Lona Hall: The Comforts of Life at Sea, June 8, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019

Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 8, 2019

Time:  1630 hours

Location: Saltery Cove, Kodiak Island

Weather from the Bridge:

Latitude: 57°29.2124’ N

Longitude: 152°44.0648’ W

Wind Speed: 15 knots

Wind Direction: N (354 degrees)

Air Temperature: 9.24° Celsius

Water Temperature: 8.89° Celsius

Science and Technology Log

teacher at sea lona hall On the flying bridge with the "Big Eyes"

On the flying bridge at the “Big Eyes”

Let’s talk charts.  A chart is a map that shows specific details of the shoreline and the seafloor, including depth (usually in fathoms) and notable features.  Click here to view the chart of the area, “Chiniak Bay to Dangerous Cape.”  Can you find Saltery Cove, where we are currently anchored? How about Cape Greville and Sequel Point?  The latter are located at the northern and southern ends of the area that we surveyed with the launch last Wednesday afternoon.

If you look carefully, you will see many symbols along the shoreline.  An asterisk represents a rock awash that may only be visible when the water recedes at low tide.  A series of dots represents sandy shore, while small scallop shapes and circles denote breakers and stones, respectively.  The small, filled in triangles on land show where there are cliffs or steep slopes. The symbol that looks like a stick with small branches represents kelp.  Kelp is considered a possible hazard, since it can get wrapped around the propeller of a boat.

Now move your gaze to the ocean.  The numbers that you see are depth soundings, measured in fathoms.  Recall that one fathom equals 6 feet. This means that where you see a sounding of 9 fathoms, the water is actually 54 feet deep (relative to the mean lower low water datum).  If you are looking at the area near Cape Greville, all of the soundings that you see on the chart were taken between 1900 and 1939, before the invention of multibeam sonar. There was a magnitude 9.2 earthquake on March 27, 1964 that changed the depths and shapes of the landforms.  Finally, you should not discount the effects of weathering and erosion by wave action on this area.  The dynamic nature of it all makes the work that NOAA is doing all the more important for the safety of anyone at sea.

Career Focus – Steward

With so many people and so much work being done every day, how do you ensure good morale among the crew? You make sure that they are well fed!  That’s where the Stewards Department comes in to play. I met with Kimrie Zentmeyer, Acting Chief Steward, to learn how she and her staff take care of all of the people on the ship.  

Kimrie Zentmeyer, Acting Chief Steward

Kimrie Zentmeyer, Acting Chief Steward

The Stewards Department is like a sweet grandmother, spoiling her grandbabies by providing good food and other comforts to the entire Rainier family.  Stewards plan and prepare the meals, supply appropriate linens and bedding, and maintain a positive, upbeat attitude in the face of a potentially stressful work environment. Stewards work long hours in close quarters and, as Kimrie says, provide the “customer service” of the ship. Kimrie herself has worked on ships for many years.  She started out as a mess person for Chevron Shipping when her daughter left home for college. As part of the NOAA Relief Pool, Kimrie has worked on ten of NOAA’s ships, filling positions on a temporary basis until permanent employees can be found. It is clear that she has a deep understanding of the emotional needs of a ship’s crew, and she enjoys the camaraderie and cooperation that develop in this unique work environment.

Cold food stores, stocked at port with the help of all of the crew

Cold food stores, stocked at port with the help of all of the crew

This evening for dinner, I had baked salmon, green beans, macaroni and cheese, a salad, and an amazing berry pie.  Everything was prepared fresh, and I felt quite satisfied afterwards. Thank you, stewards!

Personal Log

I would like to take some time to write about the ship. Rainier is a hydrographic survey vessel. (For more information about what that means, see my last post!)  Constructed in Jacksonville Florida, and then later commissioned in 1968, Rainier is one of the longest-serving ships in NOAA’s fleet.  It is named after Mount Rainier, a volcanic mountain in western Washington state.  Students might remember that this mountain is located near a continent-ocean convergent plate boundary between the North American and Juan de Fuca plates, where subduction has lead to the formation of the Cascade Volcanic Arc. Our ship’s home port is located in Newport, Oregon. Originally, however, the home port was in Seattle, Washington, and so it was christened after the iconic Mount Rainier.

NOAA Ship Rainier is 231 feet long from bow to stern.  There are six different levels, or decks, identified by the letters A-F moving upwards from the bottom of the ship.  Each deck is broken into numbered sections, or rooms.

inboard profile

Diagram of the ship, side view

To communicate a particular location, you might refer to the deck letter and section number.  You might also use the following vocabulary:

Port – the left side of the ship

Starboard – the right side of the ship

Fore – forward of the beam

Aft – behind the beam

Stern – the back end of the ship

Bow – the front end of the ship

D-Deck

Overhead diagram of the “D” Deck

My room is located on the E deck, one level below the bridge.  On the D deck we enjoy delicious, cafeteria-style meals in the mess, and we can work, read, relax, or watch movies in the lounge.  The steering takes place on the Bridge, the command center of the ship. I will highlight the bridge in a future post. Other common areas include the Plotting Room, the Holodeck, the Boat Deck, Flying Deck, and Fantail.  There is also a laundry room and even a gym! Although it can be a bit confusing at first, the ship’s layout makes sense and allows for efficiency without sacrificing the crew’s comfort.

Word of the Day

athwart – at right angles to fore and aft; across the centerline of the ship

Lona Hall: Launchin’ and Lunchin’ Near Kodiak Island, June 6, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019


Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 6, 2019

Time:  2000 hours

Location: Underway to Isthmus Bay, Kodiak Island

Weather from the Bridge:

Latitude: 57°39.2266’ N
Longitude: 152°07.5163’ W
Wind Speed: 11.6 knots
Wind Direction: NW (300 degrees)
Air Temperature: 11.37° Celsius
Water Temperature: 8.3° Celsius


Science and Technology Log

Lona on launch RA-5
Yours truly, happy on RA-5

Today I went out on a launch for the first time.  The plan was to survey an area offshore and then move nearshore at low tide, with the water at its lowest level on the beach of Kodiak Island.  Survey Techs, Carl Stedman and Christina Brooks, showed me the software applications used to communicate with the coxswain and collect data. To choose the best frequency for our multibeam pulse, we needed to know the approximate depth of the area being surveyed.  If the water is deeper, you must use lower frequency sound waves, since higher frequency waves tend to attenuate, or weaken, as they travel. We chose a frequency of 300 kilohertz for a 60 meter depth. Periodically, the survey techs must cast a probe into the water.  The Sea-bird SeaCAT CTD (Conductivity, Temperature, Depth) measures the characteristics of the water, creating a sound velocity profile. This profile can tell us how quickly we should expect sound waves to travel through the water based upon the water’s temperature, salinity, and pressure.

Seabird SeaCAT CTD
Seabird SeaCAT CTD
Carl Stedman deploying the probe
Carl Stedman deploying the probe

Using the sound velocity profile allows the computer’s Seafloor Information System (SIS) to correct for changes in water density as data is being collected.  Once the profile was transmitted to SIS, we were ready to begin logging data.

Imagine that you are mowing your lawn.  To maximize efficiency you most likely will choose to mow back and forth in relatively straight paths, overlapping each new row with the previous row.  This is similar to how the offshore survey is carried out. As the boat travels at a speed of about 7 knots, the Kongsberg EM2040 multibeam sonar transducer sends out and receives pulses, which together create a swath.  The more shallow the water, the wider the base of the swath.

Close up of chart
Close up of chart, showing depth gradient by color

After lunch we changed to a nearshore area closer to Kodiak Island between Sequel Point and Cape Greville. It was important to wait for low tide before approaching the shore to avoid being stuck inshore as the tide is going out.  Even so, our coxswain was very careful to follow the edges of the last swaths logged. Since the swath area extends beyond the port and starboard sides of the boat, we could collect data from previously uncharted areas without driving directly above them.  In this way we found many rocks, invisible to the naked eye, that could have seriously damaged an unlucky fisherman!


Career Focus – Able Seaman

Our coxswain driving the boat today was Allan Quintana.  

Allan, aka "Q", driving the boat
Allan, aka “Q”, driving the boat

As an Able Seaman, Allan is part of the Deck Department, which functions primarily to keep track of the ship, manage the lines and anchoring, and deploy and drive the launches.  Allan started out working for the Navy and later transitioned to NOAA. A Miami native, he told me how he loves working at sea, in spite of the long stretches of time away from his friends and family back home.


Personal Log

If you have never been on a boat before, it is a unique experience. Attempts have been made by poets, explorers, scientists, naturalists, and others throughout history to capture the feeling of being at sea.  Although I’ve read many of their descriptions and tried to imagine myself in their shoes, nothing compares to experiencing it first-hand.

Standing on the bow of the anchored ship, looking out at the water, my body leaning to and fro, rising and falling, I am a sentient fishing bobber, continuously rocking but not really going anywhere.  My head feels somehow both heavy and light, and if I stand there long enough, I just might fall asleep under the spell of kinetic hypnosis. The motion of the launch is different. A smaller boat with far less mass is bullied by the swells. For a new crew member like me, it’s easy to be caught off guard and knocked over, unless you have a good grip. I stand alert, feet apart, one hand clasping a rail, as the more experienced crew move about, casually completing various tasks. I wonder how long it would take to become accustomed to the boat’s rising and falling.  Would my body gradually learn to anticipate the back and forth rocking? Would I eventually not feel any movement at all?

View over the bow
A ship with a view


Word of the Day

draft – the vertical distance between the waterline and the hull of a boat, a.k.a. the draught

The draft of NOAA Ship Rainier is 17 feet.

Victoria Cavanaugh: Questions & Answers with the Ship’s Crew, April 22, 2018

NOAA Teacher at Sea
Victoria Cavanaugh
Aboard NOAA Ship Fairweather
April 16-27, 2018

MissionSoutheast Alaska Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska

Date: April 22, 2018

Weather Data from the Bridge

Latitude: 48° 25.012′ N
Longitude: 122° 44.039′ W
Sea Wave Height: 1-3 feet
Wind Speed: 10-20 knots
Wind Direction: NE
Visibility: 14.1 km
Air Temperature: 14oC  
Sky:  Scattered Clouds

Science and Technology Log

As NOAA Ship Fairweather began its northward journey through the Inward Passage, I took advantage of a few days at sea to conduct interviews with crew from each of the various departments onboard: deck crew, engineers, officers, stewards, and survey technicians.  Through the interview process I realized just how much goes in to making Fairweather  successful.  Two themes arose again and again in conversations: First, the crew of the Fairweather loves what they do — the crew’s commitment and passion for being at sea was unanimous. . .and contagious.  Second, Fairweather is family.

Enjoy the five interviews below, the first of which is with a Edward Devotion School alum. . .


An Interview with AB Carl Coonce, Fairweather Deck Crew & Devotion School Alum (1971-1974)

AB Carl Coonce at the Helm

AB Carl Coonce at the Helm

Carl on bridge

AB Carl Coonce & Devotion School Alum on Fairweather’s Bridge

Q: What is your role aboard NOAA Ship Fairweather?

A: I’m an able-bodied seaman or AB. My permanent job is to take care of the ship. Some duties include maintaining the ship’s cleanliness, ensuring the security of the vessel, and steering the ship.

Q: Why is your work important?

A: Without AB’s, the ship can’t be driven. AB’s also maintain the security of the ship and watch out for the safety of the ship’s personnel. AB’s work on the upkeep of the ship’s inside and outside condition, checking to prevent rust and other damage. The AB’s ready the equipment for different missions and load and unload equipment, too. Finally, the AB’s help with the officers’ work, with surveying, and with engineering.

Q: What do you enjoy the most about your work?

A: I love being at sea. I love being able to see different sunrises and sunsets every day. I see things most people only see on TV or in pictures. For example, I’ve seen two rainbows cross before at sea. Sometimes rainbows are so close when you are at sea that you can almost reach out and touch them. Every day at sea is a new adventure.

Q: Where do you do most of your work?

A: I mostly work as a helmsman (driver) up on the bridge (which is like the front seat of the car/ship). A helmsman is the person who drives the ship. A helmsman keeps watch, looking for any potential dangers such as things floating in the water, other ships, and certain parts of land (such as sand bridges). Another important part of my job is to understand how to read maps and use all of the radar and other navigational equipment up on the bridge.

Q: What tool do you use in your work that you could not live without?

A: Sleep!

Q: When did you know you wanted to pursue an ocean career?

A: I always wanted to come to sea because my father was a sailor. I took a different route for a long time, but about 15 years ago I started my ocean career. I guess it was in my blood. It was hard to get started because I knew nothing about ships and what was required in the beginning. I went online and researched shipping companies and sent my resume out to a few hundred companies. I received a call from NOAA and began my sea career in Woods Hole, Massachusetts on a fishing vessel, NOAA Ship Albatross. By the way, Albatross is actually where the NOAA Teachers at Sea Program started.

Q: What part of your job with NOAA did you least expect to be doing?

A: I didn’t expect to be around the same people 24/7. You are always with the people with whom you work and your boss. Eventually, though, it becomes like a family.

Q: How do you help wider audiences to understand and appreciate NOAA science?

A: I would tell other people that NOAA is a wonderful job for people interested in going to sea. When you start off, you can go out to sea for a few weeks at a time. With NOAA, you have a chance to see and do things that you don’t get to do on commercial boats. You also are able to see new parts of the country. I’ve seen the east and west cost. The benefits are outstanding. Aside from traveling, I also have three months of vacation each year, something I would probably not have with a desk job, even after many years.

Q: How did you become interested in communicating about science?

A: When I was on the east coast, I was on NOAA Ship Henry Bigelow out of Newport, Rhode Island. A group of scientists came onboard, and we sailed up by Newfoundland. We sent a special net nearly three miles down into the ocean. The most memorable thing was catching a fish that was about 2.5 feet long, incredibly white, paper thin, and had bright red fins. The scientists told me that this fish only lives two miles down. Experiences like this are once in a lifetime. That was one of the most exciting and memorable trips I’ve had with NOAA.

Q: What advice would you give a young person exploring ocean or science career options?

A: Don’t take the sea for granted. There is a mystery for the sea. We know more about the moon than we do about the oceans. There is so much to learn at sea. Even after fifteen years at sea, there is so much more to learn about the ocean. It is never the same. There is always something new to see. I’m still amazed by some of the things I’ve seen at sea, even if I’ve seen them over and over again. For example, hearing the sound of the glaciers hitting the water is unforgettable. Seeing the different colors of the ocean, you realize there is so much more than green and blue. Once you think you’ve learned it all, the ocean changes again on you.

Q: What do you think you would be doing if you were not working for NOAA?

A: I’d probably be back in Boston working as a chef. I went to school for culinary arts, but I think I’d be miserable if I wasn’t at sea.

Q: Do you have an outside hobby?

A: When I’m home, I like to work in my backyard. I like to work on my garden. I also like to work out.

Q: What is your favorite memory as a student at the Edward Devotion School?

A: I loved growing up in Brookline. It was a wonderful town to grow up in. I really feel now that being a kid at Devotion School was one of the happiest parts of my life. There is so much history at the Devotion School. Even after having traveled all around the country with NOAA, I love going back home to Boston and Brookline. Boston and Brookline are my favorite places. I still keep in touch with five of my friends from school in Brookline. We’ve been hanging out together for over thirty years. My friendships from grade school and later at Brookline High are still tremendously important to me today.


An Interview with HST Bekah Gossett, Fairweather Hydrographic Survey Technician

HST Bekah Gossett

HST Bekah Gossett

IMG_20180422_134940

The View from the Plot Room

Bekah's sheet on Yakutat Bay project

One of HST Gosset’s Projects from Last Season: Notice the Green Plot Lines and Surrounding Glaciers

A Finished Sheet from Last Season

A Finished Sheet from Last Season: Notice the Contrasting Depths (69 fathoms on a Previous Chart v. 94 fathoms Based on Sonar Data)

Comparing Updated Charts with a Historic One

Comparing Updated Charts with an Outdated One (Green Represents Data Matched, Blue/Red Show One Data Set is Deeper/Shallower than the Other)

Q: What is your role aboard NOAA Ship Fairweather?

A: My role on the ship is to acquire and process data that gives us information about the depth of the seafloor.

Q: Why is your work (or research) important?

A: This work is important because it contributes to updating and creating charts (maps) that are navigationally significant for US mariners to keep them safe and to support them economically. And, it’s cool!

Q: What do you enjoy the most about your work?

A: I really like working on the small boats (the launches) and working in Alaskan waters is great. It is a really open and good learning environment for this field of work. I have learned a whole lot in just a year and a half. This goes beyond hydrography. I’ve learned a lot about others and myself and about working with people.

Q: Where do you do most of your work?

A: I do most of my work in the plot room and on the launches. During the field season, we’re on the launches almost every day. The plot room is the data processing room where there are lots of computers. It is adjacent to the bridge, the central and most important location on the ship.

Q: What tool do you use in your work that you could not live without?

A: A computer!

Q: If you could invent any tool to make your work more efficient and cost were no object, what would it be and why?

A: I would create something with lidar (lasers) or a super sonar. Lidar is used on planes or drones to scan and provide data back. Lidar on launches would help us get data quicker.

Q: When did you know you wanted to pursue an ocean career?

A: I studied art in school, but then I switched to science. I’ve always liked ocean sciences. I decided to pursue an ocean career when I was 19.

Q: What part of your job with NOAA did you least expect to be doing?

A: I run the ship store, which is never something I expected to be doing. The ship stores sells snacks, candy, soda, and ship swag for the crew to keep morale high.

Q: How do you help wider audiences to understand and appreciate NOAA science?

A: I usually explain the ship’s mission as updating and correcting nautical charts. Sometimes we have different projects. Last year, for example, we were searching for a ship that sunk in Alaska in February 2017. We found it!

Q: How did you become interested in communicating about science?

A: When I was in college studying geology, I realized exactly how important it is to communicate science, because there is a lot of knowledge there that we can all learn from and use.

Q: What advice would you give a young person exploring ocean or science career options?

A: There are a lot of different things one can do. There are many different degrees from engineering, to environmental science, to biology. You can study ocean science, but you don’t have to. Any science can be applied in the ocean. It is not just science. You can learn about many different careers in oceans. Engineers and deck crew are great fields to pursue. You could also be a steward and travel a lot.

Q: What do you think you would be doing if you were not working for NOAA?

A: I would probably be working for an environmental agency, but I would probably not be very happy. I might be at home with my dog.

Q: Do you have an outside hobby?

A: I like to paint. I also have a ukulele. I also love to read.


An Interview with EU Tommy Meissner, Fairweather Engineer

EU Tommy Meissner

EU Tommy Meissner Hard at Work in Fairweather’s Boat Shop

EU Tommy Meissner in Navy

First Assignment: In the Navy, Onboard the USS Forrestal, The World’s First Supercarrier at 1,060 Feet Long in 1990

 

IMG_20180422_195404

EU Tommy Meissner: An Engineer & His Electric Guitar

Q: What is your role aboard NOAA Ship Fairweather?

A: I’m a utility engineer. I stand watch on the main engines and  check all of the propulsion equipment. I do maintenance on the small boats. I work on air conditioning, refrigeration, heating, etc. I am jack-of-all-trades.

Q: Why is your work (or research) important?

A: There is always something too hot or too cold, something leaking or blocked. There is always too much of something or not enough of something else. That is really the challenge of the job.

Q: What do you enjoy the most about your work?

A: The travel aspect is the best thing about my job. I can go anywhere in the world I want to go, whenever I want to go. The oil field in Mexico is opening back up, and so now there is lots of work available.

From a work aspect, it is challenging to understand why a piece of equipment isn’t working. Fixing the engines. . .or anything really. . . is all about following a process, working methodically. It feels good to be able to fix the boat and keep it in the water.

Q: Where do you do most of your work?

A: I do most of my work in the boat shop on the small boats on E-Deck. That’s where all the maintenance is performed while the launches are in the davits (the machines that put the boats in the water). When underway, I spend eight hours a day in the machine room, but when in port I work mostly in the boat shop. Eight hours a day, four hours a watch. In addition to the two watches, I usually do at least two hours of overtime a day. During a watch, I walk around, checking all the machines, pumps, generators, boilers, air conditioners, fridge, freezer, etc.

Q:  What tool do you use in your work that you could not live without?

A: The first thing I always grab is a pipe wrench. It is always good to have one nearby. A pipe wrench is a tool that we use to take apart plumbing and to loosen and tighten any connections. I am pretty well known on this boat for unclogging restrooms and showers.

Q:  If you could invent any tool to make your work more efficient and cost were no object, what would it be and why?

A: I would want a third hand! There is always a time when you need another person. It would be helpful to have one more hand to do work more efficiently. There are lots of times when I can’t reach or need that extra hand.

Q: When did you know you wanted to pursue an ocean career?

A: I’ve been sailing since 1990. I joined the Navy in 1989. All my life I’ve liked being around boats and on the water. Even though I lived around the water when I was little, I never had the opportunity to go to sea, so it was something I dreamed about for when I was older. Living in Fort Lauderdale, I saw the Navy come through and watched all the ships. I thought it would be cool.

Q: What part of your job with NOAA did you least expect to be doing?

A: I had no idea where I would be going when I joined NOAA. Before I said yes to the job, they gave me the choice to go on the Fairweather or the Rainier. Initially, I wondered about Alaska. Nome, Alaska is as far away from home for me as Dubai. I had never been so far west.  Alaska has been great, though.

Q: How do you help wider audiences to understand and appreciate NOAA science?

A: Everyone I talk to doesn’t seem to know what NOAA is. NOAA has various missions, mapping the bottom of the ocean, studying coral reefs, fish ecology (understanding how many tuna are in the middle of the Gulf of Mexico and what species of fish are on the reef off  North Carolina). I don’t think people know enough about NOAA.

Q: What recommendations do you have for a young person interested in pursuing an ocean career?

A: I would study oceanography and math and science if you want to go to sea.  Decide what type of career you would like; there are so many options at sea.

Q: What do you think you would be doing if you were not working for NOAA?

A: If I wasn’t working for NOAA, I would go back to South Carolina and work in building or construction. I prefer NOAA!

Q: Do you have an outside hobby?

I play guitar and teach guitar. I was always a metal head.


An Interview with 2C Carrie Mortell, Fairweather Steward

2C Carrie Mortell

2C Carrie Mortell Serving a Delicious Meal in Fairweather’s Galley

Q: What is your role aboard NOAA Ship Fairweather?

A: I work in the galley (kitchen), which is very, very busy. It is kind of like the heart of the ship.   We work to feed everyone, make sure everything is kept clean, etc. There is a lot to do! We work twelve hours everyday. Many people think the galley is just cooking, but there is a lot more to the galley such as keeping track of massive amounts of stores (supplies), keeping everything fresh, and more.

Q: Why is your work (or research) important?

A: Keeping the mess deck (dining area) clean and keeping people happy and healthy with good meals is key. We boost morale. People look forward to sitting down and having a good meal at sea. We try to take peoples’ requests and keep the crew satisfied.

Q: What do you enjoy the most about your work?

A: I love being at sea. I love to cook. I like to see people happy and satisfied. I always try to keep upbeat. We all have to live together, so it is important to keep morale up. We’re like a big family at sea.

Q: Where do you do most of your work?

A: I spend most of my day in the galley.   All of the stewards cook. We rotate every week. One week, one cook is in the galley, and then we switch into the scullery (where dishes are cleaned).

Q: What tool do you use in your work that you could not live without?

A: My hands!

Q: If you could invent any tool to make your work more efficient and cost were no object, what would it be and why?

A: Another pair of arms to help cook. It is really, really busy in the galley!

Q: When did you know you wanted to pursue an ocean career?

A: Well, I used to commercial fish. I have always loved being on the ocean. I grew up around fishing people. When I was little, I always wanted to live in a lighthouse. I also like being able to go to different places. It is exciting to always get to travel when at sea. I loved the French Polynesian Islands, where I traveled with NOAA. I worked out of Hawaii for about eight years, so I spent a lot of time sailing around the Pacific, visiting Guam, Sonoma, the Marshall Islands, and crossing the equator several times.   On the East Coast, I enjoyed sailing Puerto Rico and the Caribbean. I also love Alaska, so sailing on Fairweather is great! Eventually, I want to move back to Alaska.

Q: What part of your job with NOAA did you least expect to be doing?

A: I really love cooking, which is what I get to do everyday. I feel really passionate about my job. There isn’t anything I didn’t expect. You do have to really like what you do, though, at sea.

Q: How do you help wider audiences to understand and appreciate NOAA science?

A: All the ships do different missions. NOAA Ship Fairweather, for instance does mapping. Another NOAA ship I worked on put out buoys for tsunamis. NOAA helps keep oceans clean. NOAA also works with fisheries and brings many scientists out to sea to study the population of our oceans. NOAA even has gone on rescue missions for aircraft and other ships in distress.

Q: What advice would you give a young person exploring ocean or science career options?

A: First, you should love the sea. It is hard sometimes if you have a family. Sometimes you miss out on important events, but if you pick a ship in the right area, you can see your family more often. Sometimes, NOAA isn’t what people expect. It is really hard work, but I love it. There are lots of different departments and jobs on the ship though, so it is possible to find something you love.

Q: What do you think you would be doing if you were not working for NOAA?

A: I definitely would be working in culinary arts somewhere.

Q: Do you have an outside hobby?

A: I love to write, paint, draw, crochet, and read. I’ve always dreamed of writing children’s books. I used to tell my children stories, especially scary ones which they loved.


An Interview with ENS Linda Junge, Fairweather Junior Officer

ENS Linda Junge on the Bridge

ENS Linda Junge on the Bridge

ENS Linda Junge

ENS Linda Junge Leading a Navigation Briefing, Explaining Fairweather’s Course for the Inside Passage

Q: What is your role aboard NOAA Ship Fairweather?

A: I’m a junior officer (JO).

Q: What’s the process for becoming a JO?

A: The process to apply to become a JO is much like applying to graduate school. You write essays, get three to five letters of recommendation, fill out the application, and have an interview. You need a BS in a field relating to NOAA’s mission, which can be pretty much any math or science field (geology, physics, calculus, engineering, biology, environmental sciences, etc.). Then you attend BOTC (Basic Officer Training Class), which is held at the Coast Guard Academy along with their officer candidate school. Another way to become a JO is to transfer in if you were formerly enlisted. BOTC for JO’s lasts five months, and we have lots of navigation classes.

Q: Why is your work (or research) important?

A: NOAA Ships have three main categories: oceanography, hydrography, and fisheries. The major job of JO’s on ships is driving, we’re like bus drivers for science. When we are underway, 50% of my work is navigation, driving the ship, and deck stuff. 30% is collateral duties, extra administrative things to make the ship run such as thinking about environmental compliance and working as a medical officer. 20% (which can fluctuate) is focused on hydrographic survey, driving small boats or helping with survey sheets, managing an area, collecting data, and being sure data is processed on time.

Q: What do you enjoy the most about your work?

A: I really enjoy knowing that I’m keeping people safe while they are sleeping. I really enjoy traveling. I really enjoy the sense of family that comes from living on a ship.

Q: Where do you do most of your work?

A: All of the navigation is done from the bridge. The rest of the work is desk work. Any ship needs lots of administrative work to make it run. It’s like a space ship, a hotel, a restaurant, a family. To make all of those things run you need cooks, plumbers, etc., you need a lots of admin. It is like a government-run hotel. There is lots of compliance to think about. It’s a JO’s job to make sure everything is done correctly and all is well taken care of because it is paid for and continues to be paid for by tax payers. Everyone who serves aboard a ship has documented time of when you have been on the ship, sea-service letters. A commercial ship may have human resources (HR), and yeomen (arranges paperwork for travel, keep everything supplied and running, stocked, etc.), pursers (who manage money and billable hours), but all of these tasks are done by JO’s on Fairweather.

Q: What tool do you use in your work that you could not live without?

A: Red lights. At night, it is dark on the bridge. We can’t destroy our night-vision, so we use red lights, which are gentle on the eyes and don’t affect one’s night vision. It’s important to be able to see the charts as well as to maintain night vision while keeping watch.

Q: If you could invent any tool to make your work more efficient and cost were no object, what would it be and why?

A: I would hire someone to be the yeomen to make sure we never ran out of pens, always had travel vouchers, made sure copiers ran, and helped with all the other random jobs.

Q: When did you know you wanted to pursue an ocean career?

A: Before I did this, I was a fisheries observer. I was a biologist who went out to sea. I always loved standing on the bridge and hearing the stories. I loved not commuting, not having to go to the office. I loved casting out to sea, working hard, and then, pulling in, tying up, and feeling a huge sigh of relief that the crew worked hard and arrived safely back in port. It stuck with me, I enjoyed that, and I decided to pursue a career with NOAA.

Q: What part of your job with NOAA did you least expect to be doing?

A: All the administrative stuff!

Q: How do you help wider audiences to understand and appreciate NOAA science?

A: NOAA is everywhere, and sometimes people don’t appreciate that. NOAA produces weather reports and regulates fisheries in Alaska, where I’m from. NOAA could do a better job of advertising to the public its many pursuits.

Q: What advice would you give a young person exploring ocean or science career options?

A: There are many cool internships on research vessels. The commercial sector will always take people looking for adventure. If you don’t make a career of it, that’s fine. At the worst, you learn something new about yourself while having a really cool experience. That is not such a bad thing.  I highly recommend giving an ocean job a try.

Q: What do you think you would be doing if you were not working for NOAA?

A: I would probably be in grad school. I would study city planning.

Q: Do you have an outside hobby?

A: I like walking. I like being in the woods.


Personal Log

While most of the crew spends days working on the bridge (navigation), the plot room (data analysis), in the galley (preparing meals), or in the engine room/boat shop (keeping everything running smoothly), there are a lot of other areas on the ship that help make Fairweather feel more like home.  Below are some pictures of such key places:

The Ship's Gym

The Ship’s Gym Next to the Engine Room

Ship's Movie Theater

The Ship’s Movie Theater. Some Nights the Crew Gathers to Watch Films Together or Play Games.

Ship's library

The Ship’s Library – Lots of Science Fiction and Suspense!

Ship's Mailroom

The Ship’s Mailroom – Mail is Sent to Each Port; One of the Many Things to Look Forward to in a New Destination.

Conference room

The Ship’s Conference Room Where Navigation Briefings and Safety Meetings Are Held

The Ship's Laundry Room

The Ship’s Laundry Room

Ship's store

The Ship’s Store – Candy & Snacks – Treasures at Sea

The Ship's Store - Swag!

The Ship’s Store – Swag

Berth

A Berth (or Living Space) on the Ship Shared by Two Members of the Crew. Note the Bunk Beds & Curtains. The Crew Works Various Shifts 24/7.


Did You Know?

There is a lot of lingo aboard!  Here are some terms helpful to know for navigating a ship:

Aft: towards the back of the ship

Bow: the front of the ship

Bridge: the navigation or control room at the front/top part of the ship

Decka floor/level on a ship

Flying Bridge: the top-most deck of the ship that provides unobstructed views

Fantail: area towards the back of the ship

Galley: the ship’s kitchen

Hands: a popular way to refer to the crew or people working aboard the ship

Head: the bathroom on a ship

Helm: the “steering wheel” of the ship

Hull: the outside sides/bottom of the vessels

Mess: dining area on the ship

Scullery: where dishes are washed

Starboard: to the right of the ship

Stores:  the supplies kept in the hull that the crew will need while away at sea for a long time

Stern: the back of the boat

Port: to the left of the ship

Challenge Question #3: Devotion 7th Graders – Create a scale drawing of your ideal research or fishing vessel!  Be sure to include key areas, such as those shown above.  Remember that your crew will need space to eat, sleep, navigate, research, work, and relax. At a minimum, include the plan for at least one deck (or floor).  Include your scale factor, show conversions and calculations, and label each area using some of the vocabulary included above.  Needs some ideas?  Check out this link to NOAA’s Marine Vessels for some inspiration.

Victoria Cavanaugh: Patch Tests in Puget Sound, April 20, 2018

NOAA Teacher at Sea
Victoria Cavanaugh
Aboard NOAA Ship Fairweather
April 16-27, 2018

MissionSoutheast Alaska Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska

Date: April 20, 2018

Weather Data from the Bridge

Latitude: 47° 44.116′ N
Longitude: 122° 32.070′ W
Sea Wave Height: 1 foot or less
Wind Speed: 5-8 knots in the AM, then less than 5 knots in PM
Wind Direction: SSE, variable
Visibility: 16.1 km
Air Temperature: 8oC  
Sky:  Scattered Clouds

Science and Technology Log

For the past two days, NOAA Ship Fairweather has been anchored in Port Madison,  part of Puget Sound off the coast of Seattle, Washington.  The crew is currently stopped for a few days in Puget Sound before heading north to Alaska in order to complete the yearly Hydrographic Systems Readiness Review (HSRR).  During HSRR, the survey techs test all of the hydrographic survey equipment that will be used during the field season.  It’s essential to test and calibrate the equipment at the start of the season in order to ensure the data accuracy for upcoming projects.

The first part of HSRR began Thursday morning. Because NOAA Ship Fairweather spent winter at dock in Yaquina Bay, barnacles and algae were able to grow plentifully on the ship’s bottom, making it their home.  The dive team deployed to check the Fairweathers hull and clean off the sonar transducers, removing any biofouling (sea life that had built up on the ship’s bottom) from the winter in port.

 

On Thursday afternoon and Friday, the next phase of HSRR began.  On Friday, I was able to spend most of the day on the survey launches as a few of the survey techs conducted patch testing (a process for precisely determining an orientation of the launch’s sonar).  NOAA Ship Fairweather has four 28-foot launches, and I spent the morning on 2808, and then the afternoon on 2806.  When working on projects in relatively shallow waters, the Fairweather deploys these launches to collect data more efficiently as four launches can work on a project simultaneously.

Safety Meeting Before Launches Deploy

Safety Meeting Before Launches Deploy

One of the Launches is Lowered from F Deck (the 6th Deck Up)

One of the Launches is Lowered from F Deck (the 6th Deck Up)

One of the Launches Being Lowered into Puget Sound

One of the Launches Being Lowered into Puget Sound

A Launch Begins Patch Tests

A Launch Begins Patch Tests

The launches are driven by a coxswain, often a NOAA officer or deck hand, while a Hydrographer-in-Charge (HIC) plans track lines for the vessel to run.  Sometimes, a coxswain-in-training or HIC-in training will also join the launch.  As part of HSRR, the HIC chose a few track lines for the launch to run, and the coxswain, drove the launch back and forth on the lines at various speeds.  While we ran the track lines, the HIC was able to gather data by sending an acoustic ping from the sonar which reflects off the seafloor and is then recorded when it returns to the sonar.  The two-way travel time of the pin is measured, which (when coupled with the speed of sound through the water) can be used to calculate the water depth.

The Coxswain Helps Deploy the CTD

The Coxswain Helps Deploy the CTD

The Coxswain's Seat

The Coxswain’s Seat

The HIC Readies the Launch as We Pull Away from NOAA Ship Fairweather

The HIC Readies the Launch as We Pull Away from NOAA Ship Fairweather

The HIC and HIC-in-Training Prepare the CTD

The HIC and HIC-in-Training Prepare the CTD

The HIC Checks Data Being Collected as the Launch Runs Patch Tests

The HIC Checks Data Being Collected as the Launch Runs Patch Tests

While in Port Madison, the crew will send all four of the Fairweatherlaunches out to run the same track lines and to ensure the data collected by each launch matches.  At night, after the HIC’s have gathered data, the survey techs spend hours in the plot room, looking at the day’s data and checking for any discrepancies.  The survey techs correct any errors in the data and the saved changes are sent back to each launch’s computing system.  This is known as calibrating.  By running patch tests and calibrating the launches to one another, survey techs are able to guarantee that data collected throughout the season is precise, no matter which launch is used for a given area.

The CTD Up Close: The Powerful Little Machine that Measures the Speed of Sound!

The CTD Up Close: The Powerful Little Machine that Measures the Speed of Sound!

Data Being Collected from the CTD on the Launch Monitor: Conductivity (Salinity), Temperature, and Depth (Pressure)

The CTD Stands Ready to Be Deployed on the Launch's Deck

The CTD Stands Ready to Be Deployed on the Launch’s Deck

Before and after running the patch tests, the crew deploys a CTD  The CTD measures the conductivity, temperature, and depth of the water.  The survey techs are interested in the CTD readings because this information helps them assess the speed of sound (or the sonar waves) in a given body of water.  In turn, knowing the speed of sound and the amount of time the CTD takes to reach the ocean floor, allows survey techs to calculate ocean depths.  (The classic distance equation, d=rt!)

Data Being Collected from the CDT on the Launch Monitor

Data Being Collected from the CDT on the Launch Monitor

Conductivity refers to the ability of the given water sample to pass an electrical current.  Survey techs are interested in the conductivity, because the conductivity is another way to gauge the salinity (or “saltiness” of the water).  The more salt in a sample of ocean water, the greater the ocean water’s conductivity and the faster the sound waves travel.  Next is temperature.  Water closer to the surface is warmer, and thus, sound will travel faster closer to the surface.  Conversely, the cooler the temperature, the slower the sound waves travel.  The final measurement is depth, or pressure.  The deeper the water, the greater the pressure.  Greater depths increase the speed of the sonar waves.  The average speed of sound in the water is 1,500 m/s.  By comparison, the average speed of sound in air is about 340m/s.

Night Processing of Data in the Plot Room

Night Processing of Data in the Plot Room

After dinner, survey techs are assigned to night data processing.  I joined one of the survey techs, Ali, who was kind enough to explain how the launch data is analyzed.  One interesting note is the red light in the plot room.  The red light is used because the plot room is next to the bridge, where the officers and deck crew keep watch.  The red lights help the crew keep their eyes ready for night watch, so those processing data also work under red lights.

A "Painting" of Collected Data: Different Colors Represent Differing Depths

A “Painting” of Collected Data: Different Colors Represent Differing Depths

In the above photograph, notice the various colors representing the differing ocean depths.  In this case, red is shallower and purple is deeper.  Notice that as the survey tech, hovers over a datapoint with her mouse, the data collected by Fairweather launch 2807 is shown as a coordinate with a depth of 168.3 meters.  Creating a color “painting” of the data points is helpful because the changing colors help the survey techs understand the slope of the ocean floor; closer together colors mean a steeper slope or a sharp increase in depth, whereas larger swatches of the same color mean a flatter seafloor.

The green lines in the picture represent the “lines” that the launch ran, meaning the area where the coxswain drove back and forth in the boat at varying speeds.  Notice that there are two lines as the launches always run two lines to ensure accuracy.  As the launch is driven back and forth in the water, the transducers on the bottom of the launch emits multi-beam sonar, and sound waves ping off the ocean floor several times per second, sending sound waves back to the launch which are translated into millions of data points by the survey techs.

The survey techs use various computer programs and imaging software to analyze the data.  Above, the survey techs can look at a 3D cross-section of the data, which essentially looks like a virtual map of the sea floor.  In the bottom right corner, the survey tech compares two lines for accuracy, one with data points colored red, the other green.  When the lines line up exactly, precision is ensured.  The survey techs analyze the data to make sure the rocking of the boat in any direction (front/back, side-to-side, etc.) won’t interfere with mapping accuracy later in the season.  Finally, survey techs compare their work with each other to ensure precise calibration.

Personal Log

One of my favorite things about being onboard NOAA Ship Fairweather are the tremendous views every time I look outside.  Sunrises and sunsets are spectacular.  We’ve had some really great weather over the last few days, and though it has been a bit chilly, the skies have been fairly clear.

Sunset in Port Madison

Sunset in Port Madison

Mount Rainier at Sunset

Mount Rainier at Sunset

Pulling Up the Anchor in Port Madison Shortly After Sunrise

Pulling Up the Anchor in Port Madison Shortly After Sunrise

Brainbridge Island, Washington

Brainbridge Island, Washington

Two of the Crew Checking the Anchor Line Angle During Anchor Recovery

Two of the Crew Checking the Anchor Line Angle During Anchor Recovery

Puget Sound

Puget Sound

Mount Olympia National Park

Mount Olympia National Park

 

Did You Know?

On nautical charts (or maps), units of measurement vary.  Ocean depths can be marked in feet, meters, or fathoms. Fathoms, like knots, is another term steeped in nautical history.  When sailors used to measure ocean depths by hanging rope over the side of a vessel, they would pull in the line, looping the rope from hand to hand.  The distance of the rope from one outstretched hand to another (a sailor’s wingspan) became known as a fathom.

Challenge #2  – Devotion 7th Graders: Measure your wingspan, the distance from one outstretched hand to another.  Then measure four other friends, classmates, or family members’ wingspans.  What is the median wingspan for you and your friends?  What is the mean wingspan for you and your friends?  What is the mean absolute deviation for your collective wingspans?  One fathom is equal to 1.8288 meters or 6 feet.  If one fathom is the average sailor’s wingspan, how do your wingspans compare?  Present your findings on a 8.5x11inch paper as a mini-poster.  Include illustrations and calculations.

 

 

————————————————————————————————————————————–

Victoria Cavanaugh: Newport, Oregon Bound!, April 12, 2018

NOAA Teacher at Sea
Victoria Cavanaugh
Aboard NOAA Ship Fairweather
April 16 – 27, 2018

MissionSoutheast Alaska Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska

Date: April 12, 2018

Weather Data from My Classroom at School

Latitude: 42.3306° N
Longitude: 71.1220° W
Sea Wave Height: N/A
Wind Speed: 16 km/h
Wind Direction: SW
Visibility: 14.5km
Air Temperature: 5.6oC  
Sky:  Scattered Clouds

Personal Log

Greetings from Brookline, Massachusetts!  I am a 7th grade math teacher at the Edward Devotion School, where I have the wonderful opportunity to work with 80 creative and enthusiastic students each day.  I applied to the NOAA Teacher at Sea Program as I’m eager to bring real-world math to the classroom, or maybe to bring my classroom to the real-world math. 🙂 The 7th graders are currently in the midst of our data and analysis unit, and I can’t wait to learn more firsthand about how NOAA scientists gather, graph, and analyze data.  I look forward to sharing my learning with my class, and I’m excited about to what future class projects this opportunity may lead.

Math Class Fish

Our 7th Grade Math Class Fish, Swim Shady, & the Inspiration for Our Aquaponics Garden Design Project

 

Previous to teaching 7th grade math in Brookline, I taught for nearly a decade in El Salvador.  I’m happy to be able to share this adventure with students there as well.

El Salvador group photo

Visiting with Some Former Students & Family along the Ruta de Flores, El Salvador

In just a few days, I will fly from Boston, MA to Portland, OR, and from there I’ll board NOAA Ship Fairweather in Newport, OR.  It was a nice surprise to learn I’d begin my journey in Newport as I first visited Oregon when I was in seventh grade myself.  From there, we’ll sail towards Southeast Alaska.

Newport beach

My Brother and I (as a 7th Grader) Visiting the Beach in Newport, OR

While aboard NOAA Ship Fairweather, I’ll be participating in a hydrographic survey, which entails working with scientists to measure and describe oceanic features that can affect maritime navigation. According to NOAA,  “Alaska’s charts are in need of updating, especially in the Arctic region where some soundings date back to the work of Captain Cook in the 18th century.”  Conducting a hydrographic survey of the region is especially important because many towns and villages in Alaska are reachable only by boat or plan, so accurate and updated navigational charts will benefit all who live and travel through the area.

One aspect of the Alaska Hydrographic Survey Project, I’m eager to witness is the way in which scientists, technicians, and cartographers utilize some of  the same geometry and algebra concepts we’ve been studying in seventh grade math this year in their work aboard NOAA Ship Fairweather.

 

Did You Know?

NOAA Ship Fairweather’s home port is Ketchikan, Alaska, which will also be where I’ll disembark at the end of my trip.

Fairweather

NOAA ship Fairweather, in front of its namesake, Mt. Fairweather. Photo courtesy of NOAA.

Bill Lindquist: Eager for the Journey, April 24, 2013

NOAA Teacher at Sea
Bill Lindquist
Aboard NOAA Ship Rainier
May 6-16, 2013

Mission: Hydrographic surveys between Ketchikan and Petersburg, Alaska
Date: April 24, 2013

Pre-cruise Log

I am absolutely thrilled at this truly unique opportunity to join a team of scientists aboard NOAA’s research vessel Rainier conducting hydrographic surveys through the Teacher at Sea program.

I am a teacher and have been for the last 34 years. It is a great career. My students have changed over time from my own fifth grade classroom in rural Minnesota, to a science specialist at Crossroads Elementary in the urban core of Saint Paul, to teaching graduate pre-service students at Hamline University. The unifying weave in my teaching fabric has been the creation of learning environments supportive of a collaborative, student-centered, community of learners. Woven into that professional cloth are the fibers of guiding high school kids on canoe trips into the Boundary Waters Canoe Area Wilderness, escorting my elementary students to a residential environmental learning center (Audubon Center of the North Woods), contributing authentic scientific data through GLOBE, visiting community schools in Ghana, flying our sixth grade students’ investigation in a microgravity environment through NASA’s Reduced Gravity Flight program, softening the reluctance of pre-service students to see themselves as teachers of science – exciting them to engage their students in the kind of science learning that strikes at the core of what makes us human, and all the myriad interactions with hundreds of young people as we have shared together in the joy of learning.

Something that has eluded me during my career has been the kind of extended immersion into the doing of science that I expect from this program. I applied six years ago without success. Being gifted this time with this Teacher at Sea opportunity is a realization of a multiple long-held visions, including:

  • Immersion into the doing of science. I am excited to be able to share with my students the first hand experience of being in the scientist role in the practice of doing science in the field – in a more real and felt way than the doing of science we experience in an elementary science lab.
  • Being at sea. I feel at home in a canoe and grew up with a love of being on the water. Seems the Rainier is bigger than my 16.5’ Old Town Penobscot. Minnesota is the land of 10,000 lakes, but a far, far way from the vast expanse of the ocean. With the increasing need to understand the vital impact the oceans play in the global climate systems directly impacting the day-to-day life on the Minnesota prairie, I am excited to bring home first hand experience.
  • Exploring Alaska – the grandeur of the Ketchikan Gateway is spectacularly breathtaking. I have little desire for a tourist cruise – seeing Alaska (albeit a small part) through the eyes of a researcher is thrilling. Though our focus will be viewing the bottom of the ocean – I will be deliberate in taking the time to look up to capture the grandeur of the surrounding landscape. I once had a fascinating conversation with Dan Barry, NASA astronaut, as we prepared for our reduced gravity flight. He told of many astronauts so intently focused on their work during a space walk that, once home, were unable to describe the incredible view impeded only by the visor of their space helmet. In response, he scripted into his program specific commands to look out and “make a memory”. I have little doubt I will not need a reminder to look up from the sonar data collections screen to make memories while cruising through the Gateway. I have my camera ready and fully expect my pictures to run beyond 1000.

I look forward to sharing this grand adventure. Specifically, I hope to share the story with my current class at Hamline. The semester ends while I am at sea, so facilitation of learning will happen while I am on board. They have patiently lived the experience of my acceptance as an alternate while anxiously waiting word of a cruise, to the excitement of successfully being placed aboard the Rainier. I will be working with a former colleague at Crossroads Elementary in Saint Paul, MN to vicariously take her class on an exploration of the ocean bottom off the coast of Alaska. I also hope to share the journey with my grandson, Logan’s class at Westwood Elementary in Traverse City, MI.

In a short week and a bit (May 4) I fly out of the Minneapolis-Saint Paul airport to begin this grand adventure. I can’t wait.

My family

So thankful for all the support of a loving family

Reduced Gravity

Had a chance to fly our sixth graders’ experiment in a reduced gravity environment

In love with the Boundary Waters Canoe Area Wilderness

In love with the Boundary Waters Canoe Area Wilderness

Paige Teamey: November 2, 2011

NOAA Teacher at Sea Paige Teamey Aboard NOAA Ship Thomas Jefferson October 31, 2011 – November 11, 2011

Mission: Hydrographic Survey Geographical Area: Atlantic Ocean, between Montauk, L.I. and Block Island Date:  November 2, 2011

Weather Data from the Bridge
Clouds: clear
Visibility: 10 Nautical Miles
Wind: SW 5 knots
Temperature 13.9 ° Celsius
Dry Bulb: 13.5° Celsius
Wet Bulb:  10.0 ° Celsius
Barometer: 1626.8 millibars
Latitude: 41°08’39″ ° North
Longitude: 072°05’43″ ° West

 Current Celestial View of NYC:

 Current Moon Phase:

 Current Seasonal Position (make sure to click on “show earth profile):

 http://www.astroviewer.com/  http://www.die.net/moon/ http://esminfo.prenhall.com

OR

http://www.learner.org/

Science and Technology Log On a NOAA ship, similar to a military vessel, everyone has specific titles.  It would be like calling your principal or mom a CEO (Chief Executive Officer) followed by their last name.  Comparably on a ship there are tons of acronyms like (f.y.i., a.k.a, or my favorite o.m.g.). However, the acronyms the shipmates use are for titles and instead of fun text phrases they are based on status and certification. Ship acronym/name examples: CO: Commanding Officer XO: Executive Officer FOO: Field Operations Officer Ensign: “Fresh Meat” or Junior Officer Boatswain (Bosun): a Wage Mariner in charge of equipment and the crew GVA: General Vessel Assistant Today was full of events.  I awoke at around 6:02am and went outside to breathe in the fresh air and watch the day break.   After eating yet another delicious breakfast in the mess hall (cafeteria…we aren’t that messy) I was told by the FOO Davidson I would be going out on my first launch.  I was placed on the 3102 which unfortunately does not currently have any hydrographic equipment  (we hope to obtain a scanner this weekend sent from a Pacific Ocean NOAA ship). Today our mission is to go to the shores of Montauk, Long Island and retrieve data from a tidal instrument that was logging the daily tidal changes.  Normally these instruments can be accessed via satellites, however the most recent Nor’ Easter compromised the instruments and made its information inaccessible via the internet.  BGL Rob (Boatswain Group Leader) normally would be taking the helm (steering wheel of boat) and Frank (surveyor) and Ensign  Storm’n Norman also came along.  Ensign Norman is currently learning how to navigate a small ship for a new license so took the helm while BGL Rob supervised (she needs to log so many hours behind the helm before sitting for the exam).  All four of us piled into the 3102 while a massive davit (hydraulic lift) placed the 3102 from the TJ into the Atlantic Ocean. The technology behind the davit blew me out of the water (not really), but it was pretty amazing.  The ship was moving 5.8 mph (you walk about 1.5-2mph) while 3102 was being lifted out of the water.

Boatswain Rob gave great tips to Ensign Norman; however, Ensign Norman was confident and very much in control of 3102 and did a fantastic job driving us to and from Montauk.  Once we arrived at Montauk, Frank opened the weather station and a huge amount of water poured out (probably why it wasn’t transmitting data).  It took quite a while to get the information downloaded on the computer we brought, because the system was out of date with current technology (so interesting how fast technology moves). While Frank was on the phone with an engineer stationed in Seattle I walked along the dock and met a lovely gentleman named Joe and his dog, Lil’ Sugar.  Joe was also a captain of a ship and ferried people to and from Block Island.  Joe was a very warm gentle soul who spoke of his years at sea and all of the unique experiences he has been fortunate to have on multiple vessels.  Currently Joe works as a Captain for a whale watching company (apparently Right Whales are migrating).   After my lovely chat with Joe and quick walk around I returned to the group.

Message in a bottle found on Montauk Beach.

Upon returning Frank had found a note in a bottle that a woman named “Karen” had thrown into the ocean and washed ashore in Montauk.  We presumed Karen was from somewhere in Connecticut (based on the cell phone number).  We called her number, but she did not retrieve her phone.   I will say for all of you wistful bottle throwers.  If you do this, make sure you use glass (it doesn’t break down to little plastic bits that fish mistakenly eat for food) and be imaginative with your note (I am not advocating for anyone to throw a bottle into the ocean).  Karen’s was very plain and gave little background or visual.  It was more fun talking with the group and imagining all of the personality and character she may have had (most of this was based on the jar she placed the note in…it was a Trappist Preserves jelly jar).  Trappist Preserves usually retails for $27.00 and is hand-made by monks in an Abbey located in Massachusetts.

Kimberly the Great in front of Acquisition Screen locate off of the Bridge.

Kimberly the Great in front of Acquisition Screen locate off of the Bridge.

When I returned to the TJ I spent the rest of the day (almost 6 hours) in the acquisition room, located on the bridge, with Kimberly the Great.  Kimberly is a seasoned surveyor (meaning she has been aboard the TJ for seven years) and was able to break down each surveying screen in an incredible way.  (Read Nov. 3-4 for a break down of Hydrographic surveying)

Davey Jones Shadow??? Skull and bones shadow in the acquisition room.

Personal Log Breakfast:  2 fried eggs, oatmeal, 1 hashbrown Lunch:  Deli sandwich with coffee Dinner:  Vegetarian “chicken” patty with tomato sauce and cheese, and corn Dessert:  Chocolate Cake (Happy Belated birthday XO!!!)