Jill Bartolotta: The Ins and Outs of Going, May 31, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 13, 2019

Mission:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: May 31, 2019

Weather Data:

Latitude: 28°29.0’ N

Longitude: 079°34.1’ W

Wave Height: 1-2 feet

Wind Speed: 15 knots

Wind Direction: 155

Visibility: 10 nautical miles

Air Temperature: 27.6 °C

Barometric Pressure: 1013.7

Sky: Few

Science and Technology Log

Today and tomorrow I am learning all about the who and how of making the ship go. Ric Gabona, the Acting Chief Marine Engineer, has been teaching me all about the mechanics of powering the ship, managing waste, and providing clean drinking water. Today I will focus on two aspects of making it possible to live on a ship for weeks on end. First, I will teach you about waste management. Second, I will explain how freshwater is made to support cooking, drinking, cleaning, and bathing needs. In conjunction, all of these systems contribute to our comfort on board but also our safety.

Wastewater Management

Waste on board has many forms and it all must be handled in some way or it can lead to some pretty stinky situations. The main forms of waste I will focus on include human waste and the waste that goes down the drains. The waste is broken down into two categories. Black water and gray water. Gray water is any water that goes down the drain as a result of us washing dishes, our hands, or ourselves. Gray water is allowed to be discharged once we are 3 miles from shore. The water does not need to be treated and can be let off the ship through the discharge valve. Black water is water that is contaminated with our sewage. It can be discharged when we are 12 miles from shore. Black water goes into a machine through a macerator pump and it gets hit with electricity breaking the solid materials into smaller particles that can be discharged into the ocean.

Discharge of gray or black water has its limitations. These discharge locations follow strict rules set in the Code of Federal Regulations (CFR) and by the International Convention for the Prevention of Pollution from Ships (MARPOL). The CFR are set by the federal government and the regulations tell you where (how far from shore) you are allowed to discharge both gray and black water. However, sometimes Okeanos Explorer is in areas where black water cannot be discharged so the black water must be turned into gray water. At this point, once the black water has been mashed it will pass through a chlorine filter that will treat any contamination and then the waste can be discharged. However, there are places where nothing can be discharged such as Papahānaumokuākea Marine National Monument in Hawai’i. When in these no discharge areas the ship will store the gray and black water and then discharge when regulated to do so.

It is important to follow these regulations because as Ric says, “We are ocean stewards.” It is important that ships such as Okeanos Explorer be able to explore the ocean while making the smallest environmental impact as possible. The engineers and other ship and science mission personnel are dedicated to reducing our impact as much as possible when out at sea.

Making Water

Water makes up 60% of the human body and is vital for life. However, 71% of the water on earth is saltwater, not able to be taken up by humans, making it challenging to access freshwater unless you live near an inland freshwater system like where I come from up in Ohio along the Great Lakes. While out at sea, we have no access to freshwater and we cannot store freshwater from land on the ship so we must make it. On Okeanos Explorer freshwater is made using two types of systems, reverse osmosis and desalination. Reverse osmosis is used by seabirds to turn saltwater into freshwater. Saltwater passes through a semipermeable membrane allowing the smaller water particles to pass through while leaving the larger salt particles and other impurities behind. If you are seabird, you excrete this salt by spitting it out the salt glands at the top part of your bill or if you are a ship out through a separate pipe as brine, a yellow colored super salty liquid. The other method on the ship used to make water is desalination. Desalination is the process of boiling salt water, trapping the water that evaporates (freshwater), and then discharging the salty water left behind. The engineers could use a separate boiling system to heat the salt water however they have a much more inventive and practical way of heating the water. But before I can let you know of their ingenious solution we must learn how the engines run. Oops! Sorry, I need to go. Need to switch my laundry. So sorry. We will explore ship movement and the engines in the next blog. Stay tuned…

Reverse osmosis system
Reverse osmosis system on the ship.
flow meters for potable water and brine
Can you see the yellow colored brine and the clear colored potable water?
Filtered water station
Filtered water station on the ship. Look familiar? You may have one like this in your school.


Personal Log

I really enjoyed learning all about the mechanics of operating the ship. It takes lots of very skilled people to make the equipment work and I love the ingenuity of the machines and those who run them. Space is limited on a ship and I am just fascinated by how they deal with the challenges of managing waste and making freshwater 50 plus nautical miles from coast for up to 49 people. Today was a great learning day for me. I do not know much about engines, wastewater treatment, and water purification systems so I really learned a lot today. I now have one more puzzle piece of ship operations under my belt with many more to go.

Aside from my lesson in thermodynamics, combustion, chemistry, physics, and other sciences that I have not touched since college, I learned about the safety operations on the vessel. Today we practiced a fire drill and an abandon ship drill. We learned where we need to go on the ship should one of these events ever occur and which safety gear is needed. I donned my immersion suit and PFD (Personal Flotation Device) to make sure they fit and all the pieces/parts work. Being in the ocean would be a bad time to realize something isn’t right. Donning the safety suit was a funny situation for all movement is super restricted and you feel like a beached whale trying to perform Swan Lake on point shoes.

Jill in immersion suit
Me in my immersion suit, fondly known as the gumby suit.

However, with some help from my friends we were all able to get suited up in case an emergency should arise.

Tonight I look forward to another sunset at sea, some yoga on the deck, and seeing a spectacular star display.  

view of deck with sunset
My yoga spot

Did You Know?

Eating an apple a day while at sea can keep seasickness at bay.

Ship Words

Different terms are used to describe items, locations, or parts of the ship. As I learn new words I would like to share my new vocabulary with all of you. If there is a ship term you want to know more about let me know and I will find out!

Galley: Kitchen

Mess Deck: Space that crew eat aboard ship

Fantail: Rear deck of a ship

Pipe: Announcement on the ship via a PA system

Muster: Process of accounting for a group of people. Used in safety drills on a ship such as a fire or abandon ship drills.

Stateroom: Sleeping quarters on the ship

Abeam: On the beam, a relative bearing at right angles to the ship’s keel

Bearing: The horizontal direction of a line of sight between two objects

Animals Seen Today

1 flying fish

Whales (Too far away to tell what they were but we saw their spouts!)

Sandra Camp: Safety First, June 15, 2015

USS Utah

NOAA Teacher at Sea
Sandra Camp
Aboard NOAA Ship Hi’ialakai
June 14 – 24, 2015

Mission: Main Hawaiian Islands Reef Fish Survey
Geographical area of cruise: Hawaiian Islands, North Pacific Ocean
Date: June 15, 2015

Weather Data from the Bridge: partly cloudy, scattered showers, visibility > 7 NM (nautical miles), winds east 10-15 KT (knots), temperature 78° F

Science and Technology Log

We often talk about safety during science class: how to properly handle tools, materials, and equipment, how to work cooperatively with other people, and how to protect ourselves from accidents. Just like safety is very important during science class, it is essential when doing science anywhere else in the world. In my first day aboard the Hi’ialakai, I have discovered that NOAA ships take safety very seriously. Because the scientific mission of this cruise primarily involves diving, safety is extra important because there are many ways divers’ lives can be at risk. All safety procedures have to be thoroughly reviewed before any diving is allowed to happen. We started the morning of my first day aboard ship by rotating through three different safety stations. Here is what we learned at each station:

Back-boarding in action

Gear Check: Katie Mahaffey, the ship’s Program Support Specialist and dive master, inspected everyone’s diving gear to make sure that it operates correctly. If any equipment is malfunctioning, it can cause serious problems for a diver. She also showed everyone where to store their diving gear. Although I will not be diving, I was given a locker to store my snorkeling gear, my life jacket, and my hard hat (life jackets and hard hats are two very important pieces of safety equipment on ships).

O2 and Back-boarding: At this station, we learned what to do in case there is some kind of accident in the water and a diver becomes injured. We were trained on how to administer oxygen from a tank of emergency O2 and on how to strap an injured diver onto a backboard for safe transport. Both of these items are carried on the small boats that take divers out each day in case of an emergency.

DEAP and EPIRB: DEAP stands for Diving Emergency Action Plan. Each team of divers is supposed to know and follow NOAA’s plan for emergencies while diving. An EPIRB is an Emergency Position Indicating Radio Beacon. It is a handy device that can send out a signal that can be used to help locate a diver’s position in the water in case she/he becomes separated from the boat.

emergency billet
My Emergency Billet

That was not the end of the safety training! We also practiced some emergency drills. Just like we have fire and earthquake drills at school, ships have emergency drills they practice so everyone can react quickly in the event of an emergency. Each type of emergency on a ship is indicated with a different signal on the ship’s horn. This information is located on each person’s emergency billet. Here is a picture of mine:

In the comments section below, I would like you to write what the signal is for abandon ship!


immersion suit
Here I am in my immersion suit.

Today, we went through a fire drill and an abandon ship drill. As you can see on my billet, in the case that we have to abandon ship, I have to muster (gather together with others) by life raft 1 on deck 03. When you abandon ship, you not only have to muster at your designated spot so that the ship’s crew can account for everyone, you also have to put on an immersion suit. This suit is designed to protect you in case you have to be in water a long time, and it makes you look like a red Gumby.

Personal Log

Diamond Head
The view from the top of Diamond Head is amazing.

Before I boarded the Hi’ialakai in Pearl Harbor, I got to have a few adventures on Oahu.  First, I hiked from my hotel in Waikiki to the top of Diamond Head.  Diamond Head is the crater of an extinct volcano, and there is a fantastic view of Honolulu and the coastline from the top.  It was a long, hot, and sweaty uphill hike, but at the end of it, I ran into one of my lovely students who is vacationing with her family in Hawaii, and went swimming with her at her hotel’s pool.  Hello, Emogene!

Emogene and Ms. Camp after going down the water slide

Princess of Kauai
The Princess of Kauai

It was also a state holiday while I was there, King Kamehameha Day, which honors Kamehameha the Great, the king who first established the unified kingdom of Hawaii. There was a parade that day to celebrate. Here is a picture of the Princess of Kauai from the parade.

Before the ship left dock, I also had a little time to look around Pear Harbor. Joanna correctly wrote that Pearl Harbor is famous because the Japanese attacked it, which ultimately caused the United States to become involved in World War II. It was a very sad and tragic moment in our history, and there are several memorials to the lives that were lost on the sunken ships around the harbor. Here is a picture of the USS Utah sunken ship and memorial, which is close to where the Hi’ialakai is docked:

USS Utah
Here is a photo of the shipwreck of the USS Utah, as I promised to Joanna.

Soon after I came aboard, I had to get to know my way around the ship and learn some important words that indicate location on a ship. These words are used on all ships, no matter what their affiliation.

The Hi’ialakai at dock on Ford Island in Pearl Harbor

port: the left side of a ship

starboard: the right side of a ship

bow: the front of a ship

stern: the back of a ship

forward: toward the front, or bow, of a ship

aft: toward the back, or stern of a ship

galley: ship’s kitchen

mess: dining area

stateroom: the room where you sleep

head: the bathroom

Thankfully, I have not suffered from any sea-sickness, but it has been a challenge trying to walk in a straight line!

Did You Know?

The word SCUBA in scuba diving stands for Self-Contained Underwater Breathing Apparatus. Most divers use an open-circuit scuba, where the diver’s exhaled carbon dioxide is vented into the water in the form of bubbles (like when you blow out from your nose under water in a pool). Scientists are concerned that these bubbles may scare away the fish they are trying to study and count while they are under water, so on this trip, some divers will be trying out rebreathers. Rebreathers are designed so that when a diver exhales, the gas is circulated back into the apparatus instead of being exhaled into the water. No bubbles!

Important Words

billet – the place you are assigned to stay on a ship, like a bunk

muster – to assemble or gather for inspection

immersion – under water

The answer to the previous poll was:  Corals get their various colors from the algae that live inside them.

Nikki Durkan: Global Commons, June 13, 2015

NOAA Teacher at Sea
Nikki Durkan
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Midwater Assessment Conservation Survey
Geographical area of cruise: Gulf of Alaska
Date: Saturday, June 13, 2015

Weather Data from the Bridge:
Wind speed (knots):  14.16
Sea Temp (deg C):  8.97
Air Temp (deg C):  8.06

Science and Technology Log

During my first several days in Kodiak, I spent as much time as possible exploring the island on foot.  I hiked up Pillar Mountain to the wind turbines which now help to make Kodiak virtually 100% renewably powered; 14% comes from these turbines while the bulk of the electricity is generated by Terror Lake hydro-power facility located within the interior of the island.  The hydro and wind generation replaced a diesel powered generator and resulted in many benefits to the town and our atmospheric global commons.

View from Pillar Mountain
View of turbines from Pillar Mountain

The idea of a global commons is one I spend a lot of time discussing in the first days of my environmental science course.  The Global Commons includes resources or regions outside the political reach of any one nation state:  the Atmosphere, Outer Space, Antarctica, and you guessed it…the High Seas!

June is National Ocean Month – and the theme for this week is marine debris.  I recently learned a new doctrine of mare liberum (free sea for everyone), but I’d like to add the latin word for responsibility, officium.  Dumping wastes is commonplace with the mantra of “dilution is the solution to pollution” and this practice continues to create challenges in our oceans.  Plastics pose a major threat to our marine life and NOAA is taking significant steps toward reducing plastic pollution through a variety of educational campaigns.  Plastic marine debris can come from a variety of industrial and domestic products, as well as lost or discarded fishing equipment.

While exploring the lovely little town of Kodiak, I came upon the rare plastic Iqaluk (Iñupiaq word meaning fish):

Sculpture constructed from collected marine debris
Sculpture constructed from collected marine debris

Another challenge facing our Global Commons includes over fishing in the High Seas.  Have you eaten Fish sticks, Filet-o-fish, Imitation-crab….otherwise known as Alaskan Pollock?  My mother often told me she craved McDonald’s fish sandwiches while pregnant with me; perhaps those sandwiches somehow led me to this spot 20 miles off the Aleutian Islands?  One of the main reasons we are on the Oscar Dyson for the next three weeks is to gather data on the Alaskan Pollock populations so that the fishery can be maintained at a sustainable level.  This Alaskan Pollock commercial fishery is one of the most economically valuable and well managed fisheries in the world.  Part of this success is due to the implementation of the MSA (Magnuson-Stevens Fishery Conservation and Management Act) that set up a system governing the EEZ (Exclusive Economic Zone – waters three to 200 miles offshore), and also established NMFS (National Marine Fisheries Service) under NOAA (you better know what this means).  The UNCLOS (UN Convention on the Law of the Sea) provides international guidelines and law for our oceans.  Acronyms…scientists and the military love them.  I will learn to love them.

 Personal Log

On the topic of marine debris, there are often jokes made on the bridge about the too-fat-to-fly puffins. They furiously flap their little wings in front of our ship.

Tufted Puffin
Tufted Puffin Photo credit: NOAA image gallery

Apparently cribbage is the game to play on the Oscar Dyson and thanks to Emily Collins (fisheries biologist), I now have another card game to add to my repertoire.  Ever tried to ride a stationary bike on a ship?  The feeling is hard to describe and I must have a sensitive stomach because occasionally I feel as if I am on a roller coaster! Currently I am sitting in my stateroom listening to the sloshing ocean that gurgles and surges with the swell against the wall; the sounds are 95% soothing and 5% terrifying.  I will not get sea sick and I will do my best not to become marine debris….
Did You Know?  In the event that I have to abandon ship, my “Gumby suit” will help me survive the frigid waters of the Gulf of Alaska.

Donning my Immersion Suit!
Donning my Immersion “Gumby” Suit!


Carol Glor: Lights, Camera, Action, July 7, 2014

NOAA Teacher at Sea

Carol Glor

Aboard R/V Hugh R. Sharp

July 5 – 14, 2014

Mission: Sea Scallop Survey (Third leg)

Geographical Area: Northwest Atlantic Ocean

Date: July 7, 2014

Weather Data from the bridge: Wind SW 18-20 knots, Seas 4-7 ft,  Visibility – good

Science and Technology Log: Starring the HabCam

The HabCam is a computerized video camera system. It is a non-invasive method of observing and recording underwater stereo images, and collecting oceanographic data,such as temperature,salinity, and conductivity.  The vehicle is towed at  1.5 – 2 meters from the floor of the ocean. The main objective of this mission is to survey the population of scallops as well as noting the substrate (ocean floor make-up) changes. Most substrate is made up of sand, gravel, shell hash and epifauna. We also note the presence of roundfish (eel, sea snakes, monkfish, ocean pout, and hake), flatfish (flounders and fluke), whelk, crab, and skates. Although sea stars (starfish) are a major predator of scallops, they are not included in our annotations.

The HabCam awaiting deployment.

The crew and science staff work on alternate shifts (called watches) to ensure the seamless collection of data. The scallop survey is a 24-hour operation. The science component of the ship consists of 11 members. Six people are part of the night watch from 12am-12pm and the remaining members (myself included) are assigned to the day watch which is from 12pm until 12am. During the HabCam part of the survey all science staff members rotate job tasks during their 12-hour shift. These include:

A. Piloting the HabCam – using a joystick to operate the winch that controls the raising and lowering of the HabCam along the ocean floor. This task is challenging for several reasons. There are six computer monitors that are continually reviewed by the pilot so they can assess the winch direction and speed, monitor the video quality of the sea floor, and ensure that the HabCam remains a constant 1.5 – 2 meters from the ocean floor. The ocean floor is not flat – it consists of sand waves, drop-offs, and valleys. Quick action is necessary to avoid crashing the HabCam into the ocean floor.

HabCam pilot
Carol piloting the HabCam.

B. The co-pilot is in charge of ensuring the quality of digital images that are being recorded by the HabCam. Using a computer, they tag specific marine life and check to see if the computers are recording the data properly. They also assist the pilot as needed.

HabCam image
One of the images from the HabCam

C. Annotating is another important task on this stage of the survey. Using a computer, each image that is recorded by the HabCam is analyzed in order to highlight the specific species that are found in that image. Live scallops are measured using a line tool and fish, crabs, whelk and skates are highlighted using a boxing tool so they can be reviewed by NOAA personnel at the end of the cruise season.

Personal Log:

When not on watch there is time to sleep, enjoy beautiful ocean views, spot whales and dolphins from the bridge (captain’s control center), socialize with fellow science staff and crew members, and of course take lots of pictures. The accommodations are cozy. My cabin is a four-person room consisting of two sets of bunk beds, a sink, and desk area. The room is not meant to be used for more than sleeping or stowing gear. When the ship is moving, it is important to move slowly and purposely throughout the ship. When going up and down the stairs you need to hold onto the railing with one hand and guide the other hand along the wall for stability. This is especially important during choppy seas. The constant motion of the ship is soothing as you sleep but makes for challenging mobility when awake.

Top bunk
My home away from home.

Captain Jimmy
Captain Jimmy runs a tight ship.


Before heading out to sea it is important to practice safety drills. Each person is made aware of their muster station (where to go in the event of an emergency), and is familiarized with specific distress signals. We also practiced donning our immersion suits. These enable a person to be in the water for up to 72 hours (depending upon the temperature of the water). There is a specific way to get into the suit in order to do so in under a minute. We were reminded to put our shoes inside our suit in a real life emergency for when we are rescued. Good advice indeed.

immersion suit
Carol dons her immersion suit.

life jacket
Life jacket selfie.


Did you know?

The ship makes it’s own drinking water. While saltwater is used on deck for cleaning purposes, and in the toilets for waste removal, it is not so good for cooking, showers, or drinking. The ship makes between 600 and 1,000 gallons per day. It is triple-filtered through a reverse-osmosis process to make it safe for drinking. The downside is that the filtration system removes some important minerals that are required for the human body. It also tends to dry out the skin; so using moisturizer is a good idea when out at sea.

Photo Gallery:

Waiting to board the RV Hugh R. Sharp

WG flag
West Genesee colors; flying high on the Sharp

Floating Frogs
Floating Frogs at the Woods Hole Biological Museum.

Seal at aquarium
Seal at the Woods Hole Aquarium – Oldest Aquarium in the US.





Carol Schnaiter, Our Second Day at Sea, June 8, 2014

NOAA Teacher at Sea

Carol Schnaiter

Aboard NOAA Ship Oregon II

June 6 – 21, 2014

Mission: SEAMAP Summer Groundfish Survey Gulf of Mexico

June 8, 2014

Science and Technology Log

The Oregon II set sail on June 6th and will reach the first station sometime Monday, June 9th, in the evening.

While on the way there the scientists and crew are preparing the equipment and testing everything to make sure it is ready to use when we arrive. One item tested was the CTD (Conductivity, Temperature, Depth) item. The white round frame protects the delicate, expensive piece of gear that you can see at the bottom of the frame. It allows the equipment to safely travel down without hitting the side of the ship nor the bottom of the ocean. Near the top you see the water sampling tubes.


Test run of equipment for titrations
Kim and Andre prepare the CTD.

These tubes are opened up and when they enter the water they are triggered to close and collect water from the depth that the science team has predetermined.

The deck crew uses a crane to help lift it over the side of the ship and then it drops down and collects water. This was a test to make sure everything was working and the CTD was dropped down and collected water in three tubes.

When it came back on deck, Kim Johnson, the Lead Scientist, took three containers of water from one tube. In the lab she used the Winkler Test, to determine the concentration of dissolved oxygen in the water samples. This is called doing titrations and they will be conducted once a day or more often if something goes wrong.

Can you think of why scientists would need to test this? They are trying to determine the level of oxygen in the water to see if it is high or low. If it is low or not there at all, scientist call it a “Dead Zone” because everything needs oxygen to live.

Kim Johnson took the three samples to the lab and added chemicals to test the water. It took some time to conduct the test, but Kim explained everything to Robin Gropp (he is an intern on the ship) and to me.

The results that were done by hand were compared to the results collected by the computer and they matched! The oxygen level in the first test were good. This means the equipment will be ready to use!

Sargassum seaweed
Photo I took from the ship

In the Gulf of Mexico there is a lot of floating seaweed called Sargassum. To learn more about this, go to the attached url. In short, this seaweed is brown and floats on top of the water. It has been used as a herb in some areas. It is interesting to see the brown seaweed floating by the ship.  http://oceanservice.noaa.gov/facts/sargassosea.html

Do you notice how blue the water is? What makes the water look so blue? According to the NOAA Ocean Facts:

  • “The ocean is blue because water absorbs colors in the red part of the light spectrum. Like a filter, this leaves behind colors in the blue part of the light spectrum for us to see.
  • The ocean may also take on green, red, or other hues as light bounces off of floating sediments and particles in the water.
  • Most of the ocean, however, is completely dark. Hardly any light penetrates deeper than 200 meters (656 feet), and no light penetrates deeper than 1,000 meters (3,280 feet ).”

Pretty neat to see how light and color work together!

Personal Log

The water went from murky brown when we left Mississippi due to the boat activity and the rivers that drain down into the Gulf, to this blue that is hard to describe. I am trying to absorb everything that the scientist are discussing and hoping that when we start working everything will make more sense to me! There is so much to learn!

Today we had safety drills; a fire drill (yes, we practice fire drills even on the ship, you can’t call 911 at sea after all) and abandon ship drill. During the abandon ship drill everyone had to bring long pants, long-sleeve shirt, hat, life preserver and immersion suit. Here is a picture of me in my immersion suit. This suit will float and keep me warm if we need to leave the ship.

Wearing my immersion suit!
Wearing my immersion suit! Photo taken by Kim Johnson

Today the ships’ divers went into the water to check the hulll of the ship and the water temperature was 82 degrees. It would have been refreshing to be in the water, but this is a working ship and safety comes first!

The food onboard the ship is delicious and I am sure I will need to walk many steps after this trip. The cooks offer two or three choices at every meal and the snack area is open 24 hours…not a good thing for me!

While on deck I saw my first flying fish today. I thought it was a bird flying close to the water, but it was not! Amazing how far they can fly over the water.

When I look out from the front of the ship, I see water, water, and more water. There are a few oil rigs in the distance and once in a while a ship passes by, but mostly beautiful blue water!

Last night I saw my first sea sunset and since I will be working the midnight to noon shift starting soon, it maybe the last sunset…but I will get to see some AWESOME sunrises!

2014-06-07 Sunset!
Glad I had my camera with me!

Enjoy the sunset!

Mrs. Carol Schnaiter

Kaci Heins: September 16-18, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Sunday, September 18, 2011

Me in front of the Rainier.

Weather Data From The Bridge

Clouds: Overcast
Visibility: 9 miles
Wind: North North West 11 knots (One knot = 1.15 miles)
Waves: Wind waves 1-2 feet
Temperature Wet Bulb: 11.9 degrees Celsius
Dry Bulb: 12.1 degrees Celsius
Barometer: 1017.2 millibars
Latitude – 50 degrees North
Longitude – 125 degrees West

Science and Technology Log

We will not be to our hydrographic survey destination until Tuesday so I thought I would write about the science of keeping this large research vessel heading in the right direction.   My second day on the Rainier I was able to head up to the bridge today to see how the ship is run.  The bridge is where NOAA Commissioned Officers command the ship, or make and execute decisions to keep the ship safe and on course.  There is at least one officer of the deck (OOD) and one helmsman on the bridge, but they don’t want too many more than that because it starts to get too crowded.  Since I was one more body in the room I tried to stay towards the back to make observations and ask questions when the officers were not busy.

This was a neat experience for me because I am able to see science, social studies, math, and language arts all being used at the same time.  Many of the officers carry notebooks with them to write down important information almost like science notebooks.

Officer Gonsalves' notebook.

There are also deck logs, which are legal records of everything that happens on the boat from spills to when the CO comes up on the bridge.  Commands between officers are verbally given  and then repeated to ensure that the correct orders were given and that there is confirmation that they were received.  There is also a lot of math being used on the bridge as distances are calculated, calibrations are made, and speed is documented.  For social studies and science, sunrise and sunset data is collected for the logs based on latitude and longitude for our position.  This can be important for when they need a lookout, for the deck log, and to overall know what to expect so that they can have the resources they need.  For science, we had to collect data each hour about the current weather.  The weather data above is what I collected with one of the officers this morning on the bridge.  The barometer is an instrument that measures

Nautical Chart of the Inside Passage

the atmospheric pressure.  This means if the barometric pressure drops then there is probably a storm coming.  This information is really important for the officers to know so that they can make decisions in regards to how to keep the ship and its occupants safe.

There is also a lot of technology in the bridge.  First, there is the radar which is a backup in case the GPS (Global Positioning System) happens to fail.  GPS and the radar are two separate pieces of technology, but are both helpful with navigation.  There are two radars that the ship uses.  They are X and S band radar.  Both of the radar help produce a picture of the surrounding area, which is helpful for imaging traffic and hazards.  However, radar does not give the ship’s position. The S band radar has a wavelength of 10cm, which allows it to penetrate rain better, but does not have great resolution.  X band radar has a 3 cm wavelength which has great resolution, but it cannot travel as far.  GPS is used for the positioning of the boat as we travel to do our work.

Personal Log

My travel day from Flagstaff to Seattle went really well yesterday as we headed up for our first stop at Ulloa Channel. No flights were delayed and no lost luggage. When I first saw the Rainier I was so excited! It is a fairly large. Rainier is a ship with five 30-foot survey launches and two small boats.  I had a thorough tour of the boat where I got to see everything from the bridge to the engine room. All of the crew have been very welcoming and helpful as well. My room is nice and so is my roommate Andrea.

My State Room

I actually expected to have less room and storage than we actually have. It reminds me a lot of a college dorm including the fact I have the top bunk! The scenery here is so beautiful with all the green pine trees next to the ocean. However, it is pretty cold! I’m so glad I brought my hat, gloves, and winter coat!

Immersion Suit Training!

Safety is very important on all the NOAA ships so I have been getting all of my trainings and briefings today before we left Seattle. I have to wear closed-toe shoes all the time on the ship unless I am in my stateroom. I have to be careful going up and down the stairs, (they are really steep), making sure to pick my feet up higher when I go through doorways, and overall being mindful that I don’t put myself or others in a dangerous situation. I then had to make sure my hard hat fit well and I had to put on my Immersion Suit. An Immersion Suit is also known as a survival suit in case we happen to go overboard.  These suits are made of  neoprene, which is a waterproof material, and can significantly improve your chances of survival in the event that we end up in the ocean.  My suit has a flashlight, it is BRIGHT orange, and it has a whistle so that I could be easily spotted in an emergency.  Today during our abandon ship drill we had to meet at our location, check to make sure everyone was there, and then put on our survival suits.  Even though we may look silly when we are wearing these, it is so important that we know exactly what we need to do in this particular emergency.  The last thing they want on the boat is for people to panic.  Finding our drill locations through practice and wearing the suits prepares us for what to expect so that we can calmly react in these situations.  I am very glad that I had the trainings and the drills so that I know exactly how to respond if it were are in a real-life situation.

Animals Seen Today

Orca off the port side of the Rainier.

Blue Heron

Canadian Geese

Sea Otter


Question of the Day

Beth Spear, July 31, 2010

NOAA Teacher at Sea: Beth A Spear
NOAA Ship: Delaware II

Mission: Shark – Red Snapper Bottom Long Line Survey
Geographical area of cruise: Gulf of Mexico to North Atlantic
Date: Saturday, July 31, 2010

Gumby suits for safety

Weather Data from the Bridge
Time: 1000 (10:00 am)
Position: Latitude 27 degrees 51’N, Longitude 086 degrees 01’W
Present Weather: Partly Cloudy
Visibility: 11 nautical miles
Wind Speed: 5 knots
Wave Height: 1-2 feet
Sea Water Temp: 31.1 degrees C
Air Temperature: Dry bulb = 30.4 degrees C; Wet bulb = 27.8 degrees C
Barometric Pressure: 1012.8 mb

Science and Technology Log
The first day aboard ship started with a ship orientation meeting presented by the acting executive officer (XO) LT Fionna Matheson. During the meeting the XO covered many shipboard concerns especially safety. LT Matheson suggested you always use one hand for the ship and one hand for you to avoid accidents. We also had some drills in the afternoon. LT Matheson had some really useful ways to remember the signals for drills. Fire is one long whistle, just like someone yelling fire in one long shout. The abandon ship signal is at least six short blasts then one prolonged blast, like yelling get-the-heck-off-the-ship-nooooow. During the abandon ship drill we had to put on survival suits, called “Gumby” suits by the crew. They were hot and very awkward.

Personal Log
We have about four days to steam to the location we will begin fishing. I am using these days to get myself adjusted to the night watch hours, midnight to noon. I am trying to tell myself it’s a good thing because I’ll be working during the cooler evening and morning hours, still hot is hot! The staterooms are quite cramped, it is a good thing I am not claustrophobic. I am still learning names of crew and the other scientists. There is a mix of NOAA volunteers, students, and professors. The food has been excellent, but I’m trying not to overindulge since there is not much activity during these first four days. The ship has a large selection of current movies loaned by the US Navy which I am taking advantage of during our downtime.

New Terms – Shipboard Terminology
Bulkheads = walls.
Ladderwells = stairs or stairwells.
Passageways = hallways.
Deck = floor.
Bow= front of ship.
Stern = back of the ship.
Port = left side of ship while facing bow, remember this because port is a shorter word than starboard or right, ship lights are red on this side.
Starboard = right side of ship while facing bow, remember this because starboard is a longer word than port or left, ship lights are green on this side.
Aft = direction meaning toward the stern (rear) of the ship
Fore = direction meaning toward the bow (front) of the ship

(figure ref.  http://www.sailingcourse.com/primer/port-starboard-bow-stern-html.jpg )

Wesley Struble, 26 July, 2010

NOAA Teacher at Sea
Wes Struble
Onboard NOAA Ship Ka’imimoana
July 8 – August 10, 2010

Geographical area of cruise: Equatorial Pacific from 110 degrees W Longitude to 95 degrees W
Date: 26 July 2010

Weather Data from the Bridge

Position: 8 degrees South Latitude and 104.5 degrees West Longitude
Cloud Cover:
5/8 with cumulus and stratocumulus clouds
Visibility: 10 nautical miles
Wind bearing: 150 degrees
Wind Speed: 17 Knots
Wave height: 2 – 3 feet
Swell Height: 6 – 9 feet
Atmospheric Pressure: 1016.6 mb
Temperature: 23.7 degrees C (74.7 degrees F)

Muster Station 4 on the boat deck and the Life Raft

The sea has been rough the last several days with large swells up to 12 feet or more that are really causing the ship to pitch quite strongly. The captain has had the anti-roll tanks filled and that has helped but the ship still pitches and rolls quite a bit. I am typing this up on deck sitting at a picnic table because the chair in my room is a typical desk chair with small wheels and if I use it I wind up rolling all over the room.

We are approaching the southern extreme of the TAO at 110 degrees West Longitude. After we visit the last buoy on this line located at 8 degrees south latitude, we will plot a course due east and head for the 95 degree West longitude line (about 900 nautical miles east). We expect to arrive there in a few days after which we will do maintenance on the buoy located at 8 degrees south latitude and then proceed north following 95 degrees West longitude.

The KA skiff

Today we had two emergency drills (as we do every week). These drills are not the same as we have in school where alarm rings and the principal measures the amount of time it takes to get the entire school evacuated. On a ship it is much more complicated because if (for example) there is a fire we cannot simplyevacuate the ship and call the fire department – we are the fire department! With this in mind there is a detailed plato follow every time there is a drill. are three common emergency bell signals and a drill that matches each. Three long bells signal that a man is overboard.this happens every person has a stationwhich they are required to report.

My station is the buoy deck (the aft part of the ship) and my job is to find the person in the water, point to their location, and not lose sight of them. This might seem straightforward, but with the moving of the ship, large waves, and enormous swells (behind which a floating person can easily disappear) it makes it a bit tricky.

Immersion Suit
Immersion Suit

During man overboard there are many people acting as spotters placed at different stations on the deck so that the location of the man overboard is always known. Once the location has been established the skiff will be lowered into the water and the person retrieved. Six short bells followed by one long bell is the signal that means abandon ship.

As with all drills every person has a specific station to which they are to report and has particular duties for which they are responsible. If we were actually required to abandon ship then my first task is to report to station four which is located on the port side of the ship on what is called the boat deck. Once there the officer in charge of the group takes role to make sure all are accounted for. We are all required to bring three things: a life jacket (which you don immediately), your “Gumby” suit (a kind of water survival suit that keeps you warm and dry in cold water), and a small sack containing a pair of long pants, a long sleeve shirt, and a hat (all for protection from exposure).

My job is to deploy the Jacobs ladder (this is the ladder used to climb down the side of the ship to access the inflatable life raft) and bring several large jugs of drinking water. In addition, if no one else is available then I would also deploy the life raft.

A fire drill (or collision) is represented by one long (longer than 10 seconds) continuous bell. During a fire drill I am to report to the mess (with several other people) and act as a runner and await further instructions. Fire drills usually entail some sort of scenario where a mock fire is reported in some part of the ship. There is usually a discussion before the drill to be certain that everyone understands what this particular drill is trying to accomplish. Our first fire drill was designed to have a mock fire on the boat deck caused by ruptured or leaking fuel cans. Our second fire drill was a scenario designed to respond to a fire with a lot of smoke in the galley. These drilhave been a real learning experience for me. They are helpful because they build confidence and cut down immensely on confusion and response time in case of a real fire.

Me in my Gumby Suit
Me in my Gumby Suit

Personal Log

Up till this point I have been pleasantly surprised at how cool and breezy the cruise has been. I expected that the temperatures would be in the 90’s and the humidity in the same range. However, the temperature has rarely reached 80 degrees F (most of the time in the mid to upper 70’s) and even though the humidity has been high the constant breezes have kept it very comfortable. In addition, much of the cruise has taken place under various amounts of cloud cover. We have been at sea 19 days and only a handful of them have been clear and sunny. In fact, it has been much hotter at my home in north Idaho than it has been here on the equator. I have lived in equatorial regions before so I know that this is definitely an anomaly – but I hope it continues.

Early Evening over the East Pacific

Obed Fulcar, July 22, 2010

NOAA Teacher at Sea Obed Fulcar
NOAA Ship Oscar Dyson
July 27, 2010 – August 8, 2010

Mission:Summer Pollock survey III
Geograpical Area:Bering Sea, Alaska
Date: July 22, 2010

Weather from the bridge:
Time: 0355 am
Latitude:58.22 N
Logitude:175.10 W
Wind speed:19.48 kts
Wind Direction:230 W/SW
Sea Temp:8.10 C (approx. 46.58 F)
Air Temp:8.72 C (approx. 47.70 F)
Barometric Pressure:1090.0 mb
Cloudy skies

Science and Technology Log:
Yesterday afternoon we had a Fire/Emergency drill, just like we do in school. Safety is definately big around here. Everywhere you look there is an orange sign for an EEBD (Emergency Escape Breathing Device), to be used in case of a fire,to avoid intoxication from breathing the smoke. Fire is the number one enemy in a ship, and it can have disastrous consequences at sea. For the fire drill we had to follow a path leading to a safe room where we had to be accounted for.

Me in my immersion suit
Me in my immersion suit

Fire stations are in every corner with Fire Hoses, and evenFire Axes. Next we had to do an Emergency drill where we had to practice abandoning ship. I had to grab my assigned Immersion suit, or “Mustang suit”, also known as a “Gumby suit”, which is an orange jumpsuit, made of neoprene (the material used in drysuits or diving suits). It is supposed to keep you warm and alive in the event you have to abandon ship and hit the icy waters of the Bering Sea. I had to practice putting on the cumbersome but necessary safety gear. Everyone is issued one that has to be kept in their staterooms. I had to pack it again and put it back in it’s original bag after I finished trying on. As part of the emergency drill we also had to gather around the ship’s Life Rafts, that where contained inside a set of 3 white canisters on both sides of the ship (Port (right), and Starboard (left)). I was surprised to see my name on the evacuation plan assinged to Life rafts 2-3.

Each life raft can hold up to 20 people inside, and many more, until rescue arrives. I noticed that aboard the ship chairs, tables, cabinets and pretty much anything that can get loose during bad weather are safely anchored to avoid falling off. There are safety signs everywhere you go reminding you to be ready at all times. Also safety is No 1 whenever working on the deck near the water, from the use of a PFD (personal Flotation Device), a hard hat, due to cranes and heavy duty cables, to a safety harness to be anchored to the boat. Eye wash emergency stations are everywhere, as well as signs telling you to use hand sanitizer at all times.

Personal Log:

Safety first: Just like in school, the possibility of a fire can lead to disaster and tragedy. It is a serious matter that we should all be prepared for. Fire drills in school, like in the Oscar Dyson, help us get familiar with our nearest exit starcase, and to know a safe place to gather up away from the fire, just like when we go across the street from our school during a drill. Also as a member of the Washington Heights, Manhattan North CB12 CERT (Community Emergency Response Team), it is my job to help educate the community at large about fire emergecy preparedness awareness. Fire is the #1 emergency affecting buildings in New York City and every resident is at risk of been affected. Since 9-11, NYC OEM has been promoting emrgency awareness by educating and getting the public involved in emergency awareness ranging from fire, heat waves, to hurricane emergencies. I encourage everyone to visit ReadyNY.org andReady.gov to learn more about protecting yourself, family and neighbors in case of an emergency.

Ayer tuvimos una practica deEvacuacion de emergencia y de Incendio. Practicamos siguiendo el Plan de Evacuacion en caso de fuego reuniendonos en un lugar designado (en este caso el salon de Conferencias). Tambien practicamos el abandonar la nave, donde teniamos que ponernos los Trajes de Supervivencia o de Inmersion, requeridos por ley. En caso de que al abandonar la nave nos protegerian de las gelidas aguas del Estrecho de Bering manteniendonos secos y abrigados si llegaramos a caer en el mar. Me sorprendi mucho de ver mi nombre en la lista de evacuacion ya asignado a una de las Balsas Salvavidas, de la nave. Hay dos juegos de 3 balsas en ambos lados de la nave(Babor o derecha, y Estribor o izquierda) con capacidad para 20 personas. La seguridad es No 1 abordo del Oscar Dyson, con letreros en todas partes indicando desde el uso de Chalecos Salvavidas, Trajes de Inmersion, hasta estaciones de emergencia, con mangueras y hachas de incendio. Asi como en la escuela y en los edificios todos debemos estar educados en que hacer en caso de incendio, que es la emergencia #1 en la Ciudad de Nueva York.

Story Miller, July 22, 2010

NOAA Teacher at Sea: Story Miller
NOAA Ship: Oscar Dyson

Mission: Summer Pollock III
Geographical Area: Bering Sea
Date: July 22, 2010

Black-legged Kittiwake

Time: 0754 AKST
Latitude: 58°31N
Wind: 13-20 knots (approx. 14.96 – 23.02 mph)
Direction: 239° (SW)
Sea Temperature: 8.28°C (approx. 46.9°F)
Air Temperature: 8.03°C (approx. 46.5°F)
Barometric Pressure (mb): 1017
Wave Height: 4 feet
Sea Swells: 6 feet
Combined Wave Height: 10 – 12 feet

Scientific Log 

This afternoon, we conducted a test with a drogue which is like a large sea anchor. Sea anchors allow a boat that is simply sitting in the water to not drift so far with the waves. This drogue will stabilize the camera of an experimental trawl net device, called a Cam-Trawl, and prevent it from fluttering when it is photographing the fish. The Cam-Trawl was designed by Kresimir Williams. Currently the objective of this new device is to observe the fish we see in the backscatter which are the animals we can see in the echosounder

(See Figure 1).

Figure 1: Image of the echo sounder in the acoustics lab. The image on the top in the blue is representing a swarm of jellyfish. Jellyfish tend to be best seen using the 18 kHz transducer.

In short, the ship’s hull has transducers that send pings of sound energy down through the ocean and when they hit some object, such as the bottom of the ocean or a fish, some of the energy in the sound ping is returned to the ship and received by our echo sounding system in the acoustics lab of the ship.

When we locate a group of fish we want to study with the echo sounder, we have two primary methods of collecting data from the fish. The device we use the most is the AWT(Aleutian Wing Trawl) net and the other is an 83-112 bottom trawl net. The AWT is used for catching fish located at midwater depths and the other, as stated in the name, trawls the sea floor. To imagine the shape of these devices in the water, imagine a large funnel with a catch sack on the end. The beginning portion of these nets, nearest to the boat, has large meshes and its primary function is to funnel the fish toward the catch sack. As fish move farther down the net, the meshes get smaller until they reach the catch sack, which we call the codend, and once in there, the fish cannot escape. We then pull them to the surface and begin collecting data, such as size and species. The largest drawback to these methods is that the fish caught in the net will most likely die. To understand why, think of a diver in the deep ocean. If the diver comes up too fast, the body cannot adjust to the pressure fast enough as air expands, potentially causing lungs to rupture. For the fish, bringing them up too quickly causes their swim bladders to rupture. Rockfish tend to have their stomachs inverted out of their mouth. While killing the fish for research is unfortunate, it is one of the few ways we can learn about their patterns of behavior, health, and diversity.

Chris Wilson in the process of attaching buoys to stabilize the Cam-Trawl

The Cam-Trawl is an innovative experimental design that may help reduce the killing of fish and allow us to collect data from endangered or nearly extinct fish species. For example, many Rockfish species off the west coasts of California, Washington and Oregon are endangered and as a result, we do not want to catch them in our nets because we would most likely kill them. The Cam-Trawl would remedy that and would allow us to receive continuous data at each depth along its path. The other trawls catch all the fish in their path which means the collection of fish is mixed and we cannot tell the depth at which they were originally swimming or which species was at what depth. To picture how the Cam-Trawl works underwater, imagine a funnel again, except this time, there is no codend attached. At the end of the funnel, the stereocamera is positioned to photograph the fish that pass through the funnel. The resolution of the fish photos is much more advanced than what we have ever had before. This sampling technique is supposed to give us a better resolution of what we are able to “see” using acoustics (echo sounder) than the traditional midwater (AWT) and bottom trawls (83-112).

Personal Log:

Sleeping at sea was a new experience for me. The seas were only four to eight feet high which are marginal compared to the conditions this ship experiences in the winter months. Overall, I enjoyed being rocked to sleep but my 0330h alarm was not as pleasant. My room is located four flights of stairs below the bridge deck and I’ve been told it is one of the better places to be because the rocking of the boat is not as intense. The rooms are pretty cozy as space is limited but there is room for a desk, two closets and a bathroom (called a head on a ship) that reminds me of the sizes found in European hotels. I have the top bunk and each has a curtain that wraps around the entire bed so that if your roommate has a different shift than you, the light to the main room won’t be a disturbance. Of course, since I have lived in Alaska for two years, I have become accustomed to sleeping in bright conditions.

Something the non-boating community may not realize is that on a ship, it is very important that there is a night crew and a day crew operating. On the bridge where the main controls of the ship are located, there must always be a NOAA Corps Officer, with qualifications to drive the ship, on watch 24/7. However, all crews, with the exception of the kitchen, on the ship are operating around the clock. For example, there are always engineers operating in case there is some type of mechanical issue and scientists operate because there are still fish in the ocean and their behavior needs to be observed at all times.

Me trying on my “Gumby” Suit during the fire drill

The entire crew participated in a fire drill and abandon ship drill yesterday so that all hands on the ship knew where to muster for a head count and to learn how to operate the life rafts in case the ship was sinking. Additionally we needed to learn how to get into our survival suits (Gumby Suits). My first experience putting on the suit was during a field trip onto this vessel with my seventh and eighth grade students in May so I was aware of the cozy fit! Fire and abandon ship drills are practiced once a week when the ship is underway, which is very important as the crew onboard are not just NOAA employees but also in charge of fighting fires and responding to any onboard emergencies. So, if you want to be a fireman and a scientist and cannot choose, perhaps serving aboard a NOAA ship would be right up your alley!
To end my day (remember bedtime for me is early as my alarm is set for 0330) I had a “late” supper of sushi, spring rolls, meatloaf, and for dessert a fabulous set of s’mores! Who says you can’t have them on the ship?

Animals Observed:
Northern Fulmar
Crested Auklets
Tufted Puffin
Black-legged Kittiwake

Something to Ponder:

When we are asked, “What do you want to be when you grow up?” usually we say one occupation – firefighter, actor, scientist, teacher, soldier, waitress. However, most jobs require many skills. For example, the scientists on board put a variety of skills into practice and as mentioned in the Scientific Log, scientist Kresimir Williams engineered the Cam-Trawl which employed his knowledge of the biological sciences (fish/oceanography), physical science (how to deploy the device without it breaking), and photography! So for my students, what do you want to be when you grow up?

Kathy Schroeder, May 6, 2010

NOAA Teacher at Sea
Kathy Schroeder
Aboard NOAA Ship Oscar Dyson
May 5 – May 18, 2010

Mission: Fisheries Surveys
Geographical Area: Eastern Bering Sea
Date: May 6, 2010

Out at Sea!

We left Dutch Harbor at 9pm on May 5th. I went to the bridge (where the Captain pilots the ship), which is 4 decks higher than where I sleep, and watched us depart. On our way out through the pass we passed a volcano. A scientist, Brian, works on the bridge watching birds. He has great binoculars and let me borrow them. I got to see my first Puffin! The sunset at 1030pm was gorgeous! Woke up 7 hours later to get to work. My shift will change, but for now it will be 7a-7p or 9a-9m. Began the day with a fire drill! Got to put on my survival suit! Now it was time to get back to work. I put on my orange suit (called a float coat) and went on the starboard side of the ship to help with releasing the tows. The first is the Neuston tow. It looks like a rectangular metal box with a net attached and a cylinder tube at the end. It collects plankton from the surface of the ocean. The tow stays at a 45 degree angle for 10 minutes and then is pulled onboard. We take the collection and put it in a quart size glass jar. On average, it is not very full. We then add sea water and formalin to preserve the specimens. Then we release the Bongo nets. They look just like two pairs of bongo drums, one large and one small.There are four circles (two different sizes) attached to nets and then connected to the collection containers (cups at the bottom of the net). They go down 300 meters or 10 feet off the bottom, and are then pulled back up. This takes over 30 minutes. (During this time a Laysan Albatross came along side the ship, and just wanted to hang out with us!) Once the nets are pulled in, three containers are preserved. We take the last container and sift through it using tweezers to pull out any larval fish (mostly pollock) and put them in a glass petri dish on ice. They are then taken to the microscopes and looked at closely for classification. Some are flash frozen on slides, others are individually preserved in alcohol. My best find last night was a squid the size of a tic-tac! After 14 hours of work it was time for me to go to bed. It was great waking up to so many messages and emails. Keep them coming. And for the questions-NO! I have not been sick 🙂