Amie Ell: A Whale of Tale, July 13, 2013

NOAA Teacher at Sea
Amie Ell
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 7 – July 11, 2013

Mission: Alaska Walleye Pollock Survey
Geographical Area: Gulf of Alaska
Date: July 13, 2013

Location Data from the Bridge:
Latitude: 57.21N
Longitude: 152.32 W
Ship speed:   10.7 kn

Weather Data from the Bridge:
Air temperature: 11 degrees centigrade
Surface water temperature: 11 degrees Centigrade
Wind speed:  7.14 kn
Wind direction: 90 degrees
Barometric pressure: 1018 mb

Science and Technology Log:

The CamTrawl being attached to the net.

The CamTrawl being attached to the net.

The scientists on the Oscar Dyson are using several different types of cameras and sensors.  I have already mentioned the CamTrawl.  This camera is attached to the trawl net and takes pictures as the net is being dragged behind the ship.  The pictures are time stamped.  These pictures help to identify at what time and depth things were entering the net.  This is very helpful if you have a haul with a variety of different fish.  Also attached to the net is the FS-70 Netsond sensor, also known as the third wire.

A CamTrawl Picture with pollock and capelin.

A CamTrawl Picture with pollock and capelin.

This third wire uses sound and its echo to see what is entering the net.  One more sensor attached to the net reads temperature and depth this is the SeaBird Electronics SBE-39 Bathythermograph.

Preparing to lower the Drop Cam.

Preparing to lower the Drop Cam.

From left to right: DropCam, winch, CTD (Conductivity, Temperature, Depth),

From left to right: DropCam, winch, CTD (Conductivity, Temperature, Depth),

Sometimes sensors and cameras are dropped from the side of the ship.  These are not attached to a net.  Instead, these are on frames that are dropped over the side and lowered using thick cable wire on a winch.  The CTD sensor measures water conductivity, temperature, and depth.

The Drop Camera also is dropped from the side of the ship and lowered using a winch.  This also has a depth sensor and takes time stamped pictures.  This device can help scientists identify fish present in areas that they are not able to trawl in.

An octopus captured by the DropCam.

An octopus captured by the DropCam.

The compilation of information gathered from these sensors, cameras, and haul data will help scientists get a good picture of what type and how many fish are present in different areas around Alaska and in varying ocean conditions.  The analysis of this data will be used to help determine the quota for commercial fishermen looking for the Alaskan walleye pollock in different areas.

There are sensors on the hull of the ship that are always gathering information.  On the NOAA website Ship Tracker you can see some of this information in real time.

Depths recorded and graphed for this trip.

Depths recorded and graphed for this trip.

A flatfish captured by the DropCam

A flatfish captured by the DropCam

Personal Log

Yesterday was an excellent day for whale watching.  We spent our afternoon and evening surrounded by a pod of Humpback whales.  At times they were so close that I could hear them breathing.  They were much closer and more plentiful than the first whale sighting.  Last night in the mess hall I got up to look out the porthole (window) and a whale came up less than 50 feet from me.  It was amazing!

We continue to trawl pulling up on average 2 to 3 hauls an evening.  In our hauls the majority of the fish are pollock.  This week I have also seen, more capelin, rock fish, and lumpsuckers.  We have also pulled up dog salmon, arrow tooth flat fish, krill, cod, and a spiny lumpsucker.

A sunset trawl in progress

A sunset trawl in progress

From bottom: Dog Salmon, Arrow Tooth, Pacific Ocean Perch (POP)

From bottom: Dog Salmon, Arrow Tooth, Pacific Ocean Perch (POP)

I was given a tour of the engine rooms below by the Chief Engineer.  It was very loud.  There is a lot of machinery on board to make the ship self-sustainable while at sea.  One of the machines is called the “water maker”.  This takes salt water and heats it to 140 degrees Fahrenheit.  The machine then captures the steam, leaving behind salt and other non desired items in the water.  The steam is then condensed to make all for the fresh water for the ship.

Water Maker distills salt water to make fresh

Water Maker distills salt water to make fresh

Bryan Hirschman, August 4, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 4, 2009

hirschman_log1Weather Data from the Bridge (0800) 
Visibility: 10 miles
Wind: 2 knots
Wave Height: <1 ft
Wave Swell: 3 ft
Ocean temperature: 15.50C
Air Temperature: 15.50C

Science and Technology Log 

Here I am holding a Pacific Hake.

Here I am holding a Pacific Hake.

We will be conducting several types of oceanographic sampling during our cruise: 2-3 Pacific hake tows per day (weather permitting), an open net tow where fish are viewed through a camera, XBTs: Expendable Bathythermograph (take temperatures at various depths), HABS: Harmful Algal Bloom Sampling, CTD: Conductivity, Temperature, and Density (also at various depths), and a Multiple Opening Plankton Net (collects living organisms at various depths). We will also release a Surface Drifter: floats with currents and sends information about currents via satellite.

The tows, XBTs and HABS are done from 7:00 am to 9:00 pm, while the CTD and plankton net are used during nighttime hours. By working in daytime and nighttime shifts the scientists are maximizing the boat’s usage. I was fortunate enough to help with the plankton net last night. Five samples were collected while I observed. Each sample was labeled and preserved for later use in a laboratory. Observed were amphipods, copepods, shrimp, and crab larvae.

Can you identify the animal I’m holding?

Can you identify the animal I’m holding?

Our first Pacific hake tow came at approximately 8:00 am. The acoustic scientists use four transducers that are attached to the bottom of the boat.  Each transducer sends out pulses of sound at a different frequency toward the bottom of the sea floor. The sound pulse then travels back to the boat and is recorded onto graphs. Fish and other biological organisms also reflect sound pulses. Each type of fish gives off a different signal depending on its size, shape, and orientation. The fish are then identified on a computer using acoustic analysis software. The strength of the sonar signal helps determine the biomass and number of fish. When the chief scientist see an interesting aggregation of fish to tow on, he calls the bridge (the brains of the boat–this is where the boat is controlled) and reports the latitude and longitude of where he wishes to fish. The ship then turns about and the deck hands work to lower the tow net and prepare to collect fish at the depth the scientists observed the fish.

Here, I’ve got a Humboldt Squid.

Here, I’ve got a Humboldt Squid.

After the fish are collected, the Pacific hake are weighed and counted.  A sub-sample of about 300 Pacific hake is sexed and lengthed. Another sub-sample of about 50 Pacific hake is weighed, sexed, and lengthed; sexual maturity is determined by observation of the gonads, and ear bones are removed – this will enable scientists to determine the age of the fish.  About 10 Pacific hake have their stomach contents sampled as well. All this information is collected and used by Fishery Biologists to determine the population dynamics of the overall Pacific hake stock. The acoustic scientists also save all their data in an acoustic library. This will help scientists to analyze the Pacific hake biomass (population) while minimizing how many live specimens they need to collect. In total we completed three tows today. That’s a lot of Pacific hake to measure, weigh, and sex.

Personal Log 

The ship is loud. Sleep was hard to come by last night. Living in quiet Vermont has made me a light sleeper. I need to work on adjusting to the constant noise. The food and staff are great. Everyone takes pride in their ship and the work which is done on the ship.

Question of the Day 
Can you identify the beast in the picture to the picture?

Animals Seen Today 
Pacific Hake, Humboldt Squid, Myctophids, Breaching Whale (too far away to identify; most likely a Humpback)