Lynn Kurth: Time and Tide Wait For No Man, June 28, 2016


NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude:  57˚57.486 N   Longitude:  152˚55.539 W  (Whale Pass)

Date:  June 28, 2016

Weather Data from the Bridge
Sky:  Overcast
Visibility: 15 Nautical Miles
Wind Direction: 164
Wind Speed: 8 Knots
Sea Wave Height: 1 ft. (no swell)
Sea Water Temperature: 8.3° C (46.94° F)
Dry Temperature: 12.° C (53.6° F)
Barometric (Air) Pressure: 1019.6 mb

Science and Technology Log

The ocean supports many ecosystems which contain a diversity of living things ranging in size from tiny microbes to whales as long as 95 feet.  Despite the fact that I am working on a hydrographic ship, when out on a skiff or while in port, I have had the opportunity to view some of these ecosystems and a number of the species found in them.

While the Rainier was in port in Homer, I spent some time at the Kachemak Bay National Estuarine Research Reserve which, like other estuaries, is among the most productive ecosystems in the world.  An estuary, with accompanying wetlands, is where the freshwater from a river meets and mixes with the salt water of the sea.  However, there are some estuaries that are made entirely from freshwater.  These estuaries are special places along the Great Lakes where freshwater from a river, with very different chemical and physical characteristics compared to the water from the lake, mixes with the lake water.

Because estuaries, like the Kachemak Bay Estuary, are extremely fragile ecosystems with so many plants and animals that rely on them, in 1972 Congress created the National Estuarine Research Reserve System which protects more than one million estuarine acres.


Kachemak Bay National Estuarine Research Reserve

All estuaries, including the freshwater estuaries found on the Great Lakes, are affected by the changing tides.  Tides play an important part in the health of an estuary because they mix the water and are therefore are one of several factors that influence the properties (temperature, salinity, turbidity) of the water

Prior to my experience in Alaska, I had never realized what a vital role tides play in the life of living things, in a oceanic region.  Just as tides play an important role in the health and function of estuaries, they play a major role in the plants and animals I have seen and the hydrographic work being completed by the Rainier.  For example, the tides determine when and where the skiffs and multi beam launch boats will be deployed.  Between mean low tide and high tide the water depth can vary by as much as 12 feet and therefore low tide is the perfect time to send the skiffs out in to document the features (rocks, reefs, foul areas) of a specific area.

DSCN0069 (2)

Rock feature in Uganik Bay (actually “the foot” mentioned in previous blog) Notice tidal line, anything below the top of that line would be underwater at high tide!

In addition to being the perfect time to take note of near shore features, low tide also provides the perfect opportunity to see some amazing sea life!  I have seen a variety of species while working aboard the Rainier, including eagles, deer, starfish, dolphins, whales, seals, cormorants, sea gulls, sea otters and puffins.  Unfortunately, it has been difficult to capture quality photos of many of these species, but I have included some of my better photos of marine life in the area and information that the scientists aboard the Rainier have shared with me:

Tufted Puffins:  Tufted Puffins are some of the most common sea birds in Alaska.  They have wings that propel them under water and a large bill which sheds its outer layer in late summer.


Double Crested Cormorants:  Dark colored birds that dive for and eat fish, crabs, shrimp, aquatic plants, and other marine life.  The birds nest in colonies and can be found in many inland areas in the United States.  The cormorants range extends throughout the Great Lakes and they are frequently considered to be a nuisance because they gorge themselves on fish, possibly decimating local fish populations.


Cormorant colony with gulls

Pisaster Starfish:  The tidal areas are some of the favorite areas starfish like to inhabit because they have an abundance of clams, which the starfish love to feed on.  To do so, the starfish uses powerful little suction cups to pull open the clam’s shell.


Teacher at Sea Kurth with a starfish that was found during a shore lunch break while working on a skiff.


Starfish found in tidal zone

Glaucous-winged Gull:  The gulls are found along the coasts of Alaska and Washington State.  The average lifespan of Glaucous-winged Gull is approximately 15 years.


Glaucous-winged Gull watching the multi beam sonar boat

The hydrographic work in Uganik Bay continues even though there are moments to view the wildlife in the area.  I was part of the crew on board a boat equipped with multi beam sonar which returned to scan the “foot feature” meticulously mapped by the skiff.  During this process, the multi beam sonar is driven back and forth around the feature as close as the boat can safely get.  The multi beam does extend out to the sides of the boat which enables the sonar to produce an image to the left and right of the boat.  The sonar beam can reach out four times the depth of the water that the boat is working in.  For example, if we are working in six feet of water the multi beam will reach out a total of 24 feet across. Think of the sonar as if it was a beam coming from a flashlight, if you shine the light on the floor and hold the flashlight close to the floor, the beam will be small and intense.  On the other hand, if you hold the flashlight further from the floor the beam of light will cover a wider area but will not be as intense. The sonar’s coverage is similar, part of why working close to the shore is long and tedious work: in shallow water the multi beam does not cover a very wide area.


“The foot” feature (as discussed in previous blog) being scanned by multi beam sonar



Image of “the foot” after processing in lab. The rocks are the black areas that were not scanned by the multi beam sonar.

All Aboard!

I met Angelica on one of the first days aboard the Rainier and later spent some time with her, asking questions as she worked .  Angelica is very friendly, cheerful and a pleasure to talk with!  She graciously sat down with me for an interview when we were off shore of Kodiak, AK before returning to Uganik Bay.


Assistant Survey Technician Angelica Patyten works on processing data from the multi beam sonar

Tell us a little about yourself:

I’m Angelica Patyten originally from Sacramento, CA and happy to be a part of NOAA’s scientific mission!  I have always been very interested in marine science, especially marine biology, oceanography and somewhat interested in fisheries.  Ever since I was a little kid I’ve always been interested in whales and dolphins.  My cousin said that when I was really young I was always drawing whales on paper and I’d always be going to the library to check out books on marine life.  I remember one of the defining moments was when I was in grade school, we took a trip to see the dolphins and orca whales and I thought they were amazing creatures.

As far as hobbies, I love anything that has to do with water sports, like diving and kayaking.  I also want to learn how to surf or try paddle boarding as well.

How did you discover NOAA?:

I just kind of “stumbled upon” NOAA right after I had graduated from college and knew that I wanted to work in marine science.  I was googling different agencies and saw that NOAA allows you to volunteer on some of their vessels.  So, I ended up volunteering for two weeks aboard the NOAA ship Rueben Lasker and absolutely loved it.  When I returned home, I applied online for employment with NOAA and it was about six months before I heard from back from them.  It was at that point that they asked me if I wanted to work for them on one of their research vessels.  It really was all good timing!

What are your primary responsibilities when working on the ship? 

My responsibilities right now include the processing of the data that comes in from the multi beam sonar.  I basically take the data and use a computer program to apply different settings to produce the best image that I can with the sonar data that I’m given.

What do you love about your work with NOAA?

I love the scenery here in Alaska and the people I work with are awesome!  We become like a family because we spend a lot of time together.  Honestly, working aboard the Rainier is a perfect fit for me because I love to travel, the scenery is amazing and the people I work with are great!

Personal Log:

Geoffrey Chaucer wrote, “time and tide wait for no man.”  Chaucer’s words are so fitting for my time aboard the Rainier which is going so quickly and continues to revolve around the tides.

Lynn Kurth: The Earth has One Big Ocean, June 22, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude: N 57˚50 Longitude: W 153˚20  (North Coast of Kodiak Island)

Date:  June 23, 2016

Weather Data from the Bridge:
Sky: Clear
Visibility: 10 Nautical Miles
Wind Direction: 268
Wind Speed: 14 Knots
Sea Wave Height: 2-3 ft. on average
Sea Water Temperature: 12.2° C (54° F)
Dry Temperature: 16° C (60.8° F)
Barometric (Air) Pressure: 1023 mb

Science and Technology Log

I’m continually searching for ways to connect what I am learning to what is relevant to my students back home in the Midwest.  So, as we left Homer, AK for our survey mission in Kodiak Island’s Uganik Bay, I was already thinking of how I could relate our upcoming survey work to my students’ academic needs and personal interests.  As soon as the Rainier moved away from Homer and more of the ocean came into view, I stood in awe of how much of our planet is covered with water.  It’s fascinating to think of our world as having one big ocean with many basins, such as the North Pacific, South Pacific, North Atlantic, South Atlantic, Indian, Southern and Arctic.  The study of ocean and its basins is one of the most relevant topics that I can teach when considering the following:

  • the ocean covers approximately 70% of our planet’s surface
  • the ocean is connected to all of our major watersheds
  • the ocean plays a significant part in our planet’s water cycle
  • the ocean has a large impact on our weather and climate
  • the majority of my students have not had any firsthand experience with the ocean



Earth’s One Big Ocean as seen from outside of Homer, AK


Each of the ocean basins is composed of the sea floor and all of its geological features which vary in size and shape.  The Rainier will be mapping the features of the sea floor of the Uganik Bay in order to produce detailed charts for use by mariners.  The last survey of Uganik Bay was completed in 1908 when surveyors simply deployed a lead weight on a string over the edge of a boat in order to measure the depth of the water.  However, one of the problems with the charts made using the lead line method, is that the lead line was only deployed approximately every 100 meters or more which left large gaps in the data.  Although not in the Uganik Bay, in the 1930s NOAA began using single beam sonar to measure the distance from a ship’s hull to the sea floor which made surveying faster but still left large gaps in the data. Fast forward from approximately 100 years ago when lead lines were being used for surveying to today and you will find the scientists on the Rainier using something called a multibeam sonar system.  A multibeam sonar system sends out sound waves in a fan shape from the bottom of the ship’s hull.  The amount of time it takes for the sound waves to bounce off the seabed and return to a receiver is used to determine water depth.  The multibeam sonar will allow our team on the Rainier to map 100% of the ocean’s floor in the survey area that we have been assigned.


Evolution of Survey Techniques (Illustration Credit: NOAA)




NOAA Ship Rainier June 22, 2016 in Uganik Bay off of Kodiak Island

 All Aboard!


NOAA Corps Junior Officer Shelley Devereaux

The folks I am working with are some of the most knowledgeable and fascinating people that I have met so far on this voyage and Shelley Devereaux from Virginia is one of those people.  Shelley serves as a junior officer in the NOAA  (National Oceanic and Atmospheric Administration) Corps and has been working aboard the Rainier for the past year.  The NOAA Commissioned Officer Corps is one of the seven uniformed services of the United States and trains officers to operate ships, fly aircraft, help with research, conduct dive operations, and serve in other staff positions throughout NOAA.

Here is what Shelley shared with me when I interviewed her one afternoon.

Tell us a little about yourself:  I’m originally from the rural mountains of Appalachia and moved to Washington DC after college.  I lived in DC for about seven years before I joined the NOAA Corps and while in DC I really enjoyed cycling, hiking, cooking, baking and beer brewing.

How did you discover NOAA Corps and what do you love most about your job in the NOAA Corps?

I went to Washington DC after I received my undergraduate degree in math and worked a lot of different jobs in a lot of different fields.  In time, I decided to change careers and went to graduate school for GIS (Geographic Information Systems) because I like the data management side of the degree and the versatility that the degree could offer me.  I was working as a GIS analyst when my Uncle met an officer in the NOAA Corps who talked with my Uncle about the NOAA Corps.  After that, my Uncle told me about NOAA Corps and the more I found out about NOAA Corps the more I liked it.  Especially the hydro side!  In the NOAA Corps each of your assignments really develops on your skill base and you get to be involved in a very hands on way.  Just this morning I was out on a skiff literally looking to determine what level a rock was in the water.  And, later in my career I can serve an operations officer.  So I loved the fact that I could join the NOAA Corps, be out on ship collecting data while getting my hands dirty (or at least wet!), and then progress on to other interesting things.  I love getting to be part of all the aspects of ship life and being a surveyor.   It’s a wonderful feeling knowing that what we do here has a tangible effect on the community and the public because we are making the water safer for the people who use it.


NOAA Corps Junior Officer Shelley Devereaux manages her sheets during near shore work in Uganik Bay

What are your primary responsibilities when working on the ship?  

I am an ensign junior officer on a survey ship.  Survey ships operate differently than other ships in the NOAA fleet with half of my responsibilities falling on the junior officer side of ship operations which includes driving the ship when we are underway, working towards my officer of the deck certification, working as a medical officer, damage control officer and helping with emergency drills.  The other half of what I get to do is the survey side.  Right now I am in charge of a small section called a sheets and I am in charge of processing the data from the sheets in a descriptive report about the area surveyed.  So, about half science and half ship operations is what I do and that’s a really good mix for me.  As a junior officer we are very fortunate that we have the opportunity to and are expected to learn the entire science of hydrography.


Junior Officer Shelley Devereaux checks the ship’s radar

What kind of education do you need to have this job and what advice do you have for young people interested in a career like yours?

You need a college degree with a lot of credits in science and/or math.  Knowing the science that is happening on the ship is important to help your understanding of the operations on the ship which helps you be a better ship operator. Realize that there are a lot of opportunities in the world that are not always obvious and you need to be aggressive in pursuing them.

Personal Log

You didn’t think I’d leave out the picture of Teacher at Sea in her “gumby suit” did you?  The immersion suit would be worn if we had to abandon ship and wait to be rescued.


Teacher at Sea (TAS) Kurth Hi Mom!

 Happy Solstice!  Quirky but fun:  For the past six years I have celebrated the solstice by taking a “hand picture” with the folks I am with on the solstice.  I was thrilled to be aboard the Rainier for 2016’s summer solstice and include some of the folks that I’m with on the ship in my biannual solstice picture.


Winter Solstice 2015 with Sisu (family pet) and my husband James


All Hands on Deck! Summer Solstice 2016

Did You Know?

Glass floats or Japanese fishing floats are a popular collectors’ item.  The floats were used on Japanese fishing nets and have traveled hundreds and possibly thousands of miles via ocean currents to reach the Alaskan shoreline. The floats come in many colors and sizes and if you’re not lucky enough to find one while beach combing, authentic floats and/or reproductions can be found in gift shops along the Alaskan coast.


Japanese Fishing Floats


Rebecca Loy, Full STEAM ahead! September 21, 2015

NOAA Teacher at Sea
Rebecca Loy
Aboard NOAA Ship Rainier
September 8 – 24 , 2015

Mission: Hydrographic Survey
Geographical area of Research: Kodiak Island, Alaska
Date: September 21, 2015

Current Location: Viecoda Bay, North Kodiak, Alaska

After learning how areas to be studied are decided, organized and surveyed, I wanted to see what happens after the data is collected.  I spent some time in the Plotting room with NOAA visiting physical scientist Adam Argento.  Adam instructed me on hydrographic research and what is involved with completing their work.  Needless to say, using the term “blowing my mind” is very appropriate here.

Sitting with Adam and discussing the work that is accomplished was great.  He even made me think of space – and you know how much I love a space tie-in!!  While we were talking about the data that would be collected we began speaking of how do researchers know where the ship is?  You might automatically think of GPS (Global Positioning Systems).  We have them on our phones, in our cars and other forms of technology to help us find our way home, but the GPS systems we use are not as accurate as NOAA needs.

On Rainier they need to know exactly where they are!!  Just like when we give you rules you need to follow in doing your work, the researchers here have very limited parameters for creating/updating their charts for safety.  While collecting data they want to make sure that the charts are as accurate as they can make them.  If the data collected is off just a bit, there could be a dangerous situation.  The people updating the charts work very hard to create high quality and safe charts.

A satellite GPS receiver on one of the launches.

A satellite GPS receiver on one of the launches.

Adam showed me some of the satellite receivers on the ship and launches.  We couldn’t reach the Rainier receivers, but see the picture of a receiver on a launch, they are much smaller than I imagined.  Each launch has two receivers at least six feet apart.  They are needed for the satellites to know which direction the launch is going in. The satellites use the smallest of time measurements sent down and received back between the two, but it works!

Adam asked me some questions – now it’s your turn to think about this…How would Rainier know exactly where it is?  You might say it uses a GPS because I just mentioned it and simply put, yes it does.  Except, one, two even three satellites will not give Rainier the accurate positioning they need.  Four satellites can give Rainier a specific point.  Just take a moment and think about this.  In short, four satellites will give you a good position, but Rainier uses up to seven to be much more accurate.  For more information on satellites check out this website:

Adam Argento at his computer in the Plot room.

Adam Argento at his computer in the Plot room.

Another question… how do the satellites know where they are?  We can’t use a marker on the Earth reliably, or to the level that NOAA needs, because our planet is constantly moving (think tectonic plates and earthquakes).   Are you ready?  Adam told me satellites use pulsing QUASARS that are far out in space to know exactly where they are!!! (In case you were wondering, this is the part where my mind was blown, I thought they used land based markers).

Like I mentioned earlier, the CARIS program takes all of the data, including changes in the Earth’s Ionosphere and differences in the ocean water due to CDT (conductivity, depth and temperature) and puts it together to create a working document or chart.  This is a lot of information that needs to be controlled.  Adam works for NOAA in Seattle so he will be part of the team taking the data and putting it into more accurate charts once he gets back on land.  A pretty cool job if you ask me!!

Path to Rainier

To continue sharing some of the fascinating people on Rainier, I sat down with Rainier General Vessel Assistant (GVA) Carl Stedman to learn how he came to work here.  Carl started his career in the Army and retired after 20 yrs.  Incredibly, after proudly serving our country for so long, he then went to college and earned a bachelor’s degree in finance from San Francisco State.

With GVA Carl Stedman. Photo Credit: Bob Steele

With GVA Carl Stedman. Photo Credit: Bob Steele

About half way through earning his MBA (Masters of Business Administration) he decided to take some time off.  He rode his motorcycle around the US for three months.  Realizing wearing a suit or working in a cubicle would not make him happy, he moved to Virginia and opened his own coffee shop for three years where he met his wife.  He then worked as a patient service manager in Norfolk hospital.  With more introspection he thought back to his time in the Army.  After having lived in Germany and serving in other areas of the world for a long time, he remembered his time on an Army ship for the last 7 years of  his Army career and how much he enjoyed it.  He then applied to work for NOAA and was put on Rainier.

On Rainier, Carl has some very interesting jobs!!  Along with the very busy job as a GVA, Carl is also an Advanced Firefighter and is on the first response team (he was also in his firefighter outfit when we had drills, but I did not get a picture of him).  He is an MPIC (Medical Person In Charge) which is like an EMT that we have on land.  Another job he has (and one that makes me nervous just thinking about it) is as a Confined Space Rescuer.  Yikes… he clearly does not have claustrophobia!!  Another exciting job he has is the driver for the fast rescue boat that is on Rainier.  Carl is another unique person on this incredible ship and I feel very safe knowing he is around.  Thank you, Carl, for taking the time to chat with me and show me so much!!!

Personal Log

Moving my bucket filled with water. See Jason near it. Photo credit: Bob Steele

Moving my bucket filled with water. See Jason near it. Photo credit: Bob Steele

This wonderful crew has been teaching me a great deal about this ship.  One day, acting Boatswain (pronounced Bo-son) Jason Kinyon took time to teach me how to work the two smaller cranes on the bow of the ship.  He had me move a filled bucket of water to different areas on the bow WITHOUT SPILLING ANY OF IT!!

I really liked it!!!  The most challenging part was when he sat down right next to where I had to place my bucket of water.  I did not want to get the deck boss wet and I didn’t!  I did spill a little bit on one of the hatches though.  Jason was very patient showing me all the tricks to moving the crane!  Bring on the big aft crane next!!!!

When we went to the fuel pier in Kodiak I was able to throw the “heave line” that goes up to the dock and is then knotted around the bigger mooring lines so they can be pulled up to the pier.

Getting ready to throw the heave line! Photo Credit: ENS Chris Wood

Getting ready to throw the heave line! Photo Credit: ENS Chris Wood

I feel the need to add that three big, strong deck crew who were back in the fantail of the ship with me missed where they had to throw their lines.  GVA Carl Stedman was very reassuring to me and I got the line where it had to go.  Everyone on the ship was talking about how I made it on the first try when the seasoned crew did not.  In case you are wondering, yes, that is a cruise ship in the distance at the Kodiak public dock.

Pulling slack on the line. Photo Credit: ENS Chris Wood

Pulling slack on the line. Photo Credit: ENS Chris Wood

To name just a few more things, I have been shown lots about navigation, I have also driven the launch, worked the davits that raise and lower the launches, learned about the anchor and basically anything else I can learn about and what people are able to teach me.  Thank you, again, to everyone for teaching the teacher so I can share this amazing experience with others!!

Learning to lower the launches.

Learning to lower the launches.  Here, I already put the launch in the water.

Rebecca Loy, Does Rainier Run on Diesel or STEAM?  September 14, 2015

NOAA Teacher at Sea
Rebecca Loy
Aboard NOAA Ship Rainier
September 8 – 24 , 2015

Mission: Hydrographic Survey
Geographical area of Research: Kodiak Island, Alaska
Date: September 14, 2015

Current Location: South Arm of Uganik Bay, Kodiak Island, Alaska

To answer this question, Rainier runs on both diesel and STEAM.  The diesel keeps this ship running where it needs to go and the engineers are masterful at keeping this ship maintained.  The STEAM is everywhere, and I am not just talking about water steam in a pipe or in the galley.  This ship has serious Science, Technology, Engineering, Arts and Math!!

I met with acting (Executive Officer) XO LT Adam Pfundt and acting (Field Ops Officer) FOO LT Steve Loy (even though Loy is a unique name, we are not related – but it is pretty cool that another Loy is here).  They were discussing who was going to lead certain jobs.  I learned a great deal about the process needed.  During research, an area in review is called a “sheet”.  Why do you think they call the areas sheets and not something else?  Do you think there could be some historical mariner significance?

Map with NOAA sheet areas listed

Map with NOAA sheet areas listed

Like most tasks on Rainier, research begins with a geographical area being assigned to a manager, assistant plus a mentor.  They will work together as a team on their sheet until the hydrographic branch of NOAA accepts the data.  Like I mentioned in my second blog entry, this could take weeks or months after the initial data collection to complete.

I have decided to use sheet number H12692, which was just assigned to the team of  ENS Matt Bissell, manager, ENS Shelley Deveraux as assistant, and LT Steve Loy as mentor this past week.  Can you find H12692 on the photo above?

ENS Bissell and I discussing his polygon grid

ENS Bissell and I discussing his polygon grid. Photo Credit: Chris Palmer

All team members are responsible for maintaining work logs so they can report on them.  Even here writing & communication is very important – remember this when I help you with YOUR writing!  Here is a brief overview of the duties:

Sheet Manager – this is the biggest of the jobs given.  The sheet manager is responsible for organizing the team.  This person needs to prepare the area to be studied by separating it into more manageable areas called polygon plans.

Sheet H12962 in polygon planning.

Sheet H12962 in polygon planning.

They decide which area gets studied by the large Rainier or if a smaller launch is needed.  The smaller launches are good for areas closer to the shore or shallow areas.

The manager has to know if Rainier should use its multibeam echolocation sounder (MBES) in large runs or drag its Side Scan Sonar (SSS) behind it in the area to be studied.  Another option the manager has to decide is do they need to use the MBES or Side Scan Sonars that are mounted on the smaller launches and where should this be.

The MBES on one of the launches. The SSS is currently removed.

The MBES on one of the launches. The SSS is currently removed. Photo Credit: ENS Matt Bissell

ENS Bissell has a many choices to make to get the best information possible.  Looking at the polygon grid ENS Bissell organized can you pick out which areas Rainier will cover?

Managers need to attend meetings and review data that was processed the night before.  They do this to see if any problems were encountered and if an area needs to be scanned again.  The manager uses the immense CARIS HIPS and SIPS marine data processing program, prepares dive teams if needed, does more reviewing of data and organizes the pilots that take the launches closer to shore.  This is truly just a brief overview.  Sheet Manager is a very important job.

Sheet Assistant – The assistant works very hard right alongside the Sheet Manager.  This person is in training as well and will someday be a Sheet Manager.  It is important for the Sheet Manager to give the assistant guidance to learn.   The assistant needs to ask questions so they can be an effective manager in the future.  They need to set up the launches, help with polygon plans, maintain the bottom sample notebook, load charts, assist with data acquisition and follow what the manager needs them to do.

ENS Deveraux showing me how she is plotting a course to our research area.

ENS Deveraux showing me how she is plotting a course to our research area. Photo credit: Anthony Wright

Sheet Mentor – The mentor’s role is an advisor to the manager, especially if this is the first time someone is managing.  They also train the sheet assistant and work between the FOO and the management team (in this case the FOO is also the mentor).  The more the mentor can teach the assistant the easier their transition will be from assistant to manager in the future.

Once all of the extensive planning is taken care of, this team begins to collect data.  This is the actual field work that Rainier does!  I know all of you at school were most excited to hear about this!




Drilling for tide marker "Echo" while HAST Mike Bloom looks on.

Drilling for tide benchmark “Echo” while HAST Mike Bloom looks on. Photo credit: Chris Palmer

To begin, we went ashore in the South Arm of Uganik Bay, northern Kodiak Island and had to place a tide gauge station.  To begin the scuba divers had to place part of the equipment called the orifice under water.  This orifice holds air bubbles.  When the tide is higher and the water level is high, more bubbles will be pushed out of the orifice letting the system know that the water level is up.  The more water pressure on the orifice, the higher the tide level and the opposite is also true.  This information is sent to the satellite links where solar panels and batteries keep everything powered so people on the ship can read the data.  We also had to place tide benchmarks in five different areas near the tide station.  I helped with tide benchmark 7588 E or “Echo” which was the fifth benchmark to go in.  Due to movement in the Earth, we need to have tide benchmarks throughout the areas we are studying so when the ship returns in 30 days they will have accurate information.

Tide gauge 1788 E

Tide benchmark 7588 E


I worked very hard drilling into just the right rock to cement it down (I actually drilled in 4 areas before this one, but the shale kept breaking apart, LT Pfundt found this great spot with a more stable rock).  Hydrographic Assistant Survey Tech (HAST) Michael Bloom and I made a great team working together.  It took 1 1/2 days to place everything, survey and link the systems plus take 3 hours of observations for the tides.  During this 3 hour period the observer checks the water level on the staff every 6 minutes.  This is a lot of close observation to make sure everything is running properly!

Surveying all the tide gauges!

Surveying all the tide benchmarks!

Do you know why we would need to know when the sea rises and falls?  Sometimes it can change over 6 feet in depth – two times per day here in the Pacific!!  We need to know the levels for the charts that are being made.  The researchers are looking at updating water depths on a chart.  They will use the tide level that is lowest to be safest.  This will give boats traveling above the best depth for clearance below them.  The opposite is true if there is bridge on a chart.  The researchers will use the highest tide depth so ships can know if they can make it under a bridge.  Knowing tides is very important to chart development!  Here is some more information on Vertical Control-Tides.

Our finished tide gauge installation from the water.

Our finished tide gauge installation from the water.  See the tall stick where water measurements were taken every 6 minutes.  In the back, are the satellite up-links with the GOES and Iridium data retrieval boxes under the blue tarp.


Path to Rainier

Hydrographic Survey Tech Eli Smith and I. Photo Credit: Tracey Davis

Hydrographic Survey Tech Eli Smith and I. Photo Credit: Tracey Davis

Another fascinating person on board is Hydrographic Survey Technician Eli Smith.  Eli has been on Rainier for 1 1/2 years now.  He started as a Hydrographic Assistant Survey Tech  in May of 2014.  Originally, he graduated from Western Washington University with a BA in Geology.  I was curious how he went from being a geologist in the oil fields of Denver to working on the ocean.  While he was in Denver, Eli would take soil samples.  So many samples that he was called a “Mud Logger” which is a pretty interesting term even though Eli didn’t enjoy it very much.  He did a lot of “soul searching” and realized he needed to do something else.  Between remembering an ocean based field experience in college off the coast of Hawaii and contacting a career counselor, Eli was led to NOAA.  He was pleased when he was placed on Rainier.

On Rainier, Eli works a great deal up in the Plotting room or in another room called the “Hologram Room” where survey techs also work.  Currently, he is a sheet manager for sheet H12691.  This sheet includes Viekoda Bay and Terror Bay.  You can see his area in the photo above.  Eli has been  hard at work doing his own polygon plot and preparing plans for his sheet.  He is also part of the Tides Team placing tidal gauges in areas that are being studied.

When Eli is not working, he has his bike on board and likes to ride that when he can.  He is also a hiker and snowboarder.  I appreciate Eli spending some time with me telling me about himself and all your help on shore.  Thank you!


Personal Log

Being on this ship is like being part of a hard working family.  People are all over this ship.  I have come to appreciate the true gift that this crew gave me with my own stateroom, head and starboard side porthole.

I even have my own head!

I even have my own head!

Looking into my stateroom from the hallway.

Looking into my stateroom from the hallway.

I found out the room they gave me is called the “Princess Suite.”  I  learned this name comes from using the initials PS for the visiting Physical Scientists who often come aboard.  I extend an apology to visiting NOAA physical scientist Adam Argento.  You will learn about Adam in a future blog.  He did not get to sleep in the wonderful “Princess Suite” on this trip.

Rebecca Loy, DC means Damage Control! September 13, 2015

NOAA Teacher at Sea
Rebecca Loy
Aboard NOAA Ship Rainier
September 8 – 24 , 2015

Mission: Hydrographic Survey
Geographical area of Research: Kodiak Island, Alaska
Date: September 13, 2015

Current Location: transitioning between Shelikoff Strait and Uganik Bay, North Kodiak Island, Alaska

As I mentioned earlier, safety is top priority here on Rainier.  The crew is required to have safety drills within 24 hours of leaving port.  This includes drills such as Fire and Emergency drills, Man Over Board (MOB) drills and Abandon Ship drills.

When I arrived I was quickly told how to find 2 ways out of my cabin.  My cabin also has a device called an EEBD – Emergency Escape Breathing Device that will allow me to breathe for 10 minutes in a smoky corridor if needed.  Each and every cabin has these and they are also in various places around the ship.

All new crew and visitors are given a thorough safety briefing before we leave port.  We started by doing some paperwork and discussing what everything means.  Then, ENS Danial Palance took us around the ship and showed us the important areas.  He made sure I could find my safe places to report to since I am so new to the ship.

My Rainier safety card

My Rainier safety card

Every person, including me, has a job during an emergency.  Each person is given a “bunk card” that is held near your sleeping bunk.  It lists the three main emergencies we practice and where each person reports to.

Fire and Emergency Drills – the ship’s whistle will blow for a long 10 second blast when there is a fire or other emergency.  Go ahead and slowly count to 10 to see how long it is – 1 Mississippi, 2 Mississippi, 3…

This will definitely get your attention!   If it is a drill it will be announced.  If not, it will say this is an emergency.  My job is to get to the “BRAVO station” which is on the Fantail or back of the ship near the boat shop.  My primary duty is to “assist as directed” if help is needed.   All over the ship are stations for the firefighters. What I find most interesting is these are not people they bring on board specifically… it is the crew you see around you who have also trained to be Firefighters and Advanced Firefighters!  ENS Palance is one of them!

The fire station in the mess hall.

The fire station in the mess hall.

Also throughout the ship you can see Fire Stations and fire extinguishers, fire alarm boxes, radios for communication.  Some of the areas with more dangerous items (like paint or the machine shop) are labeled “CO2 PROTECTED SPACE”.  I was most curious about this.  What do you think CO2 and fires have in common?  If you answered that fires need oxygen to burn and CO2 will put a fire out then you are correct.  In one area of the ship there are many large canisters with CO2 in them.  If there is a bad fire in one of the CO2 protected spaces, someone can send the CO2 to that area and put the fire out.  It will remove all the oxygen from the space.

Man Over Board drills – On a ship if someone falls into the water you will hear the whistle blow for 3 long blasts.

Along with many other orange safety rings, this one has smoke attached to it.

Along with many other orange safety rings, this one has smoke attached to it.

If you are the person who saw this, you will need to keep your eye on the person and let others know.  Everyone has a station for this as well.  My job is to report to the “Flying bridge” on top of the ship and be a lookout and help as needed.  The ship has many orange safety rings that can be throw overboard to someone.  There are also two rings with smoke signals attached that can be released from both port (left side) and starboard (right side) of the ship.  We learned how to release those as well.  Rainier has to do monthly drills for MOB.  They don’t actually put someone in the water for this, it is usually a buoy or it could be “Oscar” the medical mannequin (He must be Rainier’s version of “Buster” from the show Mythbusters).

In my survival suit!

In my survival suit!

Abandon Ship drills – Being out on the cold waters of Alaska and leaving this ship is a scary thought, but it needs to be practiced.  Everyone has their own Survival Suits to wear for these drills.  Check me out with mine!!  We also need to bring long sleeved shirts, warm hats and flotation devices with us.  I will be reporting to Liferaft #4 on the port side of the ship with Liferaft #3 on the starboard side as back up.  My indoor meeting place is in the Wardroom and, again, I assist as directed.  If we have to leave the ship, people have jobs to go get the EPIRB which is an Emergency Position Indicating Radio Beacon, the SART is a Search and Rescue Transponder and the GMDSS which are Global Maritime Distress Safety Signal.  All of these will help the Coast Guard rescue us!!

I have had my training, and you know what needs to be done.  Now, time for the real drills at sea!!!

Suddenly, we hear a long 10 second whistle… it was the drill for fire and emergency.  Everyone quickly went to their assigned areas.  There was a fire near the mess hall and the fire team was on the job!!  ENS McKay and AB Wright worked on putting the fire out.  Below are some pictures of them in their fire gear!

ENS McKay practicing with the fire hoses.

ENS McKay practicing with the fire hoses.

AB Wright and ENS McKay practicing fighting the fire with all their gear on.

AB Wright and ENS McKay practicing fighting the fire with all their gear on.











The fire drill turned into an Abandoned Ship drill.  Calmly and quickly, everyone gathered their survival suits, a warm hat, long sleeved shirt and their PFD (personal floatation device) and went to their station.  Everyone had to put their survival suits on.  ENS McKay was my group leader and he had to help me with mine.  He was incredibly fast putting his on and gave me some great pointers on being quicker in a real emergency.

Abandon ship drills when everyone puts on their survival suits!

Abandon ship drills when everyone puts on their survival suits! Photo Credit: Eli Smith

ENS McKay had his suit on and off very quickly, he then helped me with mine.

ENS McKay had his suit on and off very quickly, he then helped me with mine. Photo Credit: Eli Smith











While safety drills are important.  I hope we will never have to do this for real!

Path to Rainier

This crew is truly an incredible bunch.  I thought it would be interesting for others to see how people ended up working here.   While I would like to highlight everyone, I could only pick a few.

The first person I want everyone to meet is Able Seaman (AB) Lindsey Houska.  Lindsey is one of the deck hands on Rainier.   I wanted to know what path led her to this unique work place.

With AB Lindsey Houska. Photo credit: Bob Steele

With AB Lindsey Houska. Photo credit: Bob Steele

Lindsey started with a degree in Economics from South Dakota State University and worked in Montana for the USDA (U.S Department of Agriculture) for 4 1/2 years.  She realized she wanted to get a bit more out of life than working at a desk.  She sold her house and car, stored her belongings with her parents and went to Indonesia to volunteer instructing farmers on better growing practices.  This was the beginning of her life adventures!  After 3 months living in Indonesia and 5 months traveling other areas of Southeast Asia, she headed out to Australia.  This incredibly hard working woman did a few jobs but ended up working on a commercial fishing vessel catching prawns on the West Coast of Australia.  Later, she got a job in Seattle and South East Alaska as a deck hand on a luxury yacht.  Realizing she had a love of positive environmental practices she wanted to do more for the world in general.  This is when Lindsey applied to work for NOAA.  NOAA are true stewards of the ocean!

On Rainier, Lindsey has been a very busy deck hand for nearly 2 years.  She loves working with all the other deck hands and they have an amazing camaraderie with each other.   I learned so much more about her job when we sat down together.  Lindsey is a trained fire fighter, has been to radar school and even has her captain’s license for smaller vessels.  She works hard with boat deployment, maintenance on the weather deck, inport bridge watch for security and anchor watch so the ship stays in place when it is at anchor.  She also works the cranes, does lookout on the flying bridge and can be a helmsman steering the ship.

In her free time, Lindsey can be found reading, working out in the gym on board, meditating for some quiet time and she also has a bicycle on board that she likes to ride when the ship is in port.  When I asked Lindsey what she did to reduce stress on the job, she said having a good sense of humor with colleagues goes a long way.  They also enjoy time in port together and having meals together.  This amazing woman has traveled all over the world including most of Southeast Asia, all over Australia and New Zealand.  She has been to Europe, Mexico, British Columbia and Manitoba, Canada.  Incredibly, but not surprising as I get to know her, many of the areas Lindsey backpacked to on her own!

I am truly impressed by this lady; how hard she works and how kind she has been to me.  Thank you, Lindsey, for letting me get to know you better!

Personal Log

So true!

So true!

TEAMWORK SAFETY FIRST   Three words that I have discovered run Rainier.  I am incredibly impressed by the teamwork, communication, hard work and commitment to our oceans that is evident here.  The umbrella over all of this is an even bigger obligation to safety.  Above I have highlighted just a bit of what makes this ship work in regard to safety.  In future blogs you will read more about this topic when you learn about the people here.   Needless to say, even though we will be out in very big, deep waters and in narrow bays with tall mountains, I feel incredibly safe in the hands of this reliable crew.

Even getting fuel, this team is safe. Here a fuel boom went around the ship.

Even getting fuel, this team is safe. Here a fuel boom went around the ship.

Denise Harrington: Polygon Planning, April 24, 2014

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Rainier
April 21 – May 2, 2014

Mission: Hydrographic Survey

Geographical Area of Cruise: North Coast Kodiak Island

Date:  April 24, 2014, 23:00

Location: 51 50.7’ N  127o 55.9’ W

Weather from the Bridge: 8.4C (dry bulb), Wind 9 knots @ 59o, overcast, light fog, 1-2′ swell.

Our current location and weather can also be seen at NOAA Shiptracker:

Science and Technology Log

Much like the the lab reports we do in class, hydrographers have a tremendous amount of work to do prior to going into the field.  As we make the transit from Rainier’s home port of Newport to our charting location of Kodiak Island, hydrographers are working long hours in the plotting room planning their season’s work. Today’s log is about a software program called CARIS that hydrographers use to plan their project and guide data collection through the season.  This morning, Ensign Micki Ream planned her season’s work in the Plot Room on CARIS.  This afternoon, she walked out the plot room door and onto the bridge where she navigated Rainier through the narrow Blackney Passage of the Inside Passage.   Prior to taking over the bridge, I watched as Ensign Ream as she plotted her project area for the season.  She has been assigned Cape Uganik, an area of North Kodiak Island in the vicinity of Raspberry Island.  The area was chosen to survey due to boat traffic and because the last survey completed was in 1908 by lead line.  Here you can see the original survey report and an image of how data was collect at that time (1908 Survey of Ensign Ream’s Survey Area). Ensign Micki Ream explained that the charts were called “sheets,” because originally, they were sheets of paper, sent out with the surveyor into the field.  While we still call them sheets, they are now in electronic form, just like the sheet below representing one of two project areas ENS Ream will most likely work on this summer.

Ensign Ream's task is to break this large polygon into smaller manageable parts.

Ensign Ream’s task is to break this large polygon into smaller manageable parts. Challenge:  print a copy of this map and come up with 30 smaller polygons to assign to your team to survey before you scroll down to see Ensign Ream’s plan.

Why make polygons instead of sending several launches out to your work area and tell them to start on opposite ends and meet in the middle? The polygons are a way for hydrographers to break a large amount of work into manageable tasks. Commander Rick Brennan, the Commanding Officer, explains “polygons are designed based upon the depth of the water, the time it will take to complete, and the oceanographic condition, particularly speed of sound through water.  Areas that are suspected to have a higher variability in sound speed will get smaller polygons to manage errors from sound speed.”

Also, imagine sending several launch boats out into a large area to work without telling them where to go. Polygons provide a plan for several boats to work safely in an area without running into each other.  It allows areas to be assigned to people based upon their skills.  The coxswains, boat drivers, with a lot of experience and skill, will take the near shore polygons, and the newer coxswains will take less hazardous, deeper water.

Another reason to break your sheet into polygons is to maintain team moral.  By breaking a large task into small assignments people feel a sense of accomplishment. As she divided her large polygon into 30 smaller polygons, Ensign Micki Ream kept in mind many variables. First, she considers the depth of the water.  The sonar produces a swath of data as the survey vessel proceeds along its course.  As the water gets deeper, the swath gets wider, so you can make a bigger polygon in deeper water. As she drew her polygons, she followed contour lines as much as possible while keeping lines straight.  The more like a quadrilateral a polygon is, the easier it is for a boat to cover the area, just like mowing a rectangular lawn. In her polygons, she cut out areas that are blue (shallow), rocky areas and kelp beds, because those areas are hazardous to boats.  While the hydrographer in charge and coxswain (boat driver), should use best practices and not survey these areas by boat, sometimes they rely on the polygon assignment.

Here is Ensign Ream's Proposal for how to complete this summer's work. How does it compare to your proposal?

Here is Ensign Ream’s Proposal for how to complete this summer’s work. How does it compare to your proposal?

Once she has drawn up her plan, Ensign Micki Ream roughly measures the average length and width of her polygons and puts that data into a Polygon Time Log form that a co-worker created on Rainier last season.  The form also takes into account the depth and gives an estimate of time it will take to complete the polygon.  This Time Log is just one of the many pieces of technology or equipment that crew invents to make their lives and jobs easier.

Polygon Time Logs estimate how long it will take to complete a sheet.

Polygon Time Logs estimate how long it will take to complete a sheet.

The fun part of this process is naming your polygons so that hydrographers in the field can report back to you their progress.  Traditional alphabetical and numerical labels are often used, but Ensign Micki Ream is naming some of her polygons after ’90s rock bands this year. Once the polygon is named, the sheet manager, Ensign Ream, develops a boat sheet for a hydrographer in charge (HIC):  this is their assignment for the day. Typically, they send out three to four people on a launch, including the HIC, coxswain and an extra hand. There are always new people aboard Rainier, so there are often other people in the launch being trained.  There are enough immersion suits for 4 people but ideally there are three people to help with launching the boat and completing the day’s work.  Communication between the HIC and coxswain is essential to get data for ocean depths in all areas of their polygon as they determine the direction to collect data in their work area.  Now, at least, the hydrographer and coxswain know where to start and stop, and are confident that their sheet manager has done her best to send them into a safe area to collect the data needed to make new charts.


Since Ensign Ream’s polygon plan is an estimate, the time to complete each polygon may be longer or shorter than estimated.  Variables such as the constantly changing depth of the ocean, weather, experience and equipment of the crew collecting data, and a myriad of other variables, known and unknown, make scheduling and completing surveys a constantly moving target.  There are two guarantees however:  flexibility is required to work on the crew and ultimately winter will force a pause to Rainier’s work.

Spotlight on a Scientist

Although I have been on Rainier for only several days, I am blown away by the incredible skills crew members acquire in short amounts of time.  Ensign Micki Ream is the perfect example:   In January, 2013, she joined the NOAA Corps which provides operational support for NOAA’s scientific missions.  During a six month officer training, she was trained in the basics of navigation. On June 2, 2013, she joined Rainier crew. In February, 2014 NOAA sent her to a one month Basic Hydrography School where she learned hydrography principles and how to use various software programs. Throughout her short time at NOAA, she has had significant and varied on the job training with scientific, managerial and navigational work.The rest of her skills are on the job training with an end goal of Officer of the Deck (similar to a mate in commercial sailing) and Hydrographer in Charge.

Here, Ensign Ream is modifying polygon names from 90's rock bands to the 12 Days of Christmas.  There is plenty of room for creativity here!

Here, Ensign Ream is modifying polygon names from 90’s rock bands to the 12 Days of Christmas. There is plenty of room for creativity!

Ensign Micki Ream does have a background in science which she is putting to use every day.  Originally from Seattle, she started her career with NOAA in June, 2009, after obtaining a Marine Biology degree at Stanford University.  Her first position was with the Office of National Marine Sanctuaries Program, which provided her with an internship and scholarship to acquire a Master’s Degree, also from Stanford, in Communicating Ocean Science. Just a little over one year after coming to NOAA Corps, she is a hydrographer in training and safely navigating a very impressive ship as part of a bridge team, including highly skilled navigational experts such as Ensign J.C. Clark and Commander Brennan.  Where else could you get training, experience and on the job support in so many diverse areas but with NOAA Hydro?

Ensign Ream consults with Lieutenant Russel Quintero, the Field Operations Officer, about the best way to navigate through a narrow passage during her upcoming bridge watch.

Ensign Ream consults with Lieutenant Russel Quintero, the Field Operations Officer, about the best way to navigate through a narrow passage during her upcoming bridge watch.

Personal Log

The food is absolutely amazing on board.  Tonight’s dinner options were roast prime beef, cut to order, au jus, creamy smoked salmon casserole, farro vegetable casserole, baked potatoes with fixings, asparagus and several different kinds of cake and fruit. In the evenings, snacks are also available.  My biggest challenge has been to pace myself with the the quantity of food I eat, particularly since taking long hikes after dinner is not an option. I feel very well cared for aboard Rainier. P1000587

This is the front door to the snack freezer.  For me, the answer is clearly "No."

This is the front door to the snack freezer. For me, the answer is clearly “No.”

Britta Culbertson: Hiding Out During Rough Seas, September 6, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Friday, September 6th, 2013

Weather Data from the Bridge (for Sept 6th at 5:57 PM UTC):
Wind Speed: 42.65 knots
Air Temperature: 11.8 degrees C
Relative Humidity: 81%
Barometric Pressure: 987.4 mb
Latitude:57.67 N          Longitude: 153.87 W

Science and Technology Log

Weather Advsisory

The weather advisory for the Gulf of Alaska and around Kodiak Island (screen shot from NOAA Alaska Region Headquarters)

Spiridon Bay

Spiridon Bay (screenshot from

As you can see from my weather data section, the wind speed this morning was up to 42.65 knots.  We had waves near 18 feet and thus the Oscar Dyson ran for cover and tucked itself in an inlet on the North side of Kodiak Island called Spiridon Bay.  The Oscar Dyson’s location can be viewed in near real-time using NOAA’s Shiptracker website.   The screenshot above was taken from the Shiptracker website when we were hiding from the weather. The weather forecast from NOAA’s Alaska Region Headquarters shows that the winds should diminish over the next few days.  I’m thankful to hear that!


Since the Dyson has been in safe harbor in Spiridon Bay for the last few hours, I have had some time to catch up on some blogging!  Let’s backtrack a few days to Wednesday, September 4th, when the Dyson left Kodiak to begin its journey in the Gulf of Alaska.  We headed out after 1PM to pick up where the last cruise left off in the research grid.  We reached our first station later in the afternoon and began work.  A station is a pre-determined location where we complete two of our surveys (see map below).  The circles on the map represent a station location in the survey grid.  The solid circles are from leg 1 of the cruise that took place in August and the hollow circles represent leg 2 of the cruise, which is the leg on which I am sailing.

The first step once we reach a station is to deploy a Bongo net to collect marine zooplankton and the second step is to begin trawling with an anchovy net to capture small, pelagic juvenile pollock and forage fishes that are part of the main study for this cruise. Pelagic fish live near the surface of the water or in the water column, but not near the bottom or close to the shore.  Zooplankton are “animal plankton”.  The generic definition of plankton is: small, floating or somewhat motile (able to move on their own) organisms that live in a body of water. Some zooplankton are the larval (beginning) stages of crabs, worms, or shellfish.  Other types of zooplankton stay in the planktonic stage for the entirety of their lives. In other words, they don’t “grow up” to become something like a shrimp or crab.

Station Map

Station map for leg 1 and leg 2 of the juvenile pollock survey. I am on leg 2 of the survey, which is represented with hollow circles on the map.

Before we reached the first station, we conducted a few safety drills.  The first was a fire drill and the second was an abandon ship drill.  The purpose of these drills is to make sure we understand where to go (muster) in case of an emergency.   For the abandon ship drill, we had to grab our survival suits and life preservers and muster on the back deck.  The life rafts are stored one deck above and would be lowered to the fantail (rear deck of the ship) in the event of an actual emergency.  After the drill I had to test out my survival suit to make sure I knew how to put it on correctly.

Life Jacket

Britta Mustering for Abandon Ship Drill on Oscar Dyson

survival suit

Britta models a survival suit – they even found a size SMALL for me!

On the way to our first station, we traveled through Whale Pass next to Whale Island, which lies off of the northern end of Kodiak Island.  While passing through this area, we saw a total of 4 whales spouting and so many sea otters, I lost track after I counted 20.  Unfortunately, none of my pictures really captured the moment.  The boat was moving too fast to get the sea otters before they flipped over or were out of sight.

Whale Island

A nautical chart map for Whale Island and Whale Passage

Personal Log

secure for sea!

Last night’s warning about high seas in the early morning of September 6th.

A lot of people have emailed to ask me if I have been getting seasick.  So far, things haven’t been that bad, but I figured out that I feel pretty fine when I’m working and moving about the ship.  However, when I sit and type at a computer and focus my attention on the screen that seems to be when the seasickness hits. For the most part, getting some fresh air and eating dried ginger has saved me from getting sick and fortunately, I knew about the threat of high winds last night, so I made sure to take some seasickness medication before going to bed.  After what we experienced this morning, I am sure glad I took some medication.

Everyone on board seems very friendly and always asks how I am doing.  It has been a real pleasure to meet the engineers, fisherman, NOAA Corps officers, scientists, and all others aboard the ship.  Since we have to work with the crew to get our research done, it’s wonderful to have a positive relationship with the various crew members.  Plus, I’m learning a lot about what kinds of careers one can have aboard a ship, in addition to being a scientist.

So far, I’ve worked two 12-hour shifts and even though I’m pretty tired after my long travel day and the adjustment from the Eastern Time Zone to the Alaskan Time Zone (a four hour difference), I’m having a great time!  I really enjoy getting my hands dirty (or fishy) and processing the fish that we bring in from the trawl net.  Processing the haul involves identifying, sorting, counting, measuring the length, and freezing some of the catch.  The catch is mainly composed of different types of fish like pollock and eulachon, but sometimes there are squid, shrimp, and jellyfish as well.

One of the hardest parts of the trip so far is getting used to starting work at noon and working until midnight.  We have predetermined lunch and dinner times, 11:30 AM and 5:00 PM respectively, so I basically eat lunch for breakfast and dinner for lunch and then I snack a little before I go to bed after my shift ends at midnight.  As the days go by, I’m sure I’ll get more used to the schedule.

Did You Know?

During one of our trawls, we found a lanternfish.  Lanternfish have rows of photophores along the length of their bodies.  Photophores produce bioluminescence and are used for signaling in deep, dark waters.  The fish can control the amount of light that the photophores produce.  Lanternfish belong to the Family Myctophidae and are “one of the most abundant and diverse of all oceanic fish families” (NOAA Ocean Explorer).


Lanternfish caught during a trawl. Note the dots along the bottom of the fish, these are photophores that emit bioluminescence.

Photo of bioluminescing lanternfish (Photo Credit: BBC Animal Facts