Jill Bartolotta: All Aboard, Shipping Out, May 30, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 14, 2019

 

Mission:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: May 30, 2019

Weather Data:

Latitude: 24° 47.7 ‘N
Longitude: 080° 20.2’W
Wave Height: 2-3 feet
Wind Speed: 10 knots
Wind Direction: 114
Visibility: 10 nm
Air Temperature: 28.2°C
Barometric Pressure: 1013.5 mb
Sky: Few clouds

 

Science Log

Today we depart Key West. The days in port have been spent readying equipment, training mission crew, and exploring the beauty that is Key West. We say our final goodbyes to terra firma and head out to sea.

Ship sign board showing departure date
Departure time!
NOAA Ship Okeanos Explorer
Home for the next two weeks.

The ship we are aboard, NOAA Ship Okeanos Explorer, is managed by NOAA’s Office of Marine and Aviation Operations. The NOAA Commissioned Officer Corps commands and operates the ship in combination with wage mariners. Equipment on board is managed by NOAA’s Office of Exploration and Research (OER) in collaboration with the Global Foundation for Ocean Exploration.

If you visit OER’s website, you will see in their mission that they are the “only federal organization dedicated to ocean exploration. By using unique capabilities in terms of personnel, technology, infrastructure, and exploration missions, OER is reducing unknowns in deep-ocean areas and providing high-value environmental intelligence needed by NOAA and the nation to address both current and emerging science and management needs.” The purpose of OER is to explore the ocean, collect data, and make this data publicly available for research, education, ocean management, resource management, and decision-making purposes.

One of OER’s priorities is to map the US Exclusive Economic Zone (EEZ) at depths of 200 meters or greater. This is some deep stuff. The EEZ distance from shore is dependent on a variety of factors such as proximity to territorial waters of other countries and the continental shelf. If you want to learn more about how EEZs are established visit the United Nations Oceans and the Law of the Sea Website https://www.un.org/en/sections/issues-depth/oceans-and-law-sea/. Within the EEZ a country has exclusive rights to various activities such as fishing, drilling, ocean exploration, conservation, and resource management.

Map of U.S. Exclusive Economic Zone
Exclusive Economic Zone (EEZ) for the United States. We are mapping in the Southeast Region (lime green). Photo Credit: NOAA

We are currently en route to our mapping area so we can map previously unmapped areas. The mapping that will occur on this mission will be used to help inform dive locations for the ROV (Remotely Operated Vehicle) mission that will take place after our mission. Mapping allows us to understand sea floor characteristics and learn more about deep sea ecosystems that can be later explored with an ROV. An ecosystem of interest for this mapping mission is deep sea coral habitat. The area where we will be mapping is thought to be the largest deep sea coral habitat in US waters and it is largely unmapped. As data is collected, it is cleaned (more on this at a later time) of noise (unwanted data points). Products such as multi-beam geospatial layers are made available to end users on land roughly 24 hours after data is collected. End users could include other researchers, educators, ocean policy and management decision-makers, and more specifically those who will be joining the ROV mission happening in two weeks.

If you want to follow Okeanos Explorer and her crew on our mission, see the live feed available through this link https://oceanexplorer.noaa.gov/livestreams/welcome.html.

Personal Log

We have just left port. The dolphins are jumping, the sea is the most perfect turquoise blue, and the wind blows on our sun-kissed faces. I have left port many times on my various trips, but today was magical. I think what makes this departure from port so magical is the journey that lies ahead. I am nervous and excited all at the same time. It is slowly settling in that I am able to participate in this once in a lifetime experience. Never in my wildest dreams did I think I would be aboard an ocean exploration vessel. Wow! Just Wow!

View of Key West from shore
Fondest farewell Key West.

So far everything is good. Dabbled pretty hard in the seasickness world today. I tried to get on my computer too early and it went down swell from there. However, some wind on my face, ginger soup, and bubbly water made everything better. Many people have told me it is important to embark on a task to get my mind off feeling unwell. I have taken this to heart and have been meeting all the wonderful people on the ship, learning more about them and their role on the ship. In the coming two weeks, I plan on learning about every facet that it takes to operate an exploration mission. From what makes the ship move forward to the detailed intricacies of mapping the sea floor to those who make it all possible.

I hope I will be able to share my experience with you so it feels like you are with me on the ship. Using words and pictures I will try to make you feel as if you are aboard with all of us. I will do my best to show you the blue hues we encountered today and explain what it is like to be out to sea with land many miles away. But I still encourage you all to try it for yourself. Words and images will only give you half the story. You need to feel the rest firsthand.

Blue water out of Key West
Bluest of blues. Words and images fail me here. The blue hues we saw today are the most spectacular colors I have ever seen.

Sunset is upon the horizon so I leave you for now. Stay tuned for more about our grand adventure.

Sun sets over the ocean
First sunset at sea

Did You Know?

You can use sonar to learn more about the organisms living in the water column. For example, sonar has the ability to show you the migration of zooplankton and their predators to the surface at night and back down when the sun rises. This phenomenon is called vertical diurnal migration.

Ship Words

Different terms are used to describe items, locations, or parts of the ship. As I learn new words I would like to share my new vocabulary with all of you. If there is a ship term you want to know more about let me know and I will find out!

Port: Left side of ship

Starboard: Right side of ship

Bow: Front of ship

Stern: Back of ship

Mess Deck: Where we eat

Head: Restroom

Scuttlebutt: Water fountain (and gossip)

Bulkhead: Walls

Overhead: Ceilings

Deck: Floor

Rack: Bed

Aft: Towards the back of the ship

Forward: Towards the front of the ship

Animals Seen Today

One dolphin

Hundreds of flying fish

Dozens of various seabirds

Jill Bartolotta: Introduction, May 21, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 29 – June 14, 2019


Mission:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau 

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: May 21, 2019

Weather Data (from Cleveland, OH):

Latitude: 41.53° N

Longitude: 81.67° W

Lake Wave Height: 1ft

Wind Speed: 8.6 knots

Wind Direction: 0 degrees

Visibility: 8.6nm

Air Temperature: 11°C

Barometric Pressure: 1021.7 mb

Sky: Overcast

Introduction

In one week I will be landing in Key West, Florida ready to begin my journey as a Teacher at Sea aboard NOAA Ship Okeanos Explorer. As a native to the northern shores of Ohio along the coast of Lake Erie, the ocean is a distant place only visited on family vacations, through books, or in my dreams. Throughout my childhood we visited the ocean several times and I fell in love with all things ocean. My curiosity and love for the ocean deepened as I let Jules Verne and Captain Nemo take me “20,000 Leagues Under the Sea” where I saw a colossal squid, massive schools of fish, and learned about animals that glow in the dark. As I watched shows, read magazines, and saw pictures, I began to learn more about what lies below and was fascinated by how little we actually know about the ocean. Did you know we know more about space than we do about the ocean? My curiosity intensified as I began to realize a career in marine biology was possible for a young woman from Cleveland, Ohio. But my curiosity only ever stayed near the shore. I was always interested in the ships that went out to sea for weeks on end to discover new sea life, conduct fish population assessments, or map the ocean floor. However, they were out to sea and my close-toed shoes and I were still on land…well, more accurately, in the tide pools. Never in my wildest dreams did I think I would be on one of these ships. Well I am! My close-toed shoes and I are heading to sea!

photo_jillbartolotta
Exploring the coast of Maine in my tide pooling boots. Photo Credit: Joshua Layne

Before I get too wrapped up in the weeks to come I would like to tell you a little bit about myself. I grew up east of Cleveland, Ohio on the southern shores of Lake Erie. I spend most of my free time out on the water on my paddleboard or taking my dog, Luna, on grand land adventures. We tried the whole paddling thing with her. It failed epically. My love for water led me to the most amazing job. I work as an Extension Educator for Ohio Sea Grant. There are 34 Sea Grant programs across the country that work with coastal communities to sustainably manage and use their coastal resources. Much of my work is centered on educating youth on the human-caused issues of Lake Erie such as invasive species, harmful algal blooms, and marine debris (trash in waterways). I also conduct research on the use of disposable plastics to better understand why humans use so many of them and what behaviors can we change to encourage them to use less. My career is very rewarding because every day I teach others about Lake Erie and together we learn how to improve her health. My time as a Teacher at Sea will allow me to learn more about the ocean so I can bring all her wonders home to the people of Ohio. Many people where I leave have never even been to Lake Erie so the chances of them visiting the ocean is slim. I will be able to bring the ocean to them making this experience so important to those I teach.

marine-debris-outreach
Sarah, Sue, and I teaching students about marine debris at Cedar Point Match, Science, and Physics Week. Photo Credit: Kathy Holbrook

Mission Information

The journey will be epic, the days long, and the sunsets magnificent. Truly a once in a lifetime opportunity and I am so excited and honored to be able to share my time at sea with all of you. Together, we will explore the ocean deep, map areas of poorly understood ocean floor, and dabble in some seasickness. Don’t worry! I will only give you the play by play for the first two. To begin our trip we depart from Key West and cruise for 16 days until we make landfall in Port Canaveral. Our mission is to map poorly understood areas of the ocean floor off the southern and eastern tips of Florida known as the Southern Atlantic Bight and Blake Plateau. Operations will take place 24/7 (don’t worry I got you covered when you need to get your zzzs) and will rely on the use of sonar to map these poorly understood areas. I promise to learn all about the equipment on board and share it with all of you. We will be tech wizards by the time we are done.

The mapping operation is actually part of a multi-year, multi-national collaboration campaign called the Atlantic Seafloor Partnership for Integrated Research and Exploration (ASPIRE). The purpose of the campaign is to further our knowledge of the Atlantic Ocean which is a goal of the Galway Statement of Atlantic Ocean Cooperation. The US, Canada, and the European Union developed the Galway Statement of Atlantic Ocean Cooperation to further our understanding on the Atlantic Ocean in support of increased knowledge and ocean stewardship. I will learn more about ASPIRE and the Galway Statement of Atlantic Ocean Cooperation while on board and share a more detailed account so we can all better understand why mapping operations and increased knowledge of the Atlantic Ocean are important for current and future generations.

Not only will I provide you with detailed accounts of all the science happening on board, I will learn about those who call the sea their home. I will share their stories and journeys in case an ocean career is of interest to you. I will share the crests (ups) and troughs (challenges) of life at sea. Such as what we do for fun. I have heard through the grapevine cribbage is a popular pastime. I am not familiar with this game so any tips you want to share with me will be greatly appreciated. Help give me an edge on the competition.

Luna is ready for sea!
Luna is ready for sea!

I hope my first blog has given you a glimpse of what is to come over the next three weeks. My time at sea quickly approaches and my last days at home will be spent playing with Luna, packing as lightly as possible (very challenging), breathing in the non-salty Lake Erie air, and mentally preparing to be completely out of my comfort zone. As I have said already, I am happy to take this journey to sea with all of you, thank you for your support, and I look forward to our three weeks together. See you in Key West!

paddleboard
Farewell Lake Erie! The ocean awaits! Photo Credit: Connie Murzyn

Amy Orchard: Day 1, 2 and 3 – Cool Scientists, Multibeam, Setting Traps, Cetaceans, September 16, 2014

NOAA Teacher At Sea
Amy Orchard
Aboard NOAA Ship Nancy Foster
September 14 – 27, 2014

Mission: Fish Tagging
Geographical area of cruise: Riley’s Hump: Tortugas Ecological Reserve South
Date: September 14, 15, 16, 2014

Weather: September 16, 2014 20:00 hours
Latitude 24° 30’ 30’’N Longitude 83° 09’ 9’’W
Few clouds, clear.  Humidity 10%.
Wind speed 7 knots.
Air Temperature: 28° Celsius (83° Fahrenheit)
Sea Water Temperature: 30.4° Celsius (86.7°Fahrenheit)

SUNDAY:

Getting to Know the Nancy Foster

Scott Donahue, Science Coordinator for Florida Keys National Marine Sanctuary and Chief Scientist for this cruise, brought me aboard and gave me a tour of the Nancy Foster early in the day.  Also there was Tim Olsen, Chief Engineer, who I had met on the plane from Atlanta to Key West.  I was overwhelmed with the capacity of the ship.  It is huge and fully equipped for a wide variety of scientific endeavors, diving, mapping, surveying, launching large equipment etc.  I feel lucky to be a part of what is going on.

Click on these two photos for more information

Short Jaunt into Key West

After taking some time to see Key West, I headed back to the ship where I met Cammy Clark from the Miami Herald who will be with us for one week reporting on our experience. Cammy and I spent the night on the ship awaiting the science team to arrive early tomorrow morning.  The ship is in dock so I can’t yet be sure if I will suffer from sea sickness.  However, I hear that there is 100% survival rate if it does occur!

Click on these two photos for more information

MONDAY:

Meeting the Scientists

During the two weeks aboard, I will be working with 10 scientists from the Florida Fish and Wildlife Conservation Commission (FWC), 7 NOAA Florida Keys National Marine Sanctuary scientists and 2 ROV pilots from the University of North Carolina at Wilmington.  I am excited to be a part this interagency collaboration.  Seems like an efficient way to communicate and share experiences.

Guess which photo shows the scientists I will be working with…

Answer:  PHOTO ON THE RIGHT.  FWC scientists from left to right: Mike McCallister, Jeff Renchen,Danielle Morley, Ariel Tobin (in front), Ben Binder, Paul Barbera.  Not as reserved or stodgy as you might picture a group of scientists, but they are incredibly knowledgeable and dedicated to their work.  They are unbelievably cool people!  They have amazing stories to tell, are easy-going and love to have a good time.  I want to be like them when I grow up!

Preparing to Do Science

One of the many things we will do this week is tagging fish.  To do this, we will travel away from the ship on small boats to set fish traps.  Once the right fish are contained, the dive team will surgically insert an acoustic tag which will allow them to monitor the fish’s movements throughout different reaches of the sanctuary.  This information is important to see the effectiveness of protected areas vs. non-protected areas.

The divers perform this surgery underwater (usually at depths of 95-110 feet) in order to reduce stress on the fish and to avoid air bladder expansion.

Today the divers went out to practice their diving skills before the intense work begins.  I got to travel with them in the small boat.  Even though I am certified to SCUBA dive, only American Academy of Underwater Sciences divers and other divers with official reciprocity are allowed to dive off NOAA ships.  (reciprocity is the word of the day – look it up!)  The diving these scientists do is much more technical than the recreational diving I do in Mexico, but they enjoy it just as much.

Best note of the day:  No sea sickness!  (yet)

dive boat being lowered

The 4 small boats sit on the back deck of the ship and are lowered over the side with a large crane. Once the boat is on the water, we climb down a rope ladder (which is swinging ferociously in the waves!)

me on the small dive boat

The Nancy Foster has four small boats. Three for dive operations and one reserved as a rescue boat. It was exciting to have a different perspective and to see the Nancy Foster out at sea from the small boat. Photo by Linh Nugyen

TUESDAY:

Multibeam Sonar

Last night was the first night I slept on the ship while it was out to sea.  I had a really hard time sleeping as I would awaken every half hour feeling as if I were going to roll over and fall out of my top bunk!  This movement was due to the fact that science is being done aboard the Nancy Foster 24 hours a day.  During the night time, Nick Mitchell and Samantha Martin, the Survey Technicians, are running the Multibeam Sonar which determines ocean depth and creates a map of the sea floor contours.  Using 512  sonic beams, sound is emitted, bounces off the sea bed, then returns to the ship.

See these videos for more information:  http://www.nauticalcharts.noaa.gov/staff/education_animations.htm

The ship would travel out about 3 miles, then turn 180° to make the next pass.  Cruising at about 1 mile every 10 minutes (walking speed) we were turning about every 30 minutes, explaining my rockn’ night!

More on MSB in upcoming posts.

Click on these two photos for more information

Setting Fish Traps

I joined the divers on the small boat to set out the first two traps.  We used cooked and peeled shrimp as bait.  The traps were still empty late afternoon.  Let’s hope they take the shrimp so the tagging can begin!

modified chevron trap

Here sits the modified chevron trap Ben and I will be deploying from our small boat. Divers on a second small boat will follow us, dive down and be sure the trap sits on the ocean floor upright and will set the bait.

trap over board

I am making sure the rope which attaches the float buoys to the trap doesn’t get caught on the boat as the fish trap is deployed into the water. Photo by Nick Mitchell

Here Ben Binder & Survey Technician, Nick Mitchell, record the exact Latitude and Longitude where the trap was set.  Can you figure out the general GPS coordinates for the Tortuga South Ecological Reserve?

Here Ben Binder & Survey Technician, Nick Mitchell, record the exact Latitude and Longitude where the trap was set. Can you figure out the general GPS coordinates for the Tortuga South Ecological Reserve? Need help? Go to http://shiptracker.noaa.gov/

We are focusing on two species during this trip: the Black Grouper and the Cubera Snapper.  These two were selected because they are commercially and recreationally important species.  The FWC’s aim is to monitor the seasonal movement of these species to better understand how the fishes are utilizing the protected areas, as well as those outside of the reserve, so they can make the best management decisions.

I will attach photos of each species that will be taken from the Remotely Operated Vehicle (ROV) in my next blog since this one is getting long…

Challenge Your Understanding

Identify this animal.

I took this photo and video on day 1.  We have seen them each day since!

cetaceans jumping

Am I a porpoise, dolphin or vaquita?

The species in my photo/video is part of the Order Cetacea and the suborder Odontoceti (or toothed whales) which includes the porpoises , dolphins, vaquitas, narwhals and killer whales (to name only a few – there are 67 species in this suborder.)

Go to this website to help you find the correct answer

http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/

 

Bonus Points – make a COMMENT and share some information you have found about the VAQUITA.

Cool fact – all members of Odontoceti can echolocate.

Junior Docents – add that to your bat interpretations!

The question from my last post about the relationship between Tucson and the Sea of Cortez could be answered with all of the first four answers.  Glad NO ONE chose the last answer!  The sea is an integral part of our lives no matter how far we live from it.

Elizabeth Bullock: Day 5, December 15, 2011

NOAA Teacher at Sea
Elizabeth Bullock
Aboard R/V Walton Smith
December 11-15, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: December 15, 2011

Weather Data from the Bridge
Time: 3:15pm
Air Temperature: 23.6 degrees C
Wind Speed: 15.8 knots
Relative Humidity: 56%

Science and Technology Log

Liz takes a water sample

Here I am taking a water sample from the CTD.

Let’s talk about the flurometer!  The flurometer is  a piece of equipment attached to the CTD which is being used on this cruise to measure the amount of chlorophyll (specifically chlorophyll_a) in the water being sampled.  It works by emitting different wavelengths of light into a water sample.  The phytoplankton in the sample absorb some of this light and reemit some of it.  The flurometer measures the fluorescence (or light that is emitted by the phytoplankton) and the computer attached to the CTD records the voltage of the fluorescence.

The flurometer can be used to measure other characteristics of water, but for this research cruise, we are measuring chlorophyll.  As you know, chlorophyll is an indicator of how much phytoplankton is in the water.  Phytoplankton makes up the base of the marine food web and it is an important indicator of the health of the surrounding ecosystem.

At the same time that our cruise is collecting this information, satellites are also examining these components of water quality.  The measurements taken by the scientific party can be compared to the measurements being taken by the satellite.  By making this comparison, the scientists can check their work.  They can also calibrate the satellite, constantly improving the data they receive.

Combined with all the other research I’ve written about in previous blogs, the scientists can make a comprehensive picture of the ecosystem with the flurometer.  They can ask: Is the water quality improving?  Degrading?  Are the organisms that live in this area thriving?  Suffering?

Nelson records data from the CTD

Nelson records data from the CTD.

Collecting data can help us make decisions about how better to protect our environment.  For example, this particular scientific party, led by Nelson Melo, was able to inform the government of Florida to allow more freshwater to flow into Florida Bay.  Nelson and his team observed extremely high salinity in Florida Bay, and they used the data they collected to inform policy makers.

Personal Log

Today is my last full day on the Walton Smith.  The week went by so fast!  I had an amazing time and I want to say thank you to the crew and scientific party on board.  They welcomed me and taught me so much in such a short time!

Thank you also to everyone who read my blog.  I hope you enjoyed catching a glimpse of science in action!

Answers to Poll Questions:

1)      In order to apply to the Teacher at Sea program, you must be currently employed, full-time, and employed in the same or similar capacity next year as

a. a K-12 teacher or administrator

b. a community college, college, or university teacher

c. a museum or aquarium educator

d. an adult education teacher

2)      The R/V Walton Smith holds 10,000 gallons of fuel.  By the way, the ship also holds 3,000 gallons of water (although the ship desalinates an additional 20-40 gallons of water an hour).

Caitlin Fine: Mississippi River Chasers! August 3, 2011

NOAA Teacher at Sea
Caitlin Fine
Onboard University of Miami Ship R/V Walton Smith
August 2 – 6, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: August 3, 2011

Weather Data from the Bridge

Time: 10:18pm
Air Temperature: 29.5°C
Water Temperature: 31.59°C
Wind Direction: North
Wind Speed: 3 knots
Seawave Height: calm
Visibility: good/unlimited
Clouds: Partially cloudy (cumulos and cirrus)
Barometer: 1011.0mb
Relative Humidity: 72%

Science and Technology Log

The oceanographic work on the boat can be divided into three categories: physical, chemical, and biological. In this log, I will explain a little bit about the part of the research related to the physics of light. Upcoming 5th graders – pay attention! We will be learning a lot about light in January/February and it all relates to this research project.

Brian and Maria are two PhD students who are working with the physical components. They are using several optical instruments: the SPECTRIX, the GER 1500, the Profiling Reflectance Radiometer (PRR), and the Profiling Ultraviolet Radiometer (PUV).

Bryan and Maria

Brian and Maria take optic measurements with the SPECTRIX and GER 1500

The SPECTRIX is a type of spectroradiometer that measures the light coming out of the water in order to understand what is in the water. For example, we can measure the amount of green light that is reflected and red and blue light that is absorbed in order to get an idea about the amount of chlorophyll in the water. This is important because chlorophyll is the biggest part of phytoplankton and phytoplankton are tiny plant-like algae that form the base of the food chain on Earth.

PUV

Brian lowers PRR into the water

The PRR and the PUV measure light at different depths to also understand what is in the water and at what depth you will find each thing in the water. The light becomes less bright the further down you go in the water. Most of light is between 0-200 meters of depth. The light that hits the water also becomes less bright based upon what is in the water. For example, you might find that chlorophyll live at 10 meters below the surface. It is important to understand at what depth each thing is in the water because that tells you where the life is within the ocean. Most of the ocean is pitch-black because it is so deep that light cannot penetrate it. Anything that lives below the light level has to be able to either swim up to get food, or survive on “extras” that fall below to them.

Personal Log

These few days have been very fun and action-packed! I arrived on the ship on Sunday afternoon and helped Nelson and the crew get organized and set-up the stations for the cruise. Several other people had also arrived early – two graduate students who are studying the optics of the water as part of their PhD program, one college student and one observer from the Dominican Republic who are like me – trying to learn about what NOAA does and how scientists conduct experiments related to oceanography.

On Monday morning, we gathered for a team meeting to discuss the mission of the cruise, introduce ourselves, and get an updated report on the status of the Mississippi River water. It turns out that the water is going in a bit of a different direction than previously projected, so we will be changing the cruise path of the ship in order to try to intersect it and collect water samples.

CTD

I am helping lower the CTD into the water

Monday we all learned how to use the CTD (a machine that we use to collect samples of water from different depths of the ocean) and other stations at the first several stops. It was a bit confusing at the beginning because there is so much to learn and so many things to keep in mind in order to stay safe! We then ate lunch (delicious!) and had a long 4-hour ride to the next section of stops. When we arrived, it was low tide (only 2 ft. of water in some places) so we could not do the sampling that we wanted to do. We continued on to the next section of stops (another 3 hour ride away!), watched a safety presentation and ate another delicious meal. By this time, it was time for the night shift to start working and for the day shift to go to bed. Since I am in the day shift, I was able to sleep while the night shift worked all night long.

Today I woke up, took a shower in the very small shower and ate breakfast just as we arrived at another section of stops. I immediately started working with the CTD and on the water chemistry sampling. We drove through some sea grass and the optics team was excited to take optical measurements of the sea grass because it has a very similar optical profile to oil. The satellites from space see either oil or sea grass and report it as being the same thing. So scientists are working to better differentiate between the two so that we can tell sea grass from oil on the satellite images. The images that Maria and Brian took today are maybe some of the first images to be recorded! Everyone on the ship is very excited!

Several hours later, we came to a part of the open ocean within the Florida Current near Key West where we believe water from the Mississippi River has reached. Nelson and the scientific team believe this because the salinity (the amount of dissolved salt) of the surface water is much lower than it normally is at this time of year in these waters. Normally the salinity is about 36-36.5 PSUs in the first 20 meters and today we found it at 35.7 PSUs in the first 20 meters. This may not seem like a big difference, but it is.

The water from the Mississippi River is fresh water and the water in the Florida Keys is salt water. There is always a bit of fresh water mixing with the salt water, but usually it is not enough to really cause a change in the salinity. This time, there is enough fresh water entering the ocean to really change the salinity. This change can have an impact on the animals and other organisms that live in the Florida Keys.

Additionally, the water from the Mississippi River contains a lot of nutrients – for example, fertilizers that run off from farms and lawns into gutters and streams and rivers – and those nutrients also impact the sea life and the water in the area. Nelson says that this type of activity (fresh water from the Mississippi River entering the Florida Current) occurs so infrequently (only about ever 6 years), scientists are interested in documenting it so they can be prepared for any changes in the marine biology of the area.

For all of these reasons and more, we took a lot of extra samples at this station. And it took almost 2 hours to process them!

In the evening, we stopped outside of Key West and the director of this program for NOAA, Michelle Wood, took a small boat into the harbor because she cannot be with us for the entire cruise.

Key West

Sunset over Key West - a beautiful way to end the day

She asked me if I’d like to go along with the small boat to see Key West, since I have never been there before, and of course I agreed! I got some great pictures of the R/V Walton Smith from the water and we saw a great sunset on the way back to the ship after dropping her off with Jimmy Buffet blasting from the tourist boats on their own sunset cruises.

We will be in the Mississippi River plume for most of tonight. Everyone is very excited and things are pretty crazy with the CTD sampling because we are doing extra special tests while we are in the Mississippi River plume. We might not get much sleep tonight. I will explain in my next blog all about the chemistry sampling that we are doing with the CTD instrument and why it is so important.

Did you know?

On a ship, they call the kitchen the “galley,” the bathroom is the “head,” and the bedrooms are called “staterooms.”

One interesting thing about the ship is that it does not have regular toilets. The ship has a special marine toilet system that functions with a vacuum and very thin pipes. If one of the vacuums on one of the toilets is not closed, none of the toilets work!

Animals seen today…

  • Zooplankton that live in the sargassum (a type of seaweed that usually floats on the water) –baby crab, baby shrimp, and other zooplankton. The sargassum is a great habitat for baby crab, baby shrimp, and baby sea turtles.
  • Baby flying fish
  • Two juvenile Triggerfish

    Triggerfish

    We caught a young triggerfish in our tow net