let me try to explain it a bit.

 

First, the ship will transfer to a specific location at sea they call a “Station.”

IMG_1590
Collection stations off the California Coast that the Reuben Lasker trawls annually.

For a half hour prior to arrival, a science crew member will have been observing for Marine Mammals from the bridge area. When the station is reached, a new observer from the science crew will take over the watch outside on the deck. The fishermen on the boat crew will then unwind the net and launch it behind the boat. It must be monitored from the deck in order to ensure it is located 30 m below the surface. Once everything is set, then the ship trawls with the net at approximately 2 knots. Everything must be consistent from station to station, year to year in order to follow the standardized methods and allow the data recorded to be comparable. After the 15 minutes, then the crew pulls the net in and collects the sample from the net. This process is potentially dangerous, so safety is a priority. Science crew members can not go on the deck as they have not received the proper training.

 

 

Timelapse video of the fishermen bringing in a catch. 6/7/17 (No sound)

 

Once the sample is hauled in, the science personnel decide which method will be used to establish a representative sample. They pull out a sample that would most likely represent the whole catch in a smaller volume. Then we sort the catch by species. After completing the representative samples, they will eventually stop taking counts of the more abundant organisms, like krill. They will measure the volume of those creatures collected and extrapolate the total population collected by counting a smaller representative sample. Finally, we counted out all of the less abundant organisms, such as squid, lanternfish and, of course, rockfish. After the sample is collected and separated, Chief Scientist Sakuma collects all of the rockfish and prepares them for future investigations on shore.  

 

 

A selection of species caught off the coast of San Clemente. These include Market Squid, Anchovies, Red Crab, King-of-Salmon (the long ribbonfish), and Butterfish, among others.

NOAA has used this platform as an opportunity. Having a ship like the Reuben Lasker, and the David Starr Jordan before that, collecting the samples as it does, creates a resource for furtAher investigations. During the trawls we have catalogued many other species. Some of the species we analyzed include Sanddab, Salp, Pyrosoma, Market Squid, Pacific Hake, Octopus, Blue Lanternfish, California Headlightfish and Blacktip Squid, among others. By plotting the biodiversity and comparing the levels we recorded with the historic values from the stations, we gain information about the overall health of the ecosystem.

What happens to the organisms we collect? Not all of the catch is dumped overboard. Often, we are placing select organisms in bags as specimens that will be delivered to various labs up and down the coast.

IMG_1519
Collecting subsets for classification

This is a tremendous resource for researchers, as there is really no way for many of these groups to retrieve samples on their own. Rachel Zuercher joined the crew during this survey in part to collect samples to aid in her research for her PhD.

Along with the general species analysis, the team specifically analyzes the abundance of specific krill species. Krill forms the base of the marine ecosystems in the pelagic zone. They are a major food source for many species, from fish to whales. However, different krill species are favored by different consumers. Therefore, an extension of the Ecosystem Assessment involves determining the abundance of specific krill species. Thomas Adams has been responsible for further analyzing the krill collected. He counts out the representative sample and use microscopes to identify the species collected based on their physical characteristics.  

Additionally, at most stations a Conductivity, Temperature and Depth cast (CTD) is conducted. Basically, bottles are sent overboard and are opened at a specified depth.

IMG_1589
The apparatus for collecting water during CTD casts

Then they are collected and the contents are analyzed. Often these happen during the day prior to the Night Shift taking over, with final analysis taking place after the cruise is complete. This data is then connected with the catch numbers to further the analysis. Ken Baltz, an oceanographer on the ship, uses this information to determine the production of the phytoplankton based on the amounts of chlorophyll detected at depth. This is an important part of the food web and by adding in this component, it makes the picture below the surface clearer.

 

 

img_1488.jpg
NOAA Corps’ Ryan Belcher completing the CTD collection for a station.

Finally, there are two more scientific investigations running as we cruise the open seas during the daylight hours. Michael Pierce is a birdwatcher from the Farallon Institute for Advanced Ecosystem Research who is conducting a transect survey of Seabirds and Marine Mammals. He is based on the Flying Bridge and catalogs any birds or marine mammals that pass within 300 meters of the ship’s bow. Although difficult, this study attempts to create a standardized method for data collection of this nature. As he explained, birds are more perceptive than we are – what looks like open ocean really varies in terms of temperature, salinity and diversity below the surface. Therefore, birds tend to favor certain areas over others. These are also important components of the food web as they represent upper level predators that are not collected in the trawl net. Also, on the bottom of the ship transducers are installed that are able to gather information through the EK60 Echosounder. This sonar can accurately identify krill populations and schools of fish underwater. Again, adding the data collected from these surveys help create a much more complete understanding of the food web we are analyzing out on the open sea.

 

IMG_1591
Sonar data from the EK60

Personal Log

 

Sunday, June 4

The waves were very active all day. Boy am I glad I’m wearing the patch. There was so much wind and the waves were so high, there was a question if we were even going to send the net out. High wind and waves obviously add an element of concern, especially for the safety of the boat crew working the net.

I spent some of the day up on the Bridge- the section of the boat with all of the navigation equipment. The Executive Officer (XO) gave me an impromptu lesson about using the map for navigation. They have state-of-the-art navigation equipment, but they also run a backup completed by hand and using a compass and straightedge just like you would in math class. Of note – the Dungeness Crab season is wrapping up and many fishermen leave traps in the water to catch them. When the boat is passing through one of these areas, someone will act like a spotter so the boat can avoid getting tangled up. When I was looking with him, we saw some whale plumes in the distance.

We did launch the net twice Sunday night, collecting a TON of krill each time. In the first batch, we also caught some squid and other small prey species. The second trawl was very surprising. Despite cutting it down to a 5 minute trawl, we caught about the same amount of krill. We also caught more squid and a lot of young salmon who were probably feeding on the krill.  

IMG_1493
That is a ton of krill!

 

Monday, June 5

I am getting used to the hours now – and do not feel as guilty sleeping past 2PM considering we are up past 6 in the morning. It will make for a tricky transition back to “the real world” when I go home to NY!

During the day, spent some time just talking with the science folks and learning about the various tasks being completed. I also spent some time up on the Flying Bridge as they said they had seen some Mola, or Giant Ocean Sunfish (although I did not see them). I did have a chance to make a few videos to send to my son Aiden’s 3rd grade teacher back in NY. It did not work out as well as I had hoped, but considering we are out in the middle of the ocean, I really can’t complain about spotty wi-fi.

Once we started the night shift, we really had a good night. We completed work at 5 stations – which takes a lot of time. We saw a LOT of biodiversity last night – easily doubling if not tripling  our juvenile rockfish count. We also saw a huge variety of other juvenile fish and invertebrates over the course of the night. We finally wrapped up at 6:30 AM, what a night!

Tuesday, June 6th

We found out today that we will need to dock the ship prematurely. There is a mechanical issue that needs attention. We are en route straight through to San Diego, so no fishing tonight. However, our timing will not allow us to reach port during the day, so we will get a chance to sample the southernmost stations Wednesday night. Thus is life at sea. The science crew is staying on schedule as we, hopefully, will be back on the water this weekend.

Wednesday, June 7th

After a day travelling to San Diego, we stopped at the stations near San Clemente to collect samples. Being much farther south than before, we saw some new species – red crabs, sardines and A LOT of anchovies. Closer to shore, these counts dropped significantly and krill showed up in numbers not seen in the deeper trawl. Again, I am amazed by the differences we see in only a short distance.

 

More from our anchovy haul- the bucket contains the entire catch from our second trawl, the tray shows how we analyzed a subset. Also on the tray you find Red Crab, Salps, Mexican Lanternfish and Krill.

 

David Amidon: The Night Shift, June 4, 2017

NOAA Teacher at Sea

David Amidon

Aboard NOAA Ship Reuben Lasker

June 2 – 13, 2017

Mission: Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean off the California Coast

Date: June 4, 2017

 

Science and Technology Log

All of the work for the Juvenile Rockfish Survey is completed at night – we probably will not even get going  most nights until after 9 PM. Wonder why so late? Any guesses?

This is a night time operation because we are focused on collecting prey species – we are not catching full grown rockfish, only juveniles which are less than a years old (YOY = Young of the Year). As Keith Sakuma, the Chief Scientist for the Reuben Lasker, explained – this survey gathers information about the juvenile rockfish so that NOAA can pass information onto the states in order to establish a sustainable fishery. This could lead to changes in fishing regulations based on the abundance of the juvenile stocks, which would be adults down the road. They trawl at night for two main reasons- during the day time, the rockfish would simply see the net and swim away. Also, many of the other creatures being catalogued are prey species that hide in the depths during the day to avoid predators, rising to the surface as the night moves on.

The night shift includes the science personnel and the crew of the boat. The boat crew not only operates the ship, but the fisherman also send out the trawl net and bring it back in. While the boat crew rotates on a specified schedule, the night-time science group keeps going until the work is done. However, these two groups are very much in sync and really work well together.  This blog entry will be my introduction into the procedures and initial results of our work from the first couple nights. I will provide much more detail in later posts.

The science personnel for this leg of the voyage includes myself and Chief Scientist Sakuma as well as Cherisa and Ryan, who are members of the NOAA Corps; Thomas, an undergrad student from Humboldt State; Rachel, a PhD student at UC-Santa Cruz; and Maya, a Hollings undergraduate scholar from UNC-Wilmington.

Pink shrimp 7
The Night Crew at work separating species during the shrimp haul. Photo by Keith Sakuma.

The Juvenile Rockfish Survey, boiled to its simplest terms, consists of a midwater trawling net behind the ship, meaning it does not float and it never touches the bottom. Anything caught will be sorted and analyzed by the science crew. In reality, it is a bit more complicated.

First of all, net operations take place at specified stations that the ship revisits periodically and have been used for some time. The stations for a night run on the same latitude line, running west away from the coast.

Before sending the net out, we need to run a Marine Mammal Watch from the bridge for 30 minutes. If a marine mammal, such as a sea lion, dolphin or whale, is spotted, then they make efforts to avoid getting them tangled in their nets, or alter their behavior in any way. Sometimes the trawl for that station has to be abandoned due to wildlife activity, although we have not seen any marine mammals during our investigation so far.

IMG_1428
Getting ready for my shift on the Marine Mammal Watch

Once the ship arrives at a station, the boat crew sends out the net. After it reaches the depth of 30m, they trawl for a 15 minute interval. A science crew member is also sent outside on deck to continue the marine mammal watch for the duration of the trawl. Finally, after the time is up, they bring in the net and empty its contents into buckets, which are then transferred to the science crew.

This is when our work began. While we are on the lookout for rockfish, we actually found very few of these. A majority of our catch consisted of pyrosomes and krill. The science crew employed a number of measures to estimate the numbers of these creatures, as counting them one-by-one would have taken a long, long time to do. We did volume approximations and analysis of representative samples for these creatures. When we found fish or other species of note, we would pull the individuals out, classify them and record their lengths. Samples were frozen for use by researchers working at other locations on the West Coast.

IMG_1368
Measuring the mantle of a Market Squid. Photo by Rachel Zuercher.

Some examples of the species we collected:

IMG_1459 (1)
Juvenile Rockfish collected off the “Lost Coast”

IMG_1375
Sample of other species collected and catalogued, including: Medusa Fish, Gonatus Squid, Thetys and California Headlight Fish

We worked solid through four stations on the first night, wrapping up just before 6 AM. We will be at it again, if weather permits, every night of the voyage.

Personal Log

Thursday, June 1st

This was a very long day. I left my house in Syracuse, NY at 6 AM, flying out of the airport around 8 AM. After a quick transfer in Chicago, I flew in a Boeing 737 all the way to San Francisco. I then made it to Eureka, California around 4 PM (West Coast time) for an overnight stay. Fortunately, I met up a few of the science personnel for dinner who were also headed to the Reuben Lasker in the morning. Eureka was beautiful, surrounded by oceans and redwoods.

IMG_1282
Sunset in Eureka, CA

Friday, June 2nd

In the morning, we caught a transfer boat at the public marina out to the Reuben Lasker, anchored a few miles away off the coast. Once the passage was done, we settled in and met some of the crew. I even shared a coffee with the CO- or Commanding Officer. Everyone onboard has been so open and welcoming – you can tell they enjoy their work.

IMG_1287
Transfer boat that to us to the Reuben Lasker

After dinner, we finally got down to sciencing. (That’s my word – I’m sticking to it.) I was impressed by how different the catch was from each station, even though they are only a few miles apart. You can try to start telling a story right there. That’s kind of the point to this whole survey. To try to tell a story about the overall health of the pelagic ecosystem based on representative samples. Piece by piece, year by year, data points can turn into meaning when connections are made. I think it is science in the purest form -gathering data for the sake of having information. By having a long-term data base of information about all of the other creatures collected, not just the rockfish, we can decipher meaning by analyzing population trends and collating them with other phenomena, such as weather, fishing or pollution. 

Saturday, June 3rd

I am getting adjusted to the day/night pattern of the Night Shift. I got to sleep around 6:30 AM and woke up close to 2 PM. I was able to grab a quick cereal from the Galley and then started in on some work. Dinner was served at 5 PM – filet mignon with crab legs? The cooks, or stewards, Kathy & Patrick do an amazing job. They also save meals for people running the late schedule. For the next week and change, lunch is served around midnight and breakfast will be close to 6 AM, before we head to sleep.

Today, the wind picked up and the waves kicked up with it. We cruised around the “Lost Coast” and ran two stations at night. We were scheduled for more, but the waves got larger the further the ship is off the coast. Today’s word is shrimp – we hauled in more shrimp than you could count. We also found a number of rockfish in one of the stations, although there were very few found in our second trawl.

Did You Know?

… that there are over 85 species of krill?

http://www.krillfacts.org/1-krill-facts-center.html

Dana Chu: May 17, 2016

NOAA Teacher at Sea
Dana Chu
On Board NOAA Ship Bell M. Shimada
May 13 – 22, 2016

Mission: Applied California Current Ecosystem Studies (ACCESS) is a working partnership between Cordell Bank National Marine Sanctuary, Greater Farallones National Marine Sanctuary, and Point Blue Conservation Science to survey the oceanographic conditions that influence and drive the availability of prey species (i.e., krill) to predators (i.e., marine mammals and sea birds).

Geographic area of cruise: Greater Farallones, Cordell Bank, and Monterey Bay National Marine Sanctuaries

Date: Tuesday, May 17, 2016

Weather Data from the Bridge
Clear skies, light winds at 0600 increased to 18 knots at 0900, 6-8 feet swells

Science and Technology Log

Ahoy from the Bell Shimada! Today, I will explain three of the tools that are deployed from the side deck to obtain samples of the water and the ocean’s prey species.

First off we have the Harmful Algal Bloom Net, also known as the HAB Net, which is basically a 10-inch opening with a 39-inch fine mesh netting attached to a closed end canister. The HAB net is deployed manually by hand to the depth of 30 feet three consecutive times to obtain a water sample. The top fourth of the water collected is decanted and the remaining water (approximately 80ml) is transferred to a bottle which is then sealed and labeled with the location (latitude, longitude), date, time, vertical or horizontal position, and any particular comments. The samples will eventually be mailed off to California Department of Health Services lab for analysis for harmful toxins from algae that can affect shellfish consumers.

Next we have the hoop net, which is pretty much similar in design to the HAB net, except for a larger opening diameter of 3 feet (think hula hoop) and a net length of nine feet. The net tapers off into a closed container with open slits on the sides to allow for water drainage. The purpose of the hoop net to collect organisms that are found at the various depth levels of the deployment. The hoop net is attached to a cable held by the winch. The hoop net is lowered at a specific angle which when calculated with the speed of the vessel equates to a certain depth. The survey crew reports the wire angle sighting throughout the deployment.

Every time the hoop net is brought back up there is a sense of anticipation at what we will find once the canister is open. Coloring is a good indicator. Purple usually indicates a high concentration of doliolids, while a darker color may indicate a significant amount of krill. Phytoplankton usually have a brownish coloring. Many of the hoop net collections from today and yesterday include doliolids and colonial salps, neither are very nutrient dense. Yesterday we also found pyrosomes, which are transparent organisms that resemble a sea cucumber with little bumps and soft thorns along their body. The smallest pyrosome we came upon was two and a half inches with the largest over six inches long. A few small fish of less than one inch in length also showed up sporadically in these collections as well.

The Scientific team is looking for the presence of krill in the samples obtained. The Euphausia pacifica is one of the many species of krill found in these waters. Many tiny krill were found in the various hoop net deployments. On the last hoop net deployment for today and yesterday, larger sized krill of approximately 1 inch) were found. This is good news because krill is the dominant food source for marine mammals such as whales. Ideally it would be even better if the larger krill appeared more frequently in the hoop net samples.

Finally, we have the Tucker Trawl, which is the largest and most complex of the three nets discussed in today’s post. The Tucker Trawl consists of three separate nets, one for sampling at each depth: the top, middle, and bottom of the water column. Like the hoop net, the tucker trawl nets also have a canister with open slits along the side covered with mesh to allow water to drain. All three nets are mounted on the same frame attached to a wire cable held by the winch. As the Tucker Trawl is towed only one net is open at a time for a specific length of time. The net is closed by dropping a weight down along the tow. Once the weight reaches the net opening, it triggers the net to shut and sends a vibration signal up the cable line back to the surface which can be felt by the scientist holding the cable. The net is then towed at the next depth for ten minutes. Once the last net tow has been completed, the Tucker Trawl is brought back up to surface. Similar to the hoop net, the survey tech reads the wire angle throughout the deployment to determine the angle the cable needs to be at in order for the net to reach a certain depth. This is where all the Geometry comes in handy!

As mentioned already, with three nets, the Tucker Trawl yields three separate collections of the nutrients found within the top, middle and bottom of the water column. Once the nets are retrieved, each collection container is poured into a different bucket or tub, and then into a sieve before making it into a collection bottle. If there is a large quantity collected, a subsample is used to fill up a maximum of two bottles before the remainder is discarded back into the ocean. Once the samples are processed, an outside label is attached to the bottle and an interior label is dropped inside the bottle, formalin is added to preserve the sample organisms collected so that they can be analyzed later back in the lab.

Personal Log

It is so good to finally get my sea legs! I am glad I can be of use and actively participate. Cooperative teamwork is essential to getting everything to flow smoothly and on time. The Bell Shimada’s deck crew and NOAA team work hand in hand with the scientists to deploy and retrieve the various instruments and devices.

In the past two days I am getting a lot of hands on experience with deploying the HAB net to assisting with processing samples from the HOOP Net and Tucker Trawl. It’s always exciting to see what we might have collected. I can’t wait to see what the rest of the week may bring. I wonder what interesting finds we will get with the midnight Tucker Trawl samples.

Lesson Learned: Neatness and accuracy are imperative when labeling samples! Pre-planning and preparing labels ahead of time helps streamline the process once the samples are in hand.

Word of the Day:        Thermocline – This is the depth range where the temperature of the water drops steeply. The region above the thermocline has nutrient depleted waters and while the region below has nutrient rich waters.

 

Michael Wing: How to Sample the Sea, July 20, 2015

NOAA Teacher at Sea
Michael Wing
Aboard R/V Fulmar
July 17 – 25, 2015

Mission: 2015 July ACCESS Cruise
Geographical Area of Cruise: Pacific Ocean west of Marin County, California
Date: July 20, 2015

Weather Data from the Bridge: 15 knot winds gusting to 20 knots, wind waves 3-5’ and a northwest swell 3-4’ four seconds apart.

Science and Technology Log

On the even-numbered “lines” we don’t just survey birds and mammals. We do a lot of sampling of the water and plankton.

Wing on Fulmar
Wing at rail of the R/V Fulmar

We use a CTD (Conductivity – Temperature – Depth profiler) at every place we stop. We hook it to a cable, turn it on, and lower to down until it comes within 5-10 meters of the bottom. When we pull it back up, it has a continuous and digital record of water conductivity (a proxy for salinity, since salty water conducts electricity better), temperature, dissolved oxygen, fluorescence (a proxy for chlorophyll, basically phytoplankton), all as a function of depth.

CTD
Kate and Danielle deploy the CTD

We also have a Niskin bottle attached to the CTD cable. This is a sturdy plastic tube with stoppers at both ends. The tube is lowered into the water with both ends cocked open. When it is at the depth you want, you clip a “messenger” to the cable. The messenger is basically a heavy metal bead. You let go, it slides down the cable, and when it strikes a trigger on the Niskin bottle the stoppers on both ends snap shut. You can feel a slight twitch on the ship’s cable when this happens. You pull it back up and decant the seawater that was trapped at that depth into sample bottles to measure nitrate, phosphate, alkalinity, and other chemical parameters back in the lab.

Niskin bottle
Niskin bottle

When we want surface water, we just use a bucket on a rope of course.

We use a hoop net to collect krill and other zooplankton. We tow it behind the boat at a depth of about 50 meters, haul it back in, and wash the contents into a sieve, then put them in sample bottles with a little preservative for later study. We also have a couple of smaller plankton nets for special projects, like the University of California at Davis graduate student Kate Davis’s project on ocean acidification, and the plankton samples we send to the California Department of Health. They are checking for red tides.

Hoop net
Hoop net

We use a Tucker Trawl once a day on even numbered lines. This is a heavy and complicated rig that has three plankton nets, each towed at a different depth. It takes about an hour to deploy and retrieve this one; that’s why we don’t use it each time we stop. The Tucker trawl is to catch krill; which are like very small shrimp.  During the day they are down deep; they come up at night.

Tucker trawl
Part of the Tucker trawl

 

krill
A mass of krill we collected. The black dots are their eyes.

What happens to these samples? The plankton from the hoop net gets sent to a lab where a subsample is taken and each species in the subsample is counted very precisely. The CTD casts are shared by all the groups here – NOAA, Point Blue Conservation Science, the University of California at Davis, San Francisco State University. The state health department gets its sample. San Francisco State student Ryan Hartnett has some water samples he will analyze for nitrate, phosphate and silicate. All the data, including the bird and mammal sightings, goes into a big database that’s been kept since 2004. That’s how we know what’s going on in the California Current. When things change, we’ll recognize the changes.

Personal Log

They told me “wear waterproof pants and rubber boots on the back deck, you’ll get wet.” I thought, how wet could it be? Now I understand. It’s not that some water drips on you when you lift a net up over the stern of the boat – although it does. It’s not that waves splash you, although that happens too. It’s that you use a salt water hose to help wash all of the plankton from the net into a sieve, and then into a container, and to fill wash bottles and to wash off the net, sieve, basins, funnel, etc. before you arrive at the next station and do it all again. It takes time, because you have to wash ALL of the plankton from the end of the net into the bottle, not just some of it. You spend a lot of time hosing things down. It’s like working at a car wash except with salty water and the deck is pitching like a continuous earthquake.

The weather has gone back to “normal”, which today means 15 knot winds gusting to 20 knots, wind waves 3-5’ and a northwest swell 3-4’ only four seconds apart. Do the math, and you’ll see that occasionally a wind wave adds to a swell and you get slapped by something eight feet high. We were going to go to Bodega Bay today; we had to return to Sausalito instead because it’s downwind.

sea state
The sea state today. Some waves were pretty big.

We saw a lot of humpback whales breaching again and again, and slapping the water with their tails. No, we don’t know why they do it although it just looks like fun. No, I didn’t get pictures. They do it too fast.

Did You Know? No biologist or birder uses the word “seagull.” They are “gulls”, and there are a lot of different species such as Western gulls, California gulls, Sabine’s gulls and others. Yes, it is possible to tell them apart.

Andrea Schmuttermair, Bottom’s Up!, July 15, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oscar Dyson
July 6 – 25, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 15, 2015

Weather Data from the Bridge:
Latitude: 56 42.2N
Longitude: 153 46.5W

Sky:  Overcast; foggy

Visibility: 6nm
Wind Direction: 173 degrees

Wind Speed: 14 knots
Sea wave height: 2ft

Swell wave: 4-5ft

Sea water temp: 12.3C
Dry temperature: 11.5C

 

Science and Technology Log

In my last post we talked about the Aleutian Wing Trawl (AWT), the mid-water trawling net we use to take samples of pollock. There are two other types of nets we may use during our cruise, although not as frequently as the AWT.  Sometimes the echogram shows a large concentration of fish closer to the ocean floor. In this instance, we might use a bottom trawl net, known as the Poly Nor’easter (PNE), to “go fishing”. The process for putting out the net is similar to putting out the AWT, except that it is extended to just above the ocean floor in order to catch fish that are congregated towards the bottom. In our recent bottom trawl, we caught a lot of Pacific Ocean perch, or rockfish, and very few pollock.

It has been fascinating to see how scientists “do science” out here. Patterns and observations are important skills for scientists, and analyzing patterns and behaviors of fish help scientists to make informed decisions about whether they are seeing pollock, krill, rockfish, or something else entirely on the echogram. For example, acoustically, pollock and rockfish have the same reflectivity (and therefore are difficult to differentiate based solely on acoustics), but their behaviors are different. When we recently put out a bottom trawl net, we anticipated catching mostly rockfish because of the location we were at, and their schooling behavior close to the ocean floor. Rockfish are also usually found lower in the water column than pollock. Our first bottom trawl yielded quite a few rockfish, some jellies, several flatfish, and a few other types of fish. Just as we did with the pollock, we weighed, sexed and measured a sample of rockfish. These fish were a little more difficult to handle as they have sharp spines in several places.

There is a third type of net we deploy on this survey is called a Methot net. It’s named after Dr. Rick Methot, a famous fisheries modeler. This net has an opening of 5 square meters, and has a finer mesh than the AWT or the PNE at 2x3mm. At the end of the net is a small codend where the sample is taken from. This net is typically used to catch krill and macrozooplankton that would normally escape the larger nets. From the acoustic display, we would anticipate about 100-200 times more than what is actually caught in the net. Back scatter could be one reason for this. Scientists have worked to try and decrease this discrepancy by using strobe lights mounted on the net. The abundance tends to agree better with strobes on the net, with the hypothesis being that the organisms are blinded and don’t realize they’re going into the net.

Meet the Scientists

Kresimir smelling a capelin (smelt)- they smell like cucumbers!
Kresimir smelling a capelin (smelt)- they smell like cucumbers!

Chris, one of the scientists on board
Chris, one of the scientists on board

During one of our shifts, I had the opportunity to interview 2 of the scientists on our night watch team, Kresimir Williams and Chris Bassett. Their enthusiasm and passion for their work is evident in the discussions we have had and the work they are doing. It is great to work with scientists who are so knowledgeable and also patient enough to explain what we are doing here. Let’s meet them!

What is your educational background?

Kresimir:  I received my undergraduate degree in marine science from Samford in Birmingham, Alabama. During this time, I spent summers at Dauphin Island. I received my Master’s Degree in fisheries and aquaculture from Auburn (also in Alabama), and finally received my PhD in fisheries from the University of Washington.

Chris: I went to the University of Minnesota for my undergraduate degrees in mechanical engineering and Spanish. I then went on to receive both my Master’s & PhD in mechanical engineering at the University of Washington.

How long have you been working at the AFSC lab in Seattle?

Kresimir:  I have been working at the lab for 13 years as a research fisheries biologist.

Chris: I am currently working with both AFSC and the Applied Physics Lab at the University of Washington as a post-doctoral research associate.

What do you most enjoy about your work as a scientist?

Kresimir: I enjoy doing the research, discovering new things, and conducting field experiments.

Chris: The work that I do allows me to learn by playing with big kid toys in beautiful places; for example, the EK80, one of the broadband acoustic scattering systems brought on this ship

What has been a career highlight for you?

Kresimir:  The development of the CamTrawl (what we are currently using on our nets here on the Dyson). I have seen this project from development to operationalization.

Chris: Using broadband acoustics systems in a 4 month long lab experiment to detect crude oil spills under sea ice.

What does it mean to you to “do science”?

Kresimir: It means following a set of rules, and discovering things that can be repeated by other people. Remembering that data leads you to the answers rather than using it for something you want to prove.  Research generally generates more questions.  Finally, it means learning how the little piece of the world you are interested in works.

Chris: It means looking around and seeing what knowledge exists and where we can advance knowledge in that field and how we can do so. It’s understanding that often identifies more new questions than it answers.

What message would you give students who want to pursue a career in (marine) science?

Kresimir: Do your math homework! There are very few biologists out there discovering new things, so you need to bring something else to the table such as coding or geosciences. There is a lot of quantitative modeling and interplay between other sciences such as physics and chemistry.

Chris: Do your math homework! Having skills in a little bit of everything – all of the sciences come into play. You also need good writing skills.

What is your favorite ocean creature?

Kresimir:  I love all kinds of fish because I can find something unique about each one of them.

Chris: Bluefin tuna

Thanks for the interview gentlemen!

Personal Log

The Oscar Dyson runs for 10 months out of the year, more than most of the other ships in the NOAA fleet. Many of the people on this ship are here almost year-round, and call the Dyson their home. Having places where they can relax and feel at home is important. Besides up on the bridge or out on the deck, another place to spend some free time is in the lounge. Equipped with beanbag chairs, a large couch, and some comfy chairs, the lounge encourages people to hang out, watch a movie, play video games, or just relax after their shift.  We have a large selection of movies, and have access to some of the most recent movies as well. We recently watched Mockingjay, the third movie in the Hunger Games series. It was a good movie, but not as good as the book.

I am really enjoying my time so far on the Oscar Dyson, mostly because I am being challenged to learn new things. We’ve had a bit of downtime the last couple nights, and it has been a good opportunity for me to learn the game of the ship, cribbage. This is a popular game amongst the scientists, and you can typically find some of them playing a quick round in between shifts or as a break from work. I’m by no means great at it yet, but I expect by the end of this trip I’ll be a lot better.

Filleting some rockfish
Filleting some rockfish

Fileting Rockfish
Fileting Rockfish

When I first got on board the Dyson, I remember talking to one of the scientists about filleting fish. I’m not too sure how we got on that subject, but it occurred to me that I had never actually filleted a fish myself. I used to fish as a kid, but we left the cleaning and filleting to my dad (thanks, dad). What could be a better time to learn this skill than on a boat full of experienced fishermen? We ate a rockfish ceviche that Robert, one of the scientists, had made the first night I was on the ship, and it was delicious. When we pulled in our bottom trawl of rockfish, it was the perfect time to learn how to fillet a fish. Rockfish are a bit tricky, as they have several sharp spines covering them. We had to be careful so as not to get stabbed by one of them- it wouldn’t feel very good! I had a busy evening helping to fillet about 14lbs of rockfish. I was by no means quick (our lead fisherman filleted 3 rockfish to my 1), but I had lots of time to practice.

Did you know? Pacific Ocean Perch (POP), or rockfish, were overfished in the 1970’s. Today, Pacific Ocean perch have recovered to the extent that they support a sustainable fishery in Alaska. Read more about the POP.

This POP bears a striking resemblance to the scorpionfish, one of the species we brought up in the SEAMAP Summer Groundfish Survey in the Gulf of Mexico in my TAS trip in 2012. Guess what? These two fish, while living thousands of miles apart, are actually related! They both belong to the family Scorpaenidae.

Pacific Ocean Perch (rockfish)
Pacific Ocean Perch (rockfish)

Scorpionfish we pulled up in a bottom trawl from the Gulf of Mexico (TAS2012)
Scorpionfish we pulled up in a bottom trawl from the Gulf of Mexico (TAS2012)

DJ Kast, Bongo Patterns, June 1, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical areas of cruise: Mid Atlantic Bight, Southern New England, George’s Bank, Gulf of Maine
Date: June 1, 2015

Science and Technology Log:

Bongo Patterns!

Part of my job here on NOAA Ship Henry B. Bigelow is to empty the plankton nets (since there are two we call them bongos). The plankton is put into a sieve and stored  in either ethanol if they came from the small nets (baby bongos) or formalin if they came from the big nets (Main bongos).

What are plankton? Plankton is a greek based word that means drifter or wanderer. This suits these organisms well since they are not able to withstand the current and are constantly adrift. Plankton are usually divided by size (pico, nano, micro, meso, macro, mega). In the plankton tows, we are primarily focused on the macro, meso and megaplankton that are usually with in the size range of 0.2- 20 mm  (meso), 2-20 cm (macro), and above 20 cm (mega) respectively.

Group Size range Examples
Megaplankton > 20 cm metazoans; e.g. jellyfish; ctenophores; salps and pyrosomes (pelagic Tunicata); Cephalopoda; Amphipoda
Macroplankton 2→20 cm metazoans; e.g. Pteropods; Chaetognaths; Euphausiacea (krill); Medusae; ctenophores; salps, doliolids and pyrosomes (pelagic Tunicata); Cephalopoda; Janthinidae (one family gastropods); Amphipoda
Mesoplankton 0.2→20 mm metazoans; e.g. copepods; Medusae; Cladocera; Ostracoda; Chaetognaths; Pteropods; Tunicata; Heteropoda
Microplankton 20→200 µm large eukaryotic protists; most phytoplankton; Protozoa Foraminifera; tintinnids; other ciliates; Rotifera; juvenile metazoansCrustacea (copepod nauplii)
Nanoplankton 2→20 µm small eukaryotic protists; Small Diatoms; Small Flagellates; Pyrrophyta; Chrysophyta; Chlorophyta; Xanthophyta
Picoplankton 0.2→2 µm small eukaryotic protists; bacteria; Chrysophyta
Femtoplankton < 0.2 µm marine viruses

(Omori, M.; Ikeda, T. (1992). Methods in Marine Zooplankton Ecology)

We will be heading to four main geographical areas. These four areas are: the Mid Atlantic Bight (MAB), the Southern New England (SNE), Gulf of Maine (GOM), and George’s Bank (GB). I’ve been told that the bongos will be significantly different at each of these sites.  I would like to honor each geographical area’s bongos with a representative photo of plankton and larval fish.  There are 30 bongos in each area, and I work on approximately 15 per site.

DJ Kast holding the large plankton net. Photo by Jerry P.
DJ Kast holding the large plankton net. Photo by Jerry Prezioso

Bongos in the Sunset. Photo by DJ Kast
Bongos in the Sunset. Photo by DJ Kast

Here is a video of a Bongo launch.

 

Flow Meter Data. It is used how to count how far the plankton net was towed. Used to calculate the amount of animals per cubic meter. Photo by DJ Kast
Flow Meter Data. It is used how to count how far the plankton net was towed to calculate the amount of animals per cubic meter. Photo by DJ Kast

 

The plankton nets need to be wiped down with saltwater so that the plankton can be collected on the sieve.

 

Day 1: May 19th, 2015

My first Catch of Plankton! Mostly zooplankton and fish larvae. Photo by: DJ Kast
My first Catch of Plankton! Mostly zooplankton and fish larvae. Photo by: DJ Kast

Day 1: Fish Larvae and Copepods. Photo by: DJ Kast
Day 1: Fish Larvae and Copepods. Photo by: DJ Kast

 

 

Day 2: May 20th, 2015

Larval Fish and Amphipods! Photo by: DJ Kast
Larval Fish and Amphipods! Photo by: DJ Kast

Day 3: May 21st, 2015

IMG_7096
Day 3, the plankton tows started filling with little black dots. These were thousands of little sea snails or pteropods. Photo by DJ Kast

IMG_7100
Clogging the Sieve with Pteropods. Photo by DJ Kast

IMG_7110
Close up shot of a Shell-less Sea Butterfly. Photo by: DJ Kast

IMG_7121
Glass Eel Larva. Photo by DJ Kast

 

Day 4: May 22nd, 2015

Butterfly fish found in the plankton tow. Photo by; DJ Kast
Butter fish found in the plankton tow. Photo by; DJ Kast

IMG_7187
Baby Triggerfish Fish Larvae Photo by: DJ Kast

Swimming Crab. Photo by DJ Kast
Swimming Crab. Photo by DJ Kast

IMG_7174
Megalops or Crab Larva. Photo by: DJ Kast

IMG_7176
Polychaete Worms. Photo by: DJ Kast

IMG_7165
Salp. Photo by: DJ Kast

 

Day 5: May 23, 2015

Unidentified organism Photo by DJ Kast.
Unidentified organism
Photo by DJ Kast.

Sand Lance Photo by DJ Kast
Sand Lance Photo by DJ Kast

Polychaete worm. Photo by DJ Kast
Polychaete worm. Photo by DJ Kast

3 amphipods and a shrimp. Photo by DJ Kast
3 amphipods and a shrimp. Photo by DJ Kast

Such diversity in this evenings bongos. Small fish Larva, shrimp, amphipods. Photo by DJ Kast
Such diversity in this evening’s bongos. Small fish Larvae, shrimp, amphipods. Photo by DJ Kast

Small fish Larva. Photo by DJ Kast
Small fish Larvae. Photo by DJ Kast

Below are the bongo patterns for the Southern New England area.

I have learned that there are two lifestyle choices when it comes to plankton and they are called meroplankton or holoplankton.

Plankton are comprised of two main groups, permanent or lifetime members of the plankton family, called holoplankton (which includes as diatoms, radiolarians, dinoflagellates, foraminifera, amphipods, krill, copepods, salps, etc.), and temporary or part-time members (such as most larval forms of sea urchins, sea stars, crustaceans, marine worms, some marine snails, most fish, etc.), which are called meroplankton.

Day 6: May 24th, 2015

Copepod sludge with a fish larva. Photo by: DJ Kast
Copepod sludge with a fish larva. Photo by: DJ Kast

Baby Bongo Sample in ethanol. Photo by: DJ Kast
Baby Bongo Sample in ethanol. Photo by: DJ Kast

Megalops? Photo by: DJ Kast
Megalops?
Photo by: DJ Kast

Fish Larvae. Photo by: DJ Kast
Fish Larvae. Photo by: DJ Kast

Side station sample from the mini bongos on the sieve. Photo by: DJ Kast
Sample from the mini bongos on the sieve. Photo by: DJ Kast

Day 7: May 25th, 2015

???? Photo by DJ Kast
???? Photo by DJ Kast

Tiny Snail. Photo by DJ Kast
Tiny Snail. Photo by DJ Kast

Georges Bank- It is a shallow, sediment-covered plateau bigger than Massachusetts and it is filled with nutrients that get stirred up into the photic zone by the various currents. It is an extremely productive area for fisheries.

Photo by: R.G. Lough (NEFSC)
Photo by: R.G. Lough (NEFSC)

Today, I learned that plankton (phyto & zoo) have evolved in shape to maximize their surface area to try and remain close to the surface. This makes sense to me since phytoplankton are photosynthesizers and require the sun to survive. Consequently, if zooplankton are going to consume them, it would be easier to remain where your food source is located. I think this would make for a great lesson plan that involves making plankton-like creatures and seeing who can make them sink the least in some sort of competition.

Photo by DJ Kast
Photo by DJ Kast

Harpactacoid Copepod. Photo by DJ Kast
Harpactacoid Copepod. Photo by DJ Kast

The Biggest net caught sand lance (10 cm). Photo by DJ Kast
The Biggest net caught sand lance (10 cm). Photo by DJ Kast

Fish Larvae. Photo by DJ Kast
Fish Larvae. Photo by DJ Kast

Day 8: May 26th, 2015 Very Diverse day,  Caprellids- skeleton shrimp, Anglerfish juvenile, Phronima inside of salp! Photo by DJ Kast

Photo by: DJ Kast
Juvenile Anglerfish aka Monk Fish. Photo by: DJ Kast

IMG_7483
Sand Shrimp. Photo by DJ Kast

IMG_7469
A tiny krill with giant black eyes. Photo by DJ Kast

IMG_7454
A small jellyfish! Photo by: DJ Kast

IMG_7451
A phronima (the bee looking thing inside the translucent shell) that ate its way into a salp and is using the salp as protection. Photo by: DJ Kast

Video of the phronima:

Caprellids or Skeleton Shrimp. Photo by DJ Kast
Caprellids or Skeleton Shrimp. Photo by DJ Kast

Video of the Caprellids:

Day 9:  May 27th, 2015= Triggerfish and colorful phronima (purple & brown). Our sieves were so clogged with phytoplankton GOOP, which is evidence of a bloom. We must be in very productive waters,

Evidence of a Phytoplankton bloom in the water, Photo by: DJ Kast
Evidence of a Phytoplankton bloom in the water. Photo by: DJ Kast

Juvenile Triggerfish. Photo by: DJ Kast
Juvenile Triggerfish. Photo by: DJ Kast

Day 10: May 28th, 2015= change in color of copepods. Lots of ctenophores and sea jellies

A Sea jelly found in George's Bank. We are in Canada now! Photo by: DJ Kast
A comb jelly (ctenophore) found in George’s Bank. We are in Canada now! Photo by: DJ Kast

Gooseberry: a type of ctenophore or comb jelly. Photo by DJ Kast
Sea Gooseberry: a type of ctenophore or comb jelly. Photo by DJ Kast

Did you  know? Sea Jellies are also considered plankton since they cannot swim against the current.

Day 11: May 29th, 2015: Border between Georges Bank and the Gulf of Maine!

Krill found in the Gulf of Maine. Photo by DJ Kast
Krill found in the Gulf of Maine. Photo by DJ Kast

Callenoid Copepods. Photo by DJ Kast
Callenoid Copepods- its so RED!!! Photo by DJ Kast

Gulf of Maine! Water comes in from the North East Channel (the Labrador current), coast on one border and George’s  Bank on the other. Definitely colder water, with deep ocean basins. Supposed to see lots of phytoplankton. Tidal ranges in the Gulf of Maine are among the highest in the world ocean

Gulf of Maine currents! Photo by NEFSC NOAA.
Gulf of Maine currents! Photo by NEFSC NOAA.

Day 12: May 30th, 2015: day and night bongo (Just calanus copepods vs. LOTS of krill.)

Krill, Krill, Krill! Photo by DJ Kast
Krill, Krill, Krill! Photo by DJ Kast

Krill are normally found lower in the water column. The krill come up at night to feed and avoid their predators and head back down before dawn. This daily journey up and down is called the vertical migration.

Video of Krill moving:

Day Sample. Photo by DJ Kast
Day Sample. Photo by DJ Kast

Night Sample. Photo by DJ Kast
Night Sample (look at all those krill). Photo by DJ Kast

Day 13: May 31th, 2015: Calanoid Copepod community.  Calanoida feed on phytoplankton (only a few are predators) and are themselves the principal food of fish fry, plankton-feeding fish (such as herring, anchovies, sardines, and saury) and baleen whales.

Calanious Community. Its so RED! Photo by DJ Kast
Calanus Community. It’s so RED! Photo by DJ Kast

Day 14: June 1st, 2015:

Brittle Stars caught in the Plankton Tow. Photo by DJ Kast
Brittle Stars caught in the Plankton Tow. Photo by DJ Kast

Tusk shell. Photo by DJ Kast
Tusk shell. Photo by DJ Kast

Side profile of Shrimp caught in the plankton nets. Photo by DJ Kast
Side profile of Shrimp caught in the plankton nets. Photo by DJ Kast

Shrimp Head. Photo by DJ Kast
Shrimp Head. Photo by DJ Kast

Shrimp Tail with Babies. Photo by DJ Kast
Shrimp Tail with Babies. Photo by DJ Kast

Day 15: June 2nd, 2015: Last Day

Gooey foamy mess in the sieve with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the sieve with all the phytoplankton. Photo by DJ Kast

Gooey foamy mess in the net with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the net with all the phytoplankton. Photo by DJ Kast

Gooey foamy mess in the jar with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the jar with all the phytoplankton. Photo by DJ Kast

Map of all the Bongo and CTD/ Rosette Stations. Photo by DJ Kast.
Map of all the Bongo and CTD/ Rosette Stations (153 total). Photo by DJ Kast.

Through rough seas and some amazingly calm days, we have all persevered as a crew and we have done a lot of science over the last 16 days. We went through 153 stations total. I have learned so much and I would like to thank Jerry, the chief scientist for taking me under his wing and training me in his Ecosystem Monitoring ways.  I would also like to thank Dena Deck and Lynn Whitley for believing in me and writing my letters of recommendation for the Teacher at Sea program. I would love to do this program again! -DJ Kast

Lauren Wilmoth: Strange Sea Creatures, October 16, 2014

NOAA Teacher at Sea
Lauren Wilmoth
Aboard NOAA Ship Rainier
October 4 – 17, 2014

Mission: Hydrographic Survey
Geographical area of cruise: Kodiak Island, Alaska
Date: Friday, October 16, 2014

Weather Data from the Bridge
Air Temperature: 7.32 °C
Wind Speed: 9.2 knots
Latitude: 57°44.179′ N
Longitude: 152°27.987′ W

Science and Technology Log

ENS Steve Wall collecting a bottom sample.
ENS Steve Wall collecting a bottom sample.

Wednesday, I went on a launch to do bottom sampling and cross lines.  Wednesday was our last day of data acquisition, so the motto on the POD (Plan of the Day) was “LEAVE NO HOLIDAYS! If in doubt, ping it again!”  Bottom sampling is pretty straight forward.  We drive to designated locations and drop a device that looks a little like a dog poop scooper down into the water after attaching it to a wench.  The device has a mechanism that holds the mouth of it open until it is jarred from hitting the bottom.  When it hits the bottom, it snaps closed and hopefully snatches up some of the sediment from the bottom.  Then, we reel it up with the wench and see what’s inside.

We took 10 bottom samples and most were the same.  We had a fine brown sand in most samples.  Some samples contained bits of shell, so we documented when that was the case.  At one location, we tried for samples three times and every time, we got just water.  This happens sometimes if the sea floor is rocky and the device can’t pick up the rocks.  If you try three times and get no definitive answer, you label the sample as unknown.  Two times we got critters in our samples.  One critter we found was an amphipod most likely.  The second critter was shrimp/krill-like, but I don’t know for sure.  Cross lines are just collecting sonar data in lines that run parallel to the previous data lines.  This gives us a better image and checks the data.

TeacheratSea 008 (8)
Survey Tech Christie and Me on our bottom sampling launch.

Amphipod found in bottom sample.
Amphipod found in bottom sample.

Unknown shrimp/krill critter from bottom sample.
Unknown shrimp/krill critter from bottom sample.

 

 

 

 

 

 

 

 

 

 

 

Staff observations at Terror Bay.
Staff observations at Terror Bay.

Thursday, we closed out the tidal station at Terror Bay. This entailed doing staff observations, a tidal gauge leveling check, and then break down everything including completing a dive to remove the orifice.  Since I have already taken part in a tidal gauge leveling check, I was assigned to the staff observations and dive party.  As I mentioned in an earlier post, for staff observations you just record the level of the water by reading a staff every six minutes for three hours.  We did this while on a boat, because the tide was pretty high when we got started, so we wouldn’t be able to read the staff if we were on shore.  Again, the reason we do staff observations is so we can compare our results to what the tidal gauge is recording to make sure the tidal gauge is and has been working properly.

While doing staff observations, I saw a small jellyfish looking creature, but it was different.  It had bilateral symmetry instead of radial symmetry. Bilateral symmetry is what we have, where one side is more or less the same as the other side.  Jellyfish have radial symmetry which means instead of just one possible place you could cut to make two side that are the same, there are multiple places you can cut to make it the same on each side.  Also, the critter was moving by flopping its body from side to side which is nothing like a jellyfish.  I had to figure out what this was!  In between our observations, Jeff, the coxswain, maneuvered the boat so I could scoop this guy into a cup.  Once we finished our staff observations, we headed to the ship.  I asked around and Adam (the FOO) identified my creature.  It’s a hooded nudibranch (Melibe leonina).  Nudibranches are sea slugs that come in a beautiful variety of colors and shapes.

Bilateral versus radial symmetry.

The hooded nudibranch.
The hooded nudibranch.

ENS Wood and ENS DeCastro diving for the orifice.
ENS Wood and ENS DeCastro diving for the orifice.

After a quick return to the ship, we headed back out with a dive team to remove the orifice from underwater. Quick reminder: the orifice was basically a metal tube that air bubbles are pushed out of.  The amount of pressure needed to push out the air bubbles is what tells us the depth of the water. Anyways, the water was crystal clear, so it was really neat, because we could see the divers removing the orifice and orifice tubing.  Also, you could see all sorts of jellyfish and sea stars.  At this point, I released the hooded nudibranch back where I got him from.

Jellyfish!
Jellyfish!

Just as we were wrapping up with everything.  The master diver Katrina asked another diver Chris if he was alright, because he was just floating on his back in the water. He didn’t respond.  It’s another drill! One person called it in on the radio, one of the divers hopped back in the water and checked his vitals, and another person grabbed the backboard. I helped clear the way to pull Chris on board using the backboard, strap him down with the straps, and pull out the oxygen mask. We got him back to the ship where the drill continued and the medical officer took over. It was exciting and fun to take part in this drill.  This was a very unexpected drill for many people, and they acted so professional that I am sure if a real emergency occurred, they would be prepared.

Drill: Saving ENS Wood.
Drill: Saving ENS Wood.

Personal Log

Sadly, this was most likely my last adventure for this trip, because I fly out tomorrow afternoon. This trip has really been a one-of-a-kind experience. I have learned and have a great appreciation for what it takes to make a quality nautical chart. I am excited about bringing all that the Rainier and her crew have taught me back to the classroom to illustrate to students the importance of and the excitement involved in doing science and scientific research. Thank you so much to everyone on board Rainier for keeping me safe, helping me learn, keeping me well fed, and making my adventure awesome!  Also, thank you to all those people in charge of the NOAA Teacher at Sea program who arranged my travel, published my blogs, provided me training, and allowed me to take part in this phenomenal program.  Lastly, thank you to my students, family, and friends for reading my blog, participating in my polls, and asking great questions.

Did You Know? 

1 knot is one nautical mile per hour which is equal to approximately 1.151 miles per hour.

Challenge:

Can you figure out what my unknown shrimp/krill critter is?

Unknown shrimp/krill critter from bottom sample.
Unknown shrimp/krill critter from bottom sample.

 

Britta Culbertson: The Beat of the Bongo (Part 2) – Catching Zooplankton, September 12, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Wednesday, September 12th, 2013

Weather Data from the Bridge (for Sept 12th, 2013 at 9:57 PM UTC):
Wind Speed: 23.05 kts
Air Temperature: 11.10 degrees C
Relative Humidity: 93%
Barometric Pressure: 1012.30 mb
Latitude: 58.73 N              Longitude: 151.13 W

Science and Technology Log

Humpback Whale
A humpback whale. (Photo credit: NOAA)

We have been seeing a lot of humpback whales lately on the cruise.  Humpback whales can weigh anywhere from 25-40 tons, are up to 60 feet in length, and consume tiny crustaceans, plankton, and small fish.  They can consume up to 3,000 pounds of these tiny creatures per day (Source: NOAA Fisheries).  Humpback whales are filter feeders and they filter these small organisms through baleen.  Baleen is made out of hard, flexible material and is rooted in the whale’s upper jaw.  The baleen is like a comb and allows the whale to filter plankton and small fish out of the water.

Baleen
This whale baleen is used for filter feeding. It’s like a small comb and helps to filter zooplankton out of the water. (Photo credit: NOAA)

I’ve always wondered how whales can eat that much plankton! Three thousand pounds is a lot of plankton.  I guess I felt that way because I had never seen plankton in real-life and I didn’t have a concept of how abundant plankton is in the ocean. Now that I’m exposed to zooplankton every day, I’m beginning to get a sense of the diversity and abundance of zooplantkon.

In my last blog entry I explained how we use the bongo nets to capture zooplankton.  In this entry, I’ll describe some of the species that we find when clean out the codends of the net.  As you will see, there are a wide variety of zooplankton and though the actual abundance of zooplankton will not be measured until later, it is interesting to see how much we capture with nets that have 20 cm and 60 cm mouths and are towed for only 5-10 minutes at each location.  Whales have much larger mouths and feed for much longer than 10 minutes a day!

Cleaning the codends is fairly simple; we spray them down with a saltwater hose in the wet lab and dump the contents through a sieve with the same mesh size as the bongo net where the codend was attached.  The only time that this proves challenging is if there is a lot of algae, which clogs up the mesh and makes it hard to rinse the sample.  Also, the crab larvae that we find tend to hook their little legs into the sieve and resist being washed out.  Below are two images of 500 micrometer sieves with zooplankton in them.

Zooplankton
A mix of zooplankton that we emptied out of the codend from the bongo.

Crab larvae
Crab larvae (megalopae) that we emptied out of the codend.

Some of the species of zooplankton we are finding include different types of:

  • Megalopae (crab larvae)
  • Amphipods
  • Euphausiid (krill)
  • Chaetognaths
  • Pteropods (shelled: Limasina and shell-less: Clione)
  • Copepods (Calanus spp., Neocalanus spp., and Metridea spp.)
  • Larval fish
  • Jellyfish
  • Ctenophores

The other day we had a sieve full of ctenophores, which are sometimes known as comb jellies because they possess rows of cilia down their sides.  The cilia are used to propel the ctenophores through the water.  Some ctenophores are bioluminescent.  Ctenophores are voracious predators, but lack stinging cells like jellyfish and corals. Instead they possess sticky cells that they use to trap predators (Source:  UC Berkeley).  Below is a picture of our 500 micrometer sieve full of ctenophores and below that is a close-up photo of a ctenophore.

Ctenophores
A sieve full of ctenophores or comb jellies.

Ctenophore
A type of ctenophore found in arctic waters. (Photo credit: Kevin Raskoff, MBARI, NOAA/OER)

It’s fun to compare what we find in the bongo nets to the type of organisms we find in the trawl at the same station.  We were curious about what some of the fish we were eating, so we dissected two of the Silver Salmon that we had found and in one of them, the stomach contents were entirely crab larvae! In another salmon that we dissected from a later haul, the stomach contents included a whole capelin fish.

Juvenile pollock are indiscriminate zooplanktivores.  That means that they will eat anything, but they prefer copepods and euphausiids, which have a high lipid (fat) content. Once the pollock get to be about 100 mm or greater in size, they switch from being zooplanktivores to being piscivorous. Piscivorous means “fish eater.”  I was surprised to hear that pollock sometimes eat each other.  Older pollock still eat zooplankton, but they are cannibalistic as well. Age one pollock will eat age zero pollock (those that haven’t had a first birthday yet), but the bigger threat to age zero pollock is the 2 year old and older cohorts of pollock.  Age zeros will eat small pollock larvae if they can find them.  Age zero pollock are also food for adult Pacific Cod and adult Arrowtooth Flounder.  Older pollock, Pacific Cod, and Arrowtooth Flounder are the most voracious predators of age 0 pollock.  Recently, in the Gulf of Alaska, Arrowtooth Flounder have increased in biomass (amount of biological material) and this has put a lot of pressure on the pollock population. Scientists are not yet sure why the biomass of Arrowtooth Flounder is increasing. (Source: Janet Duffy-Anderson – Chief Scientist aboard the Dyson and Alaska Fisheries Science Center).

The magnified images below, which I found online, are the same or similar to some of the species of zooplankton we have been catching in our bongo nets.  Click on the images for more details.

Personal Log (morning of September 14, 2013)

I’m thankful that last night we had calm seas and I was able to get a full eight hours of sleep without feeling like I was going to be thrown from my bed.  This morning we are headed toward the Kenai Peninsula, so I’m excited that we might get to see some amazing views of the Alaskan landscape.  The weather looks like it will improve and the winds have died down to about 14 knots this morning.  Last night’s shift caught an octopus in their trawl net; so hopefully, we will find something more interesting than just kelp and jellyfish in our trawls today.

Did You Know?

I mentioned that we had found some different types of pteropods in our bongo nets.  Pteropods are a main food source for North Pacific juvenile salmon and are eaten by many marine organisms from krill to whales.  There are two main varieties of pteropods; there are those with shells and those without.  Pteropods are sometimes called sea butterflies.

Pteropod
A close-up of Limacina helicina, a shelled pteropod or sea butterfly. (Photo credit: Russ Hopcroft/University of Alaska, Fairbanks)

Unfortunately, shelled pteropods are very susceptible to ocean acidification.  Scientists conducted an experiment in which they placed shelled pteropods in seawater with pH and carbonate levels that are projected for the year 2100.  In the image below, you can see that the shell dissolved slowly after 45 days.  If pteropods are at the bottom of the food chain, think of the implications of the loss of pteropods for the organisms that eat them!

Pteropods
Shelled pteropods after being exposed to sea water that has the anticipated carbonate and pH levels for the year 2100. Notice the degradation of the shell after 45 days. (Photo credit: David Liittschwager/National Geographic Stock)

Read more about ocean acidification on the NOAA’s Pacific Marine Environmental Laboratory (PMEL) website. Also, check out this press release from November 2012 by the British Antarctic Survey about the first evidence of ocean acidification affecting marine life in the Southern Ocean.

Teacher’s Corner

In my last blog entry on the bongo, I talked about using the “frying pan” or clinometer to measure wire angle.  If you’re interested in other applications of clinometers, there are instructions for making homemade clinometers here and there’s also a lesson plan from National Ocean Services Education about geographic positioning and the use of clinometers this website.

If you are interested in teaching your students about different types of plankton, here is a Plankton Wars lesson plan from NOAA and the Southeast Phytoplankton Monitoring Network, which helps students to understand how plankton stay afloat and how surface area plays a role in plankton survival.

If you would like to show your students time series visualizations of phytoplankton and zooplankton, go to NOAA’s COPEPODite website.

Zooplankton time series
Zooplankton time series visualization from the COPEPODite website.

For more plankton visualizations and data, check out NOAA’s National Marine Fisheries Service website.

If you are interested in having your students learn more about ocean acidification, there is a great ocean acidification module developed for the NOAA Ocean Data Education Project on the Data in the Classroom website.

Julia Harvey: Listening to Fish/How I Spent My Shift, July 28, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013  

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  7/28/13

Weather Data from the Bridge (as of 18:00 Alaska Time):
Wind Speed: 15.61 knots
Temperature:  13.71 C
Humidity:  91%
Barometric Pressure:  1023 mb

Science and Technology Log:

How do scientists use acoustics to locate pollock and other organisms?

Scientists aboard the NOAA Research Vessel Oscar Dyson use acoustics, to locate schools of fish before trawling.  The Oscar Dyson has powerful, extremely sensitive, carefully calibrated, scientific acoustic instruments or “fish finders” including the five SIMRAD EK60 transducers located on the bottom of the centerboard.

Trnasducer
Scientists are using the EK60 to listen to the fish.

This “fish-finder” technology works when transducers emit a sound wave at a particular frequency and detect the sound wave bouncing back (the echo) at the same frequency.  When the sound waves return from a school of fish, the strength of the returning echo helps determine how many fish are at that particular site.

The transducer sends out a signal and waits for the return echo...
The transducer sends out a signal and waits for the return echo…

Sound waves bounce or reflect off of fish and other creatures in the sea differently.  Most fish reflect sound energy sent from the transducers because of their swim bladder<s, organs that fish use to stay buoyant in the water column.

swim bladder
The above picture shows the location of the swim bladder. (Photo courtesy of greatneck.k12.ny.us)

Click on this picture to see how sound travels from various ocean creatures through water. (Photo from sciencelearn.org)
Click on this picture to see how sound travels from various ocean creatures through water. (Photo from sciencelearn.org)

These reflections of sound (echoes) are sent to computers which display the information in echograms.  The reflections showing up on the computer screen are called backscatter.  The backscatter is how we determine how dense the fish are in a particular school.  Scientists take the backscatter that we measure from the transducers and divide that by the target strength for an individual and that gives the number of individuals that must be there to produce that amount of backscatter.  For example, a hundred fish produce 100x more echo than a single fish.  This information can be used to estimate the pollock population in the Gulf of Alaska.

echograms
These are the echograms that are produced by the EK60.  Five frequencies are used to help identify the type of fish.

The trawl data provide a sample from each school and allow the NOAA scientists to take a closer look by age, gender and species distribution.  Basically, the trawl data verifies and validates the acoustics data.  The acoustics data, combined with the validating biological data from the numerous individual trawls give scientists a very good estimate for the entire walleye pollock population in this location.

echogram for krill
These echograms are similar to the ones produced when we trawled for krill. Krill have a significant backscatter with the higher frequencies (bottom right screens)

Personal Log:

How I spent my shift on Saturday, July 27th?

When I arrived at work at 4 pm, a decision was made to trawl for krill.  A methot trawl is used to collect krill.

Methot Trawl
Survey tech, Vince and Fishermen Brian and Kelly ready the methot trawl.

Then we set to work processing the catch.  First we have to suit up in slime gear because the lab will get messy.  My previous blog mentioned not wanting to count all of the krill in the Gulf of Alaska.  But in this case we needed to count the krill and other species that were collected by the methot trawl.

Counting krill
I needed my reading glasses to count these small krill.

How many krill do you think we collected?

Krill Sample
This is the total krill from the first methot trawl of the night.
How many are here?

Patrick, the lead scientist, put a few specimens under the microscope so we could see the different types of krill.

krill
Closeup look at krill.
Photo courtesy of NOAA

The collection of krill was preserved in formaldehyde and sea water.  It will be sent to Poland for further species diagnosis.

preserving krill
Scientist Darin Jones preserves the krill for shipment to Poland.

As the ship continued back on transect, I wandered in to see what Jodi and Darin were doing with the data collected last night.   Jodi was processing data from the multibeam sonar and Darin was surveying the images from the drop camera.  Jodi was very patient explaining what the data means.  I will write more about that later.  But I did feel quite accomplished as I realized my understanding was increasing.

multibeam data
These images are what Jodi was processing.

A decision was made to do another methot trawl.  This time we had a huge sample.

In an approximately 50 gram sample we counted 602 individual krill.  Compare this to the 1728 individuals in a 50 gram sample from the first trawl.  They were much bigger this time.  The total weight of the entire sample of krill was 3.584 kilograms.

krill
This was the haul from the second methot trawl.

How many individuals were collected in the second trawl?  (Check your answer at the end of the blog)

Around midnight, Paul decided to verify an echogram by trawling.

trawl net haul
Emptying out the trawl net right next to the fish lab.

We collected data from the trawl net and the pocket net.

squid
This trawl had a variety of specimen including Pacific Ocean perch, salmon, squid, eulachon, shrimp and pollock.

The pocket net catches the smaller organisms that escape through the trawl net.

pocket trawl
These were caught in the pocket net.

It was after 2 am by the time we had processed catch and washed down the lab.  The internet was not available for the rest of my shift due to the ship’s position so I organized my growing collection of videos and pictures.

I wasn’t sure how I would handle my night shift (4 pm to 4 am) after I dozed off during the first night.  Now that I have adjusted, I really enjoy the night shift.  The night science team of Paul, Darin and Jodi are awesome.

Did You Know?

People who are on the Oscar Dyson live throughout the United States.  They fly to meet the boat when they are assigned a cruise.  Jodi is from Juneau, Alaska.  Paul is from Seattle, Washington.  And Darin is from Seattle/North Carolina.  There are a number who are based out of Newport, Oregon.

Something to Think About:

When we are fishing, a number of birds gather behind the boat.  What different sea birds are observable this time of the year in our survey area?

birds
Many sea birds follow the ship hoping for some of our catch.

Adam Renick, Getting To Know the Ocean – The Kona Ecosystem, June 16, 2013

NOAA Teacher at Sea
Adam Renick
NOAA Ship Oscar Elton Sette
June 12th – June 26th, 2013 

Mission: Kona Integrated Ecosystems Assessment http://www.pifsc.noaa.gov/kona_iea/
Geographical area of cruise: The West Coast of the Island of Hawaii
Date: Sunday, June 16, 2013

Current Air Temperature: 78° F
Sea Surface Temperature: 79° F
Wind Speed: 20 knots

Personal Log
 

Sunrise in Hawaii
Sunrise in Hawaii

All is well on the Sette! Skies have been clear, waters have been relatively calm and the mood onboard has been positive. With the cooperative work of the scientists, the crew’s expert ship handling and Clem and Jay’s fine cooking it has been a very interesting week for me. For years I have taught about physical oceanography with a focus on what we know, not necessarily how we know it. I had a sense of how things were done in general; using sonar and taking samples, but I never understood the details of how we can target specific locations to study in such a vast ocean to get a picture of it as a whole system. In just a few days aboard this research vessel I have been given a look at how ocean science is conducted and how our knowledge about the expansive oceans is built one piece of thoughtful data at a time. In the last week I have learned how a well-organized research plan is executed and have also learned about some of the difficulties of conducting science at sea as well.

 
Science and Technology Log – Night Trawling
 

The zones of life in the ocean.
The zones of life in the ocean.

One of my nightly tasks is to help a team of scientists conduct trawls of the mesopelagic zone to identify the organisms that live there. The mesopelagic zone (pictured) is also known as the twilight zone because it is where there is a small amount of sunlight that penetrates the water, but not enough for photosynthesis to occur. If you recall from my last blog, the Sette has an active acoustics team that is using active sonar to identify layers of organisms at specific depths in the water column. During the daytime this layer is too deep for our nets to catch them. But at nighttime this layer migrates up towards the surface allowing us catch them with in a net in a process called a trawl. We do two trawls each night. Before each trawl the acoustics team tells the trawl team the depth of the target layer. The deck crew then deploys a fairly large net down to that depth and drags it through the water to scoop up the organisms that we have targeted. Blog4 (1)After about an hour of doing this the net is pulled back up to the ship where all the creatures are collected in a bag called a “cod end”. It may sound fairly simple, but this process requires the coordination of many different people as the scientists need to communicate with the deck operations crew, and the deck crew has to work with the captain to ensure that the very long net line hits the target and does not get tangled or damaged in the process. Keep in mind that this is happening at 1:00am with 20 knot winds and 10 foot waves. It is a wonder to see and be a part of this operation.

Krill...
Krill…

Once we have collected all of the organisms we move on to sorting the catch. We separate the contents of the net into five main categories and then measure the number, mass and volume of each of the types. Perhaps the most commonly abundant of the groups that we classify are mesopelagic fish, which are dark in color and contain photophores to provide them camouflage in the night. Cephalopods (squid) are also quite common along with gelatinous creatures such as jellyfish and crustaceans over 4cm in length, such as shrimp. The final category of interest to us is the shore-fish, which are juvenile fish that will eventually move more towards the land or reefs once they are bigger. The shore-fish are typically the most beautiful looking of the catch.

Shore-fish sorting
Shore-fish sorting

Everything that is left over is then lumped into a general category called miscellaneous, which is mainly composed of krill. Some cool stuff we’ve gotten in the bag that don’t really have their own category have been two cookie-cutter sharks, a seahorse and two remoras.

Blog4 (4)
Examining a Cookie-Cutter Shark

Shark
Close-Up of Shark

So what does this all have to do with cetaceans? I have yet to mention them in my blogs. By studying the composition of the mesopelagic layer we can better understand the food chain and ecosystem that the whales and dolphins depend on. Next week when we begin actively searching for cetaceans we will be able to better understand their behaviors because we have background data on where their food is, what it is composed of and how it behaves. Hope all is well back on land…

 
Best,
Adam Renick
NOAA Teacher at Sea

Sue Cullumber: Testing the Water and More, June 19, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/19/2013
Geographical area of cruise: The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Latitude/longitude: 3853.256 N, 7356.669W
Temperature: 18.6ºC
Barometer: 1014.67 mb
Speed: 9.7 knots

CTDscreen
CTD reading on the computer. Blue is density, red is salinity, green is temperature and black indicates the depth.

Science and Technology Log:

Even before the plankton samples are brought onboard, scientists start recording many types of data when the equipment is launched. The bongos are fitted with an electronic CTD (conductivity, temperature and density) and as they are lowered into the ocean the temperature, density and salinity (salt content) are recorded on a computer. This helps scientists with habitat modeling and determining the causes for changes in the zooplankton communities. Each bongo net also has a flow-through meter which records how much water is moving through the net during the launch and can is used to estimate the number of plankton found in one cubic meter of water.

ZIplankton
Zooplankton (Z) and Icthyoplankton (I) samples.

The plankton collected from the two bongo nets are separated into two main samples that will be tested for zooplankton and icthyoplankton (fish larvae and eggs). These get stored in a glass jars with either ethanol or formalin to preserve them. The formalin samples are sent to a lab in Poland for counting and identification. Formalin is good for preserving the shape of the organism, makes for easy identification, and is not flammable, so it can be sent abroad.  However, formalin destroys the genetics (DNA) of the organisms, which is why ethanol is used with some of the samples and these are tested at the NOAA lab in Narragansett, Rhode Island.

sueplankton
Holding one of our zooplankton samples – photo by Paula Rychtar.

When the samples are returned from Poland, the icthyoplankton samples are used by scientists to determine changes in the abundance of the different fish species. Whereas, the zooplankton samples are often used in studies on climate change. Scientists have found from current and historic research (over a span of about 40 years) that there are changes in the distribution of different species and increases in temperature of the ocean water.

At the Rosette stations we take nutrient samples from the different water depths. They are testing for nitrates, phosphates and silicates. Nutrient samples are an important indicator of zooplankton productivity. These nutrients get used up quickly near the surface by phytoplankton during the process of photosynthesis (remember phytoplankton are at the base of the food chain and are producers). As the nutrients pass through the food chain (zooplankton eating phytoplankton and then on up the chain) they are returned to the deeper areas by the oxidation of the sinking organic matter. Therefore, as you go deeper into the ocean these nutrients tend to build up.  The Rosettes also have a CTD attached to record conductivity, temperature and density at the different depths.

Chris-DICtests
Scientist, Chris Taylor, completing the dissolved inorganic carbon test.

CO2test
The dissolved inorganic carbon test uses chemicals to stop any further biological processes and suspend the CO2 in “time”.

Another test that is conducted on the Rosettes is for the amount of dissolved inorganic carbon. This test is an indicator of the amount of carbon dioxide that the ocean uptakes from outside sources (such as cars, factories or other man-made sources). Scientists want to know how atmospheric carbon is affecting ocean chemistry  and marine ecosystems and changing the PH (acids and bases) of the ocean water. One thing they are interested in is how this may be affecting the formation of calcium in marine organisms such as clams, oysters, and coral.

New word: oxidation – the chemical combination of a substance with oxygen.

canal
Cape Cod canal.

Personal Log:

This week we headed back south and went through the Cape Cod canal outside of Plymouth, Massachusetts. I had to get up a little earlier to see it, but it was well worth it.  The area is beautiful and there were many small boats and people enjoying the great weather.

smallboat
Small boat bringing in a new group to the Gordon Gunter.

We also did a small boat transfer to bring five new people onboard, while three others left at the same time. It was hard to say goodbye, but it will be nice to get to know all the new faces.

dolphinsthree
Common Dolphins swimming next to the Gordon Gunter.

So now that we are heading south the weather is warming up. I have been told that we may start seeing Loggerhead turtles as the waters warm up – that would be so cool.  We had a visit by another group of Common Dolphins the other day. They were swimming along the side of the ship and then went up to the bow. They are just so fun to watch and photograph.

We have been seeing a lot of balloons (mylar and rubber) on the ocean surface. These are released into the air by people, often on cruise ships, and then land on the surface. Sea turtles, dolphins, whales and sea birds often mistake these for jelly fish and eat them.  They can choke on the balloons or get tangled in the string, frequently leading to death. Today, we actually saw more balloons than sea birds!!! A good rule is to never release balloons into the air no matter where you live!

balloon
A mylar balloon seen in the water by our ship.

Did you know?  A humpback whale will eat about 5000 pounds of krill in a day. While a blue whale eats about 8000 pounds of krill daily.

Question of the day?  If 1000 krill = 2 pounds, then together how many krill does a humpback and blue whale consume on a daily basis.

Blue Whale, Balaenoptera Musculus
Blue Whale, Balaenoptera Musculus

Marla Crouch: The Mystery and Surf Your Berth, June 14, 2013

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8 – 26, 2013 

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: June 14, 2013

Weather Data from the Bridge: as of 1900
Wind Speed 9.57 kts
Air Temperature 6.84°C
Relative Humidity 81.00%
Barometric Pressure 1,030.5 mb

Latitude:  53.52N   Longitude: 166.34W

Science and Technology Log

The sonar on the Oscar Dyson recently created the graph below.  The graph displays the sea floor, the red, yellow, and green bands toward the bottom and along the top a few meters from the surface the layer of green and red, is the mystery.

Graphic provided by NOAA
Graphic provided by NOAA

The echoes, that create the graph do not look like fish.  The scientists recognize that something is there, the questions is, what?  Further exploration is done, but nothing definitive is found. This creates a bit of a dilemma, which initiates a whole series of conversations about trouble shooting the equipment, using different data gathering techniques (something different than a trawl), and hypothesizing about what is creating the image since there are no apparent biology.  Could the image be created by something physical in the water?  Until the make-up of the image can be identified the sonar signature, is titled and recorded as Mystery Mix One.

Taina Honkalehto, one of the scientists on this cruise, tells me that they have been encountering Mystery Mix One for a number of years here, in the Gulf of Alaska, and in different parts of the ocean at different times of the year. Mystery Mixes Two and Three are floating around as well.

Investigating Mystery Mix One:  Time stamp 12 June 2013, 050952 GMT (This time stamp equates to 8:09 almost 8:10 p.m. June 11, 2013 PDT.)

The stereo camera, which I talked about in my last blog, is a new piece of equipment that scientists are using to collect data about the ocean floor and the biology of the region.  The stereo camera was launched and submerged to a depth of 50m into the middle of Mystery Mix One, and left at that depth for 30 minutes while the Oscar Dyson drifted with the mix.  When the pictures were downloaded, the only identifiable objects were copepods, big copepods. Remember “big” is a relative term, big compared to what? Copepods can be smaller than 1 mm in length.  These big copepods are probably 6 to 8 mm.

The light image in the upper left-hand corner is a copepod.  Picture provided by NOAA
The light image in the upper left-hand corner is a copepod. Picture provided by NOAA

This is a clearer picture of a copepod. This is a clearer picture of a copepod.     Picture courtesy of comenius.susqu.edu
This is a clearer picture of a copepod.
Picture courtesy of comenius.susqu.edu

The strong sonar image created by the copepods heighten the mystery; starting another round of questions and discussions by the scientists.  Why are copepods creating such a strong sonar signature?  Why are the copepods so prominent on 18 kHz? (18 kHz is a low frequency that usually captures echoes from large objects, while small things like copepods would be seen at higher frequencies, like 200 kHz.)   Could something else be in Mystery Mix One, something that was not seen by the camera?  The discussion goes on creating a working hypothesis; the signature is being created by a combination of the copepods themselves, whatever they are feeding on and gases, being produced.  Not all the scientists are in agreement.  If Mystery Mix One was to be sampled again, would you get similar results?

Pictures from the stereo camera provided one piece of possible evidence that may lead to answering the question, “What is in Mystery Mix One?”

The next day another piece of possible evidence is added.  Oscar Dyson’s sea water intake filter is cleaned and what is found?  Krill and big copepods.  Pictures are taken and the evidence is recorded in the scientists’ journal. More evidence needs to be collected, but advances are being made to identify Mystery Mix One.

Krill are in the red ringed filter.  Copepods can be seen at the bottom of the bucket.
Krill are in the red ringed filter. Copepods can be seen at the bottom of the bucket.

Personal Log 

The first few days out at sea the waters were really calm, 1 to 3 foot swells or seas, which feels like the soothing glide of a rocking chair.  Now however, weather is moving in; wind speed is up around 15kts and the swells are about 9 ft.  Friday’s forecast is for 30kt winds and 12ft. seas.  Looking at the big picture, 9 to 12 foot seas are not very big.  But, walking around the ship with seas of that height requires due diligent to safely navigate the passage ways and steep stairs.  And you definitely need to mind the doors, make sure the door is securely latched and when opening hold on tight, as you don’t want the door to get away from you. Somebody might be standing on the other side.  Another activity that can prove challenging is getting into and out of your bunk.

The berths, or rooms, aboard ship are, for the most part, designed for two people. Look at the picture of my berth.  You can see a desk, chair, dresser and two draped bunk beds.  Mine’s the top bunk.  Our room is just about even with the water line.  That is important to know, because the lower you are in the ship the less dramatic the motion.  I’ll talk about the pitch and roll of the ship in a future blog

This is my berth.
This is my berth.

Now imagine yourself lying on a teeter totter.  You are right above the fulcrum, so you are nice and level.  An unbalanced force is now affecting your teeter totter, your feet go up your head goes down and you slide a little.  Then there is a change and you head goes up your feet go down and you slide back.  This back and forth motion is continuous, and the motion presses you into the teeter totter.  I call this the sloshing phenomena, because all the while you are teeter tottering you hear the sea water rushing pass the hull.  But wait, there is more.  Your teeter totter only moves in two dimensions, but we live in three dimensions.  Keep your teeter totter going, up and down, hear the water stream by and add a sideways roll, back and forth.  Don’t fall off your teeter totter.  You are not quite ready to surf your berth yet, sometimes the up and down, and side to side movements occur so quickly that you actually loose contact with your teeter totter.  Now you’re surfing!  I have yet to find the seat belt for my bunk.

Remember I said that my berth was low in the ship, there are only a few berths on this level, and more berths are two and three floors above me. Now think about a metronome.  If you’re not sure what a metronome is think about a windshield wiper on a car.  Both the metronome and the windshield wiper make small movements at the pivot point or fulcrum; the further away from the fulcrum the greater the range of motion. Think about how the motion is magnified as you move up from the water line.  Those folks above me are really surfing.

Did You Know?

When Taina and I were talking about Mystery Mix One she said the 18 kHz frequency ensonifying the larger fish.  I think ensonify is a cool word. I wonder if Mrs. Sunmark or Mrs. Delpez (our school’s band and orchestra teachers) have used the word ensonify in their classes?  Can any of you tell me what ensonify means?

Did you know you can follow my voyage on NOAA’s ship tracker website?  Here is the link.

http://shiptracker.noaa.gov/shiptracker.html

In my next blog, I have another fashion statement – Gumbi Marla!  And maybe something about the moon and Apollo 17.


Marla Crouch: Checking Out the Fish! June 12, 2012

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8-26, 2013 

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: June 12, 2013

Weather Data from the Bridge: as of 2300
Wind Speed 12.30 kts
Air Temperature 6.10°C
Relative Humidity 98.00%
Barometric Pressure 1,009.6mb

Latitude:  54.22N   Longitude: 164.65W

 Science and Technology Log

Here I am all decked out in my rain gear in the wet lab, ready to sort the catch of our first bottom trawl.  Quite a fashion statement, don’t you think?

Me in my slime gear.
Me in my slime gear.

Walleye Pollock (latin name Theragra chalcogramma), a fish that lives both on and above the seafloor, is the main target of the Pollock survey, but information about other sea life is also collected.  When we start sorting the catch from this bottom trawl, the primary population is Pacific Ocean Perch (POP, Sebastes alutus).  The POP is a member of the Scorpaenidae or scorpionfish family and has poisonous spines.  When handling the fish I have to be really careful of the very sharp spines to avoid injury.  Fortunately, the POP’s teeth are not as formidable as their spines, so I can grab them by the mouth to safely move them around.

After we sort the catch the total weight of each species is recorded.  We collect additional biological data on the POP, by first sorting them by “Blokes” or “Sheilas.”  I’ll let you figure out what characterizes Blokes and Sheilas.   After the sorting, each fish in the sample is laid on an electronic measuring board (mm) to determine and record the length of the fish.  In this survey the length of the fish is measured from the tip of the mouth to the center of the “v” in the tail, this is know as the fork length.

Other populations being sampled are plankton and the jellyfish that were collected in a Methot trawl.  Here Abigail McCarthy is sorting two types of zooplankton krill (also called euphausiids) and jellyfish that were collected.  Once the sorting is completed, then the quantity and weight of the krill and the jellyfish is recorded.  One of the areas Abby is investigating is if there is a correlation between the krill population and the location of baleen feeding whales.  Abby wonders how far away the whales can smell or sense dinner?  Who can tell me which species of whales are baleen feeders?

Sorting krill and jellyfish
Sorting krill and jellyfish

Another tool the scientists use to collect data is a tethered stereo camera that takes 10 pictures/second. Using the pictures I am counting and sorting fish by species.  Look at the pictures and you’ll see a Gorgonia sea fan and a basket star.  The camera has a stationary photo length, so objects closer to the camera appear bigger.  In the picture with the sea fan, you are also seeing krill.  You can use the pairs of images from the stereo cameras to measure the size of the organisms that appear in the images.

The two cylinders in the center are the cameras and the four other cylinders are strobe lights.
The two cylinders in the center are the cameras and the four other cylinders are strobe lights.

The sea fan is a member of the soft coral family.
The sea fan is a member of the soft coral family.  Krill can be seen in front of the sea fan.  Picture provided by NOAA.

The basket star is a type of sea star.  Here the basket star is open waiting for dinner to drift by.
The basket star is a type of sea star. Here the basket star is perched on top of a sea sponge open waiting for dinner to drift by.  Picture provided by NOAA

Personal Log 

When the Oscar Dyson sailed from Dutch Harbor we head west to the Islands of Four Mountains, a cluster of volcanic isles.  On one isles is Mt. Cleveland, which on May 5th was actively spewing lava.  As we pass, Mt. Cleveland is quietly shrouded in dense cloud cover.  Darn, cannot check eruption off my “Want to see” list.  I don’t think I’ll see an aurora either as the cloud cover has been thick.

This is the south side of Onalaska.  Dutch Harbor is on north side facing the Bering Sea.
This is the south side of Unalaska. Dutch Harbor is on north side facing the Bering Sea.

Science aboard the Oscar Dyson runs 24/7.  Both the Dyson’s crew and the science team work in twelve hour shifts.  For the Dyson’s crew the day is broken into two shifts, from midnight to noon and noon to midnight.  The science team shifts are from 4 a.m. (0400 hrs.) to 4 p.m. (1600 hrs.) and 1600 hrs. to 0400 hrs. I am on the 1600hrs to 0400hrs shift; morning and night run all together.  A note here, when the scientists collect data the time stamp is Greenwich Mean Time (GMT).  GMT is eight hours ahead of us here in Alaska.

Did You Know?

I’ve discovered that you can slosh in your berth.  Check out the next blog for “Surf Your Berth.”

Patty McGinnis: Women Scientists on the Ocean Starr, May 27, 2013

NOAA Teacher at Sea
Patty McGinnis
Aboard R/V Ocean Starr
May 20 – 29, 2013

Mission: Juvenile Rockfish Survey
Geographical Area of Cruise: Point Reyes, CA
Date: Monday, May 27, 2013

Weather Data from the Bridge
Latitude: 38 09.465 ° N
Longitude: 123 01.204 ° W
Air Temperature: 10.2 Celsius
Wind Speed: 17 knots
Wind Direction: North
Surface Water Temperature:  9.8 Celsius
Weather conditions: clear

Science and Technology Log

If you had asked me ahead of time to predict the percentage of males and females aboard the Ocean Starr, I would have surmised that males would make up the majority. While it is true that most of the crew is male, my scientist co-workers are primarily female.

Lyndsey
Lyndsey is dressed to go out on deck

Lyndsey Lefebvre is a fisheries biologist who works for the Groundfish Analysis Team. Her primary job is to study the age and growth of rockfish and flatfish species such as sanddabs to support fishery assessments. Lyndsey ages fish by removing their ear bones, or otoliths. Otoliths contain annual rings, much like a tree. The ear bones are prepared by breaking them in half and holding them over an open flame to darken them; the rings are tiny so a microscope is required to count the rings. Lyndsey explains that this work is important because studying the age structure of a population over time can yield insights into the population’s health. Fish populations that are heavily fished tend to be smaller and younger. Lyndsey is also concerned with reproductive biology such as when and how frequently fish spawn. She studies the blackgill rockfish, a long-lived fish that has internal fertilization. Females give birth to live young once a year, but Lyndsey is trying to determine if a female’s health or environmental conditions impact the numbers of young produced. In contrast, the Pacific sanddab releases eggs on a daily basis for up to six months of the year. Lyndsey says that although she enjoys field work, that about 90% of her work is microscope work done in the laboratory. She likes to listen to audio books or music to help pass the time. Lyndsey says that being a fisheries biologist is a great career. If you think you are interested in such a career, try volunteering doing any type of naturalist work and make as many contacts as you can.

Amber
Amber shows a squid jig

One of NOAA’s better kept secrets is the NOAA Corps. The Corps, which is run by the Department of Commerce, consists of approximately 340 commissioned officers who are involved in operating one of NOAA’s ships or piloting a NOAA plane. Amber Payne has been in the NOAA Corps since she graduated four years ago with a degree in marine biology from Eckerd College in St. Petersburg, Florida. Amber first became interested in working on marine vessels through her involvement with a Search and Rescue extracurricular club while in college. She considered entering the Coast Guard, but was drawn to the NOAA Corps because it requires a science background. Amber enjoys the many opportunities the Corps has provided, including training and traveling. She recently obtained a 1600 ton Mate’s License which will enable her to work for a private company if she ever decides to leave the Corps. Amber is currently on shore duty as operations officer at the Fisheries Ecology Division which is part of NOAA’s Southwest Fisheries Science Center. In addition to running the Small Boats Program, Amber helps out Lyndsey in the fisheries lab. Recently Amber took a freshly-caught Humboldt squid to an elementary school where she dissected it for the students. She’s pictured above holding a contraption known as a “squid jig” that is used to catch Humboldt squid. Amber’s words of wisdom: always carry a knife and a flashlight with you when on a boat!

Jamie Lee works the day shift so I don’t see much her except at meals. She smiles delightfully as she tells me that her interest in oceanography sprang from watching “Finding Nemo” as a child.

Jamie
Jamie at work in her floating lab

Jamie is currently a graduate student at San Francisco State University; she attended Stonybrook University in New York as an undergraduate. This is Jamie’s first time on a boat and she is unfazed by its ceaseless motion. Her role on this mission is to assess chlorophyll levels. Chlorophyll is used as an indicator of primary productivity, which dictates how much food is available for ocean organisms. Jamie takes the water samples collected by the CTD and pours the water through a filter to extract chlorophyll from all the phytoplankton in the sample. Jamie tells me that this work must be conducted in subdued light to prevent the chlorophyll from degrading and giving an incorrect reading. The filter paper, which contains the extracted chlorophyll, is then stored in a glass tube or folded in half and put in aluminum foil until it is ready to be read by a fluorometer back at the university lab. I asked Jamie why she is interested in studying phytoplankton, rather than fish or marine mammals. She explains that phytoplankton, although tiny, are the crucial element upon which all the ocean relies.

Kaia
Kaia sorts krill

Kaia Colestock is a volunteer who free-lances as a wildlife biologist. Kaia has been assisting Lyndsey in the fisheries lab with counting fish eggs present in adult sanddabs. This reproductive ecology study will help to determine if the sanddab fishery is doing well. Kaia earned her undergraduate degree in fisheries wildlife from Michigan State University and her masters in ecology from Utah State. Kaia has participated in a number of wildlife studies over the years, but her favorite is when she had an opportunity to fly aerial surveys for wading birds in the Everglades with supplementary surveys via airboats.  Kaia recommends her career to anyone who likes spending their time outdoors and says that perseverance, motivation, dedication, and being a good critical thinker are important qualities for someone who works as a wildlife biologist. She recommends acquiring special skills related to math, engineering, or physics. Places that hire wildlife biologists such as Kaia include federal agencies such as the U.S. Fish and Wildlife Service, state agencies, and non-profit agencies. This is Kaia’s first time on a ship and she is enjoying seeing seabirds during the day and watching how the CTD is deployed.

Brianna
Brianna preserves krill for future studies

Krill biologist Brianna Michaeud earned her undergraduate degree in marine biology from the University of California Santa Cruz. Brianna plans to pursue a master’s degree beginning this fall at Nova Southeastern University in Fort Lauderdale, Florida. Brianna enjoys working with krill because of krill’s vital function to the ocean’s food web. Brianna enjoys being on the ocean and seeing what is caught during the trawls. She works for the Long Marine Laboratories, which is affiliated with UCSC. All the data she is collecting will be shared with NOAA scientists. Brianna’s role on this trip is to collect and preserve samples of krill that are collected in both the bongo net and the trawl net. The bongo net is actually two nets that lie parallel to each other; they are designed to remove the effects of the bridles found on regular ring nets. For organisms as small as plankton, the pressure waves produced by the bridles, or connecting cables, can push them away from the net.  The bongo net is made up of a much smaller mesh than the trawl net, so it is capable of capturing the juvenile krill that tend to escape the trawl net. The entire haul from the bongo net is kept in a jar of preservative. Once back at the lab, Brianna will go through the jar to identify the various krill species and obtain a sex ratio for each species. Brianna also preserves 200 milliliters of krill from each of the trawls for later use. Once at the lab, she will count out 100 individuals of the dominant krill species and 50 individuals from the second most dominant.  She’ll then measure each individual, identify how many are gravid (contain eggs), and obtain a sex ratio. Brianna says that marine biology is a “great career” and recommends that students interested in this career take classes in statistics, biology, and chemistry. She also recommends volunteering in laboratories, assisting with beach clean-ups, and reading about oceanography.

sophie
Sophie scans the water and air for the presence of birds

The research conducted this week extends beyond the waters; biologist Sophie Webb is onboard to document sightings of seabirds and marine mammals. Sophie is one of only three scientists who work the day shift. One glance at Sophie informs you that her site is one where she is exposed to the elements. You’ll find Sophie on the uppermost level of the ship where she sits with her binoculars and a computer recording data all day. Her job is not for the timid; the wind blowing off the Pacific Ocean is cold and she has little company other than the wildlife she is documenting.  Sophie is no stranger to this type of work; she has conducted this research project seven or eight times previously and has also participated in several five month cruises in the Eastern Tropical Pacific (Hawaii,  Mexico and Central America). Currently Sophie is recording all birds seen in a 300-meter strip seen off one side of the ship. She records the species and basic behavior, such as whether the bird is flying, sitting, or feeding. The black-footed albatross is notorious for following the boat, necessitating Sophie to carefully observe so that the bird is not counted more than once. All the information Sophie collects is recorded into a computer program that is hooked into a GPS unit that updates several times a minute. Sophie shares with me that she is also an illustrator and has authored several children’s books such as Far from Shore, Chronicles of an Open Ocean Voyage and Looking for Seabirds. If you are interested in a career like Sophie’s, she recommends that students obtain advanced degrees in biology and volunteer as much as they can to obtain experience.

Personal Log

It has been amazing to see how quickly the night shift has formed into a team. Everyone works together when the trawl is pulled up to sort, identify, and record the information as efficiently as possible.  I find it interesting to see the variety of organisms we are obtaining in the trawls; tonight some of our catches mainly consisted mainly of shrimp and smelt.

Keith
Chief Scientist Keith Sakuma displays the results of a haul

shrimp and smelt
Shrimp and smelt

I also continue to be enthralled with the odd looking creatures that the trawls yield. Last night I saw an eel larva. Its body, almost impossibly thin, was gelatinous to the touch. A tiny eye and mouth were the only things that made it recognizable as an animal. When I held it up to the light its many bones became obvious. Even odder was the Phronima, a creature reported to have been the impetus behind the creature in the Alien movies. I also got to hold an octopus in my hand—I could feel the animal’s tiny suckers pulling on my skin. The octopus was returned to its home after the photo op.

eel larva
The bones are visible in this transparent eel larva

Phronima
This cool creature, Phronima, was the inspiration for the creature in the movie “Alien”

octopus
Check out this octopus

Did You Know?

That adult krill have the unique ability to actually shrink in size after a molt if food resources are scarce?

Frank Hubacz: Ice in the Bering Sea, May 7, 2013

NOAA Teacher at Sea
Frank Hubacz
Aboard NOAA ship Oscar Dyson
April 29 – May 10, 2013

Mission: Pacific Marine Environmental Laboratory Mooring Deployment and Recovery
Geographical Area of Cruise: Gulf of Alaska and the Bering Sea
Date: May 7, 2013

Weather Data from the Bridge (0500):
N wind 10 to 25kt. Partly cloudy.
Air Temperature 0.8C
Relative Humidity 90%
Barometer 1019.80 mb
Surface Water Temperature 2.30 C
Surface Water Salinity 31.96 PSU
Seas 4 to 9ft

Science and Technology Log

Remember that in my last blog you were left with a question…

Did you figure out what this was?
Did you figure out what this was?

If you still have not guessed what this is then here is a hint…

 

You are correct!  This is a Marine Assessment Monitoring and Prediction (MARMAP) Bongo tow with two 20cm and two 60 cm ring openings!  The 60 cm ring has a 500µm mesh net and the 20 cm ring has a 150µm.  I knew that most of you would guess the correct answer.  These nets are towed through the ocean to collect zooplankton samples. Plankton are important members of the ocean food web converting energy from the primary producer level into a form that is useable by animals in the upper levels of the marine food web. The word plankton is derived from the Greek word planktos, which means wandering.  Plankton drift, or swim weakly, traveling wherever the ocean takes them.  Phytoplankton are able to produce their own food (autotrophic), as the name suggests, via the process of photosynthesis. Zooplankton are heterotrophic and eat the primary producers in the ocean food web, the phytoplankton.  Zooplankton are the most numerous consumers in the entire ocean with nearly every major animal group being represented.   The most abundant, accounting for 70% of individuals, are copepods (crustaceans).  You are all probably most familiar with the organism within this group known as krill.  They are very abundant in the waters of the Arctic.

Krill
Krill

These shrimp-like marine organisms grow no larger than 4 to 6 cm and serve as food for baleen whales, penguins, seals, fish, sea birds, and many other predators.  80(+) species of krill have been identified in oceans around the world. Their habitats range from abyssal depths (5,000 m) to near shore kelp beds (10 m), and from warm tropical seas to the freezing Antarctic Ocean. (http://oceanexplorer.noaa.gov/explorations/02quest/background/krill/krill.html)

Marine scientist use bongo nets to catch these small creatures and study them. The net size is selected to catch zooplankton as opposed to smaller phytoplankton.  The bongo net has a flow meter installed in each net to calculate the volume of water sampled.   Plankton tows can be done at any depth or time of day and the samples are caught in a small rigid container, the codend.

Basic Bongo tow

Detailed Bongo schematic

 

Cod-end of  Bongo tow net
Codend of Bongo net where the sample is collected

Our night shift deploying our Bongo net
Our night shift readying our Bongo net

IMG_7182
Deploying the Bongo net in dark icy waters of the Bering Sea

IMG_7178
Retrieving the net after the tow

Matt washing the contents of the codend into a straining sieve
Matt washing the contents of the codend into a straining sieve

IMG_7137
Capturing all of the sample

IMG_7138
Krill!

A closer look!
A closer look!

The Bongo tow used on this cruise also has attached an SBE-19 SEACAT system which measures salinity, depth, and temperature.

SEACAT System attached to Bongo tow
SEACAT System (on right) attached to Bongo tow

Additionally deployed on this cruise were drogue drifters.  Drogue drifters help determine the flow of ocean currents using a sort of “message in a bottle” approach, the drogue drifter, which is connected to a surface buoy.  The buoy communicates its location to an ARGOS satellite system producing a map of its path.  The drogue portion is really a “holey-sock” that flows below the surface to indicate subsurface ocean currents.

Drifter Schematic

IMG_7125
Complete drifter package

IMG_7126
Bill preparing the drogue drifter for launch
Drogue
Drogue drifter entering the water with attached satellite buoy

World map of current drifter locations

 

Overnight on the 7th we turned north-north-west hoping to sample water near the edge of the ice sheet.  We found ice much earlier than hoped and at approximately 0630 a decision was made that we could travel no further!  Upon collecting a sample at this station we turned south to sample along the 70 meter line for several miles.

Ice flow...picture taken at 0300
Ice flow…picture taken at 0300

Ice all around
Ice all around

 

Ice as seen from the bridge(Photo courtesy of Matt Wilson)

Ice as seen from the bridge(Photo courtesy of Matt Wilson)

Saying good bye to the ice!
Saying good bye to the ice!(Photo courtesy of Matt Wilson)

Personal Log

Sampling continues around the clock now that all of the moorings have been deployed.  I continue to collect nutrient samples from each CTD launch, usually 5 to 7 per draw, assist with washing the Bongo nets, and helping wherever I can .  Our midnight to noon shift goes by quickly.  After my shift I have been relaxing by reading and then going to bed by 0300 before waking at 2300.  Now that we are heading south our satellite “issues” have been resolved and so the internet works great.  Keep those questions coming.

We had an abandon ship drill today and I finally was able to “slip” into my Survivor Suit!  You will get to meet the science crew in my next blog!

Slipping into my survival suit
Slipping into my survival suit

Heading for the life boat station
Heading for the life boat station

Arriving at the WRONG station!
Arriving at the WRONG life boat station! (Port is left)

Amanda Peretich: More Trawling Treasures, July 11, 2012

NOAA Teacher at Sea
Amanda Peretich
Aboard Oscar Dyson
June 30, 2012 – July 18 2012

Mission: Pollock Survey
Geographical area of cruise:
Bering Sea
Date:
July 11, 2012

Location Data
Latitude: 58ºN
Longitude: 173ºW
Ship speed: 11.7 knots (13.5 mph)

Weather Data from the Bridge
Air temperature: 7.9ºC (46.2ºF)
Surface water temperature: 7.3ºC (45.1ºF)
Wind speed: 10.7 knots (12.3 mph)
Wind direction: 323ºT
Barometric pressure: 1007 millibar (0.99 atm, 755 mmHg)

Science and Technology Log
In a recent post, I talked about how one of the things we are doing on board the Oscar Dyson is trawling for fish. The video from that post showed what happens in the fish lab during a midwater trawl. Remember that there are two nets we have been using for a midwater trawl: first, the normal Aleutian Wing Trawl, or AWT, which catches plenty of pollock, but also the 83-112 to which adjustments are being made to use this bottom trawl net for midwater fishing. But what about using the 83-112 for its original purpose: bottom (or benthic) trawling?

Bottom Trawl

83-112 Bottom Trawl Net
The 83-112 net used for bottom trawls (and comparison midwater trawls on this ship).

I’ve been lucky enough to see two bottom trawls on this cruise, although neither of them were actually during my shift. My wonderful roommate Carwyn, one of the other scientists on board, came to tell me about the bottom trawls so I could see all the neat creatures from below! A bottom trawl is used when the pollock are swimming much lower in the water column for one reason or another, but in trying to catch them, there are always many more “trawling treasures” that find their way onto the fish table. The process is basically the same as a midwater trawl, except the 83-112 net is lower down in the water towards the bottom of the sea floor (hence the term bottom trawl). The net is also much shorter in length than the AWT using in midwater trawling.

DYK?: How do the scientists know exactly how far down the net is in the water column? One of the sensors attached to the net is called the SBE (Seabird) 39. This will measure the depth and temperature during the trawl and determine the average head rope depth (which is the top of the net) and average temperature during the trawl between EQ (equilibrium – start of the trawl) and HB (haul back – end of the trawl). The sensor is then uploaded on the computer and the data is used by the scientific party.

Headrope Haul 76
This plot is used to determine the average head rope depth and temperature during the trawl (between EQ and HB). Depth is measured in meters and temperature in degrees Celsius on the y-axis versus time on the x-axis.

Field Guides
Field guides to classify various species found in the Pacific Ocean.

I attempted to classify all of these great bottom trawl treasures, and discovered that this was way easier said than done. There are some books in the fish lab with photos and descriptions just of the species that may be found around the Alaskan waters, and it was incredibly difficult to nail down a specific species for most of the finds!

In the bottom trawl, we found things such as the Oregon hairy triton, an unidentified pretty purple star fish, pink shrimp, basket stars, sheriff’s star, halibut, crabs, pacific cod, sculpin, Pribilof snail, sea anemone, scallop, sponge, sea pens, arrowtooth flounder, flathead sole, chiton, and seaweed.

Enjoy the slideshow below with photos of the bottom trawl treasures (and an interesting fact or two about some of them) or click on the link to open it in a new window!

Bering Sea Bottom Trawl Treasures

Methot Trawl

Methot Net
Methot trawl net.

The other trawl we’ve done outside of the normal AWT (Aleutian Wing Trawl) midwater and 83-112 midwater comparison trawl is something called a methot trawl. This uses a completely different net because the others have mesh that is much too large to catch something so small. The methot net has very fine mesh and a hard square opening with a fixed height. The cod end (very end of the net) is actually a small white container because the organisms collected are so small. A methot trawl is done to collect euphausiids, otherwise known as krill. Sometimes other microscopic (small) organisms are collected as well, including jellies, salps, and amphipods, which must then be carefully sorted out.

DYK?: Krill are part of the phylum Arthropoda, which includes species with an exoskeleton and jointed legs such as spiders, crabs, insects, and lobsters. They are an important part of the ecosystem because these small, reddish-orange animals are a source of food for many larger animals.

Steps to process a methot trawl in the fish lab:
1. Dump contents of the hard cod end container into a large gray bin.
2. Remove any large jellyfish (and weigh those separately).
3. Rinse contents from the gray bin into the sieve to remove any water.
4. Using tweezers, sort through the small microscopic organisms on the sieve and remove anything that isn’t krill.
5. Weigh krill sample.
6. Collect a random subsample in a scoop and weigh it.
7. Count all of the krill in the subsample (yes, this is as tedious as it sounds!).

Processing a Methot
Processing a methot trawl: removing water with the sieve, sorting through all of the krill and pull out any amphipods, salps, or jellies with tweezers (to weigh separately).

Personal Log

Bowthruster
Heading down to check out the bowthruster on the Oscar Dyson!

It continues to be a little slow on the trawling during my shift, but that’s okay, because I was lucky enough yesterday to get a tour of some of the lower bridge levels from the 1st Assistant Engineer, Tony.

DYK?: There are 8 levels on the Oscar Dyson. They are numbered, starting from the topmost deck, as follows:
O4 – flying bridge
O3 – bridge
O2 – staterooms (CO, XO, chief scientist)
O1 – staterooms (scientists), CTD winch, FRB (fast rescue boat), Peggy D (boat), liferafts
1 – galley, labs (acoustics, chem, dry, fish)
2 – engineering (machinery, centerboard, oceanic winch, trawl winch, and more), staterooms (deck crew and then some)
3 – engineering (machinery, bilge/ballast, workshop, and more)
4 – bowthruster, transducer, fuel oil tanks, ballasting tanks

I plan to share some of the facts I learned related to chemistry and biology from this tour (and other things on board) in one of my next blogs, so be sure to look for all of the info on the generators, sea water purification, MSD, cathodic protection system, and more.

We did have two trawls yesterday (July 10) – the first was an AWT midwater trawl that had caught so many fish it was actually a “splitter”! In a splitter, there’s an extra step between hauling in the net and getting it to the table in the fish lab. The cod end of the AWT net is opened over a separate splitting crate, where there is another net underneath that will only take about half of the fish to release on the table. The rest are then returned to the water.

Splitting
Splitting an AWT midwater trawl that collected too many pollock.

We also had drills yesterday (these are required once a week) and after gaining permission from the bridge, I checked in to my muster station (which is in the conference room for the science party, away from all of the action) and then went and watched what everyone else on board does. When we have fire drills in school, the alarm sounds, we walk outside, and wait for the “all clear” before heading back in. When they have fire drills on the Oscar Dyson, they use a smoke machine to produce smoke, there is an on-scene crew (first responders), there may or may not be a “victim” involved, the hose team actually dresses out (with the help of another person on the alpha or bravo firefighting teams), and the fire hoses are actually used. It may seem like old hat to everyone else on board, but I found it incredibly interesting to watch!

Fire Drill
Fire drill (smoke in the oceanic winch room) on board the Oscar Dyson.

Following the fire drill, there was an abandon ship drill, where everyone on board grabs their survival suit, PFD, and heads to one of three life rafts (there are actually 6 on the ship). The CO had me stay up in the TV lounge so that my life raft (#5) wouldn’t have a “full muster” until they sent out a search party to find me. Just as there are two people on hose team in both alpha and bravo for the fire drill, people must go in pairs for the search party, so Patrick and Rick came and found me. I think some people thought I’d actually not heard the alarm (I was wearing headphones), but I was instructed to be up there! We will have one more day of drills before we get back to Dutch Harbor, so maybe I’ll actually don my bright orange survival suit, which other Teachers at Sea in the past have affectionately called the “gumby suit” (even though Gumby was green).

Animal Love
In yesterday’s AWT midwater trawl, we had a new visitor in the fish lab. Introducing the lumpsucker!

Lumpsucker
Me (left) and ENS Libby (right) showing some love for a lumpsucker (middle).

The lumpsucker is in the family Cyclopteridae, which is derived from Greek words that mean circle and fin in reference to their round-shaped pectoral fins. There is a sucker on the bottom of them, so when we put this little sucker in some sea water while we were processing the fish, he stuck himself to the bottom of the container! Lumpsuckers are poor swimmers, so they are mostly benthic, meaning they stay at the bottom of the sea floor. However, that doesn’t mean they are incapable of swimming (especially since this one was caught during a midwater trawl). We took some photos and tossed this little guy back to sea, so hopefully he makes it!

Scott Davenport: Heading to Sea, May 21, 2012

NOAA Teacher at Sea
Scott Davenport
Aboard NOAA Ship Bell M. Shimida
May 21-May 27, 2012

Mission: Rockfish Survey
Geographical area of cruise: Eastern Pacific, off the California coast and next to the Mexican Border
Date: May 21, 2012

Personal Log

Hi, my name is Scott Davenport and I am excited to be a part of NOAA’s Teacher at Sea Program.  It is going to be great. I teach at Paul T. Albert Memorial School located in scenic Tununak, Alaska.  It is a Yup’ik village on the Bering Sea. Most families practice subsistence living. My subject is junior high generalist, meaning I teach everything. Last year, I had a great group of seventh and eighth graders. It was my first year in Alaska and as a full-time teacher. Everyone learned a lot.

Tununak Seventh and Eighth Graders. Can you tell it is the last day of school?

Teacher at Sea intrigued me because it opens wide array of possibilities. A consistent issue at our school is what comes next? Graduation is a celebration, but it also brings apprehension and uneasiness. There are not a wide range of jobs in the village. It is normally limited to fishing, teaching, being a cashier, store stocker, or bush pilot. A NOAA boat offers a wider range of careers.  My experience on the ship will help my students make connections to new possibilities. The long cruises followed by long breaks  fit with subsistence living. They can have the time to go on a two week moose hunt and not miss work. Being located on the sea, most of my students  are acclimated to spending time on the water. My experience will  open eyes.

While on board the Bell M. Shimada, we have seven objectives. Objective #1: Sample the epi-pelagic micronekton. That means–thanks to Cynthia explaining it to me–we are going to see what is living in the upper water column. The specific fish we are looking for are the  juvenile rockfish. We will also survey Pacific whiting, juvenile lingcod, northern anchovy, Pacific sardine, market squid and krill. Objective #2: Characterize prevailing ocean conditions and examine prominent hydrographic features. Objective #3: Map the distribution and abundance of krill. Objective #4: Observe seabird and marine mammal distribution and abundance. Objective #5: Collect Humboldt squid. Objective #6: Conduct deep midwater trawls to examine mesopelagic specimen. Finally Objective #7: Examine feeding habits of jellyfish. My personal objective is to not vomit at sea.

The three things I am looking forward to most are meeting new people, witnessing scientific research, and learning new, unexpected items. My three biggest concerns are falling overboard at night into a never-ending dark abyss, the food, and making sure I contribute to the work/use my time wisely.  I am also excited to have a break from snow.

In the fall, the stairs went down.

Dave Grant: Horse Latitudes, February 22, 2012


NOAA Teacher at Sea

Dave Grant
Aboard NOAA Ship Ronald H. Brown
February 15 – March 5, 2012

Mission: Western Boundary Time Series
Geographical Area: Sub-Tropical Atlantic, off the Coast of the Bahamas
Date: February 22, 2012

Weather Data from the Bridge

Position:26.30 N – 75.42 W
Windspeed: 0
Wind Direction: Calm
Air Temperature: 29 C
Water Temperature: 24 C
Atm Pressure: 1025
Water Depth: 4,410 meters
Cloud Cover: 0
Cloud Type: Slight haze

Science/Technology Log:

We are becalmed and even the veteran sailors onboard are remarking on how flat the sea has become. At about 30 degrees North and South Latitude, moist, low pressure air that was heated and lifted from the surface at the Equator has cooled and is now plunging back down to Earth, forming a line of light winds in a band across the sea. This dry, high pressure air becomes the Trade winds as it is drawn back towards the Equator along the sea surface in what is called a Hadley Cell (After its discoverer). We seem to be on the edge of this meteorological milepost, which was more than a nuisance in the days of sail. If stranded in its pattern too long, food and especially drinking water became an issue, and the first to suffer would be animals being transported from the Old World to the New. Legend has it that subsequent voyagers would come across their carcasses…hence the name Horse Latitudes.

While observing ships returning to port near his home, sixteen year-old future rock star Jim Morrison (The DOORS)  composed what is perhaps his most eerie ballot – Horse Latitudes.

“When the still sea conspires an armor
And her sullen and aborted
Currents breed tiny monsters
True sailing is dead
Awkward instant
And the first animal is jettisoned
Legs furiously pumping”

However, the stable ship makes deck work easier and I am catching up on samples under the microscope, including some of my own tiny “monsters” that the currents have bred.

It is the astonishing variety of life that makes the sea such a fascinating
hunting ground. Get a tow-net, dredge and simple microscope,
and a new world is yours – a world of endless surprises.”

(Sir Alister Hardy)

The chief survey technician set me up  with his  flow-through seawater system and I can leave a net under it to continuously gather plankton. I have noticed some patterns already.
One: Phytoplankton is scarce compared to temperate waters off of New Jersey, and this helps account for the clarity and
brilliant blue color of the water. The absence of large rivers here adding nutrients to the system, and little coastal
upwelling,  means that there is little to fertilize plantlife.
Two: More accumulates in the nets at night, confirming that Zooplankton rises to the surface at in the dark. This diurnal
pattern of the plankton community has been well documented ever since biologists and fishermen went to sea.
Three: Also, there is much more plankton at the surface than in deeper water. This is no surprise since sunlight is the
key ingredient at the surface of this ocean ecosystem.
Four: Creatures from offshore tend to have a more feathery look about them than inshore species. This added surface
area may use the turbulence to help support them near the surface  and increase their buoyancy.

It is said:  “Turn off the sun, and the oceans will starve to death in a week.”  It is assumed that among other stresses on the Biosphere that accompany disastrous impacts of large asteroids, dust and ash from these rare collisions block out enough sunlight to stifle photosynthesis, causing Phytoplankton (The “Pasture of the Sea”) to waste away, and setting the stage for the collapse of the Food Chain and mass extinction events. Fortunately we have plenty of brilliant sunshine here and no celestial catastrophes on the horizon.

Some of the most interesting Zooplankton are the Pteropods, the Sea Butterflies.

   
Empty shell and live pteropod specimen
(Images on the Ron Brown by Dave Grant)

The renowned oceanographer Alister Hardy used them as indicators of different water masses flowing around the British Isles; and New England’s great oceanographer, Alfred Redfield correlated their drifting with the anti-clockwise circulation of water in the Gulf of Maine. Although most are small and less than an inch long, they feed on a variety of creatures and in turn become food for many others. In surface waters they gather phytoplankton, some utilizing cilia and mucus to sweep food to the mouth; but in deeper waters, others are carnivorous.

I am informed by our English colleagues that on Europe’s fishing grounds, they are sometimes fed upon by herring, cod and haddock; which is bad news for British fishermen, whose catch rapidly decays and is not marketable. Such fish are referred to as “black gut” or “stinkers.”

How concentrated are pteropods? Whales and seabirds that we hope to encounter later in the cruise are sustained by them, and in the warmer waters of the Atlantic, at relatively shallow depths and on the tops of submerged peaks at around 2,000 meters, R.S. Wimpenny reports considerable deposits of “pteropod ooze” from their descending shells, covering an estimated 1,500,000 square kilometers of the bottom of the Atlantic (An area the size of the Gulf of Mexico.). Like the Foraminifera, in deeper waters the aragonite in their shells (a more soluble form of calcium carbonate) dissolves, and other sediments like silicates from diatoms accumulate instead. Check out any oceanography text and you are likely to find a picture of this biogenic pteropod mud, as well as other types of deposits.

At least 90% of the animals in the ocean are meroplankton – spending time in this itinerant stage before becoming adults. This phase may vary from a few days to over a year, depending on the creature. (European eels larva are the long distance champions; for over a year, drifting from below us in their Sargasso Sea breeding grounds, all the way to rivers in Britain and France.)

Drifting larvae are cheap insurance for a species, filling the surrounding habitat with individuals of your own kind, settling in new areas and expanding ranges, and particularly, not lingering around their birthplace and competing with the parent stock. However, most individuals simply end up as food for other creatures that are higher on the food chain.

Not surprising, there are copepods, the “cattle of the sea” grazing on smaller organisms.

  
(Images on the Ron Brown by Dave Grant)

Calanus finmarchicus is sometimes called the most abundant animal in the world and is found throughout the oceans, sustaining many types of marinelife; even right whales and basking sharks off the coast of New England.

Other sea soup and children of the sea that author David Bulloch likes to call them, drift by me and swim circuits trapped by surface tension in the water drop under the microscope.

  
Radiolaria are single cell Protozoa that not only ensnare food with mucous, but harbor mutualistic algae
among their spines. (100 x’s)


More live pelagic snails. (Pteropod means winged foot.)

  
An empty shell with  copepod sheltered inside. Other skeletons filled with Paramecia, and a mixed sample of shells
and dust particles.  (Images on the Ron Brown by Dave Grant)

Now that is calm, everyone seems to have their sea legs and are comfortable talking about their bouts of mal de mer.
Here is the worst story about sea sickness I have come across:

 From Dave Grant’s collection of sea stories:
The world’s worst tale of seasickness.
As told by Ulysses S. Grant in his Memoirs

One amusing circumstance occurred while we were lying at anchor in Panama Bay. In the regiment there was a Lieutenant Slaughter who was very liable to seasickness. It almost made him sick to see the wave of a table-cloth when the servants were spreading it. Soon after his graduation [from West Point] Slaughter was ordered to California and took passage by a sailing vessel going around Cape Horn. The vessel was seven months making the voyage, and Slaughter was sick every moment of the time, never more so than while lying at anchor after reaching his place of destination. On landing in California he found orders that had come by way of the Isthmus [Panama], notifying him of a mistake in his assignment; he should have been ordered to the northern lakes. He started back by the Isthmus route and was sick all the way. But when he arrived back East he was again ordered to California, this time definitely, and at this date was making his third trip. He was sick as ever, and had been so for more than a month while lying at anchor in the bay. I remember him well, seated with his elbows on the table in front of him, his chin between his hands, and looking the picture of despair. At last he broke out, “I wish I had taken my father’s advice; he wanted me to go into the navy; if I had done so, I should not have had to go to sea so much.”

Poor Slaughter! It was his last sea voyage. He was killed by Indians in Oregon.

Dave Grant: Going “Blue Water”
, February 17, 2012

NOAA Teacher at Sea
Dave Grant
Aboard NOAA Ship Ronald H. Brown
February 15 – March 5, 2012

Mission: Western Boundary Time Series
Geographical Area: Sub-Tropical Atlantic, off the Coast of the Bahamas
Date: February 17, 2012

Weather Data from the Bridge

Position: Windspeed: 15 knots
Wind Direction: South/Southeast
Air Temperature: 23.9 deg C/75 deg F
Water Temperature: 24.5 deg C/76 deg F
Atm Pressure: 1016.23 mb
Water Depth: 4625 meters/15,174 feet
Cloud Cover: less than 20%
Cloud Type: Cumulus

Science/Technology Log

Sailors used to describe their trips as short-haul or coastal,
or “long seas” which also was described as going “Blue Water”


We are off to a great start after passing the harbor lighthouse and breakwater, and the seas are calm and winds gentle. The Low Country and barrier islands of South Carolina disappear quickly over the horizon, and the most striking change for me is the color of the water. As we have transited from the sediment rich waters upriver, to the estuary, and out to the ocean, its color has gone from grayish, to green to blue.

Bay/Estuary water in Charleston

Gulf Stream water

As a rapid indicator of what’s going on within it biologically, oceanographers use the color of the water. To quantify their observations for other scientist to compare results, a white secchi disc is lowered just below the surface and the observer compares the ocean’s color with tinted water in a series of small vials – the Forel-Ule Scale. (Francois Forel was an oceanographer and his end of the scale is the bluest; and Willi Ule was a limnologist and his end of the scale is darker, reflecting the fresh waters he studied.) The 21 colors run the gambit of colors found in natural waters and modified by the plankton community and range from brownish-to-green-to-blue. This gives you a quick measure of productivity of the waters and the types of phytoplankton predominating. For example: Diatom blooms are brownish and Dinoflagellate blooms form the notorious red tides. Clear, less productive waters look blue, and we are sailing into waters that are a deeper blue with every league we sail.

I lack a secchi disk and we can’t stop the ship to lower one anyway, so I am using instead a scupper on the side as a photographic frame to document this well-studied and interesting phenomenon.

“Being on a boat that’s moving through the water, it’s so clear.
Everything falls into place in terms of what’s important, and what’s not.”
(James Taylor)

Before departing on the trip I came across Richard Pough’s bird map of the Atlantic. On it he divides the ocean into 10-degree quadrants and indicates the average water temperature and number of birds he sighted daily. The good news is we are heading southeast into warmer waters. The bad news is, he does not indicate a very productive hunting ground for bird watching. For example, Cape Hatteras, NC, where the Gulf Stream skirts North Carolina, shows 40 birds. Off the highly productive sub-polar regions like Iceland where there are great breeding colonies of seabirds like gannets, he indicates scores of birds. Regardless, I am hopeful we will find some true seabirds to photograph on our voyage; and perhaps have some migrating songbirds drop in for a rest.

Gulf Stream sunset

Today, as our colleague Wes Struble discusses on his blog, we retrieved our first samples with the CTD rosette. Water is retrieved from predetermined levels between the surface and 4,500 meters sealed in bottles for salinity and dissolved oxygen analysis. These two physical features, along with temperature, are the benchmarks physical oceanographers rely upon to track the ocean circulation.

For an understanding of this process and an overview of the project, I met with Molly Baringer in her office – a large bench that the ship’s carpenter built on deck. It seats three and is similar to a lifeguard stand, so it can give a view of the water and fit over the [dis]array of equipment constantly being shifted around the fantail by various scientists and deck hands. With the calm seas and sunny weather, it is the perfect spot on the ship to sit with a laptop to outline daily assignments for all of us, review the mass of data streaming in, and relax to watch the sunset.

“When I am playful,
I use the meridians of longitude and parallels of latitude for a seine,
and drag the Atlantic Ocean for whales!”

Mark Twain

Scientists and crew prepare to retrieve a mooring before the next big wave!

Chief scientist Dr. Baringer is a physical oceanographer and so is interested less in the creatures moving around in the ocean and more about the water currents that are moving them around, and particularly the vast amount of heat that is transferred from the Equator to the Polar Regions by “rivers in the sea” like the Gulf Stream.

 Currents and storms in our atmosphere produce our daily weather patterns, which of course change seasonally too. Ocean currents work on a much longer time scale and the text book example of the turnover time of warm water moving Pole-ward, cooling and returning to the Tropics as “centuries.” This timeframe infers that dramatic fluctuations in climate do not occur.

However, by analyzing ice cores from Greenland, scientists recently have detected evidence of abrupt changes in climate – particularly a significant cooling event 8,200 years ago – that could be associated with vacillations in the Gulf Stream. Although lacking a blackboard at her impromptu lecture hall on deck, a patient Dr. Baringer was artful in walking me through a semester of climatology and modeling to highlight the implications of an oscillating Gulf Stream and its deepwater return waters – the Deep Western Boundary Current.

Surface water is driven from the southern latitudes towards the Poles along the western side of the Atlantic, constantly deflected in a clockwise pattern by the Earth’s rotation. Bathing Iceland with warm and saltier water and keeping it unusually mild for its sub-polar latitude, the Gulf Stream divides here with some water flowing into the Arctic Sea and the rest swirling down the Eastern Atlantic moderating the climate in Great Britain, France and Portugal. (This explains the presence of a rugged little palm tree that I once saw growing in a Scottish garden.)

Perturbations in the northward flow of heat by meanderings of the Gulf Stream or the smothering of it of it by lighter fresh waters from melting ice in Greenland and Canada appears play a significant role in occasionally upsetting Europe’s relatively mild and stable climate – which is bad enough. What is more alarming is new evidence that these changes don’t necessarily occur gradually over centuries as once assumed, but can take place rapidly, perhaps over decades.

There is more bad news. The surface of the sea is dynamic and even without wind and waves, there are gentle hills and valleys between areas. I remember my surprise when our physical oceanography teacher, Richard Hires, pointed out that because of warmer water and displacement by the Earth’s rotation, Gulf Stream waters are about a meter higher than the surrounding ocean…that to sail East into it from New Jersey, we are actually going uphill. If these giant boundary currents are suppressed in their movements, it will exasperate an ongoing coastal problem as those hills and valleys of water flatten, resulting in rising sea levels and erosion along northern coastlines.

This explains why we are “line sailing” at 26.5 North, sampling water and monitoring sensors arrayed on the parallel of latitude between Africa and the Bahamas. To measure change, it is necessary to have baseline data, and the stretch of the Atlantic is the best place to collect it.

Snap shots of the water column are taken using the CTD apparatus as we sail an East-West transect, but at $30-50,000. Per day for vessel time, this is not practical or affordable. Here is where moorings, data recorders and long-life Lithium batteries come into play. By anchoring a line of sensors in strategic locations and at critical depths to take hourly readings, year-long data sets can be recorded and retrieved periodically. Not only does this save time and money, it is the only way to generate the ocean of data for researchers to analyze and create a model of what is happening over such a vast region – and what may occur in the future.

For more specific details, check out the project overview.

Deep Western Boundary Current Transport Time Series to study:
-the dynamics and variability of ocean currents;
-the redistribution of heat, salt and momentum through the oceans;
-the interactions between oceans, climate, and coastal environments; and
-the influence of climate changes and of the ocean on extreme weather events.
Information at:  http://www.aoml.noaa.gov/phod/wbts/ies/index.php

We hear that “The package is on deck” and it is time to collect water samples from the 24 different depths the Niskin bottles were fired (Remotely closed). As any aquarist will assure you, as soon as seawater is contained it begins to change, so we always start with the bottom water and work around to the top water since dissolved oxygen levels can drop with rising temperatures and biological activity from planktonic creatures trapped along with the water samples.

Although as oceanography students we read that most ocean water is quite cold (~3.5C)  because only the top 100 meters soaks up the warmth from sunlight, it is still an awakening for me to fill the sample bottles with even colder bottom water. After a half hour of rinsing and filling bottles, my hands are reminded of the times I worked in an ice cream parlor restocking containers from the freezer and filling soft-serve cones. It is a delight to get to the last several bottles of warm (25C) surface water.

Once the DO and salinity bottles are filled, they are removed to the chemistry lab and the Niskins are all mine. By holding a small plankton net under them as they drain excess water, I try my luck at catching whatever has almost settled to the bottom. There is an extra bonus too. A patch of floating Sargassum weed that tangled in the rosette was retrieved by the technician and set aside for me to inspect.

Windrows of Sargassum weed drift past the Ron Brown

Here is what I found under the microscope so far:

From depth:

The bottom water is absolutely clear with no obvious life forms swimming around. However a magnification of 50x’s and the extra zoom of my handy digital camera set-up reveals a number of things of interest I am sorting into AB&C’s:
Abiotic: Specks of clear mineral crystals. Are these minute sediments washed from the mainland or nearby Caribbean islands? Or is it possible they are quartz grains carried from much greater distances, like the Saharan dust that satellite images have proven are swept up by desert winds and carried all the way across the Atlantic?

Biotic: Although I can not find anything living, the silica dioxide skeletons (frustules) of at least two species of diatoms are present. These fragile fragments of glass accumulate in deep sediments below highly productive zones in the sea and different species are useful to paleontologists for determining the age of those deposits. On land, fossil diatom deposits are mined for diatomaceous earth – used as an abrasive and cleaner, pool filter material, and even in nanotechnologyresearch applications. There is other detrital material in the samples, but nothing identifiable.

Celestial(?): One tiny round particle caught my attention under the microscope. It looks like the images I’ve seen of microtektites – glassy and metallic meteor particles that have been molded by the heat of entry into the atmosphere. The Draxler brothers, two science students in Massachusetts, collect them and I hope they will confirm my identification when I see them again.

Dust particle (Right) and foraminifera (Center)

From the surface:

The warm, sunlit surface water here is covered with Sargassum weed, a curious algae that sustains an entire ecosystem in the waters mariners named the Sargasso Sea. On board the Brown it is simply called “weed” in part because it can be a minor nuisance when entangled with equipment. The Sargassum’s air bladders that support it at the surface reminded Portuguese sailors of their sargazagrapes and they named the gulfweed after them.

Can you spot the two Sargassum shrimp next to the air bladder?

Floating Sargassum weed harbors a great variety of other creatures including baby sea turtles, crustaceans and especially bryozoan colonies. The film of life encrusting the weed is sometimes called aufwuchs by scientists and is a combined garden and zoo.

A quick rinse in a plastic bag revealed two species of bryozoan and numerous tiny crustaceans. The Phylum Bryozoa is the “moss animals” a puzzling colonial creature to early biologists. Bryozoans are an ancient group with a long fossil record and are used by paleontologists as an “index” species to date sediments.

Byozoan colony

To my delight there were also some foraminifera in the samples. “Forams” as they are called by researchers, are single celled protozoa with calcium carbonate skeletons. They are abundant and widespread in the sea; having had 330 million years to adjust to different habitats – drifting on the surface in the plankton community and on benthic habitats on the bottom.

It is not necessary for you to go to sea with a microscope to find them. I have seen their skeletons imbedded in the exterior walls of government buildings in Washington, DC; and our own lab building at Sandy Hook, NJ has window sills cut from Indiana limestone – formed at the bottom of the warm Mesozoic seas that once covered the Midwest. In the stone, a magnifying glass reveals pin-head sized forams cemented among a sea of Bryozoan fragments. Some living forams from tropical lagoons are large enough to be seen without a magnifier, and  are among the largest single-celled creatures on the planet. With a drop of acid (The acid test!) our Geology students confirm that our window sills are indeed made of limestone as the drops fizzing reaction releases carbon dioxide sequestered when the animal shell formed.

Living foraminifera eat algae, bacteria and detritus and are fed upon by fishes, crustaceans and mollusks. Dead forams make contributions to us by carrying the carbon in their skeletons to the bottom where it is sequestered for long geological periods.

Geologists also use different species of forams as “index” species to fix the date of strata in sediment cores and rocks. The appearance and demise of their different fossil assemblages leave a systematic record of stability and change in the environment; and paleoclimatologists use the ratios of Carbon and Oxygen isotopes in their skeletons document past temperature ranges.

Our first plankton samples extracted from the deepest samples retrieved from the Niskin bottles at 4,000 meters (2.5C) did not produce any forams. This may be because in deep, cold water, calcium carbonate is more soluble and the skeletons dissolve. Presumably why we identified only the glassy tests of diatoms.

Foraminifera shell at 100x’s

Tiny Paramecia swarm over the detritus in my slide and taking a closer look at that and the growth associated with the weed I am reminded of Jonathon Swifts jingle:

Big fleas have little fleas
Upon their backs to bite ’em
And little fleas have lesser fleas

And so, ad infinitum 


Sunset over the Sargassum Sea

The Chief Scientist:

A day in the life of our chief scientist involves: checking with her staff to evaluate the previous day’s collections, consulting with visiting scientists on their needs and any problems that might arise, checking with the deck hands and technicians about equipment needs and repairs, advising the ship’s officers of any issues, and making certain we are on course and schedule for the next station.

And then rest? Hardly!

Even when off duty there are inquiries to field from staff, scientists and crew; equipment repairs to be made; and software that needs to be tweaked to keep the data flowing.

How does one prepare for a career like this?
Physically: the capacity to function on little sleep so you can work 12-hour shifts and be on-call the other twelve. (And there is little escape at mealtimes either, where the conversation never stays far from the progress of the cruise.)Mentally: the capability to multi-task with a variety of very different chores.
Emotionally: the flexibility to accommodate people with many different personalities and  needs, while staying focused on your own work.
Also, excellent organizational skills, since months of planning and preparation are crucial.
And perhaps most importantly, a sense of humor!

 

 “Lock-and-Load!
Midnight shift.
Chief Scientist Dr. Molly Baringer prepares to fire the XBT
off the stern for an 800 meter profile of temperature and pressure.

Elaine Bechler: Off the Back, July 23, 2011

NOAA Teacher at Sea
Elaine Bechler
Aboard R/V Fulmar
July 21 – 26, 2011 

Mission: Survey of Cordell Bank and Gulf of the Farallones NMS
Geographical Area of Cruise:  Pacific Ocean, Off the California Coast
Date: July 23, 2011 

Science and Technology Log

Today was day three of my Teacher at Sea experience aboard the R/V Fulmar.  It is a big eye-opener to have experienced this.  We have been documenting all birds, marine mammals and debris while we travel along  transects through the Gulf of the Farallones NMS (National Marine Sanctuary) and Cordell Bank NMS.

transects in the study area
Transects in the study area

At the back of the boat is where other important data was collected.  There, we deployed nets to collect plankton and krill.  We also gathered abiotic parameters about the water. This section is to inform you about the CTD, the hoop net and the tucker trawl.  Why would collecting plankton and krill be important?  What would be an example of some abiotic parameters that could be measured in ocean water?

Some of the transects on the map to the left are marked with black dots and yellow stars.  Black dots are where we would drop a device called a CTD into the water.  CTD stands for conductivity, temperature and depth sensor.  The boat would stop at the station and two of us would guide the CTD to the center of the back edge of the boat.  The two crew members (Captain Erik Larson and mate Dave Benet) would locate themselves at two stations on the boat where they could control the movement of the boat and the winch.  The winch wire could be attached o any heavier device that needed to be deployed off of the back.  We would use the computer to determine the depth at that location.  Then we would communicate with Erik and Dave to tell them how deep to drop the CTD. Why did we all have to wear hard hats?  Why are we wearing large orange jackets?

controlling the back deck operations
Controlling the back-deck operations

Another job we did off the back was to gather zooplankton with the hoop net.  We would attach the net to the winch. The crew would assist us in dropping it to the proper depth (approximately 50 meters which was as close to the bottom as we could get without dragging the net).  After a specific amount of time we would bring the net up and put the sample into collection bottles.  These bottles will be sent to a lab to be analyzed after the trip.  It was amazing to see the variability of organisms in the net.   We found krill in all stages of development.

Andrea and I positioning the CTD
Andrea and I positioning the CTD

Sometimes the sample would be ruined if we captured a jelly fish.  Having a jelly fish in the plankton net acts as a slimy block.  Our net would sometimes come up with a clean sample of plankton, other times the net would be covered with brownish slime (phytoplankton) which required a lot of cleaning afterwards. The science team was very interested in the status of the krill in the catch.

deploying the hoop net
Deploying the hoop net

the tucker trawl
The tucker trawl

Another net that was used to collect samples was called the tucker trawl.  We would deploy the tucker trawl when the vessel came to the continental shelf break (about 200 meters)  of transects 2, 4, and 6, 8 and 10.  This net required 3 to 4 people to launch it.  It had three plankton nets, each of which was set to close at specific depths.  Our first sample came up with mud from the bottom (the net hit the bottom by mistake). Included in that mud was a purple slimy hagfish and a few tiny sea stars.  A later sample was filled with krill.

Water nutrient samples were also gathered from the side of the boat.  Cordell Bank  and Gulf of the Farallones National Marine Sanctuaries can be rich in nutrients such as phosphorus and nitrogen due to upwelling.

obtaining water for nutrient samples
Obtaining water for nutrient samples

Upwelling occurs when strong winds drive warm, nutrient-poor surface waters away from the shore.  These surface waters are replaced by nutrient-rich deep water and provide nutrients for the unicellular algae. What is upwelling?  What importance are nutrients to algae? 

Elaine Bechler: Phenomenal Feeding Frenzy, July 25, 2011

NOAA Teacher at Sea
Elaine Bechler
Aboard R/V Fulmar
July 21 – 26, 2011 

Mission: Survey of Cordell Bank and Gulf of the Farallones NMS
Geographical Area of Cruise:  Pacific Ocean, Off the California Coast
Date: July 25, 2011 

Science and Technology Log

Humpbacks performing vertical lunge feeding

Cool stuff today.  While transiting between one transect and another, the R/V Fulmar happened upon a major feeding event.  While approaching, hundreds of birds could be seen flying and diving along with evidence of many humpback whale spouts.  It turned out to be a furious feeding frenzy of myriads of birds, dolphins, pinipeds and whales.  Very dramatic was the vertical lunge feeding of the humpback whales.  We could see their huge mouths open and pointed upward as they gobbled silvery fish.  The whales would release huge loud exhales over and over.  A pod of 20 Pacific white-sided dolphins would lunge and dive down randomly seeking the swift swimmers.  Entering from the north side came a pod of Northern-right whale dolphins so sleek and moving in a group as if choreographed.  Thousands of seabirds including Sooty and Pink footed Shearwaters, Northern Fulmars, Black-footed Albatrosses, Western Gulls, Fork-tailed Storm Petrels and Common Murres were diving and competing for the fish.  We could hear the feet, wings, beaks and calls from their interactions on the surface.   It was remarkable to see the shearwaters swimming after the prey.  The feeding group would move and change as the school of fish darted about from below.  It was a tumultuous feast.

Bird feeding frenzy

shearwater feeding under water
Shearwater feeding under water

What we witnessed was the food web in action!  Each of these animals was supported by the fish they were eating.  Those fish were supported by a smaller food source such as smaller fish and zooplankton.  Those small organisms rely on the phytoplankton to capture the solar radiation from the sun and to use the deep water nutrients which were upwelled to the surface waters.   Create 5 food chains 5 organisms long that could have been in place in the ocean that day.

Dall's Porpoise
Dall's Porpoise

Earlier I noted a Western Gull spy a white object in the water and attempt to land on it for feeding only to find it was a piece of paper.  I had never observed the interaction of a marine animal with marine debris until now.  It was obvious that the debris caught the gull’s attention from a good distance away and had attracted it to the surface of the water.  How could this action affect the food web?

I feel fortunate to have been chosen to experience this cruise and all that went along with it.  I’d do it again in a heartbeat (with sufficient amounts of  seasickness medication!).  Thank you R/V Fulmar crew, ACCESS team, PRBO Conservation Science , TAS team and NOAA for this opportunity.  Thank you Sophie Webb for all of the photos of the frenzy on this page.

Pacific White-sided dolphins and Kaitlin
Pacific White-sided dolphins and Kaitlin

Cathrine Fox: Issue Ten: Red King Crabs, a twenty word synopsis

NOAA TEACHER AT SEA
CATHRINE PRENOT FOX
ONBOARD NOAA SHIP OSCAR DYSON
JULY 24 – AUGUST 14, 2011Mission: Walleye Pollock Survey
Location: Kodiak, Alaska
Date: August 7, 2011

Weather Data from the Bridge
Latitude: 57.33° N, Longitude: 152.02° W
Air Temperature: 10.6° C
Water temperature: 9.3° C
Wind Speed/Direction:8.25kn/338.45
Barometric Pressure: 1017.59
Partly cloudy (35%) and sun

Personal Log:

First things first: we have left the dock! We are surrounded by sea!

Being at sea is lovely. Pulling out of Women’s Bay a few of us went up above the bridge to the “flying bridge” (aptly named, as you are up in the air with the birds) for a view. In the mouth of the bay, sea otters swam through bull kelp forests and a humpback whale breached right off of the bow. Although horned puffins were more numerous by the Coast Guard pier, the farther we got offshore, the more tufted puffins there were. Pelagic (?) cormorants used the buoys as platforms to dry their wings and later, when we tested the net reels, Northern fulmars and black-footed albatross sailed in to see if we were pulling in fish: as if they were classically conditioned. The movement of the ship makes me feel sleepy when I am without a porthole; other than that, I haven’t felt any adverse effects at all. I love it.

Adventures in a Blue World, Issue 10
Adventures in a Blue World, Issue 10

I also feel really lucky to be working with such an interesting group of people. One of the scientists, Dr. Jodi Pirtle (now at the University of New Hampshire) studied juvenile Red King Crabs for her dissertation at the University of Alaska Fairbanks, School of Fisheries and Ocean Science, Juneau. It is because of her and requests from three of you out there in cyber-land that Adventures in a Blue World, Issue 10 explores the natural history of these interesting organisms. I hope you enjoy Red King Crabs, a twenty word synopsis. (Cartoon citation 1. Hint: the twenty word synopsis starts with “I bite.”)

Science and Technology Log:

    Oscar Dyson's multibeam echo sounder
Oscar Dyson’s multibeam echo sounder

I came on shift this morning at 4am and immediately was able to take part in some really interesting work. Jodi (the scientist that shared her juvenile crab research) is working on mapping habitats in untrawlable places of the ocean floor using acoustic and other methods. During the night, the ship will be driven in tight transects over areas that she has identified as being potentially “untrawlable:” rocky ledges, areas with lots of pinnacles, or other areas with un-level bottoms. The ship’s multibeam echo sounder broadcasts and receives signals, providing an acoustic map of the floor. Three times during the trawl, Jodi will lower a camera down to the bottom to get live feed on what the habitat looks like.

This morning we tested the stereo video camera and lowered it 78.81 meters down. Watching it was like being able to control a live feed on the Discovery Channel! Euphausiids (krill) swarmed the lights, a huge burgundy colored halibut swam along the silty bottom, flat fish, pacific cod and a sturgeon poacher perused the camera and mushroom-like anemones called Netridium farcimen swayed with the currents.

In last summer’s cartoon series (Pura Vida Adventures, Issue 2), I quoted Stephen Sharnoff: The eye often cannot see what the mind does not already know” to explain how difficult it was to see lichen diversity until you knew what you were looking for. I think the reverse is true for life on the ocean floor. I know that the ocean is very alive. Seeing it 80 meters down in the pre-dawn light as if it were a bustling city is an all together different experience.

In the future, I will try to capture a few stills directly from the live video feed. For now, I will leave you with a few other images of science, technology and shipboard life.

Until our next adventure,
Cat

Lowering the stereo-video-camera.
Lowering the stereo-video-camera.

Jodi "drives" the lowered stereo-video-camera, watching the live feed.
Jodi “drives” the lowered stereo-video-camera, watching the live feed.

Darin Jones brakes while Jodi drives.
Darin Jones brakes while Jodi drives.

Dawn in Kalsin Bay, Kodiak.
Dawn in Kalsin Bay, Kodiak.

Deploying the Expendable Bathythermograph (XBT): click here to find out more
Deploying the Expendable Bathythermograph (XBT): click here to find out more

Becky Moylan: Preliminary Results, July 13, 2011

NOAA Teacher at Sea
Becky Moylan
Onboard NOAA Ship Oscar Elton Sette
July 1 — 14, 2011


Mission: IEA (Integrated Ecosystem Assessment)
Geographical Area: Kona Region of Hawaii
Captain: Kurt Dreflak
Science Director: Samuel G. Pooley, Ph.D.
Chief Scientist: Evan A. Howell
Date: July 13, 2011

Ship Data

Latitude 1940.29N
Longitude 15602.84W
Speed 5 knots
Course 228.2
Wind Speed 9.5 knots
Wind Dir. 180.30
Surf. Water Temp. 25.5C
Surf. Water Sal. 34.85
Air Temperature 24.8 C
Relative Humidity 76.00 %
Barometric Pres. 1013.73 mb
Water Depth 791.50 Meters

Science and Technology Log

Results of Research

Myctophid fish and non-Myctophid fish, Crustaceans, and gelatinous (jelly-like) zooplankton
Crustaceans

Chief Scientist guiding the CTD into the ocean
Chief Scientist guiding the CTD into the ocean

Beginning on July 1st, the NOAA Integrated Ecosystem Assessment project (IEA) in the Kona region has performed scientific Oceanography operations at eight stations.  These stations form two transects (areas) with one being offshore and one being close to shore. As of July 5th, there have been 9 CTD (temperature, depth and salinity) readings, 7 mid-water trawls (fish catches), over 15 acoustics (sound waves) recordings, and 30 hours of marine mammal (dolphins and whales) observations.

The University of Hawaii Ocean Sea Glider has been recording its data also.The acoustics data matches the trawl data to tell us there was more mass (fish) in the close to shore area than the offshore area. And more mass in the northern area than the south. This is evidence that the acoustics system is accurate because what it showed on the computer matched what was actually caught in the net. The fish were separated by hand into categories: Myctophid fish and non-Myctophid fish, Crustaceans, and gelatinous (jelly-like) zooplankton.

Variety of Non-Myctophid Fish caught in the trawl
Variety of Non-Myctophid Fish caught in the trawl

The CTD data also shows that there are changes as you go north and closer to shore. One of the CTD water sample tests being done tells us the amount of phytoplankton (plant) in different areas. Phytoplankton creates energy by making chlorophyll and this chlorophyll is the base of the food chain. It is measured by looking at its fluorescence level. Myctophids eat phytoplankton, therefore, counting the amount of myctophids helps create a picture of how the ecosystem is working.

The data showed us more Chlorophyll levels in the closer to shore northern areas . Phytoplankton creates energy using photosynthesis (Photo = light, synthesis  = put together) and is the base of the food chain. Chlorophyll-a is an important pigment in photosynthesis and is common to all phytoplankton. If we can measure the amount of chlorophyll-a in the water we can understand how much phytoplankton is there. We measure chlorophyll-a by using fluorescence, which sends out light of one “color” to phytoplankton, which then send back light of a different color to our fluorometer (sensor used to measure fluorescence). Myctophids eat zooplankton, which in turn eat phytoplankton. Therefore, counting the amount of myctophids helps create a picture of how the ecosystem is working.   The data showed us more chlorophyll-a levels in the closer to shore northern areas.

Bringing in the catch

The Sea Glider SG513 has transmitted data for 27 dives so far, and will continue to take samples until October when it will be picked up and returned to UH.

Overall the mammal observations spotted 3 Striped dolphins, 1 Bottlenose dolphin, and 3 Pigmy killer whales.  Two biopsy “skin” samples were collected from the Bottlenose dolphins. A main part of their research, however, is done with photos. They have so far collected over 900 pictures.

Looking at all the results so far, we see that there is an area close to shore in the northern region of Kona that has a higher concentration of marine life.  The question now is why?

We are now heading south to evaluate another region so that we can get a picture of the whole Eastern coastline.

Personal Log

In the driver's seat
In the driver's seat

Krill
Krill

And on deck the next morning we found all kinds of krill, a type of crustacean. Krill are an important part of the food chain that feed directly on phytoplankton. Larger marine animals feed on krill including whales. It was a fun process finding new types of fish and trying to identify them.Last night I found a beautiful orange and white trumpet fish. We also saw many transparent (see-through) fish with some having bright silver and gold sections. There were transparent crabs, all sizes of squid, and small clear eels. One fish I saw looked like it had a zipper along the bottom of it, so I called it a “zipperfish”. A live Pigmy shark was in the net, so they put it in a bucket of water for everyone to see. These types don’t ever get very big, less than a foot long.

I have really enjoyed living on this ship, and it will be sad to leave. Everyone treated me like I was part of the group. I have learned so much about NOAA and the ecosystem of the Kona coastline which will make my lessons more interesting this year. Maybe the students won’t be bored!

Sunrise over Kona Region

Sunrise
Sunrise

Kathleen Harrison: Shumagin Islands, July 9, 2011

NOAA Teacher at Sea
Kathleen Harrison
Aboard NOAA Ship  Oscar Dyson
July 4 — 22, 2011

Location:  Gulf of Alaska
Mission:  Walleye Pollock Survey
Date: July 9, 2011

Weather Data from the Bridge
True wind direction:  59.9°, True wind speed:  11.44 knots
Sea Temperature:  9°C
Air Temperature:  8.9°C
Air pressure:  1009.74 mb
Foggy with 1 mile visibility
Ship heading:  88°, ship speed:  11 knots

Science and Technology Log

The Shumagin Islands are a group of about 20 islands in the Gulf of Alaska, southwest of Kodiak Island.  They were named for Nikita Shumagin, a sailor on Vitus Bering’s Arctic voyage in 1741.  They are volcanic in origin, composed mostly of basalt.

Shumagin Islands
Bold and mountainous, the Shumagin Islands rise from the sea in the Gulf of Alaska.

Several islands even exhibit hexagonal basaltic columns.  There are about 1000 people who reside in the islands, mostly in the town of Sand Point, on Popof Island.  According to the United States Coast Pilot (a book published by NOAA with extensive descriptions about coastlines for ship navigation), the islands extend out 60 miles from the Alaskan Peninsula.  They are bold and mountainous.

hexagonal basalt
When this island formed, volcanic lava cooled into basalt hexagonal columns.

The shores are broken in many places by inlets that afford good anchorages.  The shores are rockbound close to.  Fishing stations and camps are scattered throughout the group, and good fishing banks are off the islands.  Fox and cattle raising are carried on to some extent.

long range view of SI, Alaskan Peninsula
Shumigan Islands to the left, snow covered peaks of Alaskan Peninsula in background. An amazing sight on a rare sunny day in the Gulf of Alaska.

Sea water quality is very important to the scientists on the Oscar Dyson.  So important, that it is monitored 24 hours a day.  This is called the Underway System.  The sea water comes through an intake valve on the keel of the bow, and is pumped up and aft to the chem lab.  There, it goes through 4 instruments:  the fluorometer, the dissolved Oxygen unit, the Thermosalinograph (TSG), and the ISUS (nitrate concentration).

The fluorometer measures the amount of chlorophyll and turbidity in the sea water once every second.  A light is passed through the water, and a sensor measures how much fluorescence (reflected light) the water has. The amount of chlorophyll is then calculated.  The measurement was 6.97 µg/L when I observed the instrument.  The amount of  phytoplankton in the water can be interpreted from the amount of chlorophyll.  Another sensor measures how much light passes through the water, which gives an indication of turbidity.  Twice a day, a sample of water is filtered, and the chlorophyll is removed.  The filter with the chlorophyll is preserved and sent to one of the NOAA labs on land for examination.

chem lab
Here are all of the water quality instruments, they are mounted to the wall in the chem lab. Each one has a separate line of sea water.

The next instrument that the water passes through will measure the amount of dissolved oxygen every 20 seconds.  Oxygen is important, because aquatic organisms take in oxygen for cellular respiration.  From plankton to white sharks, the method of underwater “breathing” varies, but the result is the same – oxygen into the body.  The oxygen in the water is produced by aquatic plants and phytoplankton as they do photosynthesis, and the amount directly affects how much aquatic life can be supported.

The TSG will measure temperature, and conductivity (how much electricity passes through) every second, and from these 2 measurements, salinity (how much salt is in the water) can be calculated.  The day that I observed the TSG temperature was 8.0°  C, and the salinity was 31.85 psu (practical salinity units).  Average sea water salinity is 35.  The intense study of melting sea ice and glaciers involves sea water temperature measurements all over the world.  A global data set can be accumulated and examined in order to understand changing temperature patterns.

instrument to measure
This instrument measures the amount of nitrate in the sea water. It is called the ISUS.

The last instrument measures nitrate concentration in the sea water every couple of minutes.  It is called ISUS, which stands for In Situ Ultraviolet Spectrophotometer.  Nitrate comes from organic waste material, and tends to be low at the surface, since the wastes normally sink to the bottom.  The normal value is .05 mg/L, at the surface, at 8°C.  Values within the range of 0.00 to 25 mg/L are acceptable, although anything above 5 is reason for concern.

All of the data from these instruments is fed into a ship’s computer, and displayed as a graph on a monitor.  The Survey Technician monitors the data, and the instruments, to make sure everything is working properly.

New Species Seen today:

Whale (unknown, but probably grey or humpback)

Horned Puffin

Dall’s Porpoise

Krill

Chum Salmon

Eulachon

monitor shows current data
The current water quality data is shown on this computer screen beside the instruments.

Personal Log

Living on a ship is quite different from living at home.  For one thing, every item on the ship is bolted, strapped, taped, or hooked to the bulkhead (wall), or deck (floor).  Most hatches (doors) have a hook behind them to keep them open(this reminds me of when I put hooks behind my doors at home to keep little children from slamming them and crushing fingers).  Some hatches (around ladderways (stairwells)) are magnetically controlled, and stay open most of the time.  They close automatically when there is a fire or abandon ship situation or drill.  Every drawer and cabinet door clicks shut and requires moving a latch or lever to open it.  For some cabinet doors that you want to stay open while you are working in the cabinet, there is a hook from the bulkhead to keep it open.

bracket holds copier
The copier machine is held in place by a 4 post bracket that is bolted to the floor.

On every desk is a cup holder, wider on the bottom than the top, designed to hold a regular glass or a cup of coffee.  If one of those is not handy, a roll of duct tape works well for a regular glass.  All shelves and counters have a lip on the front, and book shelves have an extra bar to hold the books in.  Trash cans and boxes are lashed to the bulkhead with an adjustable strap, and even the new copier machine has a special brace that is bolted to the deck to hold it in one place (I heard that the old copier fell over one time when there was a particularly huge wave).  There are lots of great pictures on the bulkheads of the Oscar Dyson, and each one is fastened to the bulkhead with at least 4 screws, or velcro.  There are hand rails everywhere – on the bulkhead in the passageway (hallway) (reminds me of Mom’s nursing home), and on the consoles of the bridge.

hallway hand rails
This view down the hall shows the hand rail. It comes in handy during rough weather.

Desk chairs can be secured by a bungee cord, and the chairs in the mess (dining room)  can be hooked to the deck.

Another thing that is different from home is the fact that the Oscar Dyson operates 24-7 (well, in my home, there could easily be someone awake any hour of the night, but the only thing they might operate is the TV). The lights in the passageways and mess are always on.  The acoustics and water quality equipment are always collecting data.  Different people work different shifts, so during any one hour, there is usually someone asleep.  Most staterooms have 2 people, and they will probably be on opposite shifts.  One might work 4 am to 4 pm, and the other would work 4 pm to 4 am.  That way, only one person is in the room at a time (there is not really room for more than one).  There is always someone on the bridge – at least the Officer of the Deck (OOD) – to monitor and steer the ship.  During the day, there is usually a look out as well.

binoculars on the bridge
These binoculars are used by the look out to scan the surrounding area for anything in the water - whales, boats, islands, kelp, or anything else in proximity to the ship.

His job is to, well, look out – look for floating items in the water, whales, rocks, and other ships (called contacts or targets).  This helps the OOD, because he or she can’t always keep their eyes on the horizon.

I have thoroughly enjoyed living on the Oscar Dyson (we have had calm seas so far), and talking with the NOAA staff and crew.  They are ordinary people, who have chosen an extraordinary life – aboard a ship.  It has challenges, but also great rewards – seeing the land from a different perspective, being up close to sea life, and forging close relationships with shipmates, as well as participating in the science that helps us understand the world’s oceans.

Anne Mortimer: Otoliths and more otoliths…, July 8, 2011

NOAA Teacher at Sea
Anne Mortimer
Onboard NOAA Ship Oscar Dyson
July 4 — 22, 2011 

Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 8, 2011

Weather Data from the Bridge
Air temperature: Sunny, 10°C
Sea temperature: 9.1°C
Wind direction: SW; 318 degrees
Wind Speed: 24.1 knots
Barometric pressure: 1012.12 mbar

Science and Technology Log

On my last 12 hour shift, a beautiful, sunny day, we started by pulling in, sorting, counting, and weighing fish caught in a mid-water trawl.  The scientists were also testing out a new “critter cam” that was attached to the net. The trawl net has a special device called a M.O.C.C. which stands for Multiple Opening and Closing Cod-ends. The net has three separate nets that can be opened and closed by the M.O.C.C. when the scientists reach the desired depth or location for catching, this keeps the catches from different targeted depths from mixing together. The three separate nets are called cod-ends. Each cod-end catch is processed separately. In this trawl, we saw multiple jellies, juvenile pollock, krill, juvenile squid, juvenile Pacific sandlance, capelin, juvenile flatfish, and juvenile cod.

capelin
Capelin from our trawl covered the deck of the boat.

MOCC entering the water
The Multiple Opening and Closing Cod-end, or MOCC, and net being released to the water for a mid-water tow.

Later, we trawled a 2nd time for about an hour. The trawl net used is called the AWT or Aleutian Wing Trawl because the sides of the net are like wings. After the net is in the water, two large steel doors are dropped in the water and help to pull the net open wide. You can see them in the picture above, they are the giant blue steel plates attached to the very stern (end) of the ship. During this trawl, only one cod-end was opened, and the catch was several hundred pounds of Pollock, with some eulachon, capelin, squid and jellies also.

Because pollock are the target fish of this survey, each was sexed and counted, and a smaller number were measured for length and weight, and the stomachs and otoliths were removed. The stomachs are being preserved for another research project back in Seattle, and as I mentioned previously about otoliths, they tell the age of the fish.

Personal Log

Today I was happy to have beautiful sunshine and 2 trawls to sort through. The skies and surrounding islands were absolutely stunning. I can understand why people are drawn to this place. It’s wild and rugged and looks like it probably did hundreds of years ago.

Scenery of the Shumigan Islands.

sunset
Dusk in the Shumigan Islands.

Species List

humpback whale (just one today!)

fulmar

tufted puffin

pollock

arrowtooth flounder

jellies

krill

squid

Pacific sandlance

capelin

juvenile flatfish

juvenile cod

sea gulls

eulachon

Thought for the day… if I was a blubbery whale, I would live in the Gulf of Alaska. If I was a pollock, I’d try not to get into a net, they can give you a splitting headache.

Tammy Orilio, Trawling for Krill, June 29, 2011

NOAA Teacher at Sea: Tammy Orilio
NOAA Ship Oscar Dyson
Mission: Pollock Survey
Geographical Area of Cruise: Gulf of Alaska
Date: 29 June 2011

Weather Data from the Bridge:

Latitude: 58.01 N
Longitude: -152.50 W
Wind: 23.95 knots
Surface Water Temperature: 9.4 degrees C
Air Temperature: 10.8 degrees C
Relative Humidity: 71%
Depth: 177.72 m



Science & Technology Log:
What are krill, you ask? They’re animals in the Phylum Arthropoda, which means they’re related to insects, spiders, crabs, lobsters, etc. They have jointed legs and an exoskeleton, are usually a couple centimeters in length, and are reddish/orange-ish in color. They can often be found in dense schools near the surface of the water, and play an important role in the ecosystem as a source of food for lots of larger animals (like fish, whales, & penguins).

I’ve mentioned the two types of trawl gear that we use to catch fish, but if we want to catch smaller things like plankton, the mesh on those nets is way too small. Therefore, we use a third type of trawl called the Methot which has very fine mesh to corral the plankton down into a collection container at the end of the net. In addition to having a hard container at the end- as opposed to just a bag/codend that you see in the fish trawls- the Methot trawl also has a large metal frame at the beginning of the net. Check out the photos below.

The Methot trawl being taken out of the water. Note the square frame.
The Methot trawl being taken out of the water. Note the square frame.

The container that collects all of the plankton in the net.
The container that collects all of the plankton in the net.

After the net is brought back on deck, one of the fishermen or deckhands brings the container of krill into the fish lab. The first thing we do is dump the container into a sieve or a bucket and start picking out everything that isn’tkrill. The two most common things that are collected (besides krill) are gelatinous animals (like jellyfish & salps) and larval fish. The fish get weighed (as one big unit, not individually) and then frozen for someone to look at later on.

The larval fish that we separated from one plankton tow.
The larval fish that we separated from one plankton tow.

After sorting the catch, we’re left with a big pile of krill, which gets weighed. We then take a small subsample from the big pile of krill (it’s a totally random amount- depends on how much we scoop out!) and then weigh the subsample. Then the fun begins, as I’m the one that does this job- I get to count every single individual krill in the subsample. Tedious work. All of the data is then entered into the computer system, and the krill and anything else that we’ve caught (besides the larval fish) are thrown back into the water.

Sorting through the big pile of krill.
Sorting through the big pile of krill.

How many individual krill are in this picture? You get a prize if you're the closest without going over :)
How many individual krill are in this picture? You get a prize if you’re the closest without going over 🙂

Personal Log:
I mentioned that once we’re done with the krill, we throw it back into the water- that was until I came aboard! My eel (Ms. Oreelio for those of you that don’t know!) eats dried krill, and I’m going to run out soon, so I figured I’d take these krill home with me! I got a gallon-size baggie from the galley (kitchen) and filled it up with krill, and holy cow, it’s a lot!! I stuck it in our freezer- which is at -22 degrees C (or 7.6 degrees F) so now I have a big frozen block of krill to take back home with me. What a great souvenir.

Jason Moeller: June 28, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Whale Pass
Date: June 28-29, 2011

Ship Data
Latitude: 58.01 N
Longitude: -152.50 W
Wind: 23.95 knots
Surface Water Temperature: 9.4 degrees C
Air Temperature: 10.8 degrees C
Relative Humidity: 71%
Depth: 177.72 m

Personal Log

Welcome back, explorers!

Due to the injury to the deck hand, we are done fishing. Our trip has been cut a day short and we are now headed back to Kodiak. We should arrive tomorrow morning, and I will fly back home on the 30th.

The shortest route to Kodiak was through Whale Pass, a break in Kodiak Island. The pass made for some spectacular scenery.

The entrance to Whale Pass
The entrance to Whale Pass, from the back of the Oscar Dyson

Steep hills rolling down into the water were a common sight in the pass.
Steep hills rolling down into the water were a common sight in the pass.

nav point
An island with a navigational marker in whale pass.

mountain 1
There were some spectacular views of the mountains in the pass as well.

Mountains 2
Another view of the mountains.

Mountain 3
Another view of the mountains.

Mountain
And another...

mountain
Last one, I promise! We all liked the shape of this one.

waterfall
A waterfall drops away into the ocean.

The coolest part of the pass, though, is definitely the wildlife. We saw sea otters everywhere! Unfortunately, they were so fast and at a great enough distance that the following shot is the only decent one I was able to take.

otter
A sea otter at Whale Pass.

We also saw an animal that I have been hoping to see for a long time.

killer whales
Sorry about the grainy image, but it is the only one of the Orcas we were able to get.

We also saw a puffin, but it moved so quickly that there was no hope at a photo for it. Bummer. Several humpback whales were also spotted, along with numerous gulls and other seabirds.

Science and Technology Log

Today, lets talk about krill!

What are krill, you ask? They’re animals in the Phylum Arthropoda, which means they’re related to insects, spiders, crabs, lobsters, etc. They have jointed legs and an exoskeleton, are usually a couple of centimeters in length, and are reddish/orange-ish in color. They can often be found in dense schools near the surface of the water, and play an important role in the ecosystem as a source of food for lots of larger animals (like fish, whales, & penguins).

I’ve mentioned the two types of trawl gear that we use to catch fish, but if we want to catch smaller things like plankton, the mesh on those nets is way too small. Therefore, we use a third type of trawl called the Methot which has very fine mesh to corral the plankton down into a collection container at the end of the net. In addition to having a hard container at the end — as opposed to just a bag/codend that you see in the fish trawls — the Methot trawl also has a large metal frame at the beginning of the net. Check out the photos below.

The Methot trawl being taken from the water. Note the square frame.

container
The container that collects all of the plankton in the net.

After the net is brought back on deck, one of the fishermen or deck hands brings the container of krill into the fish lab. The first thing we do is dump the container into a sieve or a bucket and start picking out everything that isn’t krill. The two most common things that are collected (besides krill) are gelatinous animals (like jellyfish & salps) and larval fish. The fish get weighed (as one big unit, not individually) and then frozen for someone to look at later on.

fish
The larval fish that we separated from one plankton tow.

After sorting the catch, we’re left with a big pile of krill, which gets weighed. We then take a small subsample from the big pile of krill (it’s a totally random amount depending on how much we scoop out!) and then weigh the subsample. Then the fun begins, as I’m the one that does this job; I get to count every single individual krill in the subsample. Tedious work. All of the data is then entered into the computer system, and the krill and anything else that we’ve caught (besides the larval fish) are thrown back into the water.

Tammy sorts through the pile of krill.
Tammy sorts through the pile of krill.

counting krill
How many individual krill are in this picture?

Species Seen

Northern Fulmar
Gulls
Puffin
Humpback Whales
Killer Whale!!!
Sea Otters!!!

Reader Question(s) of the Day!

Q. What has been your favorite thing about this trip so far?

A. I’ve been asked this question several times over the course of the last few weeks, but I’ve waited until the end to answer it.

Truth be told, it’s almost impossible to pick a favorite thing that I’ve seen or done. There are so many candidates! Exploring the Buskin River and seeing bald eagles before we set sail was a blast! Eating fresh caught salmon for the first time was a great experience, as it just melted in my mouth. Leaving shore for the first time was a lot of fun, as there is no feeling like the salt air blowing past your face at the front of a boat. Trying to take pictures of flying birds with a digital camera was a challenge, and we all had a good time laughing at the blurred images. Getting better at photography is something I’ve always wanted to do, and I feel like I have improved that. The first fish lab with the sleeper shark was great! Working in the fish lab, as messy as it was, was also a lot of fun! The XBT prank that was pulled on me was one of the best executed pranks I’ve ever seen, and it was hilarious! Hanging out and reading Martin’s Game of Throne series during breaks with my fellow scientists was a lot of fun as well, as it was just like a book club. Today’s ride through Whale Pass with the otters, whales, and mountains was exactly what I dreamed Alaska would be like.

The scientists sense of humor also made it an enjoyable trip. For example, this is what happens when you play around with the net camera for too long.

Cam Trawl Dinner
See what I mean?

That being said, if I was absolutely forced to pick a favorite memory, it would probably the impromptu fishing trip at Sand Point. You know you love your job when you decide to keep going at it on your day off.

There will be one last log posted, so if you have questions please send them to me at jmoeller@knoxville-zoo.org!

Obed Fulcar, July 28, 2010

NOAA Teacher at Sea Obed Fulcar
NOAA Ship Oscar Dyson
July 27, 2010 – August 8, 2010

Mission:Summer Pollock survey III
Geograpical Area:Bering Sea, Alaska
Date: August 7, 2010

Weather from the Bridge:

Time:04:42 am
Latitude:61.04 North
Longitude:178.06 West
Wind Speed:10.74 knots
Wind Direction:50 degrees North
Sea Temperature:8.99 C (48.02 F)
Air Temperature:8.2 C (46.76 F)
Barometric Pressure: 1010.1 millibars
Cloudy Skies

SCIENCE AND TECHNOLOGY LOG:

Me with a pollock
Me with a pollock

Friday, July 23: The Walleye Pollock survey has been conducted since 1979, every summer by MACE (Midwater Assessment and Conservation Engineering) part of the Alaska Fisheries Science center (AFSC). The sea was quite calm compared to the last days, giving us a break from sea sickness. The other day I missed the trawl, but I will not today. As soon as we saw the fish in the Acoustic sonar screens I knew it was trawling time, so I ran up to the bridge to witness the whole thing. The started deploying an Aleutian Wind Trawler or AWT net that was attached to a giant winch with huge ropes and chains. The long net had a front orange section with smaller openings compared to the back. I was invited to come to deck by deckhand Buddy Gould. He is a veteran New england fisherman from Rhode Island, now living in Florida.

Buddy Gould
Buddy Gould

I asked permission from Commanding Officer CO Mike Hashlyck , and went on deck wearing a PFD, and a hard hat. After trawling the net behind the ship for what felt like an eternity, it was finally hauled back, the catch of Pollock was then spilled into a box leading to the wet labfor slicing and dicing. I went inside an put on rain boots, a plastic jacket and a jumpsuit, plus elbow high plastic glove and got down to slice and measure Pollock. While sorting out the fish we found a Pacific Flounder and a Rock sole fish, both flat bottom fish. For the next several days while conducting the survey, I kept dissecting the content of the stomachs of everal fish to find out what they have been eating. I learned that the main diet of Pollock was made up of animal plankton called Euphasiids, also known as krill. 

Krill
Krill

These small organisms are arthropods or segmented invertebr ates (without internal skeleton), and just like shrimps, and crabs, their bodies are covered by an exoskeletonor shell, with paired antennae, pincers, and legs. They were present in the stomach of all the specimens in a pink color mass. There was one large maturity level 4/5 Pollock that when I opened its stomach, a large Northen Pacific shrimp came out of it. Then in later catches I observed that all the stomachs were very dark-blue looking. When I opened the stomach of one fish there was a dark purple mass of another arthropod called Pelagic amphipods, or sea fleas. Amphipods swim drifting in the water column and are larger than euphasiids or krill, wich instead formed massive swarms swimming at great depths by day but heading to suface by night. I was able to witness this pattern when once the echogram from the acoustic radar showed a swarm of krill drifting from the surface to the bottom as the sun was rising.

Pelagic amphipods
Pelagic amphipods

Animal Species observed:

Arrowtooth Flounder (Atheresthes stomias), Northern Rock Sole fish (Lepidopsetta polyxystra), Northern Pacifi Shrimp

VOCABULARY: Amphipods, Arthropods, Ecograms, Euphasiids, Exoskeleton, Invertebrates, Krill

PERSONAL LOG:

I realized that this tiny organism (the krill) is crucial for the survival not only of many animals in the ocean, but ultimately of us humans. We have historically harvested the rich waters of the Bering Sea for food, and most recently as a source of cheap protein to feed cattle and even pets. Disasters such as the recent massive oil spill from the tracgic explosion of the Deep Horizon oil platform, own by giant multinational BP, and the Exxon Valdez oil spill in Alaska during the 80’s are examples of how fragile the marine ecosystem is. But the number one threat to ocean fisheries is actually overfishing exploitation of the ocean resources. I heard stories about the foreign fleets that come to Russian waters and overfish with impunity, while at the same time processing, canning, and packing all their catch aboard their ships, taking it all back to their countries, without sharing any jobs opportunities with the local communities. Historically local fishing fleets have fished sustainably, bringing back to local ports the catch, allowing canneries, and fish markets to also benefit from it. We have to spread the word about this injustice and begin to question our own habits, to see what can we change in our consumption that will have a positive impact in this urgent matter.

“Echando la Red en Alta Mar” El mareo de ayer no me permitio participar en la pesca del Pollock, pero no hoy! Tan pronto me entere, subi al puente para observar lo todo. Mi buen amigo del personal de cubierta, Buddy Gould pescador de Rhode Island radicado en la Florida, me invito a bajar a cubierta. Despues de ahbe asegurado permiso del Oficial Comandante Mike Holshyck, baje a la cubierta con chaleco flotador y casco de seguridad a cuestas. La anaranjada Red de Arrastre fue lanzada al mar por unos gigantescos rollos de cables y cadenas pesadas. Luego de lo que parecio una eternidad, la red fue traida a bordo y la pesca fue depositada en una rampa en la cubierta por una grua pesada. Yo fui adentro rapidamente y me vesti con guantes, poncho, pantalones, y botas de plastico y me puse las manos a la obra: a picar los pescados! Durante el proceso note que los estomagos de los pescados cambiaron de color rosado a color purpura. El contenido de los estomagos incluia un plankton-animal llamado Euphasiid o Krill, un artropodo (invertebrados parecidos al camaron y el cangrejo), asi como otro llamadoAmphipods, los cuales constituyen la dieta primaria de especies de peces como el Pollock, y el Salmon, asi como de las ballenas jorobadas. El krill no solo es primordial para estas especies marinas sino para la raza humana, que depende de las reservas alimenticias del Estrecho de Bering como gran fuente de proteina. Es lamentable que este fragil recurso natural no sea celosamente cuidado, cuando vemos como el desastre del derrame de la Plataforma Petrolera Deep Horizon en el Golfo de Mexico, y en los 80’s del Exxon Valdez en Alaska, puede facilmente hacer desaparecer la pesqueria. Pero el enemigo numero uno de este recurso natural es realmente la pesca desmedida por parte de flotas pequeras extranjeras que viene a las aguas del Estrecho de Bering, pescando indiscriminadamente. Estos barcos no solo pescan, si no que procesan y empaquetan todo a bordo sin dejar si quiera oportunidad a las comunidades locales de participar del beneficio sostenido. Tenemos que hacer eco de esta injusticia y autoanalizar nuestros habitos a fin de ver que podemos cambiar para poder hacer un impacto positivo.

Deborah Moraga, June 27, 2010

NOAA Teacher at Sea Log: Deborah Moraga
NOAA Ship: Fulmar
Date: July 20‐28, 2010

Mission: ACCESS
(Applied California Current Ecosystem Studies)
Geographical area of cruise: Cordell Bank, Gulf of the Farallones and Monterey Bay National Marine Sanctuaries
Date: June 27,2010

Weather Data from the Bridge
Start Time: 0700 (7:00 am)
End Time: 1600 (4:00 pm)
Position:
Line 10 start on western end: Latitude = 37o 20.6852 N; Longitude = 122o 56.5215 W
Line 10 end on eastern end: Latitude = 37 o 21.3466 N; Longitude = 122o 27.5634 W
Present Weather: Started with full could cover and cleared to no cloud cover by mid day
Visibility: greater than 10 nautical miles
Wind Speed: 5 knots
Wave Height: 0.5 meters
Sea Water Temp: 14.72 C
Air Temperature: Dry bulb = 14 C Barometric Pressure: 1013.2 mb

Science and Technology Log
We left Half Moon Bay at 0700 (7:00 am) to survey line 10. We traveled out to about 30 miles offshore then deployed the Tucker trawl.

Tucker Trawl
Tucker Trawl

When the team deploys the Tucker trawl the goal is to collect krill. They are relying on the echo‐sounder to determine where the krill are located in the water column. The echo‐sounder sends out sound waves that bounce off objects in the water and works much like a sophisticated fish finder. Dolphins hunt for their prey in much the same way. A computer connected to the echo‐sounder is used to display the image of the water column as the sound waves travel back to the boat. By reading the colors on the screen the team can determine the depth of krill.

Collecting krill
Collecting krill

Collecting krill
Collecting krill

Collecting krill
Collecting krill

The scientists send weights (called messengers) down a cable that is attached to the Tucker trawl as it is towed behind the boat. Once the messenger reaches the end of the line where the net is located, it triggers one of the three nets to close. Triggering the nets this way allows for the researchers to sample zooplankton at three different depths.

image of water column on computer screen
Image of water column on computer screen

When the cod‐ends of the nets were brought onboard Jaime Jahncke (scientist for PRBO Conservation Science) examined the contents. Some of the organisms that were collected were…
When the cod‐ends of the nets were brought onboard Jaime Jahncke (scientist for PRBO Conservation Science) examined the contents. Some of the organisms that were collected were.

• Thysanoessa spinifera – a species of krill

• Crab megalopa larvae
Euphausia pacifica – a species of krill

Deborah Moraga, June 23, 2010

NOAA Teacher at Sea Log: Deborah Moraga
NOAA Ship: Fulmar
Date: July 20‐28, 2010

Mission: ACCESS
(Applied California Current Ecosystem Studies)
Geographical area of cruise: Cordell Bank, Gulf of the Farallones and Monterey Bay National Marine Sanctuaries
Date: June 23,2010

Weather Data from the Bridge

Start time: 0705 (7:05am)
End Time: 1708 (5:08 pm)
Position:
Line 2 start on eastern end: Latitude = 38o 3.4080 N; Longitude = 123o 10.9800 W
Line 2 end on western end: Latitude = 38o 2.7660 N; Longitude = 123o 33.7800 W
Line 1 start on western end: Latitude = 38o 7.8240 N; Longitude = 123o 31.9200 W
Line 1 end on eastern end: Latitude = 38o 8.3940 N; Longitude = 123o 11.5200 W
Present Weather: Cloud cover 100%
Visibility: 3‐10 nautical miles
Wind Speed: light, variable winds 5 knots or less
Wave Height: 0.25 ‐ 1 meter
Sea Water Temp: 11.5 C
Air Temperature: Dry bulb = 12.1 C
Barometric Pressure: 1013.5 mb

Science and Technology Log
From the flying bridge…It was noted that there are unusually high numbers of some animals from Alaska ‐ such as Northern Fulmars. There were also many sightings of humpback whales, one blue whale, numerous California sea lions and Dall’s porpoises. Today was the first sighting of a fin whale recorded on an ACCESS survey. the CTD

Krill

The seas were so calm… with a swell height of 0.25 meters, you could say the ocean looked as calm as a bathtub right before you get in.

With the seas being so calm it was great to work on the back deck (stern) of the boat. Today while working line 2 we deployed the CTD six times and took hoop net samples of zooplankton at 50 meters below the surface. The Tucker trawl was also deployed (put into the water and towed behind the boat) to 200 meters. In the jars of organisms that we sampled from line 2 we found adult and juvenile krill. We found some krill with chlorophyll still in their stomachs.

Sending out the CTD

Two small fish found their way into the hoop net. Myctophid ‐ these fish live deeper during the day and come up towards the surface at night. The scales on the myctophid looked like a colored mirror and are iridescent.

Myctophid

I had the chance to do the water samples today as the CTD was deployed. To do a water sample you throw a bucket over board (attached to the boat with a line). Pull the bucket out of the water and “clean it out” by swirling the water around. Drop the bucket back into the ocean and bring it up to the deck. You then take a small vial that is labeled with the sampling location and rinse it out several times before capping with a lid. It is then placed in the freezer to be analyzed for nutrients by another agency. I was just about to cap the sample and I heard this ‘poof’ sound. I looked over and two humpback whales surfaced just meters away from me. I knew they were humpbacks, a type of baleen whale, because their blow hole is actually two holes. They started to swim off and fluked (raised their tales above the water before diving) just as I was finishing the water sample, how lucky I am to be here!

Humpback Whale

Personal Log
Getting My Sea Legs
Okay, I will admit I was seasick the first day. I mean really sick. The sea was rough… 9 foot swell and even with a patch on to combat seas sickness…breakfast came up. I have not been sick again! But tomorrow is another day out at sea!

Deborah Moraga, June 21, 2010

NOAA Teacher at Sea Log: Deborah Moraga
NOAA Ship: Fulmar
Cruise Dates: July 20‐28, 2010

Mission: ACCESS
(Applied California Current Ecosystem Studies)
Geographical area of cruise: Cordell Bank, Gulf of the Farallones and Monterey Bay National Marine Sanctuaries
Date: June 21, 2010

The R/V Fulmar

Overview
The R/V Fulmar sets out from the dock early each morning. This ACCESS cruise has 5 members of the scientific team and myself (the NOAA Teacher at Sea.) There are two crew members for a total 8 people onboard.

The three central California National Marine Sanctuaries and the ports where the R/V Fulmar docks
The three central California National Marine Sanctuaries and the ports where the R/V Fulmar docks

Applied California Current Ecosystem Studies
Applied California Current Ecosystem Studies

National Marine Sanctuaries
National Marine Sanctuaries

ACCESS is an acronym for Applied California Current Ecosystem Studies. This is a partnership between PRBO Conservation Science, Cordell Bank National Marine Sanctuary and the Gulf of the Farallones National Marine Sanctuary. These groups of conservation scientists are working together to better understand the impacts that different organisms have on the marine ecosystem off the coast of central California.

Immersion suit for safety

They do this so that policy makers (government groups) have the most accurate data to help them make informed decisions on how the productive waters off the coast can be a resource for us and still protect the wildlife. You can read a more in depth explanation at http://www.accessoceans.org

Flying Bridge

The R/V Fulmar is a 67 foot Marine Grade Aluminum catamaran (a multi hulled vessel.) This vessel can travel 400 miles before refueling and can reach 27 knots (30 miles per hour) with a cruising speed of 22 knots (25.3 miles per hour.) Although that may sound slow compared to the cars we drive… you have to take into account that there can be 10 foot waves to go over out on the ocean.

The Fulmar’s homeport (where the boat ties up to dock most of the time) is in Monterey Bay, CA. For this cruise we will come into port (dock) in Bodega Bay, Sausalito, and Half Moon Bay. Each morning the crew wakes up an hour before the time we start out for the day. They check the oil and look over the engines, start the engines, disconnect the shore power and get the boat ready to sail out for a ten hour day.

Today (July 23, 2010) we left at 0700 (7:00 a.m.) out of Bodega Bay. Bodega Bay is on the coast of Sonoma county, California. It is from Bodega Bay that we will travel offshore to the “lines” that we will be surveying. Today we will survey lines one and two.

Then after the day’s work is done, we will sail into port, tie up to the dock and have dinner. The scientists and crew members sleep on the boat in the berths (bunks) that are located in the hulls of the boat.

Surveys
“Okay, take a survey of the types of pets your classmates have at home. Then create a graph.” How many times have math teachers assigned that assignment and expected that students knew how to survey? Today I received firsthand knowledge of how a survey takes place.

Marine scientist scanning for wildlife

Up on the flying bridge (about 5.5 meters from the surface of the ocean) scientists are surveying birds and marine mammals. There is a protocol that each follows. Here, the protocol is basically a list of agreed upon rules on how to count the marine life seen on the ocean. One researcher inputs the data into a waterproof laptop…imagine chilling at the pool and being able to surf the web! There are other researchers sitting alongside and calling out the types of birds and marine mammals they see. The researchers surveying the birds and mammals use not only their eyes but also binoculars.

Krill collected by the Trucker Trawl

After the researcher spots and identifies the birds or mammals, they call out their findings to the recording scientist in a code like fashion, doing this allows for the data to be inputted faster. The team can travel miles without Krill collected by the Trucker Trawl Researcher recording observations on the flying bridge Pacific White Sided dolphins bow riding seeing any organisms or there may be so many that the scientist at the laptop has a tough time keeping up. In this case the surveying scientist may have to write down their findings and report them when there is a break in the action.

Imagine that you are driving down the highway with your family. You have been asked to count the number humans, cows, horses, goats, dogs, cats, cars or trash on your trip. How would you make sure that your family members didn’t double count and still record all that you see? This is where protocols (instruction/rules) come in. So, let us say that you are behind the driver, and your brother or sister is in the backseat next to the window. There is also a family member in the passenger seat up front (yeah they called ‘shot gun’ before you did.) This is much like the seating arrangement on the flying bridge of the R/V Fulmar.

Researcher recording observations on the flying bridge

So how could you split up the road and area around the road so that you do not count something twice? You could split the area that you see into two parts. Take your left arm and stick it straight out the window. Have your sister/brother stick their right arm out their side window. If we drew an arc from your arm to your sibling’s arm it would be 180 degrees. Of the 180 degree arc, you are responsible for counting everything from your arm to the middle of the windshield. So, you are responsible for 90 degrees and your sibling has the other 90 degrees from the middle of the windshield to their arm.

Pacific White Sided dolphins bow riding

Once you start counting you need to record the data you are collecting. Can you write and count at the same time? Not very well, so we need someone to record the data. There are actually a lot of points of data that you need to enter.

You need to tell the recorder…
• Cue: How did you see the item you are counting?
• Method: Were you searching by eye or using a pair of binoculars?
• Bearing: The angle that the item is from the car as related to the front of the car.
• Reticle: How far the item was from your car when you first observed it (you would use your binoculars for this measurement).
• Which side of the car are you on and who is dong the observing?
• Behavior: What was the organism doing when you spotted it? Was it traveling, feeding or milling (just hanging out)?

Deploying the CTD

You also have to determine the age and sex of the organism. You need to record the species of the organism and how many you observed.
Now that is all for the species above the ground… what would you do for the animals below the road surface? On the R/V Fulmar they collect species from below the surface of the ocean and data about the water. They do this several different ways…

Bringing in the Hoop Net

1. CTD: Conductivity, Temperature, and Depth. This is a tool that records the physical properties of the ocean. It records…

a. Salinity (amount of salt in the water)
b. Temperature (how hot or cold the water is)
c. Depth (how far the instrument travels below the surface)
d. How much chlorophyll is in the water
e. Turbidity (how murky or clear the water is)
f. How much oxygen is in the water

Deploying the Tucker Trawl

2. Hoop Net: Looks like a very heavy hula hoop. Except this hoop has a cone shaped cylinder made of fine mesh attached to it. At the apex of the cone, a small PVC container, called a cod end, is attached. Zooplankton (tiny swimming animals) and some phytoplankton (tiny marine plants) are funneled into the cod end of the net as it is towed behind the boat. When the net comes back to the boat, the researchers take off the cod end and use this sample of organisms.

Collecting data from the CTD

3. Tucker Trawl: Is like three hoop nets attached together. The cool thing about this big net is that the scientists can close each net at different depths. As Map of the transect lines Retrieving the Hoop Net Phytoplankton Net the net is towed behind the boat they “close” each net to capture zooplankton at different depths. The tucker trawl is used primarily to collect krill

Map of the transect lines

Transects
Have you ever lost something in your room? Perhaps it was your homework? The bus is coming and you have to find your binder. So you start tearing your room apart. By the time the bus is five minutes away… you room looks like a disaster and you can’t remember where exactly you have looked and yet, still no binder.
Imagine a group of scientists 30 miles offshore, doing that same type of “looking” for organisms, with the captain piloting (driving) the boat any which way. Just like your binder that was missed when you were looking for it, number and location of organisms in parts of the ocean would be missing from the data set.

Retrieving the Hoop Net

So if you wanted a systematic way to look for your homework that is lost in your room, you would imagine a grid. You would have lines running from one wall to another. These lines would be parallel to each other. You would walk along the line looking for you binder. When you came to the end of the line (at your wall) you would then start on another line. By walking back and forth in your room in this systematic way, you will not miss any part of your room.

Phytoplankton Net

You have just traveled along a transect line. A transect is a path you travel and as you do you are counting and recording data. On the R/V Fulmar, scientists are counting birds, marine mammals, and collecting krill. By counting how many and what kinds of organisms are along the transect line, scientists will be able to calculate the density of organisms in a given area. There are several different types on lines that we survey. There are the near shore transects…which extend 12 kilometers from the shore (that is as long as running back a forth a football field 131 times). Offshore lines are 50 to 60 kilometers from the coast. Imagine how many football fields that would be!

Bow of R/V Fulmar

Density… Take your right hand and put it in your right front pocket of your pants and pull out all the coins you have in your pocket. Looking down at your hand you count 10 dimes. Now do the same for your left hand. You found you have two dimes. The “area” those coins were located is equal… meaning your pockets are the same size. The density of coins in your pockets is greater in your right pocket because there are more coins per square inch than in your left pocket.